JP2013029485A - Charging and discharging test device - Google Patents

Charging and discharging test device Download PDF

Info

Publication number
JP2013029485A
JP2013029485A JP2011177273A JP2011177273A JP2013029485A JP 2013029485 A JP2013029485 A JP 2013029485A JP 2011177273 A JP2011177273 A JP 2011177273A JP 2011177273 A JP2011177273 A JP 2011177273A JP 2013029485 A JP2013029485 A JP 2013029485A
Authority
JP
Japan
Prior art keywords
secondary battery
unit
charge
switch
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011177273A
Other languages
Japanese (ja)
Other versions
JP5839168B2 (en
Inventor
Akira Miyata
朗 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2011177273A priority Critical patent/JP5839168B2/en
Publication of JP2013029485A publication Critical patent/JP2013029485A/en
Application granted granted Critical
Publication of JP5839168B2 publication Critical patent/JP5839168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charging and discharging test device in which, when charging and discharging tests of individual secondary batteries are performed, the tests can be done at low power consumption.SOLUTION: A charging and discharging test device comprises: switches 2a to 2d for arbitrarily switching a circuit which charges, discharges or bypasses a secondary battery 1; a switching control part 3 for performing an ON-OFF control of the switches 2a to 2d; a power supply device 5 for charging or discharging the secondary battery 1; and a series circuit which is obtained by serially connecting a plurality of units and the power supply device 5 after forming the secondary battery 1, the switches 2a to 2d and the switching control part as one unit.

Description

本発明は、二次電池を充電または放電し、二次電池の活性化や性能試験を行う充放電試験装置に関する。  The present invention relates to a charge / discharge test apparatus that charges or discharges a secondary battery and performs activation or performance test of the secondary battery.

近年、充電可能なリチウムイオン電池等の二次電池は様々な電気機器や電子機器に広く使用されている。また、環境保護や石油資源の枯渇などの問題から、二次電池を駆動源とした電気自動車など、利用範囲はますます拡がってきている。そのため、二次電池の技術開発は急速に進展おり、エネルギー密度の向上、小型化、軽量化、長寿命化などが図られている。一方で、その製造工程は非常に高い加工精度が要求されるようになってきており、信頼性の確保が重要になっている。一般に、リチウムイオン電池などは単一の電池では出力電圧値が低くその用途が限られてしまうため、高出力を確保するために単電池を直列に組み合わせた組電池の状態で使用されることが多いが、電池製造時の充放電試験では、組電池の中の1つの電池が不良となった場合でも組電池全体の性能に影響を及ぼすため、個々の電池について全数検査を行っている。また、こうした二次電池は、組立て後に内部の電極を活性化する必要があり、そうした目的でも複数回の充放電試験が個々の電池について実施されている。  In recent years, secondary batteries such as rechargeable lithium-ion batteries have been widely used in various electrical and electronic devices. In addition, due to problems such as environmental protection and the depletion of petroleum resources, the range of use, such as electric vehicles using secondary batteries as a drive source, has been expanding. For this reason, technological development of secondary batteries is progressing rapidly, and improvements in energy density, miniaturization, weight reduction, long life, and the like are being achieved. On the other hand, the manufacturing process is required to have very high processing accuracy, and it is important to ensure reliability. In general, a single battery, such as a lithium ion battery, has a low output voltage value and its use is limited. Therefore, in order to ensure high output, a lithium battery may be used in a state of an assembled battery in which unit cells are combined in series. In many cases, in the charge / discharge test at the time of battery manufacture, even if one battery in the assembled battery becomes defective, the performance of the entire assembled battery is affected. Therefore, every battery is inspected. In addition, such a secondary battery needs to activate an internal electrode after assembling, and for this purpose, a plurality of charge / discharge tests are performed on each battery.

二次電池の活性化や性能検査では、単電池を任意の電流で充電・放電をする必要があり、充電方法として、直列充電、並列充電、単独充電などがある。リチウムイオン電池などは、過充電・過放電に弱く、定められた電圧範囲内で使用しなければ容量の低下や異常発熱を起こす。単電池を直列に配した組電池を充放電する場合は、単電池毎の電圧を監視し、単電池間の電圧バランスに差が生じた場合は、過充電・過放電になる前に該当の電池をバイパスして充放電しない方式(例えば、特許文献1参照。)や、充電を一時中断し電圧の高い単電池を抵抗や電流制御回路により放電することで電池間の電圧のバランスを整える充放電方式(例えば、特許文献2参照。)があるが、電池製造時の充放電試験では電池性能のばらつきが多いため直列充電は使用されていない。また並列充電については低電圧のまま大電流化するため効率が大幅に低下するため使用されていない。現在、電池製造時の充放電試験では単独充電が主流となっている。また、単独で電池を放電する場合は、電池の内部抵抗や回路の配線抵抗の影響で十分に放電しない場合があり、それを回避するために放電用にバイアス電圧を設ける方式(例えば、特許文献3参照。)がある。  In the activation and performance inspection of the secondary battery, it is necessary to charge / discharge the single cell with an arbitrary current, and there are serial charging, parallel charging, single charging and the like as charging methods. Lithium ion batteries are vulnerable to overcharge and overdischarge, and if used within a specified voltage range, their capacity will be reduced and abnormal heat will be generated. When charging / discharging an assembled battery in which single cells are arranged in series, monitor the voltage of each single cell, and if there is a difference in the voltage balance between single cells, Charging that balances the voltage between the batteries by bypassing the battery and not charging / discharging (for example, see Patent Document 1), or by temporarily suspending charging and discharging a high-voltage unit cell with a resistor or current control circuit. Although there is a discharge method (for example, refer to Patent Document 2), in the charge / discharge test at the time of battery manufacture, there is a large variation in battery performance, so series charging is not used. Also, the parallel charging is not used because the efficiency is greatly reduced because the current is increased while the voltage is low. Currently, single charge is the mainstream in charge and discharge tests during battery production. In addition, when a battery is discharged alone, it may not be sufficiently discharged due to the influence of the internal resistance of the battery or the wiring resistance of the circuit, and a method of providing a bias voltage for discharging in order to avoid this (for example, patent documents) 3).

特開平7−163060号公報JP-A-7-163060 特開平8−019188号公報JP-A-8-0119188 特開平10−191571号公報JP-A-10-191571

二次電池の量産工場における検査では、大量の二次電池について充放電を繰り返し行うため、充放電試験に使用される電力消費量も多くなる。しかしながら現在主流の単独充放電による充放電試験装置では、放電電力が再利用されずに熱エネルギー等へ変換されたり、所定の電圧値まで放電するためにバイアス電源を設けてさらに電圧をかける必要があり、電力使用効率が悪いという問題があった。  In the inspection of a secondary battery in a mass production factory, charging / discharging is repeatedly performed for a large number of secondary batteries, so that the power consumption used for the charge / discharge test also increases. However, in the current mainstream charge / discharge test equipment using single charge / discharge, the discharge power is not reused but converted to thermal energy or the like, or it is necessary to provide a bias power supply to further discharge to a predetermined voltage value. There was a problem that power use efficiency was bad.

そこで、本発明は、個々の二次電池の充放電試験をするにあたり低消費電力で試験できる充放電試験装置を提供することを目的とする。  Then, an object of this invention is to provide the charging / discharging test apparatus which can test by low power consumption in performing the charging / discharging test of each secondary battery.

上記目的を達成するために、本発明の充放電試験装置は、二次電池を充電、放電またはバイパスする回路を任意に切り替える切替手段と、前記切替手段を入切制御する切替制御手段と、前記二次電池を充電または放電する電源と、前記二次電池、前記切替手段および前記切替制御手段を1ユニットとし、複数の前記ユニットと前記電源とを直列に接続して直列回路を構成することを特徴とする。また、前記切替手段は、前記直列回路と前記ユニットとの2つの接続点のうち、一方の前記接続点から並列に接続された第1のスイッチと第2のスイッチと、他方の前記接続点から並列に接続された第3のスイッチと第4のスイッチとを備え、前記第1のスイッチと第3のスイッチの他端を前記二次電池の正極に接続し、前記第2のスイッチと第4のスイッチの他端を前記二次電池の負極に接続したことを特徴とする。  In order to achieve the above object, the charge / discharge test apparatus of the present invention comprises a switching means for arbitrarily switching a circuit for charging, discharging or bypassing a secondary battery, a switching control means for controlling on / off of the switching means, A power source for charging or discharging a secondary battery, the secondary battery, the switching unit, and the switching control unit are set as one unit, and a plurality of the units and the power source are connected in series to form a series circuit. Features. The switching means includes a first switch and a second switch connected in parallel from one of the two connection points of the series circuit and the unit, and the other connection point. A third switch and a fourth switch connected in parallel; the other end of the first switch and the third switch is connected to the positive electrode of the secondary battery; the second switch and the fourth switch; The other end of the switch is connected to the negative electrode of the secondary battery.

本発明によれば、個々の二次電池の充放電試験をするにあたり低消費電力で試験できる充放電試験装置を提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the charging / discharging test apparatus which can test with low power consumption can be provided in performing the charging / discharging test of each secondary battery.

本発明にかかる充放電試験装置の第一の実施の形態の全体構成を示した図。The figure which showed the whole structure of 1st embodiment of the charging / discharging test apparatus concerning this invention. ユニット4を詳細に示した図。The figure which showed the unit 4 in detail. 本発明の実施形態の充放電試験装置が消費電力を低減し効率を良くすることを説明する図。The figure explaining that the charging / discharging test apparatus of embodiment of this invention reduces power consumption and improves efficiency. 電圧V2と効率ηの関係を示したグラフ。The graph which showed the relationship between voltage V2 and efficiency (eta). 本発明の実施形態の充放電試験装置が消費電力を低減し効率を良くすることを説明する図。The figure explaining that the charging / discharging test apparatus of embodiment of this invention reduces power consumption and improves efficiency. バイアス電源C2を追加した図。The figure which added bias power supply C2. 端子電圧V2の電池B1と端子電圧V3の電池B2を極性を反転して直列接続した図。The figure which connected the battery B1 of the terminal voltage V2 and the battery B2 of the terminal voltage V3 in series with the polarity reversed. 電池B1及び電池B2が複数の直列接続の場合を示す図。The figure which shows the case where battery B1 and battery B2 are a plurality of serial connection. 外部に開始時間を制御する装置を準備した図。The figure which prepared the apparatus which controls start time outside.

以下、本発明にかかる充放電試験装置の実施の形態について図面を参照しながら説明する。なお、図1〜図9は、本発明を実施する形態の一例を示したものであって、これらの図によって本発明が限定されるものではない。図1は、本発明にかかる充放電試験装置の第一の実施の形態の全体構成を示した図である。充放電試験の対象である二次電池1には切替手段であるスイッチ2(2a〜2d)が接続されている。さらにこのスイッチをオン/オフさせるための指令を与える切替制御部3があり、これら二次電池1とスイッチ2a〜2dと切替制御部3とを1単位とするユニット4(4a、4b、・・・、4n)が試験対象の二次電池1の個数分直列に接続され、さらに二次電池1を充放電する電源装置5が直列に接続されている。  Hereinafter, embodiments of a charge / discharge test apparatus according to the present invention will be described with reference to the drawings. 1 to 9 show examples of embodiments for carrying out the present invention, and the present invention is not limited by these drawings. FIG. 1 is a diagram showing an overall configuration of a first embodiment of a charge / discharge test apparatus according to the present invention. A switch 2 (2a to 2d), which is a switching means, is connected to the secondary battery 1 that is the subject of the charge / discharge test. Further, there is a switching control unit 3 for giving a command for turning on / off the switch, and a unit 4 (4a, 4b,...) Having the secondary battery 1, the switches 2a to 2d, and the switching control unit 3 as one unit. 4n) is connected in series by the number of secondary batteries 1 to be tested, and further, a power supply device 5 that charges and discharges the secondary battery 1 is connected in series.

スイッチ2a〜2dは、例えばトランジスターなどのスイッチング素子であり、切替制御部3からの指令によりオン/オフ動作を行う。ここで、スイッチ2aとスイッチ2bは直列回路上の電源装置5のプラス側とユニット4aとの接続点から並列に接続され、スイッチ2cとスイッチ2dは直列回路上の電源装置5のマイナス側とユニット4aとの接続点から並列に接続されており、スイッチ2aとスイッチ2cの他端は二次電池1の正極に接続され、スイッチ2bとスイッチ2dの他端は二次電池1の負極に接続されている。このような構成にすることにより、スイッチ2a〜2dのオン/オフの組み合わせにより二次電池1を充電、放電、バイパスする回路を構成することができる。  The switches 2 a to 2 d are switching elements such as transistors, for example, and perform an on / off operation according to a command from the switching control unit 3. Here, the switch 2a and the switch 2b are connected in parallel from the connection point between the plus side of the power supply device 5 on the series circuit and the unit 4a, and the switch 2c and the switch 2d are connected to the minus side of the power supply device 5 on the series circuit and the unit. The other ends of the switch 2a and the switch 2c are connected to the positive electrode of the secondary battery 1, and the other ends of the switch 2b and the switch 2d are connected to the negative electrode of the secondary battery 1. ing. With such a configuration, it is possible to configure a circuit that charges, discharges, and bypasses the secondary battery 1 by a combination of ON / OFF of the switches 2a to 2d.

充電回路にするには、スイッチ2a,2dをオン、スイッチ2b,2cをオフにすれば良く、二次電池1が直列回路に充電方向に接続される状態となる。  To make the charging circuit, the switches 2a and 2d are turned on and the switches 2b and 2c are turned off, and the secondary battery 1 is connected to the series circuit in the charging direction.

放電回路にするには、スイッチ2b,2cをオン、スイッチ2a,2dをオフにすれば良く、二次電池1が直列回路に放電方向に接続される状態となる。  To make the discharge circuit, the switches 2b and 2c are turned on and the switches 2a and 2d are turned off, and the secondary battery 1 is connected to the series circuit in the discharge direction.

バイパス回路にするには、スイッチ2b,2dをオン、スイッチ2a,2cをオフに、あるいはスイッチ2a,2cをオン、スイッチ2b,2dをオフにすれば良い。この状態のとき、全体回路としては通電状態にあるにもかかわらず、二次電池1の着脱を自由に行うことができる。  In order to obtain a bypass circuit, the switches 2b and 2d are turned on, the switches 2a and 2c are turned off, or the switches 2a and 2c are turned on and the switches 2b and 2d are turned off. In this state, the secondary battery 1 can be freely attached and detached regardless of whether the entire circuit is energized.

このように、二次電池1の充電回路、放電回路またはバイパス回路が、全体の直列回路を遮断することなく任意に実施することができる。  Thus, the charging circuit, discharging circuit, or bypass circuit of the secondary battery 1 can be arbitrarily implemented without interrupting the entire series circuit.

図2はユニット4を詳細に示した図であり、図1と同一または相当部分には同一符号を付している。スイッチ2a〜2dはスイッチング素子としてトランジスターを使用した場合を表している。また、二次電池1に流れる電流を測定する電流計I1と二次電池1の電圧を測定する電圧計V1とスイッチ2a〜2dのオン/オフを制御する切替制御部3から構成される。切替制御部3は、中央処理装置やメモリー等から成るパソコンやマイコン等により構成され、スイッチ2a〜2dに対してオン/オフの指令を与えることができ、充電、放電、バイパス回路を任意に、または二次電池1の電流値や電圧値を条件に切り替えることができる機能を有する。さらに、切替制御部3は、スイッチ2c,2dをPWM制御することで、二次電池1に流れる電流を任意制御できる。  FIG. 2 is a diagram showing the unit 4 in detail, and the same or corresponding parts as those in FIG. The switches 2a to 2d represent cases where transistors are used as switching elements. Moreover, it is comprised from the ammeter 11 which measures the electric current which flows into the secondary battery 1, the voltmeter V1 which measures the voltage of the secondary battery 1, and the switching control part 3 which controls on / off of switch 2a-2d. The switching control unit 3 is constituted by a personal computer, a microcomputer, or the like including a central processing unit, a memory, and the like, and can give on / off commands to the switches 2a to 2d, and can arbitrarily charge, discharge, and bypass circuits. Or it has the function which can switch the electric current value and voltage value of the secondary battery 1 on condition. Furthermore, the switching control unit 3 can arbitrarily control the current flowing through the secondary battery 1 by performing PWM control on the switches 2c and 2d.

充電モードは、スイッチ2a,2dのみオンすることで、二次電池1を直列回路に充電方向に接続できる。充電電流を制御する場合は、スイッチ2aを常時オンし、二次電池1に流れる電流が所定の電流値となるように定電流PWM制御によりスイッチ2dをオン/オフする。このときスイッチ2dをオフすると全体の直列回路が遮断されるため、スイッチ2cをスイッチ2dと反対の動作状態にすることでスイッチ2aとスイッチ2cで二次電池1をバイパスし全体の直列回路が遮断しないようにする。  In the charging mode, by turning on only the switches 2a and 2d, the secondary battery 1 can be connected to the series circuit in the charging direction. When controlling the charging current, the switch 2a is always turned on, and the switch 2d is turned on / off by constant current PWM control so that the current flowing through the secondary battery 1 has a predetermined current value. If the switch 2d is turned off at this time, the entire series circuit is cut off. Therefore, by setting the switch 2c to an operation state opposite to that of the switch 2d, the secondary battery 1 is bypassed by the switch 2a and the switch 2c and the whole series circuit is cut off. Do not.

放電モードは、スイッチ2b,2cのみをオンすることで、二次電池1を直列回路に放電方向に接続できる。放電電流を制御する場合は、スイッチ2bを常時オンし、二次電池1に流れる電流が所定の電流値となるように定電流PWM制御によりスイッチ2cをオン/オフする。このときスイッチ2cをオフすると全体の直列回路が遮断されるため、スイッチ2dをスイッチ2cと反対の動作状態にすることでスイッチ2bとスイッチ2dで二次電池1をバイパスし全体の直列回路が遮断しないようにする。  In the discharge mode, the secondary battery 1 can be connected to the series circuit in the discharge direction by turning on only the switches 2b and 2c. When controlling the discharge current, the switch 2b is always turned on, and the switch 2c is turned on / off by constant current PWM control so that the current flowing through the secondary battery 1 has a predetermined current value. If the switch 2c is turned off at this time, the entire series circuit is cut off. Therefore, by setting the switch 2d to the operation state opposite to the switch 2c, the secondary battery 1 is bypassed by the switch 2b and the switch 2d and the whole series circuit is cut off. Do not.

なお、この定電流PWM制御のときのスイッチングによる脈動を防ぐためにリアクトルL1、コンデンサC1を備えている。  Note that a reactor L1 and a capacitor C1 are provided to prevent pulsation due to switching during the constant current PWM control.

切替制御部3は、電流I1、電圧V1の情報により以下の制御を行い、二次電池1について種々の充放電試験と過充電・過放電の防止を行う。  The switching control unit 3 performs the following control based on the information on the current I1 and the voltage V1, and performs various charge / discharge tests and prevention of overcharge / overdischarge on the secondary battery 1.

<CC充電、CC放電>
充電または放電において二次電池1に流れる電流I1をPWM制御により一定に保つ。
<CCCV充電>
二次電池1の電圧V1が、指定された電圧以下の場合は、CC充電を行い、指定された電圧以上になると指定電圧になるように充電電流を制御する。充電電流が指定電流未満になるとCCCV充電を停止する。
<CCCV放電>
二次電池1の電圧V1が、指定された電圧以上の場合は、CC放電を行い、指定された電圧以下になると指定電圧になるように放電電流を制御する。放電電流が指定電流未満になるとCCCV放電を停止する。
<CP充電、CP放電>
二次電池1への充電電力または放電電力が一定となるように電流I1をPWM制御する。このとき二次電池1への充電電力は、I1×V1で求める。
<電圧異常監視>
二次電池1の電圧V1が上限を超えるか、下限未満となると充放電を停止し二次電池1を保護する。
<CC charge, CC discharge>
The current I1 flowing through the secondary battery 1 during charging or discharging is kept constant by PWM control.
<CCCV charging>
When the voltage V1 of the secondary battery 1 is equal to or lower than the specified voltage, CC charging is performed, and when the voltage V1 becomes equal to or higher than the specified voltage, the charging current is controlled to become the specified voltage. When the charging current becomes less than the specified current, CCCV charging is stopped.
<CCCV discharge>
When the voltage V1 of the secondary battery 1 is equal to or higher than the specified voltage, CC discharge is performed, and the discharge current is controlled so as to become the specified voltage when the voltage is equal to or lower than the specified voltage. When the discharge current becomes less than the specified current, the CCCV discharge is stopped.
<CP charge, CP discharge>
The current I1 is PWM controlled so that the charging power or discharging power to the secondary battery 1 is constant. At this time, the charging power to the secondary battery 1 is obtained by I1 × V1.
<Abnormal voltage monitoring>
When the voltage V1 of the secondary battery 1 exceeds the upper limit or less than the lower limit, charging / discharging is stopped and the secondary battery 1 is protected.

次に、本発明の実施形態における充放電試験装置が消費電力を低減し効率を良くする原理を図3〜図8を参照して説明する。  Next, the principle by which the charge / discharge test apparatus in the embodiment of the present invention reduces power consumption and improves efficiency will be described with reference to FIGS.

充放電試験装置にかかる問題の1つに低電圧充放電時における充電効率の低下が挙げられる。図3を参照して、いま電圧V2の二次電池B1を電源装置C1で充電する場合を考える。回路の配線抵抗、二次電池B1の内部抵抗、電源装置C1のスイッチングロスなど回路上のロス抵抗を全て集約したものを等価的にロス抵抗Rとすると、この回路に電流Iを流すときに必要な電源装置C1の出力電圧V1は、
V1=V2+I・R ・・・(1)
となり、電源装置C1からの供給電力P1は、
P1=V1・I ・・・(2)
となり、二次電池B1への注入電力P2は、
P2=V2・I ・・・(3)
となり、充電効率ηは、
η=P2/P1=V2・I/V1・I=V2/(V2+I・R) ・・・(4)
となる。この関係式は放電においても同様となる。
One of the problems associated with the charge / discharge test apparatus is a decrease in charge efficiency during low-voltage charge / discharge. Referring to FIG. 3, consider the case where the secondary battery B1 of voltage V2 is charged by the power supply device C1. Necessary when the current I is passed through the circuit, assuming that the loss resistance on the circuit, such as the wiring resistance of the circuit, the internal resistance of the secondary battery B1, and the switching loss of the power supply C1, is equivalent to the loss resistance R. The output voltage V1 of the power supply device C1 is
V1 = V2 + I · R (1)
Thus, the supplied power P1 from the power supply device C1 is
P1 = V1 · I (2)
The injection power P2 to the secondary battery B1 is
P2 = V2 · I (3)
The charging efficiency η is
η = P2 / P1 = V2 / I / V1 · I = V2 / (V2 + I · R) (4)
It becomes. This relational expression also applies to discharge.

式(4)のロス抵抗Rを仮に100mΩとし、10A、20A、50Aで充放電を行ったときの、電圧V2と効率ηの関係をグラフ化すると図4となり、電池電圧V2が低いほど効率ηが低下することが分かる。これによりリチウム系二次電池の単独充電の電圧は2〜4Vと低いため、効率が低い電圧領域で使用していることが分かる。  The relationship between the voltage V2 and the efficiency η when charging / discharging at 10A, 20A, and 50A is assumed to be 100 mΩ, assuming that the loss resistance R in the formula (4) is 100 mΩ, is shown in FIG. It turns out that falls. Thereby, since the voltage of the single charge of a lithium secondary battery is as low as 2-4V, it turns out that it is used in the voltage area | region where efficiency is low.

このように、リチウム系二次電池のように出力電圧が低い場合は単独充電方式では充放電効率が悪くなるという問題があり、式(4)で示したように電池電圧を高めることで充放電の効率が上がることが分かる。これに対し、二次電池を直列に接続し電池電圧を上げれば良いが、二次電池の試験検査においては、組電池にように直列数を固定することはできず、直列回路から個別に自由に着脱できることが要求される。  As described above, when the output voltage is low as in the lithium secondary battery, there is a problem that the charge / discharge efficiency is deteriorated in the single charge method, and the charge / discharge is increased by increasing the battery voltage as shown in the equation (4). It turns out that the efficiency of. On the other hand, the secondary battery can be connected in series to increase the battery voltage, but in the secondary battery test and inspection, the number of series cannot be fixed as in the assembled battery, and it is free from the series circuit individually. It is required to be removable.

本発明の実施形態における充放電試験装置では、このための手段として、図1,図2に示すように、ユニット4a〜4nの内部にスイッチ2a〜2dを設けている。スイッチ2bと2dのみオンした状態あるいはスイッチ2aと2cのみオンした状態では、二次電池1に電流が流れないため、二次電池1は自由に着脱できる。スイッチ2aと2dのみオンした状態のユニット1が複数存在するときは、その内部の二次電池1は直列接続された状態となり、図4で示す電圧V2を高くするので充電効率の向上が可能となる。  In the charge / discharge test apparatus according to the embodiment of the present invention, as means for this purpose, switches 2a to 2d are provided inside the units 4a to 4n as shown in FIGS. When only the switches 2b and 2d are turned on or only the switches 2a and 2c are turned on, no current flows through the secondary battery 1, so the secondary battery 1 can be freely attached and detached. When there are a plurality of units 1 in which only the switches 2a and 2d are turned on, the internal secondary battery 1 is connected in series, and the voltage V2 shown in FIG. 4 is increased so that the charging efficiency can be improved. Become.

また、充放電試験装置にかかる別の問題として、低電圧・大電流で放電する場合はバイアス電源が必要となることが挙げられる。図5は電圧V2の二次電池B1を電子負荷D1を使って電流Iで放電する場合を説明する図である。ここでいう電子負荷とは、回路に指定された電流が流れるように電子負荷内部の抵抗値を可変できるものとする。回路上のロス抵抗をRとすると電子負荷D1の両端の電圧V1は、
V1=V2−I・R ・・・(5)
となる。電池のエネルギーだけで放電を行うには、V1>0である必要があるが、最近の二次電池の高性能化により放電電流が極めて大きくなっており、性能検査においても大電流での放電が必要となっている。Iが大きくなると式(5)の右辺が負となる場合があり、このときは電池のエネルギーだけでは放電ができなくなる。このため、図6のようにバイアス電源C2を追加して強制的に放電方向に電流を流す方式をとっている。図6は図5の回路にバイアス電源C2を設けた回路を表す図で、このように大電流で放電する場合は放電においてもバイアス電源C2用の電力を供給する必要があるという問題がある。
Another problem with the charge / discharge test apparatus is that a bias power supply is required when discharging at a low voltage and a large current. FIG. 5 is a diagram illustrating a case where the secondary battery B1 having the voltage V2 is discharged with the current I using the electronic load D1. The term “electronic load” as used herein means that the resistance value inside the electronic load can be varied so that a specified current flows in the circuit. If the loss resistance on the circuit is R, the voltage V1 across the electronic load D1 is
V1 = V2-I · R (5)
It becomes. In order to discharge only with the energy of the battery, it is necessary that V1> 0. However, due to the recent high performance of the secondary battery, the discharge current has become extremely large. It is necessary. When I increases, the right side of equation (5) may become negative, and at this time, it becomes impossible to discharge only with the energy of the battery. For this reason, as shown in FIG. 6, the bias power supply C2 is added to force the current to flow in the discharge direction. FIG. 6 is a diagram showing a circuit in which the bias power source C2 is provided in the circuit of FIG. 5. When discharging with a large current in this way, there is a problem that it is necessary to supply power for the bias power source C2 even during discharging.

このように、大電流で放電するためにバイアス電源を用いることで消費電力が増加するという問題があり、これに対しては図7に示すように、端子電圧V2の電池B1と端子電圧V3の電池B2を極性を反転して直列接続した場合が考えられる。  Thus, there is a problem that the power consumption is increased by using a bias power source for discharging with a large current. To deal with this, as shown in FIG. 7, the battery B1 having the terminal voltage V2 and the terminal voltage V3 have a problem. A case where the battery B2 is connected in series with the polarity reversed may be considered.

この回路に電流Iを流すときに必要な電源装置2の出力電圧V1は、
V1=V2+I・R−V3 ・・・(6)
となり、電源装置2からの供給電力P1は、
P1=I・V1=I・(V2+I・R−V3)=I・R+I(V2−V3)…(7)
となる。V2=V3の場合は、式(7)の供給電力P1は、I・Rとなりロス抵抗Rで消費する電力だけを供給すれば良いことになる。
The output voltage V1 of the power supply device 2 required when the current I is supplied to this circuit is
V1 = V2 + I · R−V3 (6)
Thus, the supplied power P1 from the power supply device 2 is
P1 = I · V1 = I · (V2 + I · R-V3) = I 2 · R + I (V2-V3) ... (7)
It becomes. When V2 = V3, the supply power P1 in the equation (7) is I 2 · R, and only the power consumed by the loss resistor R needs to be supplied.

V2=V3以外の場合においても、式(7)の供給電力P1を低減することができることは言うまでもなく、また(V2+I・R)<V3の状態においてはP1が負となるが、電源装置C1を回生可能電源とすることで電源系統への回生が行える。式(7)は、図8に示すように、電池B1及び電池B2が複数の直列接続の場合も成り立つ。  In cases other than V2 = V3, it goes without saying that the power supply P1 of the equation (7) can be reduced, and in the state of (V2 + I · R) <V3, P1 is negative, but the power supply C1 is Regeneration to the power supply system can be performed by using a regenerative power source. As shown in FIG. 8, Expression (7) also holds when the battery B1 and the battery B2 are connected in series.

本発明の実施形態における充放電試験装置では、直列接続されたユニット4a〜4nのスイッチ2a〜2dにより二次電池1の接続方向を反転することができるため、充電と放電の電池が混在する図7,図8の状態となり、式(7)で示したように電源装置5からの供給電力を低減することができる。また電源装置5に回生可能電源を使用すれば(V2+I・R)<V3の状態において電力系統への回生を行うことができる。  In the charge / discharge test apparatus according to the embodiment of the present invention, the connection direction of the secondary battery 1 can be reversed by the switches 2a to 2d of the units 4a to 4n connected in series. 7, the state shown in FIG. 8 is obtained, and the power supplied from the power supply device 5 can be reduced as shown by the equation (7). If a regenerative power source is used for the power supply device 5, regeneration to the power system can be performed in a state of (V2 + I · R) <V3.

さらに、充放電試験装置にかかる別の問題として、直列接続をしても各単電池はそれぞれ異なった電流で制御する必要がある点が挙げられる。これは二次電池の充放電試験において種々の電流値で試験する必要があるからである。この解決手段として、本発明の実施形態では直列接続されたユニット4a〜4nのスイッチ2c、またはスイッチ2dをPWM制御し指定の電流としている。さらに、スイッチ2cとスイッチ2dを反対の動作とし、全体の直列回路が遮断しないようにしている。電源装置5は、ユニット4a〜4nの充放電予定電流を常時監視し、その最大電流を直列回路に流すようにすれば良い。なお、これには各ユニットの二次電池に流れる電流値を全て取り込み、最大電流を判断する構成要素を追加すれば良い。  Furthermore, another problem concerning the charge / discharge test apparatus is that each cell needs to be controlled with a different current even when connected in series. This is because it is necessary to test at various current values in the charge / discharge test of the secondary battery. As a means for solving this problem, in the embodiment of the present invention, the switch 2c or the switch 2d of the units 4a to 4n connected in series is PWM-controlled to a designated current. Further, the switch 2c and the switch 2d are operated in reverse to prevent the entire series circuit from being cut off. The power supply device 5 may constantly monitor the charge / discharge scheduled currents of the units 4a to 4n and flow the maximum current through the series circuit. It should be noted that this may be achieved by adding all the components that take in all the current values flowing through the secondary batteries of each unit and determine the maximum current.

本発明は、各単電池を任意の電流で充放電し、かつ検査の終了した電池セルを自由に脱着できることから作業効率を向上させることができる。また、全ての電池を充電モードまたは放電モードで使用する場合の効率は、式(3)で示すように直列接続による電圧V2が高くなるに比例して改善されるので、充放電に必要な外部電力を低減することができる。  According to the present invention, each cell can be charged / discharged with an arbitrary current, and a battery cell that has been inspected can be freely detached, so that the working efficiency can be improved. In addition, the efficiency when using all the batteries in the charge mode or the discharge mode is improved in proportion to the increase of the voltage V2 due to the series connection as shown in the equation (3). Electric power can be reduced.

充電モードと放電モードが混在した場合は、電源装置5の供給電力が式(7)で示すように低減する。従って、直列接続による高電圧化による効率改善と、放電時の電圧エネルギーを充電時のエネルギーとして利用するという2つの方法により、充放電で消費する電力を削減する効果がある。電池開発時の性能試験においては、同じ電池に対して数百回の充放電検査を行っており、また電池の量産工場においては、電池の活性化や性能試験のために充放電を行う必要があり、どちらも大量な電力を消費している。これらに本発明を適用すれば電力消費を大幅に削減することができる。  When the charging mode and the discharging mode coexist, the power supplied from the power supply device 5 is reduced as shown by the equation (7). Therefore, there is an effect of reducing the power consumed by charging and discharging by two methods of improving efficiency by increasing the voltage by series connection and using voltage energy at the time of discharging as energy at the time of charging. In the performance test at the time of battery development, the same battery has been charged and discharged several hundred times, and in the battery production plant, it is necessary to charge and discharge for battery activation and performance test. Yes, both consume a lot of power. If the present invention is applied to these, power consumption can be greatly reduced.

充放電の開始時間に制約がない充放電検査においては、図9に示すように、外部に開始時間を制御する装置を準備し、充電と放電の電池数がほぼ同数となるように各単セル電池の充放電開始時間を制御することで、消費電力を効率よく低減することができる。  As shown in FIG. 9, in the charge / discharge inspection in which there is no restriction on the start time of charge / discharge, an external device for controlling the start time is prepared, and each single cell is set so that the number of batteries for charge and discharge is approximately the same. By controlling the charge / discharge start time of the battery, power consumption can be efficiently reduced.

その他、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。  In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

1…二次電池、2…スイッチ、3…切替制御部、4…ユニット、5…電源装置、I1…電流計、V1…電圧計  DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Switch, 3 ... Switching control part, 4 ... Unit, 5 ... Power supply device, I1 ... Ammeter, V1 ... Voltmeter

Claims (7)

二次電池を充電、放電またはバイパスする回路を任意に切り替える切替手段と、前記切替手段を入切制御する切替制御手段と、
前記二次電池を充電または放電する電源と、
前記二次電池、前記切替手段および前記切替制御手段を1ユニットとし、複数の前記ユニットと前記電源とを直列に接続して直列回路を構成することを特徴とする充放電試験装置。
Switching means for arbitrarily switching a circuit for charging, discharging or bypassing the secondary battery; and switching control means for controlling on / off of the switching means;
A power source for charging or discharging the secondary battery;
The charge / discharge test apparatus according to claim 1, wherein the secondary battery, the switching unit, and the switching control unit are one unit, and a plurality of the units and the power source are connected in series to form a series circuit.
前記切替手段は、前記直列回路と前記ユニットとの2つの接続点のうち、
一方の前記接続点から並列に接続された第1のスイッチと第2のスイッチと、
他方の前記接続点から並列に接続された第3のスイッチと第4のスイッチとを備え、
前記第1のスイッチと第3のスイッチの他端を前記二次電池の正極に接続し、前記第2のスイッチと第4のスイッチの他端を前記二次電池の負極に接続したことを特徴とする請求項1に記載の充放電試験装置。
The switching means includes two connection points between the series circuit and the unit.
A first switch and a second switch connected in parallel from one of the connection points;
A third switch and a fourth switch connected in parallel from the other connection point;
The other ends of the first switch and the third switch are connected to the positive electrode of the secondary battery, and the other ends of the second switch and the fourth switch are connected to the negative electrode of the secondary battery. The charge / discharge test apparatus according to claim 1.
前記切替手段により前記二次電池をバイパスする回路にすることにより、前記直列回路が通電状態で前記二次電池を充放電試験装置から脱着できることを特徴とする請求項1または請求項2に記載の充放電試験装置。  3. The secondary battery can be detached from the charge / discharge test apparatus while the series circuit is energized by using a circuit that bypasses the secondary battery by the switching unit. 4. Charge / discharge test equipment. 前記複数のユニットのうち、所定のユニットを前記切替手段により充電状態にし、別の所定のユニットを前記切替手段により放電状態にし、充電と放電を同時に実行することを特徴とする請求項1乃至請求項3のいずれか1項に記載の充放電試験装置。  The predetermined unit of the plurality of units is charged by the switching unit, and another predetermined unit is discharged by the switching unit, and charging and discharging are performed simultaneously. Item 4. The charge / discharge test apparatus according to any one of Items 3 to 3. 前記ユニットは、さらに前記二次電池の電圧を測定する電圧測定手段を備え、測定した電圧値を前記切替制御手段に入力することを特徴とする請求項1乃至請求項4のいずれか1項に記載の充放電試験装置。  5. The unit according to claim 1, wherein the unit further includes a voltage measuring unit that measures a voltage of the secondary battery, and inputs the measured voltage value to the switching control unit. The charge / discharge test apparatus as described. 前記ユニットは、さらに前記二次電池に流れる電流を測定する電流測定手段を備え、測定した電流値を前記切替制御手段に入力し、前記切替制御手段は、前記二次電池に流れる電流が所定の電流値となるように前記切替手段をPMW制御することを特徴とする請求項1乃至請求項5のいずれか1項に記載の充放電試験装置。  The unit further includes a current measuring unit that measures a current flowing through the secondary battery, and inputs the measured current value to the switching control unit. The switching control unit is configured so that a current flowing through the secondary battery is a predetermined value. The charge / discharge test apparatus according to any one of claims 1 to 5, wherein the switching unit is subjected to PMW control so as to obtain a current value. 前記電源は、回生電源であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の充放電試験装置。  The charge / discharge test apparatus according to any one of claims 1 to 6, wherein the power source is a regenerative power source.
JP2011177273A 2011-07-28 2011-07-28 Charge / discharge test equipment Expired - Fee Related JP5839168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177273A JP5839168B2 (en) 2011-07-28 2011-07-28 Charge / discharge test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177273A JP5839168B2 (en) 2011-07-28 2011-07-28 Charge / discharge test equipment

Publications (2)

Publication Number Publication Date
JP2013029485A true JP2013029485A (en) 2013-02-07
JP5839168B2 JP5839168B2 (en) 2016-01-06

Family

ID=47786644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177273A Expired - Fee Related JP5839168B2 (en) 2011-07-28 2011-07-28 Charge / discharge test equipment

Country Status (1)

Country Link
JP (1) JP5839168B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190113090A (en) * 2018-03-27 2019-10-08 인하대학교 산학협력단 Electric Vehicle Power System
CN112874384A (en) * 2021-02-26 2021-06-01 重庆星座汽车科技有限公司 Parallel charging circuit
JP6976468B1 (en) * 2021-04-12 2021-12-08 裕之 佐藤 Charge / discharge test device and charge / discharge control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190113090A (en) * 2018-03-27 2019-10-08 인하대학교 산학협력단 Electric Vehicle Power System
KR102153525B1 (en) * 2018-03-27 2020-09-08 인하대학교 산학협력단 Electric Vehicle Power System
CN112874384A (en) * 2021-02-26 2021-06-01 重庆星座汽车科技有限公司 Parallel charging circuit
CN112874384B (en) * 2021-02-26 2022-09-02 苏州清研精准汽车科技有限公司 Parallel charging circuit
JP6976468B1 (en) * 2021-04-12 2021-12-08 裕之 佐藤 Charge / discharge test device and charge / discharge control device
JP2022162378A (en) * 2021-04-12 2022-10-24 裕之 佐藤 Charge/discharge test device and charge/discharge control device

Also Published As

Publication number Publication date
JP5839168B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
Omariba et al. Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles
Ci et al. Reconfigurable battery techniques and systems: A survey
KR102056876B1 (en) Apparatus for managing battery, battery pack including the same and vehicle including the same
Lee et al. Comparison of passive cell balancing and active cell balancing for automotive batteries
Kim et al. Power electronics-enabled self-X multicell batteries: A design toward smart batteries
US10230249B2 (en) Battery pack, method for charging/discharging same, and power consumption device
US9160179B2 (en) Charging apparatus and charging method
CN102882242B (en) Circuit for charging and discharging balance of storage battery pack
KR101387733B1 (en) Battery pack, battery pack arrangement and electric apparatus
JP5953349B2 (en) Charger and electrical system
JP2012191679A (en) Balance correction apparatus and power storage system
US9178367B2 (en) Balance correction apparatus and electric storage system
US9885759B2 (en) Test arrangement of an energy storage device
WO2017054148A1 (en) Battery cell balancing structure
US9583952B2 (en) Shunt circuit, charging system and integrated circuit
JP5868013B2 (en) Lithium ion battery pack charge control device, control method, and lithium ion battery pack system
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
JP5839168B2 (en) Charge / discharge test equipment
Lawson A software configurable battery
US20170301963A1 (en) Method and apparatus for performing string-level dynamic reconfiguration in an energy system
JP2013146159A (en) Charge control system and charge control method of battery pack
WO2013136413A1 (en) Power storage system and method for controlling power storage module
US9614255B2 (en) Acid/alkaline hybrid resonance battery device with damping function
US20160190801A1 (en) Scalable energy storage system
JP2013146160A (en) Charge control system and charge control method of battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5839168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees