JP2013024678A - Vibration gyro element, gyro sensor and electronic apparatus - Google Patents

Vibration gyro element, gyro sensor and electronic apparatus Download PDF

Info

Publication number
JP2013024678A
JP2013024678A JP2011158724A JP2011158724A JP2013024678A JP 2013024678 A JP2013024678 A JP 2013024678A JP 2011158724 A JP2011158724 A JP 2011158724A JP 2011158724 A JP2011158724 A JP 2011158724A JP 2013024678 A JP2013024678 A JP 2013024678A
Authority
JP
Japan
Prior art keywords
vibrating
detection
driving
vibration
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011158724A
Other languages
Japanese (ja)
Inventor
Tadashi Shimura
匡史 志村
Takayuki Kikuchi
菊池  尊行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011158724A priority Critical patent/JP2013024678A/en
Publication of JP2013024678A publication Critical patent/JP2013024678A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate or reduce influence due to mechanical vibration leakage of driving vibration arms and to enhance detection accuracy and sensitivity in a two-sided tuning-fork type vibration gyro element.SOLUTION: A vibration gyro element 11 comprises individual pairs of driving vibration arms 13a and 13b and detecting vibration arms 14a and 14b that extend in directions opposite to each other from a supporting portion 12. The pair of driving vibration arms 13a and 13b vibrate in a flexural manner in an XY in-plane direction at resonance frequency fin a driving mode. In a detecting mode, the driving vibration arms 13a and 13b vibrate in the flexural manner in a Z-axis direction with a phase opposite to an application direction of Coriolis force by the Coriolis force due to rotation thereof about a Y-axis and the pair of detecting vibration arms 14a and 14b vibrate in the flexural manner in the Z-axis direction with a phase opposite to the phase of the driving vibration arms 13a and 13b. The detecting vibration arms 14a and 14b are set to vibrate in the flexural manner in the XY in-plane direction at resonance frequency f<f, and the resonance frequency fis set to reduce a difference |S1-S2| between detected signal values S1 and S2 output from each of the detecting vibration arms 14a and 14b in the driving mode.

Description

本発明は、屈曲振動片を用いた振動ジャイロ素子、それを用いたジャイロセンサー及び電子機器に関する。   The present invention relates to a vibration gyro element using a bending vibration piece, a gyro sensor using the vibration gyro element, and an electronic apparatus.

従来、時計や家電製品、各種情報・通信機器やOA機器等の電子機器には、電子回路のクロック源として圧電振動子、圧電振動片とICチップとを搭載した発振器やリアルタイムクロックモジュール等の圧電デバイスが広く使用されている。また、デジタルスチールカメラ、ビデオカメラ、ナビゲーション装置、車体姿勢検出装置、ポインティングデバイス、ゲームコントローラー、携帯電話、ヘッドマウントディスプレイ等の各種電子機器には、角速度、角加速度、加速度、力等の物理量を検出するために、屈曲振動片を用いた圧電振動ジャイロ等のセンサーが広く使用されている。   Conventionally, in electronic devices such as watches, home appliances, various information / communication devices and OA devices, a piezoelectric vibrator as a clock source of an electronic circuit, a piezoelectric device such as an oscillator mounted with a piezoelectric vibrating piece and an IC chip, and a real-time clock module. The device is widely used. Also, physical quantities such as angular velocity, angular acceleration, acceleration, and force are detected in various electronic devices such as digital still cameras, video cameras, navigation devices, body posture detection devices, pointing devices, game controllers, mobile phones, and head mounted displays. Therefore, a sensor such as a piezoelectric vibration gyro using a bending vibration piece is widely used.

例えば、基部から一方の側に平行に延長する1対の駆動用振動腕と、その反対側に平行に延長する1対の検出用振動腕とを備える両側音叉型の屈曲振動片が知られている(例えば、特許文献1,2を参照)。図10は、従来の両側音叉型屈曲振動片からなる振動ジャイロ素子及び検出回路の典型例を概略的に示している。同図において、振動ジャイロ素子1は、中央の支持部2から一方の側に平行に延出する1対の駆動用振動腕3a,3bと、それとは反対側に平行に延出する1対の検出用振動腕4a,4bとを有する。   For example, there is known a double-side tuning fork-type bending vibration piece including a pair of drive vibration arms extending in parallel from the base to one side and a pair of detection vibration arms extending in parallel to the opposite side. (For example, see Patent Documents 1 and 2). FIG. 10 schematically shows a typical example of a vibration gyro element and a detection circuit made of a conventional double-side tuning fork type bending vibration piece. In the figure, a vibrating gyro element 1 includes a pair of driving vibrating arms 3a and 3b extending in parallel to one side from a central support portion 2 and a pair of driving vibrating arms 3a and 3b extending in parallel to the opposite side. It has detection vibrating arms 4a and 4b.

駆動用振動腕3a,3bは、その表面に形成した駆動電極に所定の交流電圧を印加すると、その主面と同じXY面内で互いに逆向きに屈曲振動する。この駆動モードの状態で振動ジャイロ素子1が長手方向のY軸周りに回転すると、その角速度に応じたコリオリ力の作用で、前記駆動用振動腕は主面に垂直なZ軸方向に互いに逆向きに屈曲振動し、これに共振して検出用振動腕4a,4bが同じくZ軸方向に互いに逆向きに屈曲振動する。   When a predetermined AC voltage is applied to the driving electrodes formed on the surfaces of the driving vibrating arms 3a and 3b, the driving vibrating arms 3a and 3b bend and vibrate in opposite directions within the same XY plane as the main surface. When the vibrating gyro element 1 rotates around the Y axis in the longitudinal direction in this driving mode, the vibrating arms for driving are opposite to each other in the Z-axis direction perpendicular to the main surface by the action of Coriolis force according to the angular velocity. The detection vibrating arms 4a and 4b bend and vibrate in the opposite directions in the Z-axis direction.

このとき、前記各検出用振動腕の表面に形成した検出電極間にそれぞれ発生する電位差を検出回路5により取り出すことによって、振動ジャイロ素子1の前記回転及びその角速度等が求められる。検出回路5は、例えばチャージアンプ6a,6bからなる電流電圧変換回路、差動アンプ7からなる差動増幅回路、ハイパスフィルター8からなる同期検波回路、及びACアンプ9で構成される。前記差動増幅回路は、前記各検出電極からそれぞれ対応する電流電圧変換回路を経て入力した検出信号の差分を増幅して出力する。   At this time, the rotation of the vibration gyro element 1 and its angular velocity are obtained by taking out the potential difference generated between the detection electrodes formed on the surface of each of the detection vibrating arms by the detection circuit 5. The detection circuit 5 includes, for example, a current-voltage conversion circuit including charge amplifiers 6a and 6b, a differential amplifier circuit including a differential amplifier 7, a synchronous detection circuit including a high-pass filter 8, and an AC amplifier 9. The differential amplifier circuit amplifies and outputs a difference between detection signals input from the detection electrodes through corresponding current-voltage conversion circuits.

同様の両側音叉型として、連結片からそれぞれ上下方向に延出する各1対の第1及び第2の振動片と、連結片から上下方向に延出する支持片とを有する角速度センサが知られている(例えば、特許文献3を参照)。この角速度センサは、角速度の検出精度を向上させるために、一方の振動片ではコリオリ力と同方向に漏れ振動が発生し、他方の振動片ではコリオリ力と逆方向に漏れ振動が発生するように、駆動振動周波数と検出振動周波数とを決定することによって、漏れ振動による電気信号が相殺している。   As a similar double-side tuning fork type, there is known an angular velocity sensor having a pair of first and second vibrating pieces each extending vertically from a connecting piece and a supporting piece extending vertically from the connecting piece. (For example, refer to Patent Document 3). In order to improve the detection accuracy of the angular velocity, this angular velocity sensor is designed so that leakage vibration occurs in the same direction as the Coriolis force in one vibrating piece and leakage vibration occurs in the opposite direction to the Coriolis force in the other vibrating piece. By determining the drive vibration frequency and the detected vibration frequency, the electric signal due to the leakage vibration cancels out.

また、高精度の角速度検出を可能にする電極構造を備えた両側音叉型の圧電振動ジャイロからなる角速度検出装置が提案されている(例えば、特許文献3を参照)。この圧電振動ジャイロは、水晶等の圧電性結晶材料からなる矩形断面の振動腕がコリオリ力でZ軸方向に振動する際に、該断面の第1及び第2角部に電荷が集中して発生することに着目し、該角部を覆うように第1及び第2電極を設けている。   Further, an angular velocity detection device including a double-side tuning fork type piezoelectric vibration gyro provided with an electrode structure that enables highly accurate angular velocity detection has been proposed (for example, see Patent Document 3). This piezoelectric vibration gyro is generated when electric charges concentrate on the first and second corners of a cross section when a vibrating arm with a rectangular cross section made of a piezoelectric crystal material such as quartz vibrates in the Z-axis direction with Coriolis force. Focusing on this, the first and second electrodes are provided so as to cover the corners.

特開2002−340559号公報JP 2002-340559 A 特開2007−93400号公報JP 2007-93400 A 特開平9−329444号公報JP-A-9-329444 特開平9−311041号公報JP 9-311041 A

上述したように1対の検出用振動腕を有する振動ジャイロ素子は、各検出用振動腕からそれぞれ出力される検出信号を差動増幅することによって、それらに同程度に含まれるノイズ等の不要な信号成分を有効に除去することができる。しかしながら、各検出用振動腕の検出信号に含まれる不要な信号成分がアンバランスな場合は、それらを十分に除去することができないため、検出精度が低下する虞がある。   As described above, a vibration gyro element having a pair of detection vibrating arms differentially amplifies detection signals output from the respective detection vibrating arms, thereby eliminating unnecessary noise and the like contained in the same level. The signal component can be effectively removed. However, when unnecessary signal components included in the detection signals of the respective vibrating arms for detection are unbalanced, they cannot be sufficiently removed, so that the detection accuracy may be reduced.

一般に振動ジャイロ素子は、水晶等の圧電単結晶材料のウエハをフォトエッチングして所望の外形を加工し、その表面に電極膜をパターニングして形成される。しかしながら、圧電単結晶材料はエッチング異方性を有するため、ウエットエッチングで加工した振動腕の断面は理想的な矩形でなく、左右に非対称な形状になる。また、外形加工の際にフォトマスクの位置合わせにずれがあると、振動腕の断面が厚さ方向に上下で非対称になる虞がある。その結果、駆動モードにおいて駆動用検出腕から機械的振動漏れが生じ、振動ジャイロ素子が回転していないにも拘わらず、検出用振動腕から検出信号が出力される場合がある。   In general, a vibrating gyro element is formed by photo-etching a wafer of piezoelectric single crystal material such as quartz to process a desired outer shape, and patterning an electrode film on the surface. However, since the piezoelectric single crystal material has etching anisotropy, the cross section of the vibrating arm processed by wet etching is not an ideal rectangle but an asymmetric shape on the left and right. In addition, if there is a deviation in the alignment of the photomask during the outer shape processing, the cross-section of the vibrating arm may become asymmetric in the thickness direction. As a result, mechanical vibration leakage may occur from the drive detection arm in the drive mode, and a detection signal may be output from the detection vibration arm even though the vibration gyro element is not rotating.

また、各対の振動腕は左右で振動がアンバランスになる虞がある。かかるアンバランスな振動の結果、各検出用振動腕からの検出信号に不要な信号成分がアンバランスに含まれる虞がある。このようなアンバランスな不要な信号成分は、検出回路において差動増幅する際に有効に除去できないため、検出精度を低下させる虞がある。   Moreover, there is a possibility that the vibrations of each pair of vibration arms are unbalanced on the left and right. As a result of such unbalanced vibration, there is a risk that an unbalanced signal component unnecessary for the detection signal from each detection vibrating arm may be included. Such an unbalanced unnecessary signal component cannot be effectively removed when differential amplification is performed in the detection circuit, which may reduce detection accuracy.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、両側音叉型の振動ジャイロ素子において、駆動用検出腕から機械的振動漏れにより生じる各検出用振動腕の検出信号のアンバランスを解消して、検出精度及び感度を向上させることにある。   Accordingly, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a vibration tuning gyro element of a double-side tuning fork type that detects each detection vibrating arm caused by mechanical vibration leakage from the driving detection arm. The object is to eliminate detection signal imbalance and improve detection accuracy and sensitivity.

本発明の振動ジャイロ素子は、上記目的を達成するために、
支持部と、
支持部から並んで延出する1対の駆動用振動腕と、
支持部から駆動用振動腕とは反対側に並んで延出する1対の検出用振動腕とを備え、
前記1対の駆動用振動腕が、その表裏主面に沿う面内方向に互いに逆向きに所定の共振周波数fで屈曲振動する駆動モードと、
振動腕の延出方向の周りの回転により作用するコリオリ力によって、前記1対の駆動用振動腕がその表裏主面に交わる面外方向に互いに逆向きにかつコリオリ力の作用方向とは逆相で屈曲振動し、前記1対の検出用振動腕が面外方向に互いに逆向きにかつ駆動用振動腕とは逆相で屈曲振動する検出モードとを有し、
前記1対の検出用振動腕が、面内方向に互いに逆向きに駆動用振動腕の共振周波数fより低い所定の共振周波数fで屈曲振動するように設定され、駆動モードにおいて一方の検出用振動腕から出力される検出信号の値S1と他方の検出用振動腕から出力される検出信号の値S2との差|S1−S2|を小さくするように、共振周波数fを設定したことを特徴とする。
In order to achieve the above object, the vibrating gyro element of the present invention is
A support part;
A pair of drive vibrating arms extending side by side from the support;
A pair of detection vibrating arms extending side by side on the opposite side of the driving vibration arm from the support portion;
The pair of vibrating arms for driving is a driving mode in which the bending vibration at a predetermined resonance frequency f d in opposite directions in the plane direction along its front and back faces,
Due to the Coriolis force acting by the rotation around the extending direction of the vibrating arm, the pair of driving vibrating arms are opposite to each other in the out-of-plane direction intersecting the front and back main surfaces and opposite to the direction of action of the Coriolis force. A detection mode in which the pair of detection vibrating arms bend and vibrate in opposite directions to each other in the out-of-plane direction and in the opposite phase to the driving vibration arm,
The pair of detection vibrating arms are set so as to bend and vibrate at a predetermined resonance frequency f h lower than the resonance frequency f d of the driving vibration arm in opposite directions in the in-plane direction. The resonance frequency f h is set so as to reduce the difference | S1−S2 | between the value S1 of the detection signal output from the vibration arm for detection and the value S2 of the detection signal output from the other vibration arm for detection. It is characterized by.

本願発明者らは、後述するように、検出用振動腕を駆動モードと同じ面内方向に互いに逆向きに、即ち面内モードで屈曲振動させた場合の共振周波数を利用することによって、各検出用振動腕からの検出信号にアンバランスに含まれる不要な信号成分を有効に除去し又は大幅に低減し得ることを見出した。本発明は、かかる知見に基づいてなされたものである。   As will be described later, the inventors of the present application detect each detection arm by utilizing the resonance frequency when the vibrating arm for detection is flexibly vibrated in the same in-plane direction as the drive mode, that is, in the in-plane mode. It has been found that unnecessary signal components included in the unbalance in the detection signal from the vibrating arm for use can be effectively removed or greatly reduced. The present invention has been made based on such knowledge.

各検出用振動腕から出力される検出信号の値の差|S1−S2|が、各検出用振動腕にアンバランスに作用している駆動用振動腕の機械的振動漏れの差であることから、検出用振動腕の共振周波数fと駆動用振動腕の共振周波数fとをf<fとし、かつ|S1−S2|を小さくするように共振周波数fを設定することによって、駆動用振動腕の機械的振動漏れが振動ジャイロ素子の検出感度及び/又は精度に及ぼす影響を実質的に解消し又は大幅に低減することができる。 Since the difference | S1−S2 | of the detection signal values output from the detection vibrating arms is the difference in mechanical vibration leakage of the driving vibrating arms acting unbalanced on the detection vibrating arms. and a resonant frequency f d of the driving vibration arms and the resonance frequency f h of the vibrating arms for detection and f h <f d, and | by the setting the resonance frequency f h as small, | S1-S2 The influence of the mechanical vibration leakage of the driving vibrating arm on the detection sensitivity and / or accuracy of the vibrating gyro element can be substantially eliminated or greatly reduced.

また、本発明の振動ジャイロ素子は、
支持部と、
支持部から並んで延出する1対の駆動用振動腕と、
支持部から駆動用振動腕とは反対側に並んで延出する1対の検出用振動腕とを備え、
前記1対の駆動用振動腕が、その表裏主面に沿う面内方向に互いに逆向きに所定の共振周波数fで屈曲振動する駆動モードと、
振動腕の延出方向の周りの回転により作用するコリオリ力によって、前記1対の駆動用振動腕がその表裏主面に交わる面外方向に互いに逆向きにかつコリオリ力の作用方向とは逆相で屈曲振動し、前記1対の検出用振動腕が面外方向に互いに逆向きにかつ駆動用振動腕とは逆相で屈曲振動する検出モードとを有し、
前記1対の検出用振動腕が、面内方向に互いに逆向きに所定の共振周波数fで屈曲振動するように設定され、共振周波数fが、
<f、及び、|(f−f)/f|≧0.3
を満足することを特徴とする。
The vibrating gyro element of the present invention is
A support part;
A pair of drive vibrating arms extending side by side from the support;
A pair of detection vibrating arms extending side by side on the opposite side of the driving vibration arm from the support portion;
The pair of vibrating arms for driving is a driving mode in which the bending vibration at a predetermined resonance frequency f d in opposite directions in the plane direction along its front and back faces,
Due to the Coriolis force acting by the rotation around the extending direction of the vibrating arm, the pair of driving vibrating arms are opposite to each other in the out-of-plane direction intersecting the front and back main surfaces and opposite to the direction of action of the Coriolis force. A detection mode in which the pair of detection vibrating arms bend and vibrate in opposite directions to each other in the out-of-plane direction and in the opposite phase to the driving vibration arm,
The pair of detection vibrating arms are set to bend and vibrate at a predetermined resonance frequency f h in opposite directions in the in-plane direction, and the resonance frequency f h is
f h <f d and | (f h −f d ) / f d | ≧ 0.3
It is characterized by satisfying.

このように共振周波数f、fを設定することによって、各検出用振動腕からの検出信号の値の差|S1−S2|、即ち各検出用振動腕にアンバランスに作用している駆動用振動腕の機械的振動漏れの差を小さくすることができるので、振動ジャイロ素子の検出感度及び/又は精度を向上させることができる。 By setting the resonance frequencies f h and f d in this way, the difference | S 1 −S 2 | between the detection signal values from the detection vibrating arms, that is, the drive acting on the detection vibrating arms in an unbalanced manner. Since the difference in mechanical vibration leakage of the vibration arm for use can be reduced, the detection sensitivity and / or accuracy of the vibration gyro element can be improved.

或る実施例では、共振周波数fが、|(f−f)/f|≧0.4を満足することによって、駆動用振動腕の機械的振動漏れが各検出用振動腕の検出信号に及ぼす作用のアンバランスを解消し、振動ジャイロ素子の検出感度及び/又は精度をより一層向上させることができる。 In one embodiment, the resonance frequency f h satisfies | (f h −f d ) / f d | ≧ 0.4, so that the mechanical vibration leakage of the drive vibrating arm causes each detection vibrating arm to The imbalance of the effect on the detection signal can be eliminated, and the detection sensitivity and / or accuracy of the vibration gyro element can be further improved.

別の実施例では、駆動用振動腕の長さLdに対する支持部の長さLbをLb/Ld≧2の範囲に設定することによって、駆動用振動腕の機械的振動漏れが各検出用振動腕の検出信号に及ぼす影響を低減し、振動ジャイロ素子の検出感度及び/又は精度を更に向上させることができる。   In another embodiment, by setting the length Lb of the support portion with respect to the length Ld of the driving vibrating arm to be in a range of Lb / Ld ≧ 2, the mechanical vibration leakage of the driving vibrating arm can be detected by each detecting vibrating arm. The influence on the detection signal can be reduced, and the detection sensitivity and / or accuracy of the vibration gyro element can be further improved.

更に別の実施例では、駆動用振動腕の長さLdに対する支持部の長さLbをLb/Ld≧3の範囲に設定することによって、駆動用振動腕の機械的振動漏れの影響を更に低減することができる。   In yet another embodiment, the influence of the mechanical vibration leakage of the driving vibrating arm is further reduced by setting the length Lb of the support portion to the length Ld of the driving vibrating arm within the range of Lb / Ld ≧ 3. can do.

本発明の別の側面によれば、上述した本発明の振動ジャイロ素子を備えることにより、検出感度及び/又は精度の高いジャイロセンサーが提供される。   According to another aspect of the present invention, a gyro sensor with high detection sensitivity and / or accuracy is provided by including the above-described vibrating gyro element of the present invention.

更に本発明の別の側面によれば、上述した本発明の振動ジャイロ素子を備えることにより、検出感度及び/又は精度の高いジャイロセンサー等のセンサー装置を備えた高性能かつ高精度な電子機器が提供される。   Further, according to another aspect of the present invention, there is provided a high-performance and high-precision electronic device including a sensor device such as a gyro sensor having high detection sensitivity and / or accuracy by including the above-described vibration gyro element of the present invention. Provided.

本発明の実施例による振動ジャイロ素子及びその駆動モードにおける振動モードを示す平面図。The top view which shows the vibration mode in the vibration gyro element by the Example of this invention, and its drive mode. (A)図は図1の振動ジャイロ素子の検出モードにおける振動モードを、(B)図は検出用振動腕の面内方向の振動モードをそれぞれ示す説明図。FIG. 4A is a diagram illustrating a vibration mode in the detection mode of the vibration gyro element of FIG. 1, and FIG. 4B is an explanatory diagram illustrating a vibration mode in the in-plane direction of the vibration arm for detection. 図1の振動ジャイロ素子に接続される検出回路の典型例を示す回路図。The circuit diagram which shows the typical example of the detection circuit connected to the vibration gyro element of FIG. 駆動用振動腕の共振周波数50kHzと面内モードにおける検出用振動腕の共振周波数との差に関する、駆動モードにおける各検出用振動腕の振動漏れ信号の差を示す線図。The diagram which shows the difference of the vibration leak signal of each detection vibrating arm in a drive mode regarding the difference between the resonance frequency of 50 kHz of a drive vibrating arm and the resonance frequency of the detection vibrating arm in in-plane mode. 駆動用振動腕の共振周波数50kHzに対する面内モードにおける検出用振動腕の共振周波数との差の比率に関する、駆動モードにおける各検出用振動腕の振動漏れ信号の差の変化率を示す線図。The diagram which shows the change rate of the difference of the vibration leak signal of each vibration arm for a drive in the drive mode regarding the ratio of the difference with the resonance frequency of the vibration arm for a detection in the in-plane mode with respect to the resonance frequency of 50 kHz of the vibration arm for a drive. 駆動用振動腕の共振周波数100kHzに対する面内モードにおける検出用振動腕の共振周波数との差の比率に関する、駆動モードにおける各検出用振動腕の振動漏れ信号の差の変化率を示す線図。The diagram which shows the change rate of the difference of the vibration leak signal of each vibration arm for a drive in the drive mode regarding the ratio of the difference with the resonance frequency of the vibration arm for a detection in the in-plane mode with respect to the resonance frequency of 100 kHz of the vibration arm for a drive. 駆動用振動腕の共振周波数50kHzにおいて、駆動用振動腕の長さと支持部の長さとの比Lb/Ldに関する、駆動モードにおける各検出用振動腕の振動漏れ信号の差を示す線図。The diagram which shows the difference of the vibration leak signal of each detection vibration arm in a drive mode regarding ratio Lb / Ld of the length of a drive vibration arm and the length of a support part in the resonance frequency of 50 kHz of a drive vibration arm. 駆動用振動腕の共振周波数100kHzにおいて、駆動用振動腕の長さと支持部の長さとの比Lb/Ldに関する、駆動モードの各検出用振動腕の振動漏れ信号の差を示す線図。The diagram which shows the difference of the vibration leak signal of each vibration arm for a drive mode regarding ratio Lb / Ld of the length of the vibration arm for a drive, and the length of a support part in the resonance frequency of 100 kHz of the vibration arm for a drive. (A)図は図1の振動ジャイロ素子の製造過程において水晶ウエハ上に形成した金属マスクを示す平面図、(B)図はそのIX−IX線における拡大断面図である。(A) is a plan view showing a metal mask formed on a quartz wafer in the manufacturing process of the vibrating gyro element of FIG. 1, and (B) is an enlarged sectional view taken along the line IX-IX. 従来の振動ジャイロ素子及び検出回路の構成を示す概略図。Schematic which shows the structure of the conventional vibration gyro element and a detection circuit.

以下に、添付図面を参照しつつ、本発明の好適な実施例を詳細に説明する。尚、添付図面において、同一又は類似の構成要素には同一又は類似の参照符号を付して示す。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same or similar reference numerals.

図1は、例えば角速度センサーに使用される本発明の第1実施例の振動ジャイロ素子11を概略的に示している。振動ジャイロ素子11は両側音叉型屈曲振動片からなり、中央の概ね矩形の支持部12と、該支持部から一方の側に並んで平行に延出する1対の駆動用振動腕13a,13bと、それとは反対側に並んで平行に延出する1対の検出用振動腕14a,14bとを有する。前記各振動腕は、その長さを短くしても高次振動モードの発生を抑制して振動周波数を安定させ得るように、それぞれ先端に錘部15a,15b,16a,16bが設けられている。前記各駆動用振動腕と支持部12及び錘部15a,15bとの結合部には、左右両側に振動腕側に向けて狭幅のテーパ部17a,17b,18a,18bがそれぞれ形成されている。同様に、前記各検出用振動腕と支持部12及び錘部16a,16bとの結合部には、左右両側に振動腕側に向けて狭幅のテーパ部19a,19b,20a,20bがそれぞれ形成されている。   FIG. 1 schematically shows a vibrating gyro element 11 according to a first embodiment of the present invention used for an angular velocity sensor, for example. The vibration gyro element 11 is composed of a double-side tuning fork-type bending vibration piece, a substantially rectangular support portion 12 at the center, and a pair of drive vibration arms 13a and 13b extending in parallel from one side of the support portion. And a pair of detection vibrating arms 14a and 14b extending in parallel in parallel to the opposite side. Each of the vibrating arms is provided with a weight portion 15a, 15b, 16a, 16b at the tip so that the vibration frequency can be stabilized by suppressing the generation of the higher-order vibration mode even if the length thereof is shortened. . Tapered portions 17a, 17b, 18a, and 18b having narrow widths are formed on the left and right sides of the connecting portions of the drive vibrating arms and the support portions 12 and the weight portions 15a and 15b toward the vibrating arms. . Similarly, tapered portions 19a, 19b, 20a, and 20b having narrow widths are formed on the left and right sides of the coupling portions of the detection vibrating arms, the support portion 12, and the weight portions 16a and 16b toward the vibrating arms. Has been.

駆動用振動腕13a,13bの表面には、駆動モードにおいて該駆動用振動腕をその表裏主面に沿う面内方向に例えば該主面に平行なXY面内で屈曲振動させるために、駆動電極(図示せず)が形成されている。検出用振動腕14a,14bの表面には、検出モードにおいて該検出用振動腕がその表裏主面に交わる例えば該主面に垂直なZ軸方向に屈曲振動する際に発生する電位差を検出するために、検出電極(図示せず)が形成されている。駆動モードにおいて、前記駆動電極に所定の交流電圧を印加すると、駆動用振動腕13a,13bは、図1に矢示するように面内方向に逆向きに即ち互いに接近離反する向きに屈曲振動する。   On the surface of the drive vibrating arms 13a and 13b, in order to cause the drive vibrating arms to bend and vibrate in an in-plane direction along the front and back main surfaces in the drive mode, for example, in an XY plane parallel to the main surfaces. (Not shown) is formed. In order to detect a potential difference generated on the surface of the detection vibrating arms 14a and 14b when the detection vibrating arm intersects with the front and back main surfaces in the detection mode, for example, when it bends and vibrates in the Z-axis direction perpendicular to the main surface. In addition, a detection electrode (not shown) is formed. When a predetermined AC voltage is applied to the drive electrode in the drive mode, the drive vibrating arms 13a and 13b bend and vibrate in the reverse direction in the in-plane direction, that is, in the direction of approaching and separating from each other, as shown by arrows in FIG. .

この状態で振動ジャイロ素子11が長手方向のY軸周りに回転すると、その角速度に応じて発生するコリオリ力の作用により、駆動用振動腕13a,13bは前記主面に垂直な面外方向即ちZ軸方向に互いに逆向きに屈曲振動する。図2(A)に示すように、前記各駆動用振動腕の振動方向は、コリオリ力の作用方向21a,21bに関して逆相である。このZ軸方向の振動に共振して、検出用振動腕14a,14bが検出モードで、同じくZ軸方向に互いに逆向きに屈曲振動する。このとき、前記各検出用振動腕の振動方向は、駆動用振動腕13a,13bの振動方向とは逆相になる。   When the vibrating gyro element 11 rotates around the Y axis in the longitudinal direction in this state, the driving vibrating arms 13a and 13b are driven in an out-of-plane direction perpendicular to the main surface, that is, Z, by the action of Coriolis force generated according to the angular velocity. Bend and vibrate in opposite directions in the axial direction. As shown in FIG. 2A, the vibration directions of the drive vibrating arms are in reverse phase with respect to the Coriolis force acting directions 21a and 21b. Resonating with the vibration in the Z-axis direction, the vibrating arms for detection 14a and 14b bend and vibrate in the detection mode and in the same direction opposite to each other in the Z-axis direction. At this time, the vibration direction of each of the detection vibrating arms has a phase opposite to that of the driving vibrating arms 13a and 13b.

この検出モードにおいて、各検出用振動腕14a,14bの前記検出電極間に発生する電位差を取り出すことによって、振動ジャイロ素子11の前記回転及びその角速度等が求められる。図3は、振動ジャイロ素子11に接続されて、ジャイロセンサの一部を構成する検出回路の一例を示している。検出回路22は、チャージアンプ23a,23b、差動アンプ24、ハイパスフィルター25、及びACアンプ26から構成される。前記各検出電極は、実際には振動ジャイロ素子11の支持部12上に引き出された接続電極(図示せず)を介して、検出回路22に接続されている。   In this detection mode, the rotation of the vibrating gyro element 11 and its angular velocity are obtained by taking out the potential difference generated between the detection electrodes of the detection vibrating arms 14a and 14b. FIG. 3 shows an example of a detection circuit that is connected to the vibration gyro element 11 and forms a part of the gyro sensor. The detection circuit 22 includes charge amplifiers 23a and 23b, a differential amplifier 24, a high pass filter 25, and an AC amplifier 26. Each detection electrode is actually connected to the detection circuit 22 via a connection electrode (not shown) drawn on the support portion 12 of the vibrating gyro element 11.

差動アンプ24は、前記各検出電極からそれぞれ対応するチャージアンプ23a,23bを経て入力した検出信号の差分を増幅して出力する。これにより、理想的には各検出用振動腕14a,14bにおいて同程度に発生したノイズ等の不要な信号成分を検出信号から有効に除去することができ、高い検出精度が得られる。しかしながら、各検出用振動腕14a,14bからの検出信号に不要な信号成分がアンバランスに含まれる場合は、それらを有効に除去することができないため、検出精度が低下する虞がある。   The differential amplifier 24 amplifies and outputs a difference between detection signals input from the detection electrodes via the corresponding charge amplifiers 23a and 23b. Thereby, ideally, unnecessary signal components such as noise generated in the same degree in each of the detection vibrating arms 14a and 14b can be effectively removed from the detection signal, and high detection accuracy can be obtained. However, if unnecessary signal components are included in the detection signals from the detection vibrating arms 14a and 14b in the imbalance, they cannot be effectively removed, and the detection accuracy may be reduced.

本発明によれば、検出用振動腕14a,14bを単独で、検出モードのZ軸方向ではなく、図2(B)に示すように駆動モードと同じ面内方向に互いに逆向きに屈曲振動させた場合、即ち面内モードの共振周波数を利用することによって、前記各検出用振動腕からの検出信号にアンバランスに含まれる不要な信号成分を有効に除去し又は大幅に低減する。検出用振動腕14a,14bの面内モードの共振周波数fは、駆動用振動腕13a,13bの駆動モードの共振周波数fに関連して、以下に説明するように設定する。 According to the present invention, the vibrating arms for detection 14a and 14b are independently bent and vibrated in opposite directions in the same in-plane direction as in the drive mode as shown in FIG. 2B, not in the Z-axis direction of the detection mode. In other words, by using the resonance frequency of the in-plane mode, unnecessary signal components included in the imbalance in the detection signals from the respective detection vibrating arms are effectively removed or greatly reduced. The resonance frequency f h of the in-plane mode of the detection vibrating arms 14a and 14b is set as described below in relation to the resonance frequency f d of the driving mode of the driving vibrating arms 13a and 13b.

先ず、前記検出用振動腕の面内モードの共振周波数fを前記駆動用振動腕の駆動モードの共振周波数fに対して、常にf<fを満足するように設定する。前記駆動用振動腕の駆動モードの共振周波数fを50kHz一定とし、前記検出用振動腕の共振周波数fを概ね±50kHzの範囲で変化させて設計した図1の振動ジャイロ素子11について、駆動モードで駆動用振動腕13a,13bを振動させたときに検出用振動腕14a,14bからそれぞれ出力される検出信号を測定した。この駆動モードにおける検出信号は、前記駆動用振動腕の振動が支持部12を伝搬して前記各検出用振動腕にZ軸方向の振動を生じさせた機械的振動漏れによる振動漏れ信号である。 First, the resonance frequency f h of the in-plane mode of the detection vibrating arm is set so as to always satisfy f h <f d with respect to the resonance frequency f d of the driving mode of the driving vibration arm. Wherein the resonant frequency f d of the driving mode of the driving vibration arms and 50kHz constant, the vibrating gyro element 11 of Figure 1 designed generally varied between ± 50kHz resonance frequency f h of the detection vibration arms, drive The detection signals output from the detection vibrating arms 14a and 14b when the driving vibrating arms 13a and 13b were vibrated in the mode were measured. The detection signal in this drive mode is a vibration leakage signal due to mechanical vibration leakage in which the vibration of the driving vibration arm propagates through the support portion 12 to cause each detection vibration arm to vibrate in the Z-axis direction.

以下の表1は、この測定結果を表している。同表において、左欄は、面内モードにおける前記検出用振動腕の共振周波数fと前記駆動用振動腕の駆動モードの共振周波数fとの差Δf=f−fである。右欄は、一方の検出用振動腕14aの振動漏れ信号S1と他方の検出用振動腕14bの振動漏れ信号S2との差を電圧値mVp1−p2で表している。同表から、振動漏れ信号の差は、f>fの範囲では比較的大きくかつ周波数差と共に増大しており、f<fの範囲でないと小さくできないことが分かる。 Table 1 below shows the measurement results. In the table, the left column is the difference Δf h = f h −f d between the resonance frequency f h of the detection vibrating arm and the resonance frequency f d of the driving vibration arm in the in-plane mode. The right column represents the difference between the vibration leakage signal S1 of one detection vibrating arm 14a and the vibration leakage signal S2 of the other detection vibrating arm 14b as a voltage value mV p1-p2 . From the table, it can be seen that the difference in the vibration leakage signal is relatively large in the range of f h > f d and increases with the frequency difference, and can be reduced only in the range of f h <f d .

Figure 2013024678
Figure 2013024678

図4は、この振動ジャイロ素子11について、f<fの範囲で、面内モードでの周波数差Δf=f−fに関する、駆動モードにおいて各検出用振動腕から出力される振動漏れ信号の差|S1−S2|をppm表示で示している。同図から、周波数差Δfが−15kHzを超えて小さくなると、振動漏れ信号の差が急激に小さくなり始めていることが分かる。そして、−20kHzを超えると、振動漏れ信号の差は、検出信号への影響が実質的に解消したか極めて小さい程度まで縮小している。従って、本実施例では、前記駆動用振動腕の共振周波数f=50kHzに対して、前記検出用振動腕をその面内モードにおける共振周波数fが−20kHz以上小さくなるように設計することによって、前記駆動用振動腕の機械的振動漏れが検出感度及び/又は精度に及ぼす影響を実質的に解消し又は大幅に低減することができる。 FIG. 4 shows the vibration output from each detection vibrating arm in the drive mode with respect to the frequency difference Δf h = f h −f d in the in -plane mode in the range of f h <f d. The difference | S1-S2 | of the leak signal is shown in ppm. From the figure, it can be seen that when the frequency difference Δf h becomes smaller than −15 kHz, the difference between the vibration leakage signals starts to decrease rapidly. When the frequency exceeds −20 kHz, the difference in the vibration leakage signal is reduced to an extent that the influence on the detection signal is substantially eliminated or extremely small. Therefore, in this embodiment, the detection vibrating arm is designed so that the resonance frequency f h in the in-plane mode is smaller than −20 kHz with respect to the resonance frequency f d = 50 kHz of the driving vibrating arm. The influence of the mechanical vibration leakage of the driving vibrating arm on the detection sensitivity and / or accuracy can be substantially eliminated or greatly reduced.

図5は、同じ共振周波数f=50kHzの振動ジャイロ素子11について、前記検出用振動腕の共振周波数fに関する振動漏れ信号の差|S1−S2|の変化率を示している。同図において、横軸は、前記駆動用振動腕の共振周波数fに対する面内モードでの周波数差Δf=f−fの比、F=(f−f)/f(%)である。縦軸は、F=1%の場合の振動漏れ信号の差|S1−S2|(ppm)を基準値mとして、これに対する振動漏れ信号の差m=|S1−S2|の比、M=m/mを振動漏れ変化率として表している。 5, the vibrating gyro element 11 of the same resonance frequency f d = 50 kHz, the difference in vibration leakage signal about the resonance frequency f h of the detection vibration arms | indicates the rate of change | S1-S2. In the figure, the horizontal axis represents the ratio of the frequency difference Δf h = f h −f d in the in-plane mode to the resonance frequency f d of the driving vibrating arm, F c = (f h −f d ) / f d. (%). The vertical axis indicates the ratio of vibration leak signal difference m = | S1-S2 | relative to the difference | S1−S2 | (ppm) of vibration leak signal when F c = 1% as a reference value m 0 r = m / m 0 is expressed as a vibration leakage change rate.

上記説明及び表1、図4から分かるように、F=1%の場合の振動漏れの差mは相当大きいから、振動漏れ変化率が小さいほど、振動漏れ信号の差mは小さく、検出感度及び精度の向上に好ましい。同図から、面内モードでの前記両振動腕の共振周波数をf<fとし、かつ周波数差の比をF≦−50%とした場合に、振動漏れ変化率は0.8以下に小さくなることが分かる。更に、周波数差の比F≦−75%の場合、振動漏れ変化率を0.6以下に小さくでき、F≦−84%では、振動漏れ変化率を0.5以下に小さくすることができる。f=50kHzであるから、F=−50%、−75%、−84%は、Δf=−25kHz、−37.5kHz、−42kHzにそれぞれ相当する。 As can be seen from the above description and Table 1 and FIG. 4, since the difference m 0 of vibration leakage when F c = 1% is considerably large, the smaller the vibration leakage change rate is, the smaller the difference m of vibration leakage signals is. It is preferable for improving sensitivity and accuracy. From the figure, when the resonance frequency of both vibrating arms in the in-plane mode is f h <f d and the ratio of frequency differences is F c ≦ −50%, the vibration leakage change rate is 0.8 or less. It turns out that it becomes small. Furthermore, when the frequency difference ratio F c ≦ −75%, the vibration leakage change rate can be reduced to 0.6 or less, and when F c ≦ −84%, the vibration leakage change rate can be reduced to 0.5 or less. it can. Since f d = 50 kHz, F c = −50%, −75%, and −84% correspond to Δf h = −25 kHz, −37.5 kHz, and −42 kHz, respectively.

図6は、共振周波数f=100kHzとした同じ振動ジャイロ素子11について、前記検出用振動腕の共振周波数fに関する振動漏れ信号の差|S1−S2|の変化率を示している。同図において、横軸及び縦軸は図5と同じである。同図から、面内モードでの前記両振動腕の共振周波数をf<fとし、かつ周波数差の比をF≦−30%にすると、振動漏れ変化率は0.9以下に小さくなることが分かる。更に、周波数差の比F≦−60%の場合、振動漏れ変化率を0.8以下に小さくでき、F≦−70%では、振動漏れ変化率を0.7以下に小さくすることができる。f=100kHzであるから、F=−30%、−60%、−70%は、Δf=−30kHz、−60kHz、−70kHzにそれぞれ相当する。 6, for the same vibrating gyro element 11 and the resonance frequency f d = 100kHz, the difference in vibration leakage signal about the resonance frequency f h of the detection vibration arms | indicates the rate of change | S1-S2. In the figure, the horizontal and vertical axes are the same as those in FIG. From the figure, when the resonance frequency of both the vibrating arms in the in-plane mode is f h <f d and the ratio of the frequency difference is F c ≦ −30%, the vibration leakage change rate is as small as 0.9 or less. I understand that Further, when the frequency difference ratio F c ≦ −60%, the vibration leakage change rate can be reduced to 0.8 or less, and when F c ≦ −70%, the vibration leakage change rate can be reduced to 0.7 or less. it can. Since f d = 100 kHz, F c = −30%, −60%, and −70% correspond to Δf h = −30 kHz, −60 kHz, and −70 kHz, respectively.

また、振動ジャイロ素子11の長手方向即ちY軸方向に沿って駆動用振動腕13a,13bの長さLdに対する支持部12の長さLbの寸法比が、駆動モードにおける前記駆動用振動腕から検出用振動腕14a,14bへの振動漏れに影響し得ることが知られている。ここで、前記駆動用振動腕の長さLdは、前記駆動用振動腕の長さLdは、図1に示すように、該振動腕の全長から錘部15a,15b及びテーパ部17a,17b,18a,18bの長さを除いた、その共振周波数を直接決定する部分の長さとする。   Further, the dimensional ratio of the length Lb of the support portion 12 to the length Ld of the driving vibrating arms 13a and 13b along the longitudinal direction of the vibrating gyro element 11, that is, the Y-axis direction is detected from the driving vibrating arm in the driving mode. It is known that the vibration leakage to the vibrating arms 14a and 14b can be affected. Here, the length Ld of the vibration arm for driving is the length Ld of the vibration arm for driving, as shown in FIG. 1, from the total length of the vibration arm, the weight portions 15a, 15b and the taper portions 17a, 17b, The length of the portion that directly determines the resonance frequency, excluding the lengths 18a and 18b, is used.

そこで、駆動用振動腕の長さと支持部の長さとの寸法比Lb/Ldに関する、振動漏れ信号の差|S1−S2|(ppm)をシミューレーションにより測定した。図7は、駆動用振動腕の共振周波数f=50kHzの場合のシミューレーション結果を示している。同図から分かるように、支持部12の長さLbを駆動用振動腕の長さLdに対して約1.6倍以上に大きくすることによって、振動漏れ信号の差は、検出信号への影響が実質的に解消したか極めて小さい程度まで縮小している。 Therefore, the difference | S1-S2 | (ppm) of the vibration leakage signal related to the dimensional ratio Lb / Ld between the length of the driving vibrating arm and the length of the support portion was measured by simulation. FIG. 7 shows a simulation result when the resonance frequency f d of the driving vibrating arm is 50 kHz. As can be seen from the figure, by increasing the length Lb of the support portion 12 to about 1.6 times or more the length Ld of the driving vibrating arm, the difference in the vibration leakage signal affects the detection signal. Has been substantially eliminated or reduced to a very small extent.

図8は、駆動用振動腕の共振周波数f=100kHzの場合のシミューレーション結果を示している。同図から、支持部12の長さLbを駆動用振動腕の長さLdに対して約2倍以上、好ましくは約2.4倍以上に大きくすることによって、振動漏れ信号の差は、検出信号への影響が実質的に解消したか極めて小さい程度まで縮小することが分かる。 FIG. 8 shows a simulation result when the resonance frequency f d of the driving vibrating arm is 100 kHz. From this figure, the difference in the vibration leakage signal can be detected by increasing the length Lb of the support portion 12 to about twice or more, preferably about 2.4 times or more the length Ld of the driving vibrating arm. It can be seen that the effect on the signal has been substantially eliminated or reduced to a very small extent.

一般に本実施例のような振動ジャイロ素子は、例えば水晶ウエハからフォトエッチングを利用した加工方法を用いて製造することができる。しかしながら、水晶等の単結晶圧電材料はエッチング異方性エッチング異方性を有するため、振動腕の断面が理想的な矩形ではなく、左右に非対称な形状になる。また、屈曲振動片の外形加工において、フォトマスクの位置合わせにずれがあると、振動腕の断面が厚さ方向に上下で非対称になる虞がある。その結果、各対の振動腕は左右で振動がアンバランスになる虞がある。更に、かかるアンバランスな振動は、各検出用振動腕からの検出信号に不要な信号成分がアンバランスに含まれる結果となり、それらを検出回路において差動増幅する際に有効に除去できないため、検出精度を低下させる虞がある。   In general, the vibrating gyro element as in the present embodiment can be manufactured from, for example, a quartz wafer using a processing method using photoetching. However, since a single crystal piezoelectric material such as quartz has an anisotropic etching anisotropy, the cross-section of the vibrating arm is not an ideal rectangle but an asymmetric shape on the left and right. Further, in the outer shape processing of the bending vibration piece, if there is a deviation in the alignment of the photomask, the cross section of the vibrating arm may become asymmetric in the thickness direction. As a result, there is a possibility that the vibrations of each pair of vibration arms are unbalanced on the left and right. Furthermore, such unbalanced vibrations are detected because unnecessary signal components are included in the detection signals from the detection vibrating arms and cannot be effectively removed when they are differentially amplified in the detection circuit. There is a risk of reducing accuracy.

本実施例の振動ジャイロ素子11は、以下の加工方法を用いることによって、水晶ウエハから高精度に製造することができる。先ず、水晶ウエハの表裏全面に例えばCrの上にAuを積層した2層構造の金属膜を形成し、その上にフォトレジストを塗布しかつこれを露光、現像して振動ジャイロ素子1の外形に対応したレジストパターンに形成する。前記レジストパターンから露出した前記金属膜をウエットエッチングして、前記水晶ウエハの表裏両面に金属パターンを形成する。   The vibrating gyro element 11 of the present embodiment can be manufactured with high accuracy from a quartz wafer by using the following processing method. First, a metal film having a two-layer structure in which, for example, Au is laminated on Cr is formed on the entire front and back surfaces of a quartz wafer, and a photoresist is applied thereon, and this is exposed and developed to form the outer shape of the vibrating gyro element 1. A corresponding resist pattern is formed. The metal film exposed from the resist pattern is wet-etched to form metal patterns on both the front and back surfaces of the crystal wafer.

図9(A)(B)は、このようにして水晶ウエハ31の表裏両面に形成した金属パターン32を示している。同図において、想像線33a,33bは、振動ジャイロ素子1の駆動用振動腕13a,13bから錘部15a〜16a,15b〜16b及びテーパ部17a〜20a,17b〜20bを除いた左右側辺を表している。金属パターン32は、駆動用振動腕13a,13bの左右側辺33a,33bに対応する部分が所望の位置よりも外側に僅かに広く形成されている。   9A and 9B show the metal patterns 32 formed on both the front and back surfaces of the crystal wafer 31 in this way. In the same figure, the imaginary lines 33a and 33b are the left and right sides excluding the weight portions 15a to 16a and 15b to 16b and the tapered portions 17a to 20a and 17b to 20b from the driving vibrating arms 13a and 13b of the vibrating gyro element 1. Represents. The metal pattern 32 is formed so that the portions corresponding to the left and right sides 33a and 33b of the drive vibrating arms 13a and 13b are slightly wider outside the desired position.

次に、図9(B)に示すように、レーザー光34を水晶ウエハ31の表面又は裏面のいずれか片側から照射して、駆動用振動腕13a,13bの左右側辺33a,33bに対応する前記部分のみをアブレーション加工する。レーザー光は透明なかつ薄い水晶ウエハ31を透過するので、該ウエハ表裏両面の金属パターン32,32を同時に、かつ表裏でアライメントずれを実質的に生じることなく正確に加工することができる。   Next, as shown in FIG. 9B, the laser beam 34 is irradiated from either one of the front surface and the back surface of the crystal wafer 31 to correspond to the left and right sides 33a and 33b of the driving vibrating arms 13a and 13b. Only the part is ablated. Since the laser light is transmitted through the transparent and thin quartz wafer 31, the metal patterns 32 and 32 on both the front and back surfaces of the wafer can be processed accurately at the same time and substantially without causing any misalignment.

特に、左右の駆動用振動腕13a,13bの間隔Ddを、図9(A)に示すように、レーザー光34のスポット径RLと一致させるのが好ましい。これにより、前記駆動用振動腕の隣り合う側辺33a,33bに沿って一方向にレーザー光34を一回走査するだけで、表裏両面の金属パターン32,32の前記両側辺に対応する部分を同時に加工することができる。   In particular, the distance Dd between the left and right drive vibrating arms 13a and 13b is preferably matched with the spot diameter RL of the laser beam 34 as shown in FIG. Accordingly, the portions corresponding to the both sides of the metal patterns 32 and 32 on both sides of the front and back surfaces can be obtained by scanning the laser beam 34 once in one direction along the adjacent sides 33a and 33b of the driving vibration arm. It can be processed at the same time.

次に、このように加工した金属パターンをマスクとして前記水晶ウエハをウエットエッチングし、振動ジャイロ素子11の外形形状を有する素子片を形成する。得られた前記素子片の表面に電極膜を被着させ、フォトエッチング技術を用いてパターニングし、前記駆動電極、検出電極、及びこれら電極から引き出される配線等を形成する。   Next, the crystal wafer is wet-etched using the metal pattern processed in this way as a mask to form an element piece having the outer shape of the vibrating gyro element 11. An electrode film is deposited on the surface of the obtained element piece, and is patterned using a photoetching technique to form the drive electrode, the detection electrode, wirings drawn from these electrodes, and the like.

本実施例によれば、このようにして表裏両面の金属パターン32,32の前記駆動用振動腕の左右側辺33a,33bに対応する前記部分について、表裏のアライメントをより正確に合わせることができるので、駆動用振動腕13a,13bをより所望の矩形形状に近い断面形状に加工することができる。また、表裏両面の金属パターン32,32の特定の部分のみをレーザー光で加工するので、工程全体として、前記金属パターン全体をレーザー光で加工する場合に比して、加工時間を大幅に短縮しかつ加工コストを低減することができる。尚、上記実施例では、駆動用振動腕13a,13bのみをレーザー光照射により加工したが、検出用振動腕14a,14bも同様に加工することができる。   According to the present embodiment, the front and back alignment of the portions corresponding to the left and right sides 33a and 33b of the driving vibrating arms of the metal patterns 32 and 32 on both sides can be more accurately aligned in this way. Therefore, the drive vibrating arms 13a and 13b can be processed into a cross-sectional shape closer to a desired rectangular shape. In addition, since only specific portions of the metal patterns 32, 32 on both the front and back surfaces are processed with laser light, the processing time is greatly reduced as compared to the case where the entire metal pattern is processed with laser light as a whole process. In addition, the processing cost can be reduced. In the above embodiment, only the driving vibrating arms 13a and 13b are processed by laser light irradiation, but the detecting vibrating arms 14a and 14b can be processed in the same manner.

本発明は、上記実施例に限定されるものでなく、その技術的範囲内で様々な変形又は変更を加えて実施することができる。例えば、本発明は、上述した両側音叉型以外の構造を有する振動ジャイロ素子にも、同様に適用することができる。また、本発明の振動ジャイロ素子は、水晶以外にタンタル酸リチウム、ニオブ酸リチウム等の圧電単結晶や、ジルコン酸チタン酸鉛等の圧電セラミックス等の圧電材料、又はシリコン半導体材料から形成することができる。更に本発明の振動ジャイロ素子は、上述したように圧電素子を利用した圧電駆動式のものに限らず、静電引力を利用した静電駆動式、電磁力(ローレンツ力)による磁気駆動式、交流電圧の印加によるクーロン力で駆動する方式等、各種駆動方式のものを採用することができる。   The present invention is not limited to the above embodiments, and can be implemented with various modifications or changes within the technical scope thereof. For example, the present invention can be similarly applied to a vibrating gyro element having a structure other than the double-side tuning fork type described above. In addition to the quartz crystal, the vibrating gyro element of the present invention may be formed from a piezoelectric single crystal such as lithium tantalate or lithium niobate, a piezoelectric material such as piezoelectric ceramics such as lead zirconate titanate, or a silicon semiconductor material. it can. Furthermore, the vibrating gyro element of the present invention is not limited to the piezoelectric driving type using the piezoelectric element as described above, but the electrostatic driving type using electrostatic attraction, the magnetic driving type using electromagnetic force (Lorentz force), and the alternating current. Various driving systems such as a system driven by a Coulomb force by applying a voltage can be employed.

更に本発明は、前記振動ジャイロ素子を適当なパッケージ等に実装することによって、ジャイロセンサーに適用することができる。更に、このジャイロセンサーを搭載することによって、デジタルスチールカメラ、ビデオカメラ、ナビゲーション装置、車体姿勢検出装置、ポインティングデバイス、ゲームコントローラー、携帯電話、ヘッドマウントディスプレイ等の電子機器に広く適用することができる。   Furthermore, the present invention can be applied to a gyro sensor by mounting the vibration gyro element on an appropriate package or the like. Furthermore, by mounting this gyro sensor, it can be widely applied to electronic devices such as a digital still camera, a video camera, a navigation device, a vehicle body posture detection device, a pointing device, a game controller, a mobile phone, and a head mounted display.

1,11…振動ジャイロ素子、2,12…支持部、3a,3b,13a,13b…駆動用振動腕、4a,4b,14a,14b…検出用振動腕、5,22…検出回路、6a,6b,23a,23b…チャージアンプ、7,24…差動アンプ、8,25…ハイパスフィルター、9,26…ACアンプ、15a,15b,16a,16b…錘部、17a〜20a,17b〜20b…テーパ部、31…水晶ウエハ、32…金属パターン、33a,33b…想像線、側辺、34…レーザー光。 DESCRIPTION OF SYMBOLS 1,11 ... Vibration gyro element 2,12 ... Support part, 3a, 3b, 13a, 13b ... Drive vibration arm, 4a, 4b, 14a, 14b ... Detection vibration arm, 5, 22 ... Detection circuit, 6a, 6b, 23a, 23b ... charge amplifier, 7, 24 ... differential amplifier, 8, 25 ... high-pass filter, 9, 26 ... AC amplifier, 15a, 15b, 16a, 16b ... weight, 17a-20a, 17b-20b ... Tapered portion, 31 ... quartz wafer, 32 ... metal pattern, 33a, 33b ... imaginary line, side, 34 ... laser beam.

Claims (7)

支持部と、
前記支持部から並んで延出する1対の駆動用振動腕と、
前記支持部から前記駆動用振動腕とは反対側に並んで延出する1対の検出用振動腕とを備え、
前記1対の駆動用振動腕が、その表裏主面に沿う面内方向に互いに逆向きに所定の共振周波数fで屈曲振動する駆動モードと、
前記振動腕の延出方向の周りの回転により作用するコリオリ力によって、前記1対の駆動用振動腕がその表裏主面に交わる面外方向に互いに逆向きにかつ前記コリオリ力の作用方向とは逆相で屈曲振動し、前記1対の検出用振動腕が前記面外方向に互いに逆向きにかつ前記駆動用振動腕とは逆相で屈曲振動する検出モードとを有し、
前記1対の検出用振動腕が、前記面内方向に互いに逆向きに前記駆動用振動腕の共振周波数fより低い所定の共振周波数fで屈曲振動するように設定され、前記駆動モードにおいて一方の前記検出用振動腕から出力される検出信号の値S1と他方の前記検出用振動腕から出力される検出信号の値S2との差|S1−S2|を小さくするように、前記共振周波数fを設定したことを特徴とする振動ジャイロ素子。
A support part;
A pair of drive vibrating arms extending side by side from the support;
A pair of detection vibrating arms extending side by side on the opposite side of the driving vibrating arm from the support portion,
The pair of vibrating arms for driving is a driving mode in which the bending vibration at a predetermined resonance frequency f d in opposite directions in the plane direction along its front and back faces,
By the Coriolis force acting by rotation around the extending direction of the vibrating arm, the pair of driving vibrating arms are opposite to each other in the out-of-plane direction intersecting the front and back main surfaces, and the direction of action of the Coriolis force A detection mode in which the pair of detection vibrating arms bend and vibrate in reverse phase, and the pair of detection vibrating arms bend in opposite directions to the out-of-plane direction and in reverse phase with the driving vibrating arm;
The pair of detection vibrating arms are set so as to bend and vibrate at a predetermined resonance frequency f h lower than the resonance frequency f d of the driving vibrating arm in directions opposite to each other in the in-plane direction. The resonance frequency is set so as to reduce the difference | S1−S2 | between the value S1 of the detection signal output from one of the detection vibrating arms and the value S2 of the detection signal output from the other detection vibrating arm. vibrating gyro element characterized by setting the f h.
支持部と、
前記支持部から並んで延出する1対の駆動用振動腕と、
前記支持部から前記駆動用振動腕とは反対側に並んで延出する1対の検出用振動腕とを備え、
前記1対の駆動用振動腕が、その表裏主面に沿う面内方向に互いに逆向きに所定の共振周波数fで屈曲振動する駆動モードと、
前記振動腕の延出方向の周りの回転により作用するコリオリ力によって、前記1対の駆動用振動腕がその表裏主面に交わる面外方向に互いに逆向きにかつ前記コリオリ力の作用方向とは逆相で屈曲振動し、前記1対の検出用振動腕が前記面外方向に互いに逆向きにかつ前記駆動用振動腕とは逆相で屈曲振動する検出モードとを有し、
前記1対の検出用振動腕が、前記面内方向に互いに逆向きに所定の共振周波数fで屈曲振動するように設定され、前記共振周波数fが、
<f、及び、|(f−f)/f|≧0.3
を満足することを特徴とする振動ジャイロ素子。
A support part;
A pair of drive vibrating arms extending side by side from the support;
A pair of detection vibrating arms extending side by side on the opposite side of the driving vibrating arm from the support portion,
The pair of vibrating arms for driving is a driving mode in which the bending vibration at a predetermined resonance frequency f d in opposite directions in the plane direction along its front and back faces,
By the Coriolis force acting by rotation around the extending direction of the vibrating arm, the pair of driving vibrating arms are opposite to each other in the out-of-plane direction intersecting the front and back main surfaces, and the direction of action of the Coriolis force A detection mode in which the pair of detection vibrating arms bend and vibrate in reverse phase, and the pair of detection vibrating arms bend in opposite directions to the out-of-plane direction and in reverse phase with the driving vibrating arm;
The pair of detection vibrating arms are set to flexurally vibrate at a predetermined resonance frequency f h in directions opposite to each other in the in-plane direction, and the resonance frequency f h is
f h <f d and | (f h −f d ) / f d | ≧ 0.3
A vibrating gyro element characterized by satisfying
前記共振周波数fが、|(f−f)/f|≧0.4を満足することを特徴とする請求項2記載の振動ジャイロ素子。 3. The vibrating gyro element according to claim 2, wherein the resonance frequency f h satisfies | (f h −f d ) / f d | ≧ 0.4. 前記駆動用振動腕の長さLdに対する前記支持部の長さLbをLb/Ld≧2の範囲に設定したことを特徴とする請求項2又は3記載の振動ジャイロ素子。   4. The vibrating gyro element according to claim 2, wherein a length Lb of the support portion with respect to a length Ld of the driving vibrating arm is set in a range of Lb / Ld ≧ 2. 前記駆動用振動腕の長さLdに対する前記支持部の長さLbをLb/Ld≧3の範囲に設定したことを特徴とする請求項4記載の振動ジャイロ素子。   5. The vibrating gyro element according to claim 4, wherein a length Lb of the support portion with respect to a length Ld of the driving vibrating arm is set in a range of Lb / Ld ≧ 3. 請求項1乃至5のいずれか記載の振動ジャイロ素子を備えることを特徴とするジャイロセンサー。   A gyro sensor comprising the vibrating gyro element according to claim 1. 請求項1乃至5のいずれか記載の振動ジャイロ素子を備えることを特徴とする電子機器。   An electronic device comprising the vibrating gyro element according to claim 1.
JP2011158724A 2011-07-20 2011-07-20 Vibration gyro element, gyro sensor and electronic apparatus Pending JP2013024678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158724A JP2013024678A (en) 2011-07-20 2011-07-20 Vibration gyro element, gyro sensor and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158724A JP2013024678A (en) 2011-07-20 2011-07-20 Vibration gyro element, gyro sensor and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2013024678A true JP2013024678A (en) 2013-02-04

Family

ID=47783207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158724A Pending JP2013024678A (en) 2011-07-20 2011-07-20 Vibration gyro element, gyro sensor and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2013024678A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116738A (en) * 1997-04-22 1999-01-12 Denso Corp Angular velocity sensor
JPH11271066A (en) * 1998-01-21 1999-10-05 Denso Corp Angular velocity sensor
JP2001324332A (en) * 2000-05-16 2001-11-22 Fujitsu Media Device Kk Piezoelectric gyro
JP2004251663A (en) * 2003-02-18 2004-09-09 Fujitsu Media Device Kk Angular velocity sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116738A (en) * 1997-04-22 1999-01-12 Denso Corp Angular velocity sensor
JPH11271066A (en) * 1998-01-21 1999-10-05 Denso Corp Angular velocity sensor
JP2001324332A (en) * 2000-05-16 2001-11-22 Fujitsu Media Device Kk Piezoelectric gyro
JP2004251663A (en) * 2003-02-18 2004-09-09 Fujitsu Media Device Kk Angular velocity sensor

Similar Documents

Publication Publication Date Title
JP2013024721A (en) Vibration gyro element, gyro sensor and electronic apparatus
JP5560806B2 (en) Gyro element, gyro sensor, and electronic device
JP5765087B2 (en) Bending vibration piece, method for manufacturing the same, and electronic device
JP2005037235A (en) Physical quantity measuring method and device
US20110259101A1 (en) Vibration-type force detection sensor and vibration-type force detection device
JP5772286B2 (en) Bending vibration piece and electronic device
JPH1054725A (en) Angular velocity detecting device
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP5633319B2 (en) Vibrating piece, sensor element, sensor and electronic device
JP2007108053A (en) Oscillator and measuring element for oscillation gyroscope
JP2012257141A (en) Crystal vibrating piece, gyro sensor, electronic apparatus and manufacturing method of crystal vibrating piece
JP2008224627A (en) Angular velocity sensor, method of manufacturing the same, and electronic apparatus
JP4877322B2 (en) Tuning fork type bimorph piezoelectric vibrator, vibration gyro module using the same, and method for manufacturing tuning fork type bimorph piezoelectric vibrator
JP2007306471A (en) Quartz-crystal oscillator, its manufacturing method, and physical quantity sensor
JP4849284B2 (en) Measuring element for vibrating gyroscope
JP2013024678A (en) Vibration gyro element, gyro sensor and electronic apparatus
JP2004301552A (en) Vibrator and physical quantity measuring apparatus
Abdel-Rahman et al. Driveless gyroscope response of a quartz piezoelectric vibratory tuning fork
JP2007086003A (en) Measuring element for oscillation type gyroscope
JP2005249746A (en) Vibrator, and apparatus for measuring physical quantity
JPH10318756A (en) Oscillatory gyro
JP6055273B2 (en) Method for manufacturing piezoelectric element
JP2008145325A (en) Vibration gyro
JP2009192403A (en) Angular velocity and acceleration detector
JP5516119B2 (en) Vibrating gyro element, vibrating gyro sensor, and angular velocity detection method using vibrating gyro sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519