JP2013023653A - Method for producing coal gas and method for producing methane - Google Patents

Method for producing coal gas and method for producing methane Download PDF

Info

Publication number
JP2013023653A
JP2013023653A JP2011162102A JP2011162102A JP2013023653A JP 2013023653 A JP2013023653 A JP 2013023653A JP 2011162102 A JP2011162102 A JP 2011162102A JP 2011162102 A JP2011162102 A JP 2011162102A JP 2013023653 A JP2013023653 A JP 2013023653A
Authority
JP
Japan
Prior art keywords
coal
gas
reaction vessel
producing
reaction container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011162102A
Other languages
Japanese (ja)
Other versions
JP5827511B2 (en
Inventor
Yasuki Namiki
泰樹 並木
Katsushi Kosuge
克志 小菅
Masumi Itonaga
眞須美 糸永
Hiroyuki Kotsuru
広行 小水流
Taku Takeda
卓 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2011162102A priority Critical patent/JP5827511B2/en
Priority to AU2012288216A priority patent/AU2012288216B2/en
Priority to CN201280036566.9A priority patent/CN103703111B/en
Priority to PCT/JP2012/062142 priority patent/WO2013014995A1/en
Publication of JP2013023653A publication Critical patent/JP2013023653A/en
Application granted granted Critical
Publication of JP5827511B2 publication Critical patent/JP5827511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which coal gas having a low tar content can be produced and coal can be gasified with high production efficiency.SOLUTION: The method uses a coal gasification reactor 4 including: a lower part reaction container 11 inside which a containing space 11a is formed; and an upper part reaction container 13 which is provided above the lower part reaction container 11 and in which a vertically extending through-hole 12 in communication with the containing space 11a of the lower part reaction container 11 is formed. In the method, hot gas is generated by a partial oxidation reaction by supplying coal, oxygen, and water vapor into the lower part reaction container 11, and the coal gas including hydrogen gas and carbon monoxide gas is produced by supplying new coal into the upper part reaction container 13 while introducing the hot gas thereinto and by performing pyrolysis of the newly supplied coal, wherein temperature of the coal gas flowing from the exit of the upper part reaction container 13 is controlled to be 1,000°C or more by increasing and decreasing the supplied amount of the new coal which is supplied into the upper part reaction container 13.

Description

本発明は、石炭を酸素、水蒸気等の酸化剤でガス化して可燃性ガス等を生産する方法に関するものであり、特に、水素ガスおよび一酸化炭素ガスを含む石炭ガスの製造方法およびメタンの製造方法に関する。   The present invention relates to a method for producing combustible gas or the like by gasifying coal with an oxidizing agent such as oxygen or steam, and in particular, a method for producing coal gas containing hydrogen gas and carbon monoxide gas, and production of methane. Regarding the method.

従来、石炭をガス化して可燃性ガス等を効率的に生産するために、固定床型、流動床型および気流床(噴流床)型等の様々な構成のガス化炉が検討されている。その一つである気流床型のガス化炉は、特に発電用としての用途を考慮した場合に、大容量化が容易である、負荷追従性が高い等の理由から、近年におけるガス化炉の主流となっている。   Conventionally, gasification furnaces having various configurations such as a fixed bed type, a fluidized bed type, and an airflow bed (spouted bed) type have been studied in order to gasify coal and efficiently produce combustible gas and the like. One of the gas bed type gasification furnaces is one of the recent gasification furnaces because of its large capacity, high load followability, etc., especially when considering applications for power generation. It has become mainstream.

気流床型のガス化炉では、酸素、空気等の酸化剤を用いた石炭の部分酸化反応により、水素、一酸化炭素を主成分とする1300〜1800℃の高温のガスが製造され、ガス顕熱は一般的に蒸気等で回収されている。
この高温ガス顕熱を石炭の熱分解反応に活用し、ガス、タール・BTX(ベンゼン、トルエン、キシレン)、チャーをより多く製造するガス化炉として、下室で石炭の部分酸化反応を行い、上室で石炭の熱分解反応を行う二重二段構造の石炭熱分解ガス化炉が提案されている(特許文献1参照)。
In a gas bed type gasifier, a high temperature gas of 1300 to 1800 ° C. mainly composed of hydrogen and carbon monoxide is produced by a partial oxidation reaction of coal using an oxidizing agent such as oxygen or air, and gas Heat is generally recovered with steam or the like.
Utilizing this high-temperature gas sensible heat for the pyrolysis reaction of coal, as a gasification furnace that produces more gas, tar and BTX (benzene, toluene, xylene) and char, partial oxidation reaction of coal in the lower chamber, A double two-stage coal pyrolysis gasification furnace that performs coal pyrolysis in the upper chamber has been proposed (see Patent Document 1).

特許文献1に記載されたガス化炉では、上室において、下室で発生する高温の石炭部分酸化ガスに水素ガスと石炭とを混合して起こる石炭の熱分解反応によって、水素・一酸化炭素・メタンなどで構成される熱分解ガスと、タール・BTXと、チャーとがそれぞれ発生し、タールと水素ガスとの反応によりタールが改質されてBTXがさらに発生する。   In the gasification furnace described in Patent Document 1, in the upper chamber, hydrogen and carbon monoxide are obtained by a pyrolysis reaction of coal that occurs by mixing hydrogen gas and coal with high-temperature coal partial oxidation gas generated in the lower chamber. A pyrolysis gas composed of methane or the like, tar / BTX, and char are generated, and tar is reformed by reaction of tar and hydrogen gas to further generate BTX.

特許第4088363号公報Japanese Patent No. 4088363

しかしながら、特許文献1に記載されたガス化炉では、石炭の熱分解反応により多量のタールが生じているため、以下のような問題点がある。
特許文献1の方法においては、生成タールの軽質化を図るため、製品ガスの一部を水素ガスとしてリサイクルする設備が必要となっている。加えて、製品ガスの一部が消費されるため、最終生成物の量的ロスが生じてしまう。
また、製品ガスを調製する際、熱分解ガスとタールとが冷却器によって分離されるため、タールを回収する設備も必要となっている。さらに、熱分解ガスとタールとを分離する際に冷却が行われるため、熱分解ガスがもつ熱量のロスが生じて生成ガス顕熱が有効に活用されず、製造効率が低下してしまう。
However, the gasification furnace described in Patent Document 1 has the following problems because a large amount of tar is generated by the thermal decomposition reaction of coal.
In the method of Patent Document 1, a facility for recycling a part of the product gas as hydrogen gas is required in order to reduce the weight of the generated tar. In addition, a part of the product gas is consumed, resulting in a quantitative loss of the final product.
Moreover, when preparing product gas, since pyrolysis gas and tar are isolate | separated by a cooler, the equipment which collect | recovers tar is also needed. Furthermore, since the cooling is performed when the pyrolysis gas and tar are separated, the loss of the heat amount of the pyrolysis gas occurs, and the sensible heat of the generated gas is not effectively used, resulting in a reduction in production efficiency.

本発明は、上記の問題点を解決するためになされたものであって、タール含有量の少ない石炭ガスを製造でき、高い製造効率で石炭をガス化できる方法を提供することを課題とする。   This invention is made | formed in order to solve said problem, Comprising: It aims at providing the method which can manufacture coal gas with little tar content, and can gasify coal with high manufacturing efficiency.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の石炭ガスの製造方法は、内部に収容空間が形成された下部反応容器と、前記下部反応容器の上方に設けられ、前記下部反応容器の前記収容空間と連通し上下方向に延びる貫通孔が形成された上部反応容器とを備える石炭ガス化反応炉を用い、前記下部反応容器に石炭、酸素および水蒸気を供給し、部分酸化反応により高温ガスを発生させ、前記上部反応容器に前記高温ガスを導入しながら新たに石炭を供給し、この新たに供給する石炭を熱分解させて、水素ガスおよび一酸化炭素ガスを含む石炭ガスを製造する方法において、前記上部反応容器に供給する前記の新たな石炭の供給量を増減して、前記上部反応容器の出口から流出する石炭ガスの温度を1000℃以上に制御することを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The method for producing coal gas according to the present invention includes a lower reaction vessel in which an accommodation space is formed, and a through-hole that is provided above the lower reaction vessel and communicates with the accommodation space of the lower reaction vessel and extends in the vertical direction. Using a coal gasification reactor having an upper reaction vessel formed with, supplying coal, oxygen and water vapor to the lower reaction vessel, generating a high temperature gas by a partial oxidation reaction, and supplying the high temperature gas to the upper reaction vessel In the method for producing coal gas containing hydrogen gas and carbon monoxide gas by thermally decomposing the newly supplied coal while introducing the coal, the newly supplied coal is supplied to the upper reaction vessel. The amount of coal supplied is increased or decreased, and the temperature of coal gas flowing out from the outlet of the upper reaction vessel is controlled to 1000 ° C. or higher.

また、本発明のメタンの製造方法は、上記本発明の石炭ガスの製造方法により製造される石炭ガスをメタン化することを特徴とする。   Moreover, the method for producing methane of the present invention is characterized in that the coal gas produced by the method for producing coal gas of the present invention is methanated.

本発明の石炭ガスの製造方法によれば、タール含有量の少ない石炭ガスを製造できる。
本発明のメタンの製造方法によれば、上述のタール含有量の少ない石炭ガスをメタン製造プロセスに適用することにより、従来よりも高い製造効率でメタンを製造できる。
According to the method for producing coal gas of the present invention, coal gas having a small tar content can be produced.
According to the method for producing methane of the present invention, methane can be produced with higher production efficiency than before by applying the coal gas having a low tar content to the methane production process.

本発明の石炭ガスの製造方法が用いられた石炭ガス化システムの一実施形態を示すブロック図である。It is a block diagram showing one embodiment of a coal gasification system in which the method for producing coal gas of the present invention is used. 本発明における石炭ガス化反応炉の一実施形態を示す縦断面図である。It is a longitudinal section showing one embodiment of a coal gasification reaction furnace in the present invention. 石炭ガス化反応炉における熱分解部の出口から流出する石炭ガスの温度(℃)と、石炭中の炭素のタールへの転化率(質量%)との関係を示すグラフである。It is a graph which shows the relationship between the temperature (degreeC) of the coal gas which flows out from the exit of the thermal decomposition part in a coal gasification reactor, and the conversion rate (mass%) of the carbon in coal into tar. 石炭からメタンを製造する際の製造効率について、本発明の製造方法と従来の製造方法とを比較した計算結果を示す図である。It is a figure which shows the calculation result which compared the manufacturing method of this invention, and the conventional manufacturing method about the manufacturing efficiency at the time of manufacturing methane from coal.

<石炭ガスの製造方法>
本発明の石炭ガスの製造方法は、下部反応容器と上部反応容器とを備える特定の石炭ガス化反応炉を用い、前記下部反応容器に石炭、酸素および水蒸気を供給し、部分酸化反応により高温ガスを発生させ、前記上部反応容器に前記高温ガスを導入しながら新たに石炭を供給し、この新たに供給する石炭を熱分解させて、水素ガスおよび一酸化炭素ガスを含む石炭ガスを製造する方法である。
かかる製造方法は、前記上部反応容器の出口から流出する石炭ガスの温度を1000℃以上に制御することに特徴があり、その他の構成については、公知の石炭ガスの製造方法を適宜適用できる。
以下、本発明の石炭ガスの製造方法について、図1と図2を参照しながら説明する。
<Method for producing coal gas>
The method for producing coal gas of the present invention uses a specific coal gasification reactor equipped with a lower reaction vessel and an upper reaction vessel, supplies coal, oxygen and water vapor to the lower reaction vessel, and performs a high temperature gas by partial oxidation reaction. The coal is newly supplied while introducing the high temperature gas into the upper reaction vessel, and the newly supplied coal is pyrolyzed to produce a coal gas containing hydrogen gas and carbon monoxide gas. It is.
This production method is characterized in that the temperature of the coal gas flowing out from the outlet of the upper reaction vessel is controlled to 1000 ° C. or higher, and a known method for producing coal gas can be applied as appropriate for other configurations.
Hereinafter, the manufacturing method of the coal gas of this invention is demonstrated, referring FIG. 1 and FIG.

図1は、本発明の石炭ガスの製造方法が用いられた石炭ガス化システムの一実施形態を示すブロック図である。
本実施形態の石炭ガス化システム1は、石炭ガス化反応炉4を用い、石炭を原料として水素ガスと一酸化炭素ガスを主成分とする石炭ガスを生成し、この石炭ガスから最終的にメタン、メタノール又はアンモニア等の製品を製造するプラント設備である。
石炭ガス化システム1は、石炭粉砕・乾燥設備2と、石炭供給設備3と、石炭ガス化反応炉4と、熱回収設備5と、チャー回収設備6と、シフト反応設備7と、ガス精製設備8と、化学合成設備9と、空気分離設備10とを備えている。
FIG. 1 is a block diagram showing an embodiment of a coal gasification system in which the method for producing coal gas of the present invention is used.
The coal gasification system 1 of the present embodiment uses a coal gasification reaction furnace 4 to generate coal gas mainly composed of hydrogen gas and carbon monoxide gas using coal as a raw material, and finally produces methane from the coal gas. Plant equipment for producing products such as methanol or ammonia.
The coal gasification system 1 includes a coal pulverization / drying facility 2, a coal supply facility 3, a coal gasification reaction furnace 4, a heat recovery facility 5, a char recovery facility 6, a shift reaction facility 7, and a gas purification facility. 8, a chemical synthesis facility 9, and an air separation facility 10.

一般に石炭は、外径が不均一であり、その種類によって所望の値より多くの水分を含む場合がある。
そこで、まず、石炭粉砕・乾燥設備2において、石炭は、外径がたとえば0.01mm以上0.15mm以下程度の粒状となるように粉砕され、さらに所定の水分含有量となるように乾燥された後に、石炭供給設備3に供給される。
なお、石炭粉砕・乾燥設備2の後から石炭ガス化反応炉4までは、乾燥された石炭中の水分含有量が変化しないように、粉砕された石炭は密閉された空間内を移動する。
続いて、石炭は、石炭ガス化反応炉4内に供給可能な状態にするために石炭供給設備3内で搬送ガス等により所定の圧力まで昇圧され、その後、石炭ガス化反応炉4に搬送される。
一方で、空気分離設備10は、空気を圧縮して液化し、液体となった空気から、沸点の違いにより、乾燥した酸素ガスや窒素ガス等を分離する。空気分離設備10で分離された酸素ガスは、石炭ガス化反応炉4に供給される。
In general, the outer diameter of coal is not uniform, and depending on the type, coal may contain more water than desired.
Therefore, first, in the coal pulverization / drying facility 2, the coal is pulverized so that the outer diameter is, for example, about 0.01 mm or more and 0.15 mm or less, and further dried to have a predetermined water content. Later, it is supplied to the coal supply facility 3.
In addition, after the coal pulverization / drying facility 2 to the coal gasification reactor 4, the pulverized coal moves in a sealed space so that the moisture content in the dried coal does not change.
Subsequently, the coal is pressurized to a predetermined pressure by a carrier gas or the like in the coal supply facility 3 so that the coal can be supplied into the coal gasification reactor 4, and is then transported to the coal gasification reactor 4. The
On the other hand, the air separation facility 10 separates dried oxygen gas, nitrogen gas, and the like from the air that has been compressed and liquefied and changed into liquid by the difference in boiling point. The oxygen gas separated by the air separation facility 10 is supplied to the coal gasification reactor 4.

石炭ガス化反応炉4は、石炭ガス化システム1の一部に組み込まれて用いられ、石炭を反応炉内で部分酸化反応させることにより、主成分として水素ガスおよび一酸化炭素ガスを含む石炭ガスを製造する装置である。
図2は、本発明における石炭ガス化反応炉の一実施形態を示す縦断面図である。
本実施形態の石炭ガス化反応炉4は、内部に収容空間11aが形成された部分酸化部(下部反応容器)11と、部分酸化部11の上方D1に設けられ、部分酸化部11の収容空間11aと連通し上下方向Dに延びる貫通孔12が形成された熱分解部(上部反応容器)13とを備えている。石炭ガス化反応炉4は、耐熱性のレンガ等で形成されている。
石炭ガス化反応炉4においては、部分酸化部11の下方D2に、予熱部14が設けられている。部分酸化部11と予熱部14とは上下方向Dに連通していて、熱分解部13と部分酸化部11との接続部分、および部分酸化部11と予熱部14との接続部分は、これらが連なる部分より細くなるようにそれぞれ構成されている。
The coal gasification reactor 4 is used by being incorporated in a part of the coal gasification system 1, and includes coal gas containing hydrogen gas and carbon monoxide gas as main components by causing a partial oxidation reaction of coal in the reactor. Is a device for manufacturing.
FIG. 2 is a longitudinal sectional view showing an embodiment of a coal gasification reactor in the present invention.
The coal gasification reactor 4 of the present embodiment is provided in a partial oxidation part (lower reaction vessel) 11 in which an accommodation space 11a is formed, and an upper space D1 above the partial oxidation part 11, and the accommodation space of the partial oxidation part 11 The thermal decomposition part (upper reaction container) 13 in which the through-hole 12 which was connected to 11a and extended in the up-down direction D was formed is provided. The coal gasification reactor 4 is formed of heat-resistant bricks or the like.
In the coal gasification reaction furnace 4, a preheating part 14 is provided below the partial oxidation part 11. The partial oxidation unit 11 and the preheating unit 14 communicate with each other in the vertical direction D, and the connection portion between the thermal decomposition unit 13 and the partial oxidation unit 11 and the connection portion between the partial oxidation unit 11 and the preheating unit 14 are Each is configured to be thinner than the continuous portion.

図2に示すように、部分酸化部11は、上下方向Dに延びる略円筒状に形成され、部分酸化部11の内周面上には、所定の軸線C1に沿って延びる円筒状に形成されたガス化バーナー17が複数設けられている。
ガス化バーナー17は、石炭供給設備3、空気分離設備10、および後述する方法で水蒸気を発生する熱回収設備5に接続されていて、部分酸化部11に石炭、酸素ガスおよび水蒸気(以下これらをまとめて「炭素等」と称する。)を所定の割合で供給することができる。複数のガス化バーナー17は、相互に、水平に設置され、部分酸化部11の中心軸線C2に対して相互にねじれの位置となるように配置されている。
また、部分酸化部11の外周面には不図示の冷却手段が設けられていて、石炭の部分酸化反応により加熱される部分酸化部11の壁面を冷却することができるようになっている。
As shown in FIG. 2, the partial oxidation portion 11 is formed in a substantially cylindrical shape extending in the vertical direction D, and is formed on the inner peripheral surface of the partial oxidation portion 11 in a cylindrical shape extending along a predetermined axis C <b> 1. A plurality of gasification burners 17 are provided.
The gasification burner 17 is connected to the coal supply facility 3, the air separation facility 10, and the heat recovery facility 5 that generates water vapor by a method described later. Collectively referred to as “carbon etc.”) at a predetermined rate. The plurality of gasification burners 17 are installed horizontally so as to be twisted with respect to the central axis C <b> 2 of the partial oxidation unit 11.
Moreover, a cooling means (not shown) is provided on the outer peripheral surface of the partial oxidation unit 11 so that the wall surface of the partial oxidation unit 11 heated by the partial oxidation reaction of coal can be cooled.

熱分解部13は、上下方向Dに延びる略円筒状に形成される。
熱分解部13において、上下方向Dの中間部には熱分解部13に石炭を供給する複数の石炭ノズル18が設けられている。石炭ノズル18は石炭供給設備3に接続されている。
なお、石炭ノズル18の数は制限されず、幾つでもよい。また、必要に応じて、たとえば、石炭ノズル18の下方D2に、熱分解部13に水蒸気を供給する水蒸気ノズルを設けてもよい。この水蒸気ノズルは、たとえば熱回収設備5に接続して設けることができる。
The thermal decomposition part 13 is formed in a substantially cylindrical shape extending in the vertical direction D.
In the thermal decomposition part 13, a plurality of coal nozzles 18 for supplying coal to the thermal decomposition part 13 are provided in the middle part in the vertical direction D. The coal nozzle 18 is connected to the coal supply facility 3.
The number of coal nozzles 18 is not limited and may be any number. Moreover, you may provide the water vapor | steam nozzle which supplies water vapor | steam to the thermal decomposition part 13 below the coal nozzle 18, for example as needed. This water vapor nozzle can be provided connected to the heat recovery equipment 5, for example.

熱分解部13の貫通孔12の上方D1の端部(出口)12aは、熱回収設備5に接続されている。
そして、端部12aには、端部12aから流出する石炭ガスの温度を測定する温度測定装置20が設けられている。
An end (exit) 12 a at the upper side D <b> 1 of the through hole 12 of the thermal decomposition unit 13 is connected to the heat recovery facility 5.
And the temperature measuring apparatus 20 which measures the temperature of the coal gas which flows out out of the edge part 12a is provided in the edge part 12a.

本実施形態の予熱部14には、所定の量の水Wが収容されていて、後述するように、部分酸化部11から流れ落ちるスラグを冷却できるようになっている。   A predetermined amount of water W is accommodated in the preheating unit 14 of the present embodiment, and the slag flowing down from the partial oxidation unit 11 can be cooled as will be described later.

上述のように構成された石炭ガス化反応炉4が運転されると、粒状の炭素等は、所定の流速でガス化バーナー17から部分酸化部11内に供給される。それぞれのガス化バーナー17は上記のように配置されているので、それぞれのガス化バーナー17から供給される炭素等は、部分酸化部11の中心軸線C2の回りを旋回する。
このとき、部分酸化部11内は、高温・高圧になっている。部分酸化部11内の温度と圧力は、部分酸化反応が良好に進行することから、温度を1300〜1600℃とすることが好ましく、1300〜1400℃とすることがより好ましく、圧力を2〜4MPaとすることが好ましく、2〜3MPaとすることがより好ましい。
この環境下で石炭が高温になり、熱分解してチャーと、タールおよび水蒸気等を含む揮発性ガスとが分離するとともに、石炭が燃焼(部分酸化反応)することにより、下記化学反応式(2)〜(4)に示すように一酸化炭素ガス、二酸化炭素ガスおよび水素ガスと、スラグ(灰分)が発生する。
When the coal gasification reactor 4 configured as described above is operated, granular carbon or the like is supplied from the gasification burner 17 into the partial oxidation unit 11 at a predetermined flow rate. Since each gasification burner 17 is arranged as described above, carbon or the like supplied from each gasification burner 17 swirls around the central axis C <b> 2 of the partial oxidation unit 11.
At this time, the inside of the partial oxidation unit 11 is at a high temperature and a high pressure. The temperature and pressure in the partial oxidation part 11 are preferably 1300 to 1600 ° C., more preferably 1300 to 1400 ° C., and more preferably 2 to 4 MPa because the partial oxidation reaction proceeds well. Preferably, it is more preferable to set it as 2-3 Mpa.
Under this environment, the coal becomes high temperature and is thermally decomposed to separate char and volatile gas containing tar, water vapor and the like, and the coal is combusted (partial oxidation reaction). ) To (4), carbon monoxide gas, carbon dioxide gas and hydrogen gas, and slag (ash) are generated.

2C+O → 2CO ・・・(2)
C+O → CO ・・・(3)
C+HO → CO+H ・・・(4)
2C + O 2 → 2CO (2)
C + O 2 → CO 2 (3)
C + H 2 O → CO + H 2 (4)

部分酸化部11内で発生したスラグは溶融した状態となっているが、一部が部分酸化部11の内周面で上述の冷却手段により冷やされてこの内周面に付着し、その他の部分が部分酸化部11の下方に設けられた予熱部14内の水Wに落ちて冷やされ、回収される。
一方、部分酸化部11内で発生した高温ガス(一酸化炭素ガス、二酸化炭素ガス、水素ガス、水蒸気等を含むガス)、タール、チャー等は、旋回しながら部分酸化部11内を上昇し、部分酸化部11から移動して熱分解部13内を上昇する。
Although the slag generated in the partial oxidation part 11 is in a molten state, a part of the slag is cooled on the inner peripheral surface of the partial oxidation part 11 by the above-mentioned cooling means and adheres to this inner peripheral surface, and other parts Falls into the water W in the preheating unit 14 provided below the partial oxidation unit 11 and is cooled and recovered.
On the other hand, high-temperature gas (gas containing carbon monoxide gas, carbon dioxide gas, hydrogen gas, water vapor, etc.), tar, char, etc. generated in the partial oxidation part 11 rises in the partial oxidation part 11 while turning, It moves from the partial oxidation part 11 and rises in the thermal decomposition part 13.

熱分解部13では、部分酸化部11から上昇してくる高温ガス中へ、石炭ノズル18から新たな石炭が供給され、石炭の熱分解反応により熱分解ガス、タール、チャー等が生成する。
熱分解部13に供給された新たな石炭中の炭素の一部は、熱分解部13内の二酸化炭素ガスと反応して下記の化学反応式(5)により一酸化炭素ガスになる。
上述の石炭の熱分解反応、及び炭素の二酸化炭素ガスによるガス化反応は、吸熱反応であるため、部分酸化部11から上昇してくる高温ガスは冷却される。
In the pyrolysis unit 13, new coal is supplied from the coal nozzle 18 into the high-temperature gas rising from the partial oxidation unit 11, and pyrolysis gas, tar, char, and the like are generated by the pyrolysis reaction of coal.
Part of the carbon in the new coal supplied to the pyrolysis unit 13 reacts with the carbon dioxide gas in the pyrolysis unit 13 to become carbon monoxide gas according to the following chemical reaction formula (5).
Since the above-described pyrolysis reaction of coal and the gasification reaction of carbon with carbon dioxide gas are endothermic reactions, the high-temperature gas rising from the partial oxidation unit 11 is cooled.

C+CO → 2CO ・・・(5) C + CO 2 → 2CO (5)

その際、本発明においては、熱分解部13に供給する前記の新たな石炭の供給量を増減して、端部12aから流出する石炭ガスの温度を1000℃以上に制御する。端部12aから流出する石炭ガスの温度は、その上限値としては1200℃以下に制御することが好ましく、1050〜1150℃の範囲に制御することが特に好ましい。
石炭ガスの温度を1000℃以上に制御することにより、タール含有量の少ない石炭ガスを製造できる。石炭ガスの温度を1200℃以下に制御すると、石炭ガス化反応炉4が傷みにくくなる。
In that case, in this invention, the supply amount of the said new coal supplied to the thermal decomposition part 13 is increased / decreased, and the temperature of the coal gas which flows out from the edge part 12a is controlled to 1000 degreeC or more. The upper limit of the temperature of the coal gas flowing out from the end 12a is preferably controlled to 1200 ° C. or less, and particularly preferably controlled to the range of 1050 to 1150 ° C.
By controlling the temperature of coal gas to 1000 ° C. or higher, coal gas with a small tar content can be produced. When the temperature of the coal gas is controlled to 1200 ° C. or less, the coal gasification reactor 4 is hardly damaged.

端部12aから流出する石炭ガスの温度は、熱分解部13に供給する前記の新たな石炭の供給量を増減することにより制御する。熱分解部13での石炭の熱分解は吸熱反応であるため、石炭の供給量を増やす又は減らすことで、端部12aから流出する石炭ガスの温度を下げる又は上げることができる。   The temperature of the coal gas flowing out from the end portion 12a is controlled by increasing or decreasing the supply amount of the new coal supplied to the thermal decomposition unit 13. Since the pyrolysis of coal in the pyrolysis section 13 is an endothermic reaction, the temperature of the coal gas flowing out from the end portion 12a can be lowered or raised by increasing or decreasing the supply amount of coal.

また、熱分解部13内の圧力およびガス滞留時間は、石炭ガス中のタール含有量をより低減できることから、圧力を2〜4MPaとすることが好ましく、2〜3MPaとすることがより好ましく、ガス滞留時間を1〜5秒間とすることが好ましく、2〜3秒間とすることがより好ましい。   Moreover, since the pressure in the pyrolysis part 13 and gas residence time can reduce tar content in coal gas more, it is preferable to make a pressure into 2-4 Mpa, and it is more preferable to set it as 2-3 Mpa, The residence time is preferably 1 to 5 seconds, and more preferably 2 to 3 seconds.

そして、図1に示すように、熱分解部13の出口から、水素ガスおよび一酸化炭素ガスを含む高温の石炭ガスがチャーとともに搬送され、熱回収設備5に供給される。
熱回収設備5では、熱分解部13から搬送された石炭ガスと水とを熱交換させることにより水蒸気が生成する。この水蒸気は前述の石炭粉砕・乾燥設備2やシフト反応設備7で用いる原料等の目的のために供給される。
熱回収設備5で冷却された石炭ガスは、熱回収設備5からチャー回収設備6に供給され、チャー回収設備6で石炭ガスに含まれるチャーが回収される。
チャー回収設備6を通過した石炭ガスは、シフト反応設備7に供給される。そして、石炭ガス中の一酸化炭素ガスに対する水素ガスの比率を一定の値まで高めるために、シフト反応設備7中に水蒸気が供給され、下記の化学反応式(6)で示されるシフト反応により、石炭ガス中の一酸化炭素ガスが消費され、その代わりに水素ガスが発生する。
Then, as shown in FIG. 1, high-temperature coal gas containing hydrogen gas and carbon monoxide gas is transported together with char from the outlet of the thermal decomposition unit 13 and supplied to the heat recovery facility 5.
In the heat recovery facility 5, steam is generated by heat exchange between the coal gas conveyed from the thermal decomposition unit 13 and water. This steam is supplied for the purpose of raw materials used in the above-described coal pulverization / drying equipment 2 and shift reaction equipment 7.
The coal gas cooled by the heat recovery facility 5 is supplied from the heat recovery facility 5 to the char recovery facility 6, and the char contained in the coal gas is recovered by the char recovery facility 6.
Coal gas that has passed through the char recovery facility 6 is supplied to the shift reaction facility 7. And in order to raise the ratio of the hydrogen gas to the carbon monoxide gas in the coal gas to a certain value, water vapor is supplied into the shift reaction facility 7, and by the shift reaction shown by the following chemical reaction formula (6), Carbon monoxide gas in the coal gas is consumed, and hydrogen gas is generated instead.

CO + HO → CO + H ・・・(6) CO + H 2 O → CO 2 + H 2 (6)

シフト反応設備7でガス成分の含有比率が調整された石炭ガスは、ガス精製設備8に供給され、石炭ガスに含まれる二酸化炭素ガス、又は硫黄を含むガス等が回収される。
ガス精製設備8で精製された石炭ガスは化学合成設備9に供給され、種々の化学反応等により、メタンやメタノール等の製品が製造される。
The coal gas whose gas component content ratio is adjusted in the shift reaction facility 7 is supplied to the gas purification facility 8, and carbon dioxide gas or sulfur-containing gas contained in the coal gas is recovered.
Coal gas refined in the gas purification facility 8 is supplied to the chemical synthesis facility 9, and products such as methane and methanol are produced by various chemical reactions.

以上説明したように、本発明の石炭ガスの製造方法によれば、タールがほとんど生成せず、タール含有量の少ない石炭ガス(たとえばH、CO、CHを主成分とする合成ガス等)を製造できる、という効果が得られる。
タールは、瞬時に反応する石炭の初期熱分解反応で生成し、雰囲気ガス中のH、HO、CO等により分解消失する。したがって、石炭ガス中のタール含有量は、前記の生成と分解消失とのバランスで定まる。分解消失反応に影響する因子としては、雰囲気ガスの組成と、これに加えて反応速度に影響する温度が挙げられる。
一方で、石炭ガス化反応炉を用いた石炭ガスの製造において、タールの生成量は、原料として使用する石炭量に依存する。
これらのことから、本発明者らは、石炭ガス化反応炉を用いて石炭ガスを製造する際、上部反応容器に供給する石炭の供給量を増減することにより、タールの生成量を制御でき、かつ、上部反応容器の出口から流出する石炭ガスの温度が変化すること、およびその石炭ガスの温度を1000℃以上に制御することにより、タールがほとんど生成しなくなること、を見出し、本発明を完成するに至った。
As described above, according to the method for producing coal gas of the present invention, coal gas that hardly generates tar and has a small tar content (for example, synthesis gas mainly composed of H 2 , CO, and CH 4 ). Can be produced.
Tar is generated by an initial thermal decomposition reaction of coal that reacts instantaneously, and is decomposed and disappeared by H 2 , H 2 O, CO 2 and the like in the atmospheric gas. Therefore, the tar content in the coal gas is determined by the balance between the generation and the decomposition disappearance. Factors affecting the decomposition / disappearance reaction include the composition of the atmospheric gas and, in addition, the temperature that affects the reaction rate.
On the other hand, in the production of coal gas using a coal gasification reactor, the amount of tar produced depends on the amount of coal used as a raw material.
From these, the present inventors can control the amount of tar produced by increasing or decreasing the amount of coal supplied to the upper reaction vessel when producing coal gas using a coal gasification reactor, In addition, the present inventors completed the present invention by finding that the temperature of coal gas flowing out from the outlet of the upper reaction vessel changes and that the tar temperature is hardly generated by controlling the temperature of the coal gas to 1000 ° C. or higher. It came to do.

また、本発明の製造方法は、タール含有量が少ない石炭ガスを製造できることから、 上述した特許文献1に記載された方法のような、生成タールの軽質化のための設備、タール回収のための設備がいずれも不要であり、また、製品ガスの消費による最終生成物の量的ロスがなく、熱分解ガス冷却による熱量のロスもないことから製造効率に優れる。   Moreover, since the manufacturing method of this invention can manufacture coal gas with little tar content, like the method described in patent document 1 mentioned above, the facilities for lightening of produced | generated tar, For tar collection | recovery No equipment is required, there is no quantitative loss of the final product due to consumption of product gas, and there is no loss of heat due to cooling of the pyrolysis gas, resulting in excellent production efficiency.

<メタンの製造方法>
本発明のメタンの製造方法は、上記本発明の石炭ガスの製造方法により製造される石炭ガスをメタン化する方法である。その一実施形態として、図1に示す石炭ガス化システム1において、シフト反応プロセスとメタネーションプロセスとを組み合わせる方法が挙げられる。
上記本発明の石炭ガスの製造方法により製造される、タール含有量の少ない石炭ガスをメタン化することで、熱量のロスが低減され、従来よりも高い製造効率でメタンを製造できる。
<Methane production method>
The method for producing methane of the present invention is a method for methanating coal gas produced by the method for producing coal gas of the present invention. As one embodiment, there is a method of combining a shift reaction process and a methanation process in the coal gasification system 1 shown in FIG.
By methanating the coal gas with a small tar content produced by the method for producing coal gas according to the present invention, heat loss is reduced, and methane can be produced with higher production efficiency than before.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこれら実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to these embodiment, The change of the structure of the range which does not deviate from the summary of this invention, etc. are included.

図2と同じ実施形態の石炭ガス化反応炉を用い、化学合成設備でメタン化を行う他は図1と同じ実施形態の石炭ガス化システムによりメタンを製造した。以下、図1および図2で付した符号と同じ符号を用いて説明する。
石炭ガス化反応炉4において、端部12aには、図2に示すように、熱分解部13の出口(端部12a)から流出する石炭ガスの温度を測定する温度測定装置20を設けてメタンの製造を行った。
Methane was produced by the coal gasification system of the same embodiment as in FIG. 1 except that the coal gasification reactor of the same embodiment as in FIG. 2 was used and methanation was performed in a chemical synthesis facility. Hereinafter, the same reference numerals as those in FIGS. 1 and 2 are used for explanation.
In the coal gasification reactor 4, the end 12a is provided with a temperature measuring device 20 for measuring the temperature of coal gas flowing out from the outlet (end 12a) of the thermal decomposition unit 13 as shown in FIG. Was manufactured.

原料として、外径が0.15mm以下、水分含有量が5質量%、乾燥された石炭中に炭素70質量%を含有する石炭を用いた。
全ガス化バーナー17から部分酸化部11に供給する石炭、酸素ガスおよび水蒸気は、石炭500(kg/h)、酸素ガス300(Nm/h)、水蒸気40(kg/h)で、それぞれ100時間供給した。
部分酸化部11内の温度と圧力は、温度1350℃、圧力2.45MPaとし、熱分解部13内の圧力を2.45MPaとし、ガス滞留時間を2秒間とした。
さらに、全石炭ノズル18から熱分解部13に供給する石炭は以下のように調節した。
As a raw material, coal having an outer diameter of 0.15 mm or less, a water content of 5% by mass, and carbon containing 70% by mass in dried coal was used.
Coal, oxygen gas and water vapor supplied from the total gasification burner 17 to the partial oxidation unit 11 are coal 500 (kg / h), oxygen gas 300 (Nm 3 / h) and water vapor 40 (kg / h), respectively. Time supplied.
The temperature and pressure in the partial oxidation unit 11 were set to a temperature of 1350 ° C. and a pressure of 2.45 MPa, the pressure in the thermal decomposition unit 13 was set to 2.45 MPa, and the gas residence time was set to 2 seconds.
Furthermore, the coal supplied to the thermal decomposition part 13 from all the coal nozzles 18 was adjusted as follows.

熱分解部13の出口(端部12a)から流出する石炭ガスに含まれるタール含有量を測定した。
タール含有量は、熱分解部13の出口(端部12a)に設置したサンプリングノズルから生成石炭ガスの一部を所定量抜き出し、吸収液にタールを吸収させた後、当該吸収液を除去することにより測定した。
全石炭ノズル18から熱分解部13に供給する石炭を500(kg/h)で24時間供給することにより、石炭ガスの温度を800℃に制御した。
同様に、石炭を200(kg/h)で24時間供給することにより、石炭ガスの温度を1050℃程度に制御した。
同様に、石炭を150(kg/h)で24時間供給することにより、石炭ガスの温度を1150℃程度に制御した。
The tar content contained in coal gas flowing out from the outlet (end portion 12a) of the thermal decomposition unit 13 was measured.
For the tar content, a predetermined amount of the generated coal gas is extracted from a sampling nozzle installed at the outlet (end portion 12a) of the thermal decomposition unit 13, and after absorbing the tar in the absorption liquid, the absorption liquid is removed. It was measured by.
The temperature of coal gas was controlled at 800 degreeC by supplying coal supplied to the thermal decomposition part 13 from all the coal nozzles 18 at 500 (kg / h) for 24 hours.
Similarly, the temperature of coal gas was controlled to about 1050 degreeC by supplying coal at 200 (kg / h) for 24 hours.
Similarly, the temperature of coal gas was controlled to about 1150 degreeC by supplying coal at 150 (kg / h) for 24 hours.

化学合成設備9でのメタン化は、上流プロセスであるシフト反応設備7及びガス精製設備8で、石炭ガス中の水素と一酸化炭素との体積比を3:1以上にすることにより次式の反応を行い、メタンを製造した。CO+3H → CH+HMethanation at the chemical synthesis facility 9 is carried out by using the shift reaction facility 7 and the gas refining facility 8 as upstream processes to increase the volume ratio of hydrogen and carbon monoxide in the coal gas to 3: 1 or more by the following formula. Reaction was performed to produce methane. CO + 3H 2 → CH 4 + H 2 O

図3は、石炭ガス化反応炉4における熱分解部13の出口(端部12a)から流出する石炭ガスの温度(℃)と、石炭中の炭素のタールへの転化率(質量%)との関係を示すグラフである。
図3の結果から、石炭ガスの温度を800℃から1150℃に変化させたところ、石炭中の炭素のタールへの転化率(石炭ガスに含まれるタール含有量)が6.9質量%から0.3質量%へ顕著に減少していることが分かる。すなわち、本発明の石炭ガスの製造方法によれば、タール含有量の少ない石炭ガスを製造できることが確認できた。
FIG. 3 shows the temperature (° C.) of coal gas flowing out from the outlet (end portion 12a) of the thermal decomposition unit 13 in the coal gasification reactor 4 and the conversion rate (mass%) of carbon in the coal into tar. It is a graph which shows a relationship.
From the results of FIG. 3, when the temperature of the coal gas was changed from 800 ° C. to 1150 ° C., the conversion rate of carbon in the coal into tar (the tar content contained in the coal gas) was reduced from 6.9% by mass to 0%. It can be seen that the content is significantly reduced to 3% by mass. That is, according to the method for producing coal gas of the present invention, it was confirmed that coal gas having a small tar content can be produced.

図4は、石炭からメタンを製造する際の製造効率について、本発明の製造方法と従来の製造方法(部分酸化反応だけの一般的な気流層ガス化炉の製造方法)とを比較した計算結果を示す図である。
一般的な気流層ガス化炉としては、現在商用化されている気流層ガス化炉として最も石炭ガス化効率が高いといわれている、Shellプロセスを参考に、石炭ガス化効率を80%(熱量ベース)として計算した。
本発明の製造方法においては、熱分解部13の出口(端部12a)から流出する石炭ガスの温度を1100℃に制御してメタン製造を行った。
図4中、「熱分解ガス化」は、石炭ガス化反応炉4の部分酸化部11における部分酸化と、熱分解部13における熱分解の両方を包含する。
化合物の下に示す数字は発熱量を示し、原料の石炭の発熱量を1.00とした際、たとえば本発明においては、熱分解ガス化の反応効率(η)が85%、すなわち15%分は熱量にロスが生じ、その73%分がCO+Hに転換され、残りの12%分がCHに転換されたことを意味する。
FIG. 4 is a calculation result comparing the production method of the present invention and a conventional production method (a general method for producing a gas-bed gasifier with only a partial oxidation reaction) for production efficiency when producing methane from coal. FIG.
As a general gas-bed gasification furnace, coal gasification efficiency is 80% (the amount of heat) with reference to the Shell process, which is said to have the highest coal gasification efficiency as a currently commercialized gas-bed gasification furnace. Base).
In the production method of the present invention, methane was produced by controlling the temperature of coal gas flowing out from the outlet (end portion 12a) of the thermal decomposition unit 13 to 1100 ° C.
In FIG. 4, “pyrolysis gasification” includes both partial oxidation in the partial oxidation unit 11 of the coal gasification reactor 4 and thermal decomposition in the thermal decomposition unit 13.
The number shown below the compound indicates the calorific value, and when the calorific value of the raw material coal is 1.00, for example, in the present invention, the reaction efficiency (η) of pyrolysis gasification is 85%, that is, 15% min. Means that a loss of heat has occurred, 73% of which has been converted to CO + H 2 and the remaining 12% has been converted to CH 4 .

図4において、本発明の製造方法では、石炭を熱分解ガス化する際、石炭(1.00)から、反応効率(η)85%で、石炭ガスとしてCO+H(0.73)とCH(0.12)とが製造された。
次に、石炭ガスをメタン化する際、CO+H(0.73)から、反応効率(η)74%で、CH(0.54)が製造され、前記熱分解ガス化により得たCH(0.12)と合わせて、石炭(1.00)からは全部でCH(0.66)が製造された。
In FIG. 4, in the production method of the present invention, when coal is pyrolyzed and gasified, the reaction efficiency (η) is 85% from coal (1.00), and CO + H 2 (0.73) and CH 4 as coal gas. (0.12) was produced.
Then, when the methanation of coal gas from the CO + H 2 (0.73), the reaction efficiency (η) 74%, CH 4 (0.54) is manufactured, CH 4 obtained by the pyrolysis gasification Combined with (0.12), a total of CH 4 (0.66) was produced from coal (1.00).

従来の製造方法では、石炭をガス化(部分酸化)する際、石炭(1.00)から、反応効率(η)80%で、石炭ガスとしてCO+H(0.80)が製造された。
次に、石炭ガスをメタン化する際、CO+H(0.80)から、反応効率(η)74%で、CH(0.60)が製造され、石炭(1.00)からはCH(0.60)が製造された。
In the conventional production method, when coal is gasified (partial oxidation), CO + H 2 (0.80) is produced as coal gas from coal (1.00) with a reaction efficiency (η) of 80%.
Next, when coal gas is methanated, CH 4 (0.60) is produced from CO + H 2 (0.80) with a reaction efficiency (η) of 74%, and from coal (1.00), CH 4 (0.60) was produced.

本発明の製造方法と従来の製造方法(部分酸化反応だけの一般的な気流層ガス化炉の製造方法)との対比から、本発明の製造方法は、従来の製造方法に比べて、熱量のロスが低減されていること、及び、熱分解ガス化により製造されたメタンは化学合成における製造ロスを受けないことから、石炭からメタンを製造する効率が10%高いことが分かる(本発明の方が一般的な気流層ガス化炉を用いてメタンを製造する方法よりも発熱量の値が大きい(その差0.06))。すなわち、図4の結果から、本発明のメタンの製造方法によれば、一般的な気流層ガス化炉を用いてメタンを製造する方法よりも高い製造効率でメタンを製造できることが確認できた。   From the comparison between the manufacturing method of the present invention and the conventional manufacturing method (the manufacturing method of a general gas-bed gasification furnace with only partial oxidation reaction), the manufacturing method of the present invention has a calorific value compared to the conventional manufacturing method. Since the loss is reduced and methane produced by pyrolysis gasification is not subject to production loss in chemical synthesis, it can be seen that the efficiency of producing methane from coal is 10% higher (the present invention) However, the calorific value is larger than that of a method of producing methane using a general gas-bed gasifier (difference 0.06)). That is, from the result of FIG. 4, according to the method for producing methane of the present invention, it was confirmed that methane can be produced with higher production efficiency than the method for producing methane using a general air-bed gasification furnace.

4 石炭ガス化反応炉
11 部分酸化部(下部反応容器)
12 貫通孔
12a 端部
13 熱分解部(上部反応容器)
17 ガス化バーナー
18 石炭ノズル
20 温度測定装置
4 Coal gasification reactor 11 Partial oxidation section (lower reaction vessel)
12 Through-hole 12a End 13 Pyrolysis part (upper reaction vessel)
17 Gasification burner 18 Coal nozzle 20 Temperature measuring device

Claims (2)

内部に収容空間が形成された下部反応容器と、前記下部反応容器の上方に設けられ、前記下部反応容器の前記収容空間と連通し上下方向に延びる貫通孔が形成された上部反応容器とを備える石炭ガス化反応炉を用い、
前記下部反応容器に石炭、酸素および水蒸気を供給し、部分酸化反応により高温ガスを発生させ、前記上部反応容器に前記高温ガスを導入しながら新たに石炭を供給し、この新たに供給する石炭を熱分解させて、水素ガスおよび一酸化炭素ガスを含む石炭ガスを製造する方法において、
前記上部反応容器に供給する前記の新たな石炭の供給量を増減して、前記上部反応容器の出口から流出する石炭ガスの温度を1000℃以上に制御することを特徴とする石炭ガスの製造方法。
A lower reaction vessel having an accommodation space formed therein, and an upper reaction vessel provided above the lower reaction vessel and having a through-hole extending in the vertical direction communicating with the accommodation space of the lower reaction vessel. Using a coal gasification reactor,
Supplying coal, oxygen and water vapor to the lower reaction vessel, generating high temperature gas by partial oxidation reaction, supplying new coal while introducing the high temperature gas into the upper reaction vessel, In a method for producing coal gas containing hydrogen gas and carbon monoxide gas by pyrolysis,
The method for producing coal gas, wherein the supply amount of the new coal supplied to the upper reaction vessel is increased or decreased, and the temperature of coal gas flowing out from the outlet of the upper reaction vessel is controlled to 1000 ° C. or more. .
請求項1に記載の石炭ガスの製造方法により製造される石炭ガスをメタン化することを特徴とするメタンの製造方法。   A method for producing methane, comprising methanating the coal gas produced by the method for producing coal gas according to claim 1.
JP2011162102A 2011-07-25 2011-07-25 Coal gas production method and methane production method Active JP5827511B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011162102A JP5827511B2 (en) 2011-07-25 2011-07-25 Coal gas production method and methane production method
AU2012288216A AU2012288216B2 (en) 2011-07-25 2012-05-11 Production method of coal gas and methane
CN201280036566.9A CN103703111B (en) 2011-07-25 2012-05-11 Method for producing coal gas and method for producing methane
PCT/JP2012/062142 WO2013014995A1 (en) 2011-07-25 2012-05-11 Method for producing coal gas and method for producing methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162102A JP5827511B2 (en) 2011-07-25 2011-07-25 Coal gas production method and methane production method

Publications (2)

Publication Number Publication Date
JP2013023653A true JP2013023653A (en) 2013-02-04
JP5827511B2 JP5827511B2 (en) 2015-12-02

Family

ID=47600855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162102A Active JP5827511B2 (en) 2011-07-25 2011-07-25 Coal gas production method and methane production method

Country Status (4)

Country Link
JP (1) JP5827511B2 (en)
CN (1) CN103703111B (en)
AU (1) AU2012288216B2 (en)
WO (1) WO2013014995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521228A (en) * 2015-04-30 2018-08-02 ベイジン シャンティ テクノロジー カンパニー リミテッド Gas making rapid iron making system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3464318T (en) 2016-06-02 2021-06-25 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
CN106336903B (en) * 2016-10-21 2019-04-16 中国化学工程第六建设有限公司 The generating device of coal gas
US10818608B2 (en) 2017-04-10 2020-10-27 Credo Technology Group Limited Cage-shielded interposer inductances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121604A (en) * 1976-03-01 1977-10-13 Gen Electric Process for conversion of coal into synthetic natural gas
JPH11302666A (en) * 1998-04-15 1999-11-02 Nippon Steel Corp Process and apparatus for pneumatic bed gasification of coal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN168599B (en) * 1985-11-29 1991-05-04 Dow Chemical Co
CN1226395C (en) * 2001-11-08 2005-11-09 国家电力公司热工研究院 Double-section dry coal powder gasifying furnace
US8460410B2 (en) * 2008-08-15 2013-06-11 Phillips 66 Company Two stage entrained gasification system and process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121604A (en) * 1976-03-01 1977-10-13 Gen Electric Process for conversion of coal into synthetic natural gas
JPH11302666A (en) * 1998-04-15 1999-11-02 Nippon Steel Corp Process and apparatus for pneumatic bed gasification of coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521228A (en) * 2015-04-30 2018-08-02 ベイジン シャンティ テクノロジー カンパニー リミテッド Gas making rapid iron making system and method
US10851430B2 (en) 2015-04-30 2020-12-01 Beijing Shantie Technology Co., Ltd. Flash ironmaking system and method

Also Published As

Publication number Publication date
CN103703111B (en) 2015-07-08
AU2012288216A1 (en) 2014-03-06
CN103703111A (en) 2014-04-02
AU2012288216B2 (en) 2015-07-02
JP5827511B2 (en) 2015-12-02
WO2013014995A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US8771387B2 (en) Systems and methods for solar-thermal gasification of biomass
JP5919393B2 (en) Method and apparatus for converting carbon dioxide to carbon monoxide
US9481839B2 (en) Hot oxygen nozzle and uses thereof in gasifiers
ES2804520T3 (en) Two-stage gasification with dual rapid cooling
AU2008364497A1 (en) High-temperature gasification process using biomass to produce synthetic gas and system therefor
CN102492478A (en) Novel two-stage multi-nozzle pressurized gasifier and its gasification method
KR20110052604A (en) Method and device for producing low-tar synthesis gas from biomass
CN106590761B (en) Fluidized bed reaction device and reaction method for preparing methane-rich synthesis gas through catalytic coal gasification
US8741179B2 (en) Process and equipment for reforming gasification gas
JP5130459B2 (en) Operation method of coal pyrolysis gasifier
JP2010121049A (en) Apparatus and method for gasification of organic raw material
JP5827511B2 (en) Coal gas production method and methane production method
US20150005399A1 (en) Method and device for producing synthetic gas and method and device for synthesizing liquid fuel
JP5450799B2 (en) Coal gasification system and coal gasification method
JP5386635B2 (en) Operation method of coal gasification reactor and coal gasification reactor
JP7192899B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP2008127256A (en) Method and apparatus for producing ammonia
JP3904161B2 (en) Method and apparatus for producing hydrogen / carbon monoxide mixed gas
US20230203389A1 (en) Method for gasification of carbonaceous feedstock and device for implementing same
CN104927922B (en) Moving bed pressurized coal gasification produces the technique and device for being the richest in alkane coal-gas
CN103484180A (en) Technology for preparing natural gas through self-heating catalytic gasification of fire coal, and system thereof
AU2012256839B2 (en) Coal gasification system
CN205953496U (en) System for preparation hydrogen -rich gas and carbide
CN205933212U (en) System for preparation hydrogen -rich gas and carbide
JP4863889B2 (en) Coal hydrocracking process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151016

R150 Certificate of patent or registration of utility model

Ref document number: 5827511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250