JP2013023464A - Method for producing succinic acid - Google Patents

Method for producing succinic acid Download PDF

Info

Publication number
JP2013023464A
JP2013023464A JP2011158811A JP2011158811A JP2013023464A JP 2013023464 A JP2013023464 A JP 2013023464A JP 2011158811 A JP2011158811 A JP 2011158811A JP 2011158811 A JP2011158811 A JP 2011158811A JP 2013023464 A JP2013023464 A JP 2013023464A
Authority
JP
Japan
Prior art keywords
succinic acid
reaction
acid
maleic anhydride
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011158811A
Other languages
Japanese (ja)
Inventor
Akihiro Okabe
明弘 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP2011158811A priority Critical patent/JP2013023464A/en
Publication of JP2013023464A publication Critical patent/JP2013023464A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high-purity succinic acid which inhibits a by-product of a malic acid.SOLUTION: In the method for producing the succinic acid, hydrogenation reaction is performed by incorporating an aqueous solvent and a noble metal catalyst into a pressurizing reactor, thereafter, supplying a hydrogen gas until it become a pressurized state, and then adding a maleic anhydride or maleic acid of a raw material to the reactor, wherein 10 wt.% or more of the total amount of the maleic anhydride or maleic acid, which adds to the pressurizing reactor, is added by a consecutive addition system.

Description

本発明は、コハク酸の製造方法に関し、詳しくは、リンゴ酸の副生を抑制した高純度のコハク酸の製造方法に関する。   The present invention relates to a method for producing succinic acid, and more particularly to a method for producing high-purity succinic acid in which malic acid by-product is suppressed.

コハク酸は、マレイン酸または無水マレイン酸を水媒体中で水素化反応して得られ、食品添加物、医薬品の中間体などに使用されている有用な化合物である。このような用途に使用するコハク酸は、収率の点のみならず、安全性の観点からも、高純度のコハク酸が必要とされる。ところで、コハク酸の製造方法においてはマレイン酸に水が付加したリンゴ酸が副生するため、高純度のコハク酸を製造するためには、リンゴ酸の副生を抑制する必要がある。以下の化学反応式は、マレイン酸およびリンゴ酸の生成ルートを示すものであり、(A)は無水マレイン酸、(B)はマレイン酸、(C)はコハク酸、(D)はリンゴ酸である。   Succinic acid is a useful compound obtained by hydrogenating maleic acid or maleic anhydride in an aqueous medium and used for food additives, pharmaceutical intermediates and the like. The succinic acid used for such applications requires high-purity succinic acid not only in terms of yield but also from the viewpoint of safety. By the way, in the method for producing succinic acid, malic acid in which water is added to maleic acid is by-produced. Therefore, in order to produce high-purity succinic acid, it is necessary to suppress the by-product of malic acid. The following chemical reaction formula shows the production route of maleic acid and malic acid, (A) is maleic anhydride, (B) is maleic acid, (C) is succinic acid, (D) is malic acid. is there.

Figure 2013023464
Figure 2013023464

しかしながら、リンゴ酸の副生の抑制については、マレイン酸を水媒体中で水素ガスの存在下に水素化触媒に接触させてコハク酸を製造する際の反応温度に関し、温度が高すぎるとリンゴ酸などの副生物が多くなるため、通常20〜150℃が選択されると提案されている程度である(特許文献1)。   However, regarding the suppression of malic acid by-product, regarding the reaction temperature when maleic acid is brought into contact with a hydrogenation catalyst in the presence of hydrogen gas in an aqueous medium to produce succinic acid, if the temperature is too high, malic acid Therefore, it is proposed that 20 to 150 ° C. is usually selected (Patent Document 1).

特開平9−31011号公報Japanese Patent Laid-Open No. 9-31011

本発明は、上記実情に鑑み、リンゴ酸の副生を抑制した高純度のコハク酸の製造方法を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a method for producing high-purity succinic acid that suppresses by-product malic acid.

即ち、本発明の要旨は、加圧反応器に水性溶媒と貴金属触媒を仕込んだ後に水素ガスを加圧状態となるまで供給し、次いで、原料の無水マレイン酸またはマレイン酸を反応器に添加して水素化反応を行わせるコハク酸の製造方法において、加圧反応器に添加する無水マレイン酸またはマレイン酸の全量の10重量%以上を逐次添加方式によって添加することを特徴とするコハク酸の製造方法に存する。   That is, the gist of the present invention is that an aqueous solvent and a noble metal catalyst are charged into a pressurized reactor and then hydrogen gas is supplied until the pressurized state is obtained, and then raw material maleic anhydride or maleic acid is added to the reactor. In the method for producing succinic acid in which hydrogenation reaction is carried out, 10% by weight or more of maleic anhydride or maleic acid to be added to the pressure reactor is added by a sequential addition method. Lies in the way.

本発明によれば、リンゴ酸の副生を抑制した高純度のコハク酸の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the highly purified succinic acid which suppressed the byproduct of malic acid is provided.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のコハク酸の製造方法は、加圧反応器に水性溶媒と貴金属触媒を仕込んだ後に水素ガスを加圧状態となるまで供給し、次いで、原料の無水マレイン酸またはマレイン酸を反応器を添加して水素化反応を行わせるバッチ式方式である。   In the method for producing succinic acid according to the present invention, an aqueous solvent and a noble metal catalyst are charged into a pressurized reactor and then hydrogen gas is supplied until the pressurized state is reached, and then the raw material maleic anhydride or maleic acid is supplied to the reactor. It is a batch type system in which hydrogenation reaction is carried out by adding.

原料として使用する無水マレイン酸およびマレイン酸としては一般に市販されているものを使用することができる。マレイン酸を原料とした場合は、無水マレイン酸を原料とした場合に比してリンゴ酸が副生し易い傾向があり、また、マレイン酸は異性化してフマル酸を生成するために水素化反応時間が長くなる。従って、本発明においては、無水マレイン酸の使用が推奨される。   As maleic anhydride and maleic acid used as raw materials, commercially available products can be used. When maleic acid is used as a raw material, malic acid tends to be formed as a by-product more easily than when maleic anhydride is used as a raw material, and maleic acid is isomerized to produce fumaric acid. The time will be longer. Therefore, the use of maleic anhydride is recommended in the present invention.

水素化触媒として使用する貴金属触媒としては、従来公知のものを使用することができる。具体的には、パラジウム、ロジウム、ルテニウム、白金などが挙げられる。これらの中では特にパラジウムが好適である。また、これらは単独で使用しても複数併用しても構わない。   A conventionally well-known thing can be used as a noble metal catalyst used as a hydrogenation catalyst. Specific examples include palladium, rhodium, ruthenium, platinum and the like. Of these, palladium is particularly preferred. These may be used alone or in combination.

貴金属触媒は、そのまま使用することもできるが、担体として、シリカ、チタン、ジルコニア等の酸化物又はこれらの複合酸化物、活性アルミナ又は活性炭などを使用することができる。これらは単独で使用しても複数併用しても構わない。貴金属の担持量は、特に限定されないが、担体に対する割合として、通常0.1〜10重量%である。また、貴金属触媒は、水素化反応終了後、濾別したものをそのまま次の反応の水素化触媒として再使用することもできる。貴金属触媒を反応器に仕込む際、そのまま仕込むこともできるし、水のスラリーとして仕込むこともできる。   Although the noble metal catalyst can be used as it is, an oxide such as silica, titanium, zirconia or a composite oxide thereof, activated alumina or activated carbon can be used as a support. These may be used alone or in combination. The amount of the noble metal supported is not particularly limited, but is usually 0.1 to 10% by weight as a ratio to the carrier. In addition, the precious metal catalyst which has been separated by filtration after completion of the hydrogenation reaction can be reused as it is as a hydrogenation catalyst for the next reaction. When the precious metal catalyst is charged into the reactor, it can be charged as it is or as a slurry of water.

水素化反応に使用する水素としては、窒素、ヘリウム、アルゴン等との混合ガスを使用することもできるが、水素の分圧を上げるため、純粋な水素ガスを使用することが好ましい。   As hydrogen used in the hydrogenation reaction, a mixed gas with nitrogen, helium, argon, or the like can be used. However, in order to increase the partial pressure of hydrogen, it is preferable to use pure hydrogen gas.

水素化反応の圧力は、一般に常圧〜5MPaであるが、好ましくは0.3〜1.0MPaである。水素圧力が低すぎる場合は水素化反応に長時間を要し、一方、高すぎても著しい水素化反応時間の短縮とはならない。   The pressure of the hydrogenation reaction is generally normal pressure to 5 MPa, preferably 0.3 to 1.0 MPa. If the hydrogen pressure is too low, the hydrogenation reaction takes a long time. On the other hand, if the hydrogen pressure is too high, the hydrogenation reaction time is not significantly shortened.

本発明においては、加圧反応器に原料を逐次添加する前に、反応器内を水素ガスで置換しておくことが好ましい。また、濾液を再使用する場合は、当該濾液中に水素ガスを吹き込みながら反応器内を置換しておくことが好ましい。   In the present invention, it is preferable to replace the inside of the reactor with hydrogen gas before sequentially adding the raw materials to the pressurized reactor. When the filtrate is reused, it is preferable to replace the inside of the reactor while blowing hydrogen gas into the filtrate.

水素化反応に供する原料の形態は、固体の状態でも溶融状態でもよいが、流動性の観点から、溶融状態が好ましい。溶融温度は、通常60〜120℃、好ましくは80〜100℃である。溶融温度が低すぎる場合は反応器に添加した時に結晶が析出して反応時間が長くなり、一方、温度が高すぎる場合はリンゴ酸の副生量が増加する。   The form of the raw material used for the hydrogenation reaction may be in a solid state or a molten state, but a molten state is preferable from the viewpoint of fluidity. The melting temperature is usually 60 to 120 ° C, preferably 80 to 100 ° C. If the melting temperature is too low, crystals will precipitate when added to the reactor and the reaction time will be longer, while if the temperature is too high, the amount of by-product malic acid will increase.

水素化反応温度は原料の逐次添加に従って昇温していくことが好ましい。水素化反応の初期温度は、通常20〜60℃、好ましくは30〜50℃の範囲である。水素化反応の初期温度が低すぎる場合は無水マレイン酸の結晶が析出して反応時間が長くなる。一方、初期温度が高すぎる場合はリンゴ酸の副生量が増加する。原料を逐次添加して反応を進行させる際の反応温度は、通常90〜120℃、好ましくは100〜110℃の範囲である。反応温度が低すぎる場合は水素化反応に長時間を要し、一方、反応温度が高すぎる場合はリンゴ酸の副生量が増加する。なお、水素化反応の進行に伴って水素が消費されるため、例えば反応圧力の変化などで水素の消費量を監視することにより、反応の進捗状況を知ることが出来る。   The hydrogenation reaction temperature is preferably raised according to the sequential addition of raw materials. The initial temperature of the hydrogenation reaction is usually in the range of 20 to 60 ° C, preferably 30 to 50 ° C. When the initial temperature of the hydrogenation reaction is too low, maleic anhydride crystals are precipitated and the reaction time is prolonged. On the other hand, when the initial temperature is too high, the amount of by-product malic acid increases. The reaction temperature when the raw materials are sequentially added to advance the reaction is usually 90 to 120 ° C, preferably 100 to 110 ° C. If the reaction temperature is too low, the hydrogenation reaction takes a long time, while if the reaction temperature is too high, the amount of malic acid by-product increases. Since hydrogen is consumed as the hydrogenation reaction proceeds, the progress of the reaction can be known by monitoring the amount of hydrogen consumed by, for example, a change in the reaction pressure.

本発明の最大の特徴は、加圧反応器に添加する原料(無水マレイン酸またはマレイン酸の)の全量の10重量%以上を逐次添加方式によって行う点にある。ここで、逐次添加とは、一括添加せずに、連続的添加(一定時間かけて添加する態様)又は断続的添加(複数回に分けて分割添加する態様)を意味する。加圧反応器に添加する原料の全量は、加圧反応器の容量を勘案して適宜決定される。逐次添加する原料の割合が10重量%未満の場合、リンゴ酸の副生を抑制する効果が十分ではない。逐次添加方式によって添加する原料の割合は、生産性をも考慮し、好ましくは50〜70重量%である。   The greatest feature of the present invention is that 10% by weight or more of the total amount of raw materials (maleic anhydride or maleic acid) added to the pressure reactor is sequentially added. Here, the sequential addition means continuous addition (a mode of adding over a certain time) or intermittent addition (a mode of split addition divided into a plurality of times) without adding all at once. The total amount of raw material added to the pressure reactor is appropriately determined in consideration of the capacity of the pressure reactor. When the ratio of the raw material added sequentially is less than 10% by weight, the effect of suppressing by-product malic acid is not sufficient. The ratio of the raw material added by the sequential addition method is preferably 50 to 70% by weight in consideration of productivity.

連続的に逐次添加する場合の原料の添加時間は、反応温度、反応圧力などの条件により異なるが、通常1〜4時間、好ましくは2〜3時間である。つまり、これらの時間を掛けて一定速度で連続に添加する。添加時間が短すぎる場合は、リンゴ酸の副生を抑制する効果が十分ではない。また、水素化反応は発熱反応であるため、反応熱の除去が困難となり、反応温度が高くなりすぎてリンゴ酸が副生し易くなる。一方、添加時間が長すぎる場合は、水素化反応の時間が長くなり効率的ではない。   The addition time of the raw material in the case of continuously adding continuously varies depending on conditions such as reaction temperature and reaction pressure, but is usually 1 to 4 hours, preferably 2 to 3 hours. That is, it is continuously added at a constant rate over these times. When the addition time is too short, the effect of suppressing malic acid by-product is not sufficient. Further, since the hydrogenation reaction is an exothermic reaction, it is difficult to remove the heat of reaction, the reaction temperature becomes too high, and malic acid is easily produced as a by-product. On the other hand, when the addition time is too long, the time for the hydrogenation reaction becomes long and is not efficient.

断続的に逐次添加する場合の原料の分割回数は、反応温度、反応圧力などの条件の他、逐次添加に供する原料の割合によっても異なるが、通常3〜10回、好ましくは4〜7回であり、間隔(インターバル)は、水素化反応の終結を目安にすることも可能であるが、時間的に言えば、通常5〜60分、好ましくは10〜30分である。   The number of divisions of the raw material in the case of intermittent sequential addition is usually 3 to 10 times, preferably 4 to 7 times, although it depends on the conditions such as reaction temperature and reaction pressure as well as the ratio of the raw materials used for sequential addition. Yes, the interval may be based on the termination of the hydrogenation reaction, but in terms of time, it is usually 5 to 60 minutes, preferably 10 to 30 minutes.

原料の逐次添加が終了した後、水素化反応を完結するため、通常0.5〜2時間程度反応状態を継続することが好ましい。水素化反応に要する時間は、一概に決定することができないが、水素の消費が停止した時点で水素化反応は終了する。   In order to complete the hydrogenation reaction after the sequential addition of the raw materials is completed, it is usually preferable to continue the reaction state for about 0.5 to 2 hours. The time required for the hydrogenation reaction cannot be generally determined, but the hydrogenation reaction ends when the consumption of hydrogen stops.

水素化反応終了後は、濾過などの操作によりコハク酸含有反応液から水素化触媒を分離し、次いで、冷却などによりコハク酸を晶析させ、コハク酸の結晶を濾別する。濾過の際、コハク酸のケーキに濾液が残留している場合は、コハク酸の純度が低下するため、コハク酸のケーキの脱液を十分行うか、またはコハク酸のケーキを水で洗浄することが好ましい。   After completion of the hydrogenation reaction, the hydrogenation catalyst is separated from the succinic acid-containing reaction solution by an operation such as filtration, and then succinic acid is crystallized by cooling or the like, and the succinic acid crystals are separated by filtration. During filtration, if the filtrate remains in the succinic acid cake, the purity of the succinic acid will decrease. Is preferred.

本発明においては、コハク酸のケーキを濾別した後の濾液は次の反応に再使用することができる。その理由は、濾液中のコハク酸とリンゴ酸の濃度は、バッチを重ねるに従って略一定の濃度に収束するからである。また、濾液中のコハク酸とリンゴ酸の濃度は、水素化反応時のコハク酸およびリンゴ酸の転化率には影響せず、反応温度、反応圧力、水素化触媒の使用量などに依存するからである。   In the present invention, the filtrate after filtering off the succinic acid cake can be reused in the next reaction. The reason is that the concentration of succinic acid and malic acid in the filtrate converges to a substantially constant concentration as the batch is repeated. The concentration of succinic acid and malic acid in the filtrate does not affect the conversion rate of succinic acid and malic acid during the hydrogenation reaction, but depends on the reaction temperature, reaction pressure, amount of hydrogenation catalyst used, etc. It is.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by these Examples, unless the summary is exceeded.

<実施例1>
内容積1リットルのステンレス製オートクレーブに無水マレイン酸46gと水375gとを仕込む。これに水素化触媒として5重量%パラジウム担持した粉末状活性炭を1.4g(50重量%含水)添加した。オートクレーブの空隙部を窒素で置換し、タービン翼攪拌羽根を用いて300rpmで攪拌し、50℃まで昇温した。攪拌を止めてオートクレーブの空隙部を水素で置換し、オートクレーブの内圧を0.35MPa(ゲージ圧)となるよう調整した後、1200rpmで攪拌して反応を開始した。次に、無水マレイン酸131gを予め80℃に加熱して溶融状態にし、この溶融液の全量を3時間かけて一定速度で連続的に逐次添加した。この溶融液を添加するに従ってオートクレーブ内の温度は上昇し、100℃まで上昇したら、オートクレーブを冷却し、100℃になるように調整した。この溶融液の添加が終了した後、さらに0.5時間反応させ、水素化反応を完結させた。次いで、オートクレーブ内の水素ガスを放出して常圧に戻し、窒素ガスで空隙部を置換した。その後、水を560g加えて希釈し、反応液中の水素化触媒を濾過器を用いて分離し、清澄なコハク酸含有反応液を得た。このコハク酸含有反応液を高速液体クロマトグラフィにより成分を分析し、コハク酸とリンゴ酸の反応収率を算出した。この算出結果を逐次添加に供した無水マレイン酸の割合と共に表1に示した。
<Example 1>
A stainless steel autoclave having an internal volume of 1 liter is charged with 46 g of maleic anhydride and 375 g of water. To this was added 1.4 g (containing 50 wt% water) of powdered activated carbon carrying 5 wt% palladium as a hydrogenation catalyst. The air gap in the autoclave was replaced with nitrogen, stirred at 300 rpm using a turbine blade stirring blade, and heated to 50 ° C. Stirring was stopped, the void of the autoclave was replaced with hydrogen, and the internal pressure of the autoclave was adjusted to 0.35 MPa (gauge pressure), and then the reaction was started by stirring at 1200 rpm. Next, 131 g of maleic anhydride was previously heated to 80 ° C. to be in a molten state, and the entire amount of the melt was successively added continuously at a constant rate over 3 hours. As the melt was added, the temperature in the autoclave increased, and when it reached 100 ° C, the autoclave was cooled and adjusted to 100 ° C. After the addition of the melt was completed, the reaction was further continued for 0.5 hours to complete the hydrogenation reaction. Next, the hydrogen gas in the autoclave was released to return to normal pressure, and the voids were replaced with nitrogen gas. Thereafter, 560 g of water was added for dilution, and the hydrogenation catalyst in the reaction solution was separated using a filter to obtain a clear succinic acid-containing reaction solution. The components of this succinic acid-containing reaction solution were analyzed by high performance liquid chromatography, and the reaction yield of succinic acid and malic acid was calculated. The calculation results are shown in Table 1 together with the ratio of maleic anhydride subjected to sequential addition.

<実施例2>
内容積1リットルのステンレス製オートクレーブに無水マレイン酸75gと水375gとを仕込む。これに水素化触媒として5重量%パラジウム担持した粉末状活性炭を1.4g(50重量%含水)添加した。オートクレーブの空隙部を窒素で置換し、タービン翼攪拌羽根を用いて300rpmで攪拌し、50℃まで昇温した。攪拌を止めてオートクレーブの空隙部を水素で置換し、オートクレーブの内圧を0.35MPa(ゲージ圧)となるよう調整した後、1200rpmで攪拌して反応を開始した。攪拌開始から1時間後、無水マレイン酸106gを予め80℃に加熱して溶融状態にし、この溶融液の全量を2時間かけて一定速度で連続的な逐次添加した。この溶融液を添加するに従ってオートクレーブ内の温度は上昇し、100℃まで上昇したら、オートクレーブを冷却し、100℃になるように調整した。この溶融液の添加が終了した後、さらに0.5時間反応させ、水素化反応を完結させた。次いで、オートクレーブ内の水素ガスを放出して常圧に戻し、窒素ガスで空隙部を置換した。その後、水を560g加えて希釈し、反応液中の水素化触媒を濾過器を用いて分離し、清澄なコハク酸含有反応液を得た。このコハク酸含有反応液を高速液体クロマトグラフィにより成分を分析し、コハク酸とリンゴ酸の反応収率を算出した。この算出結果を逐次添加に供した無水マレイン酸の割合と共に表1に示した。
<Example 2>
A stainless steel autoclave having an internal volume of 1 liter is charged with 75 g of maleic anhydride and 375 g of water. To this was added 1.4 g (containing 50 wt% water) of powdered activated carbon carrying 5 wt% palladium as a hydrogenation catalyst. The air gap in the autoclave was replaced with nitrogen, stirred at 300 rpm using a turbine blade stirring blade, and heated to 50 ° C. Stirring was stopped, the void of the autoclave was replaced with hydrogen, and the internal pressure of the autoclave was adjusted to 0.35 MPa (gauge pressure), and then the reaction was started by stirring at 1200 rpm. One hour after the start of stirring, 106 g of maleic anhydride was heated in advance to 80 ° C. to be in a molten state, and the entire amount of the melt was continuously added continuously at a constant rate over 2 hours. As the melt was added, the temperature in the autoclave increased, and when it reached 100 ° C, the autoclave was cooled and adjusted to 100 ° C. After the addition of the melt was completed, the reaction was further continued for 0.5 hours to complete the hydrogenation reaction. Next, the hydrogen gas in the autoclave was released to return to normal pressure, and the voids were replaced with nitrogen gas. Thereafter, 560 g of water was added for dilution, and the hydrogenation catalyst in the reaction solution was separated using a filter to obtain a clear succinic acid-containing reaction solution. The components of this succinic acid-containing reaction solution were analyzed by high performance liquid chromatography, and the reaction yield of succinic acid and malic acid was calculated. The calculation results are shown in Table 1 together with the ratio of maleic anhydride subjected to sequential addition.

<実施例3>
オートクレーブ内に仕込む無水マレイン酸を0g、反応中に添加する無水マレイン酸の溶融液を173gとした以外は、実施例1と同様の方法で反応を行った。得られたコハク酸含有反応液を高速液体クロマトグラフィにより成分を分析し、コハク酸とリンゴ酸の反応収率を算出した。この算出結果を逐次添加に供した無水マレイン酸の割合と共に表1に示した。
<Example 3>
The reaction was carried out in the same manner as in Example 1 except that 0 g of maleic anhydride charged in the autoclave was changed to 173 g of a molten solution of maleic anhydride added during the reaction. Components of the obtained succinic acid-containing reaction solution were analyzed by high performance liquid chromatography, and the reaction yield of succinic acid and malic acid was calculated. The calculation results are shown in Table 1 together with the ratio of maleic anhydride subjected to sequential addition.

<実施例4>
オートクレーブ内に仕込む無水マレイン酸を100g、反応中に添加する無水マレイン酸の溶融液を75gとした以外は、実施例2と同様の方法で反応を行った。得られたコハク酸含有反応液を高速液体クロマトグラフィにより成分を分析し、コハク酸とリンゴ酸の反応収率を算出した。この算出結果を逐次添加に供した無水マレイン酸の割合と共に表1に示した。
<Example 4>
The reaction was carried out in the same manner as in Example 2, except that 100 g of maleic anhydride charged in the autoclave was changed to 75 g of the molten maleic anhydride solution added during the reaction. Components of the obtained succinic acid-containing reaction solution were analyzed by high performance liquid chromatography, and the reaction yield of succinic acid and malic acid was calculated. The calculation results are shown in Table 1 together with the ratio of maleic anhydride subjected to sequential addition.

<比較例1>
内容積1リットルのステンレス製オートクレーブに無水マレイン酸176gと水375gとを仕込む。これに水素化触媒として5重量%パラジウム担持した粉末状活性炭を1.4g(50重量%含水)添加した。オートクレーブの空隙部を窒素で置換し、タービン翼攪拌羽根を用いて300rpmで攪拌し、50℃まで昇温した。攪拌を止めてオートクレーブの空隙部を水素で置換し、オートクレーブの内圧を0.31MPa(ゲージ圧)となるよう調整した後、1200rpmで攪拌して反応を開始してから3.5時間で水素化反応を完結させた。オートクレーブ内の温度が100℃まで上昇したら、オートクレーブを冷却し、100℃になるように調整した。反応圧力は、この溶融液の添加が終了した後、さらに0.5時間反応させ、水素化反応を完結させた。次いで、オートクレーブ内の水素ガスを放出して常圧に戻し、窒素ガスで空隙部を置換した。その後、水を560g加えて希釈し、反応液中の水素化触媒を濾過器を用いて分離し、清澄なコハク酸含有反応液を得た。このコハク酸含有反応液を高速液体クロマトグラフィにより成分を分析し、コハク酸とリンゴ酸の反応収率を算出した。この算出結果を逐次添加に供した無水マレイン酸の割合と共に表1に示した。
<Comparative Example 1>
A stainless steel autoclave having an internal volume of 1 liter is charged with 176 g of maleic anhydride and 375 g of water. To this was added 1.4 g (containing 50 wt% water) of powdered activated carbon carrying 5 wt% palladium as a hydrogenation catalyst. The air gap in the autoclave was replaced with nitrogen, stirred at 300 rpm using a turbine blade stirring blade, and heated to 50 ° C. Stirring was stopped, the void of the autoclave was replaced with hydrogen, and the internal pressure of the autoclave was adjusted to 0.31 MPa (gauge pressure). The reaction was completed. When the temperature in the autoclave rose to 100 ° C, the autoclave was cooled and adjusted to 100 ° C. The reaction pressure was further reacted for 0.5 hour after the addition of the melt was completed to complete the hydrogenation reaction. Next, the hydrogen gas in the autoclave was released to return to normal pressure, and the voids were replaced with nitrogen gas. Thereafter, 560 g of water was added for dilution, and the hydrogenation catalyst in the reaction solution was separated using a filter to obtain a clear succinic acid-containing reaction solution. The components of this succinic acid-containing reaction solution were analyzed by high performance liquid chromatography, and the reaction yield of succinic acid and malic acid was calculated. The calculation results are shown in Table 1 together with the ratio of maleic anhydride subjected to sequential addition.

Figure 2013023464
Figure 2013023464

Claims (4)

加圧反応器に水性溶媒と貴金属触媒を仕込んだ後に水素ガスを加圧状態となるまで供給し、次いで、原料の無水マレイン酸またはマレイン酸を反応器に添加して水素化反応を行わせるコハク酸の製造方法において、加圧反応器に添加する無水マレイン酸またはマレイン酸の全量の10重量%以上を逐次添加方式によって添加することを特徴とするコハク酸の製造方法。   After supplying an aqueous solvent and a noble metal catalyst to the pressurized reactor, hydrogen gas is supplied until the pressurized state is reached, and then the raw maleic anhydride or maleic acid is added to the reactor to perform the hydrogenation reaction. In the method for producing acid, a method for producing succinic acid, comprising adding 10% by weight or more of maleic anhydride or the total amount of maleic acid added to the pressure reactor by a sequential addition method. 原料が無水マレイン酸である請求項1に記載のコハク酸の製造方法。   The method for producing succinic acid according to claim 1, wherein the raw material is maleic anhydride. 水素化反応温度が70〜120℃の範囲である請求項1又は2に記載のコハク酸の製造方法。   The method for producing succinic acid according to claim 1 or 2, wherein the hydrogenation reaction temperature is in the range of 70 to 120 ° C. 貴金属触媒がパラジウム触媒又はルテニウム触媒である請求項1〜3の何れかに記載のコハク酸の製造方法。   The method for producing succinic acid according to any one of claims 1 to 3, wherein the noble metal catalyst is a palladium catalyst or a ruthenium catalyst.
JP2011158811A 2011-07-20 2011-07-20 Method for producing succinic acid Withdrawn JP2013023464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158811A JP2013023464A (en) 2011-07-20 2011-07-20 Method for producing succinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158811A JP2013023464A (en) 2011-07-20 2011-07-20 Method for producing succinic acid

Publications (1)

Publication Number Publication Date
JP2013023464A true JP2013023464A (en) 2013-02-04

Family

ID=47782197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158811A Withdrawn JP2013023464A (en) 2011-07-20 2011-07-20 Method for producing succinic acid

Country Status (1)

Country Link
JP (1) JP2013023464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926643A (en) * 2014-03-21 2015-09-23 湖南长岭石化科技开发有限公司 Succinic acid production method
CN104926643B (en) * 2014-03-21 2016-11-30 湖南长岭石化科技开发有限公司 A kind of method producing succinic acid
CN111689846A (en) * 2020-03-18 2020-09-22 中国科学院山西煤炭化学研究所 Process for producing succinic acid by aqueous phase hydrogenation
CN111689845A (en) * 2020-03-18 2020-09-22 中国科学院山西煤炭化学研究所 Process for producing succinic acid by maleic anhydride aqueous phase hydrogenation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926643A (en) * 2014-03-21 2015-09-23 湖南长岭石化科技开发有限公司 Succinic acid production method
CN104926643B (en) * 2014-03-21 2016-11-30 湖南长岭石化科技开发有限公司 A kind of method producing succinic acid
CN111689846A (en) * 2020-03-18 2020-09-22 中国科学院山西煤炭化学研究所 Process for producing succinic acid by aqueous phase hydrogenation
CN111689845A (en) * 2020-03-18 2020-09-22 中国科学院山西煤炭化学研究所 Process for producing succinic acid by maleic anhydride aqueous phase hydrogenation
CN111689845B (en) * 2020-03-18 2021-07-30 中国科学院山西煤炭化学研究所 Process for producing succinic acid by maleic anhydride aqueous phase hydrogenation

Similar Documents

Publication Publication Date Title
JP6664388B2 (en) Process for producing glyceric carbonate
CN107778138B (en) Method for preparing 1, 4-butanediol by two-stage hydrogenation of 1, 4-butynediol
TWI465428B (en) Process for the preparation of trans 4-amino-cyclohexyl acetic acid ethyl ester hc1
EP2300431B1 (en) Process for the manufacture of an intermediate in the synthesis of dabigatran
JP2000513726A (en) The manufacturing method of phthalide
JP2007070358A (en) Hydrogenation of acetone
WO2012046782A1 (en) Method for producing trans-1,4-bis(aminomethyl)cyclohexane
KR100784741B1 (en) Continuous hydrogenation of aromatic nitrated compounds using a catalyst having a low aluminium content
WO2012046781A1 (en) Method for producing bis(aminomethyl)cyclohexanes
JP5210161B2 (en) Method for separating polymer by-products from 1,4-butynediol
JP2013023464A (en) Method for producing succinic acid
JP2017025012A (en) Manufacturing method of aromatic compound and furan derivative having methylamino group
JP2011507830A (en) Method for producing N-methylpyrrolidone
KR20150063058A (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
JP5790103B2 (en) Method for producing cyclopentanone
Matshwele et al. A single step low cost production of cyclohexanone from phenol hydrogenation
JP5233299B2 (en) Method for purifying optically active 1- (2-trifluoromethylphenyl) ethanol
JP5029162B2 (en) Method for producing cyclohexanone
JP2013082637A (en) Selective debenzylation method and selective hydrogenation catalyst used therein
JP2016501902A (en) Method for preparing adipic acid
JPH10316639A (en) Production of 5-amino-2,4,6-triidoisophthalic acid
JP7140347B2 (en) Method for producing 4-(piperidin-4-yl)morpholine
JP6140826B2 (en) Continuous process for the production of primary aliphatic amines from aldehydes
KR20220116501A (en) Process for the preparation of cyclohexanol and cyclohexanone
WO2004060847A1 (en) Process for producing high-purity terephthalic acid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007