JP2013023408A - Diamond substrate - Google Patents
Diamond substrate Download PDFInfo
- Publication number
- JP2013023408A JP2013023408A JP2011159584A JP2011159584A JP2013023408A JP 2013023408 A JP2013023408 A JP 2013023408A JP 2011159584 A JP2011159584 A JP 2011159584A JP 2011159584 A JP2011159584 A JP 2011159584A JP 2013023408 A JP2013023408 A JP 2013023408A
- Authority
- JP
- Japan
- Prior art keywords
- diamond substrate
- angle
- growth
- diamond
- cvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 50
- 239000010432 diamond Substances 0.000 title claims abstract description 50
- 239000000758 substrate Substances 0.000 title claims abstract description 47
- 239000013078 crystal Substances 0.000 claims abstract description 23
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000000089 atomic force micrograph Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明はダイヤモンド基板の上にラテラル成長型のエピタキシャル成長により得るダイヤモンド基板に関する。 The present invention relates to a diamond substrate obtained by lateral growth type epitaxial growth on a diamond substrate.
単結晶のダイヤモンド膜のエピタキシャル成長において、{100}結晶構造と{111}結晶構造を比較すると{100}結晶構造はモザイクやヘテロエピタキシャル成長方法とプラズマCVDの採用により大面積化、低コスト化の可能性が期待されているが、ドーピングによりP型半導体を得ることができてもN型を得るのが困難である。
一方、{111}結晶構造はP型とN型の両方が可能であるが、これまでにダイヤモンドの種結晶を用いた高温高圧合成法しかなく、装置に制限があり、大きなサイズの基板を得ることは難しい問題がある。
In epitaxial growth of a single crystal diamond film, comparing the {100} crystal structure with the {111} crystal structure, the {100} crystal structure can be increased in area and cost by employing a mosaic or heteroepitaxial growth method and plasma CVD. However, even if a P-type semiconductor can be obtained by doping, it is difficult to obtain an N-type.
On the other hand, the {111} crystal structure can be both P-type and N-type, but so far there is only a high-temperature and high-pressure synthesis method using a diamond seed crystal, and there are limitations on the apparatus, and a large-sized substrate is obtained. There is a difficult problem.
{111}結晶構造は、非特許文献に記載されているとおり、エピタキシャル成長に伴いクラックが発生し、厚膜化できなかった。
また、デバイス特性において重要な膜表面の平坦性を確保することができなかった。
As described in the non-patent literature, the {111} crystal structure was cracked due to epitaxial growth and could not be thickened.
Further, the flatness of the film surface, which is important in device characteristics, cannot be ensured.
本発明はクラック等の欠陥がなく表面の平坦性に優れ、成長速度が速く低コスト化が可能な単結晶ダイヤモンド基板の製造方法及びそれにより得られる厚膜ダイヤモンド基板の提供を目的とする。 An object of the present invention is to provide a method for producing a single crystal diamond substrate which is free from defects such as cracks, has excellent surface flatness, has a high growth rate and can be produced at low cost, and a thick film diamond substrate obtained thereby.
本発明に係るダイヤモンド基板の製造方法は、2°以上のオフ角を有する結晶構造{111}の母ダイヤモンド基板の上に化学気相成長法(CVD)を用いてラテラル成長が発現する条件下でダイヤモンドを成長させて得ることを特徴とする。 The method for manufacturing a diamond substrate according to the present invention is performed under conditions where lateral growth is manifested on a mother diamond substrate having a crystal structure {111} having an off angle of 2 ° or more using chemical vapor deposition (CVD). It is obtained by growing diamond.
本発明は合成ダイヤモンド等の結晶構造{111}母基板の表面に2°以上のオフ角(傾斜面)を形成することで化学気相成長法(CVD:Chemical Vapor Deposition)においてラテラル成長を発現させたものである。
詳細は後述するが非特許文献1に示すように母ダイヤモンド基板にオフ角を有しないと、ゆっくりとした条件でしかも10〜20μm程度の薄膜でないと表面にクラックが発生してしまうのに対して本発明は2°以上の高オフ角の結晶構造{111}母ダイヤモンド基板を用いたのでエピタキシャル成長においてクラックの発生を抑えるとともに表面の平坦化を可能にした。
本発明においてオフ角は2〜10°の範囲が好ましい。
In the present invention, lateral growth is expressed in chemical vapor deposition (CVD) by forming an off angle (inclined surface) of 2 ° or more on the surface of a crystal structure {111} mother substrate such as synthetic diamond. It is a thing.
Although details will be described later, as shown in Non-Patent Document 1, if the mother diamond substrate does not have an off-angle, cracks will occur on the surface under slow conditions and if it is not a thin film of about 10 to 20 μm. In the present invention, a crystal structure {111} base diamond substrate having a high off-angle of 2 ° or more is used, so that the generation of cracks during epitaxial growth is suppressed and the surface can be flattened.
In the present invention, the off angle is preferably in the range of 2 to 10 °.
本発明にてCVDにおける炭素源ガスの供給濃度は0.001〜10%の範囲が好ましく、特に0.05%以上の比較的高濃度でもよく、さらに0.2〜10%あるいは1.0〜10%のような高濃度の条件でラテラル成長が可能であり、高速にて厚膜が得られる。
また、本発明にてCVDはマイクロ波を用いたプラズマCVDを採用することができる。
In the present invention, the supply concentration of the carbon source gas in the CVD is preferably in the range of 0.001 to 10%, particularly a relatively high concentration of 0.05% or more, and further 0.2 to 10% or 1.0 to Lateral growth is possible under conditions of a high concentration such as 10%, and a thick film can be obtained at high speed.
In the present invention, plasma CVD using microwaves can be employed as the CVD.
本発明は2°以上の高オフ角の結晶構造{111}の母ダイヤモンド基板の上にCVDによりラテラル成長させたので厚さ50μm以上の厚膜成長を可能にしたので形成された厚膜をレーザー等にて母基板より分離させることで自立型の単結晶{111}成長ダイヤモンド基板を得ることができる。
また、CVDによる成膜をデバイス等に利用する場合に2°以上のオフ角を有する結晶構造{111}のダイヤモンド基板上にCVDを用いて膜厚20μm以上の厚膜を形成することもできる。
特に表面の平坦性が優れ、欠陥の少ない厚み50μm以上の厚膜を形成することもできる。
In the present invention, since the lateral growth is performed by CVD on a mother diamond substrate having a crystal structure {111} having a high off angle of 2 ° or more, a thick film having a thickness of 50 μm or more can be grown. A free-standing single crystal {111} -grown diamond substrate can be obtained by separating the substrate from the mother substrate.
Further, when CVD film formation is used for a device or the like, a thick film having a film thickness of 20 μm or more can be formed on a diamond substrate having a crystal structure {111} having an off angle of 2 ° or more by using CVD.
In particular, it is possible to form a thick film having a thickness of 50 μm or more with excellent surface flatness and few defects.
本発明はエピタキシャル成長させるための{111}母ダイヤモンド基板に2°以上のオフ角を形成したので、表面にクラックを発生させることなく平坦性に優れた厚膜の高速なラテラル成長を実現でき、母ダイヤモンド基板から成長厚膜を切り離すことで自立型の単結晶ダイヤモンド基板を得ることができるとともに、母ダイヤモンド基板を繰り返し使用でき、また自立ダイヤモンド基板を母ダイヤモンド基板として使用できるので低コストである。 Since the present invention forms an off angle of 2 ° or more on the {111} mother diamond substrate for epitaxial growth, high-speed lateral growth of a thick film excellent in flatness can be realized without generating cracks on the surface. By separating the grown thick film from the diamond substrate, a free-standing single crystal diamond substrate can be obtained, the mother diamond substrate can be used repeatedly, and the free-standing diamond substrate can be used as the mother diamond substrate, so that the cost is low.
本発明に係る{111}単結晶母ダイヤモンド基板を用いたエピタキシャル成長にはCVD(化学気相成長法)を用いることができ、特にマイクロ波を用いたプラズマCVDを用いるのが好ましい。
ラテラル成長条件としては圧力:10〜200Torr,基板温度:600〜1200℃,マイクロ波の出力100〜5,000Wの範囲が好ましい。
また、炭素源ガスとして水素で希釈したメタンガス、エタンガス、あるいはこれらと一酸化炭素、二酸化炭素、酸素、アルゴン、窒素の混合ガスを用いることができる。
例えば水素ガス中のメタンガスの濃度を0.001〜10%の範囲に設定することができ、好ましくは0.05〜10%、特に0.2〜10%の相対的に高濃度の条件にすると高速な膜成長になる。
本発明に係る{111}単結晶のダイヤモンド膜(成長ダイヤモンド基板)はドーピングによりp型あるいはn型の両方の半導体膜を得ることができる。
ドーピング原子としては、ホウ素、リンが代表例である。
For epitaxial growth using the {111} single crystal mother diamond substrate according to the present invention, CVD (chemical vapor deposition) can be used, and it is particularly preferable to use plasma CVD using microwaves.
The lateral growth conditions are preferably a pressure of 10 to 200 Torr, a substrate temperature of 600 to 1200 ° C., and a microwave output of 100 to 5,000 W.
Further, methane gas diluted with hydrogen, ethane gas, or a mixed gas of these with carbon monoxide, carbon dioxide, oxygen, argon, and nitrogen can be used as the carbon source gas.
For example, the concentration of methane gas in hydrogen gas can be set in the range of 0.001 to 10%, preferably 0.05 to 10%, particularly 0.2 to 10% Fast film growth.
The {111} single crystal diamond film (growth diamond substrate) according to the present invention can obtain both p-type and n-type semiconductor films by doping.
Boron and phosphorus are typical examples of doping atoms.
次に{111}母ダイヤモンド基板のオフ角を変化させてエピタキシャル成長による膜形成を比較調査した。
水素ガス流量200sccm,メタンガス流量0.5sccm,7kPa,150W,1020℃、20hの条件にてエピタキシャル成長させた膜の結果を図1〜3に示す。
図3(a)は母ダイヤモンド基板のオフ角が9°で図3(b)は従来のオフ角0°の場合の表面光学顕微鏡像を示す。
オフ角0°の従来の方法では、表面に多数のクラックが発生していたのに対して本発明に係るオフ角9°のものはクラックの発生がなく正常であった。
図1にオフ角の変化による表面の光学顕微鏡像を示し、オフ角1°,0.5°のものは表面に段差状のスパイラル成長が認められるのに対して、オフ角2°,4°のものはスパイラル成長が認められずに平坦であった。
図2にAFM像を示すように(a)のオフ角2°のものはRMS=0.06nmであったのに対して(b)のオフ角0.5°のものはRMS=3.38nmであった。
ここでRMSとは、表面荒れの大きさを示す値で計算式は特開2010−251599号に開示する式を用いることができる。
Next, film formation by epitaxial growth was comparatively investigated by changing the off-angle of the {111} mother diamond substrate.
FIGS. 1 to 3 show the results of films epitaxially grown under the conditions of hydrogen gas flow rate 200 sccm, methane gas flow rate 0.5 sccm, 7 kPa, 150 W, 1020 ° C., 20 h.
FIG. 3 (a) shows a surface optical microscope image when the off-angle of the mother diamond substrate is 9 ° and FIG. 3 (b) is a conventional off-angle of 0 °.
In the conventional method with an off angle of 0 °, many cracks were generated on the surface, whereas those with an off angle of 9 ° according to the present invention were normal with no cracks.
FIG. 1 shows an optical microscope image of the surface by changing the off-angle. Step-like spiral growth is observed on the surface when the off-angle is 1 ° and 0.5 °, whereas the off-angle is 2 ° and 4 °. The one was flat without spiral growth.
As shown in FIG. 2, when the off angle of 2 ° in (a) is RMS = 0.06 nm, the off angle of 0.5 ° in (b) is RMS = 3.38 nm. Met.
Here, RMS is a value indicating the magnitude of surface roughness, and a formula disclosed in Japanese Patent Application Laid-Open No. 2010-251599 can be used.
次に、2.45GHzのマイクロ波プラズマCVD装置を用いてオフ角9°の{111}母ダイヤモンド基板,水素ガス399sccm,メタンガス1sccm,酸素ガス0.25sccm,1200W,基板温度900℃,成長時間100時間の成長を実施した。
その結果、厚さ約0.1mmの成長膜を得ることができ、レーザーカットにより自立型の{111}単結晶成長ダイヤモンド基板を得ることができた。
Next, using a 2.45 GHz microwave plasma CVD apparatus, a {111} mother diamond substrate with an off angle of 9 °, hydrogen gas 399 sccm, methane gas 1 sccm, oxygen gas 0.25 sccm, 1200 W, substrate temperature 900 ° C., growth time 100 Implemented time growth.
As a result, a growth film having a thickness of about 0.1 mm could be obtained, and a self-supporting {111} single crystal growth diamond substrate could be obtained by laser cutting.
次に、母ダイヤモンド基板のオフ角を2°以上に設定した理由を説明する。
{111}母ダイヤモンド基板にエッチング方法でメサ構造を形成し、螺旋転位を起点とした略三角形のスパイラル成長をさせたステップ成長の成長丘の写真を図4に示す。
ステップ−ステップ間隔Ws−sは(a)の1重螺旋転位で最小Ws−s≒9nm,(b)の2重螺旋転位で最小Ws−s≒6nmであった。
図5に模式図を示す。
ラテラル成長になるようにオフ角を制限するにはWt<Ws−s,Wt=0.206[nm]/tanθ の条件からWt<6nm,θ>1.97°となり、オフ角θが約2°以上であればラテラル成長に抑制することができる。
Next, the reason why the off angle of the mother diamond substrate is set to 2 ° or more will be described.
FIG. 4 shows a photograph of a growth hill of step growth in which a mesa structure is formed on a {111} mother diamond substrate by an etching method and spiral growth of a substantially triangular shape starting from a screw dislocation is performed.
The step-step interval Ws-s was the minimum Ws-s≈9 nm for the single screw dislocation (a) and the minimum Ws−s≈6 nm for the double screw dislocation (b).
FIG. 5 shows a schematic diagram.
In order to limit the off angle so as to achieve lateral growth, Wt <6 nm, θ> 1.97 ° from the condition of Wt <Ws−s, Wt = 0.206 [nm] / tan θ, and the off angle θ is about 2 If it is more than °, lateral growth can be suppressed.
ダイヤモンド基板は、Si,GaAs,SiC,GaN等に比較して半導体特性に優れ、本発明に係る成長ダイヤモンド基板は高速で成長が可能で、クラックの発生もなく表面が平坦であるので、電子デバイス,光デバイス,ホワイトデバイス等広くの分野への展開が期待される。 The diamond substrate is excellent in semiconductor characteristics as compared with Si, GaAs, SiC, GaN, etc., and the growth diamond substrate according to the present invention can be grown at a high speed and has a flat surface without generation of cracks. , Optical devices, white devices, etc. are expected to expand into a wide range of fields.
Claims (5)
炭素源ガスの供給量は0.001〜10%であることを特徴とする請求項1記載のダイヤモンド基板の製造方法。 In the condition where the lateral growth is expressed,
The method for producing a diamond substrate according to claim 1, wherein the supply amount of the carbon source gas is 0.001 to 10%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011159584A JP5887742B2 (en) | 2011-07-21 | 2011-07-21 | Diamond substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011159584A JP5887742B2 (en) | 2011-07-21 | 2011-07-21 | Diamond substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013023408A true JP2013023408A (en) | 2013-02-04 |
JP5887742B2 JP5887742B2 (en) | 2016-03-16 |
Family
ID=47782154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011159584A Active JP5887742B2 (en) | 2011-07-21 | 2011-07-21 | Diamond substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5887742B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018006572A (en) * | 2016-07-01 | 2018-01-11 | 国立研究開発法人産業技術総合研究所 | Diamond semiconductor device and manufacturing method thereof |
WO2021131097A1 (en) * | 2019-12-25 | 2021-07-01 | 三菱電機株式会社 | Microwave plasma treatment device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013108A1 (en) * | 2006-07-27 | 2008-01-31 | National Institute Of Advanced Industrial Science And Technology | Process for producing single-crystal substrate with off angle |
JP2010251599A (en) * | 2009-04-17 | 2010-11-04 | National Institute Of Advanced Industrial Science & Technology | Single crystal diamond substrate |
-
2011
- 2011-07-21 JP JP2011159584A patent/JP5887742B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013108A1 (en) * | 2006-07-27 | 2008-01-31 | National Institute Of Advanced Industrial Science And Technology | Process for producing single-crystal substrate with off angle |
JP2010251599A (en) * | 2009-04-17 | 2010-11-04 | National Institute Of Advanced Industrial Science & Technology | Single crystal diamond substrate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018006572A (en) * | 2016-07-01 | 2018-01-11 | 国立研究開発法人産業技術総合研究所 | Diamond semiconductor device and manufacturing method thereof |
WO2021131097A1 (en) * | 2019-12-25 | 2021-07-01 | 三菱電機株式会社 | Microwave plasma treatment device |
JPWO2021131097A1 (en) * | 2019-12-25 | 2021-12-23 | 三菱電機株式会社 | Microwave plasma processing equipment |
JP7032554B2 (en) | 2019-12-25 | 2022-03-08 | 三菱電機株式会社 | Microwave plasma processing equipment |
Also Published As
Publication number | Publication date |
---|---|
JP5887742B2 (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005324994A (en) | METHOD FOR GROWING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL GROWN BY THE SAME | |
KR20080075914A (en) | Process for growth of low dislocation density gan | |
JP2006028016A (en) | Homoepitaxial growth of sic on low off-axis sic wafer | |
RU2008145801A (en) | METHOD FOR GROWING NITRIDE III SEMICONDUCTOR CRYSTAL OF GROUP III, METHOD FOR PRODUCING NITRIDE III SEMICONDUCTOR CRYSTAL FROM NITRIDE III GROUP AND NITRIDE III SEMICONDUCTOR CRYSTAL SUBSTRATE | |
JP5282978B2 (en) | Group III nitride semiconductor substrate | |
Schwaiger et al. | Planar semipolar (101¯ 1) GaN on (112¯ 3) sapphire | |
Wang et al. | Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates | |
JP2012066983A (en) | METHOD FOR GROWING GaN CRYSTAL AND GaN CRYSTAL SUBSTRATE | |
US20180053649A1 (en) | Method to grow a semi-conducting sic layer | |
US20200056302A1 (en) | Elimination of Basal Plane Dislocation and Pinning the Conversion Point Below the Epilayer Interface for SiC Power Device Applications | |
JP2014520748A (en) | Semiconductor substrate and manufacturing method | |
JP5454867B2 (en) | Single crystal diamond substrate | |
US9758902B2 (en) | Method for producing 3C-SiC epitaxial layer, 3C-SiC epitaxial substrate, and semiconductor device | |
JP2009543946A (en) | Wide band gap semiconductor materials | |
US20160168752A1 (en) | Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate | |
Krylyuk et al. | Large-area GaN n-core/p-shell arrays fabricated using top-down etching and selective epitaxial overgrowth | |
Oh et al. | Defect structure originating from threading dislocations within the GaN film grown on a convex patterned sapphire substrate | |
JP4690906B2 (en) | Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal | |
JP2014533651A (en) | Semiconductor substrate and formation method | |
Lai et al. | Free-standing carbon-doped semi-insulating GaN wafer grown by HVPE | |
JP4408247B2 (en) | Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
JP5887742B2 (en) | Diamond substrate | |
JP5733258B2 (en) | Manufacturing method of nitride semiconductor epitaxial wafer | |
JP2012156429A (en) | Aluminum carbide thin film, semiconductor substrate with aluminum carbide thin film formed thereon, and method for manufacturing aluminum carbide thin film and semiconductor substrate | |
Dinh et al. | Comparative study of polar and semipolar (112¯ 2) InGaN layers grown by metalorganic vapour phase epitaxy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150828 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5887742 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |