JP2013022564A - Gas cleaning device - Google Patents

Gas cleaning device Download PDF

Info

Publication number
JP2013022564A
JP2013022564A JP2011162327A JP2011162327A JP2013022564A JP 2013022564 A JP2013022564 A JP 2013022564A JP 2011162327 A JP2011162327 A JP 2011162327A JP 2011162327 A JP2011162327 A JP 2011162327A JP 2013022564 A JP2013022564 A JP 2013022564A
Authority
JP
Japan
Prior art keywords
gas
purification
processed
catalyst body
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011162327A
Other languages
Japanese (ja)
Inventor
Hitoshi Mizuguchi
仁 水口
Hiroo Takahashi
宏雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2011162327A priority Critical patent/JP2013022564A/en
Priority to PCT/JP2012/068065 priority patent/WO2013015149A1/en
Publication of JP2013022564A publication Critical patent/JP2013022564A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20784Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air

Abstract

PROBLEM TO BE SOLVED: To provide a gas cleaning device effectively decomposing and removing harmful substances such as VOC (Volatile Organic Compound) by utilizing effective catalysis using an oxide semiconductor.SOLUTION: The gas cleaning device includes: a cleaning treatment part 20 for decomposing and treating a gas to be treated; and a heat exchanger 10 of the cleaned gas discharged from the cleaning treatment part 20 and the gas to be treated, which is sent into the cleaning treatment part 20. The cleaning treatment part 20 includes a catalyzer 31 in which the oxide semiconductor is carried on a base material comprising a porous body and heating parts 32 and 24 inside a treatment container 22 constituting a treatment space of the gas to be treated. An end part of the catalyzer 31 is fixed to a support 34 provided on a wall of the treatment container 22, and at the contact part of the support 34 and the catalyzer 31, the gas to be treated cannot pass through/leak.

Description

本発明は、揮発性有機化合物(VOC:Volatile Organic Compound)、排気ガス等の有害物を含む気体の浄化に用いる浄化装置に関する。   The present invention relates to a purification device used for purification of gas containing harmful substances such as volatile organic compounds (VOC) and exhaust gas.

本発明者は、プラスチックやVOC等の気体を分解して浄化する方法として、加熱した酸化物半導体の触媒活性作用を利用する方法を提案した(特許文献1)。酸化クロム、酸化チタン等の酸化物半導体を350〜500℃程度に加熱すると、正孔が大量に生成され、この正孔の強い酸化力により、被分解対象物は小分子に裁断化され、最終的にはこれらの小分子が空気中の酸素と反応して、水と二酸化炭素に完全分解される。   The present inventor has proposed a method utilizing the catalytic activity of a heated oxide semiconductor as a method for decomposing and purifying gases such as plastic and VOC (Patent Document 1). When an oxide semiconductor such as chromium oxide or titanium oxide is heated to about 350 to 500 ° C., a large amount of holes are generated, and the object to be decomposed is cut into small molecules by the strong oxidizing power of the holes. Specifically, these small molecules react with oxygen in the air and are completely decomposed into water and carbon dioxide.

また、本発明者は、酸化物半導体を利用する浄化装置として、ハニカムあるいは網目状の多孔体からなる通気性を有する基材に酸化物半導体を担持して形成した触媒部と、この触媒部を加熱するヒータとを備える装置を提案した(特許文献2)。この浄化装置は、ステンレス等からなる矩形の枠体内に、通気性のあるブロック状に形成した基材に酸化物半導体を担持して形成した触媒体とヒータを対とした触媒ユニット、ならびに加熱用のヒータのみのユニット、さらに触媒体のみのユニットを用いて構成することができる。   Further, the present inventor, as a purification device using an oxide semiconductor, a catalyst part formed by supporting an oxide semiconductor on a base material having air permeability made of a honeycomb or a mesh-like porous body, and the catalyst part. The apparatus provided with the heater to heat was proposed (patent document 2). This purifier is a rectangular unit made of stainless steel or the like, a catalyst unit comprising a catalyst body and a heater formed by supporting an oxide semiconductor on a base material formed in a breathable block shape, and a heating unit This unit can be configured using only a heater unit and further a unit including only a catalyst body.

特許第4517146号Japanese Patent No. 4517146 特開2010−214359号公報JP 2010-214359 A

上述した触媒ユニットを用いて浄化装置を構成する方法は、ユニットを任意に組み合わせて積層することが可能であり、触媒部の加熱温度を独立に制御することや、処理対象となるガスの種類、ならびに処理量に応じて装置を任意に構築することが容易であるという利点がある。一方、被処理気体の流量やガス濃度、使用条件に応じて、酸化物半導体による触媒作用が効率的になされるように、触媒ユニットの積層数、ヒータ・ユニットならびに触媒のみのユニットの配置を組み替える必要があり、温度制御も各ユニットで行うと言った煩雑さもあった。   The method of constructing the purification device using the catalyst unit described above can be laminated by arbitrarily combining the units, independently controlling the heating temperature of the catalyst unit, the type of gas to be processed, In addition, there is an advantage that it is easy to arbitrarily construct an apparatus according to the processing amount. On the other hand, according to the flow rate, gas concentration, and usage conditions of the gas to be processed, the number of stacked catalyst units, the arrangement of the heater unit, and the catalyst-only unit are rearranged so that the catalytic action by the oxide semiconductor can be efficiently performed. There was also the complication that temperature control was performed by each unit.

また、触媒部を複数段積層する従来の構造では、上述の煩雑さに加えて、下記に述べる2つの主な問題点があった。1つは触媒ユニット内で起こる問題であり、触媒担持ハニカム(触媒体)とこれを支える支持体の壁との間に隙間を生じ易く、被処理気体が触媒担持ハニカムを通過せずに、壁を伝って漏洩することであった。このため、漏洩を防止する為に、触媒担持ハニカムと支持体の壁の間をシール材で目詰めする必要があった。第2の問題点は、積層された触媒ユニット間にガスの漏洩を防ぐために挿入されているパッキング・シートが磨耗しやすいことであった。従って、従来は、触媒担持ハニカムの交換時にシールのやり直しと、パッキング・シートの新規交換を行わなければならず、材料のコストならびに作業が煩雑となるためコスト高とならざるを得なかった。特に、高温酸素下で使用できるパッキング・シートは少なく、高価である。   In addition, the conventional structure in which a plurality of catalyst portions are stacked has the following two main problems in addition to the above-described complexity. One is a problem that occurs in the catalyst unit. A gap is easily generated between the catalyst-supporting honeycomb (catalyst body) and the support wall that supports the catalyst-supporting honeycomb, and the target gas does not pass through the catalyst-supporting honeycomb. It was to leak through. For this reason, in order to prevent leakage, it was necessary to plug the space between the catalyst supporting honeycomb and the support wall with a sealing material. The second problem is that the packing sheet inserted to prevent gas leakage between the stacked catalyst units is subject to wear. Therefore, conventionally, when replacing the catalyst-supporting honeycomb, re-sealing and new replacement of the packing sheet have to be performed, which complicates the cost and work of the material, resulting in high costs. In particular, packing sheets that can be used under high-temperature oxygen are few and expensive.

本発明は、これらの課題を解決すべくなされたものであり、酸化物半導体による効果的な触媒作用を発揮させ、VOCなどの有害物質を効果的に分解除去することができる気体の浄化装置を提供することを目的とする。   The present invention has been made in order to solve these problems, and provides a gas purification apparatus that can effectively decompose and remove harmful substances such as VOC by exhibiting effective catalytic action by an oxide semiconductor. The purpose is to provide.

本発明に係る気体の浄化装置は、被処理気体を分解して処理する浄化処理部と、浄化処理部から排出される浄化後の気体と浄化処理部に送入される被処理気体との熱交換器を備え、前記浄化処理部は、被処理気体の処理空間を構成する処理容器内に、多孔体からなる基材(例えばハニカム構造を持つ基板)に酸化物半導体を担持させた触媒体と、これを加熱する加熱部とを備え、前記触媒体の端部は、処理容器の壁に設けられた支持体に固定され、該支持体と触媒体との接触部において被処理気体が通過・漏洩できない構造を持つことを特徴とする。
本発明に係る気体の浄化装置は、浄化処理部と排熱利用の熱交換器とを組み合わせた構造からなり、浄化処理部は従来の触媒ユニットや前置加熱ユニットを積層することなく、1つのシステムの中に組み込み、一体化した構造をとることが特徴である。一体化構造とすることにより、これまでのように高価なパッキング・シートを用いて触媒ユニットや前置加熱ユニットを積層する必要がない。
なお、触媒体と加熱部は対として設ける必要はなく、触媒体と加熱部とを別個に設けても良い。また、触媒体と加熱部の配置数(段数)も限定されるものではない。
The gas purification apparatus according to the present invention includes a purification treatment unit that decomposes and treats a gas to be treated, a purified gas discharged from the purification treatment unit, and heat of the gas to be treated that is fed into the purification treatment unit. And a catalyst body in which an oxide semiconductor is supported on a base material made of a porous material (for example, a substrate having a honeycomb structure) in a processing container constituting a processing space for a gas to be processed. A heating portion for heating the catalyst body, and an end portion of the catalyst body is fixed to a support provided on a wall of the processing vessel, and a gas to be processed passes through a contact portion between the support body and the catalyst body. It has a structure that cannot leak.
The gas purification device according to the present invention has a structure in which a purification treatment unit and a heat exchanger using exhaust heat are combined, and the purification treatment unit is not laminated with a conventional catalyst unit or a preheating unit. It is built in the system and has an integrated structure. By adopting an integrated structure, it is not necessary to stack catalyst units and preheating units using expensive packing sheets as in the past.
Note that the catalyst body and the heating part do not need to be provided as a pair, and the catalyst body and the heating part may be provided separately. Further, the arrangement number (stage number) of the catalyst body and the heating unit is not limited.

前記加熱部は、前記触媒体に被処理気体が進入する前段に、被処理気体を加熱するプリヒート部として設けられていることにより、被処理気体を効果的にかつ均一に加熱して触媒体による分解作用を効率的に行うことができる。また、装置の始動時にプリヒートを点灯し、所定の温度への立ち上げ時間を短縮することも可能である。
前記触媒体は、触媒体を収容する支持ボックスを介して前記支持体に支持され、前記支持ボックスあるいは前記支持体との接触部において被処理気体の通過・漏洩を阻止して支持された構成とすることもできる。これにより、被処理気体を確実に触媒体に接触させることができ、被処理気体の分解処理を確実に行うことができる。
The heating unit is provided as a preheating unit for heating the gas to be processed before the gas to be processed enters the catalyst body, thereby effectively and uniformly heating the gas to be processed by the catalyst body. Decomposition can be performed efficiently. It is also possible to turn on the preheat when starting the apparatus and shorten the startup time to a predetermined temperature.
The catalyst body is supported by the support body via a support box that accommodates the catalyst body, and is supported by preventing the gas to be processed from passing and leaking at the contact portion with the support box or the support body. You can also Thereby, the gas to be treated can be reliably brought into contact with the catalyst body, and the decomposition treatment of the gas to be treated can be reliably performed.

また、前記熱交換器は、前記浄化処理部の浄化気体が排出される側に、前記処理容器と外容器とを連通させるとともに、前記外容器内に被処理気体を通流させる通気パイプを配し、該通気パイプから送出される被処理気体が、前記前記処理容器の上流側(前段側)に流入することにより、浄化処理部で浄化された浄化気体と外部から導入される被処理気体とが効果的に熱交換され、浄化処理部における被処理気体の分解を効率的に行うことができる。
前記外容器には、浄化気体が通過する屈曲流路を構成する通気制御板が、延出向きを互い違いとして複数段に配置され、前記通気パイプが前記通気制御板に嵌挿されていることにより、熱交換器における浄化気体と被処理気体の熱交換が効率的になされる。
In addition, the heat exchanger has a ventilation pipe that communicates the processing container with the outer container and allows the gas to be processed to flow in the outer container on the side of the purification processing section where the purified gas is discharged. The gas to be processed sent out from the ventilation pipe flows into the upstream side (previous stage side) of the processing container, so that the purified gas purified by the purification processing unit and the gas to be treated introduced from the outside Can be effectively heat-exchanged, and the gas to be treated in the purification treatment section can be efficiently decomposed.
In the outer container, a ventilation control plate that constitutes a bent flow path through which the purified gas passes is arranged in a plurality of stages with alternately extending directions, and the ventilation pipe is inserted into the ventilation control plate, Heat exchange between the purified gas and the gas to be processed in the heat exchanger is efficiently performed.

本発明に係る気体の浄化装置によれば、浄化処理部と熱交換器を組み合わせて構成したことにより、酸化物半導体を担持させた触媒体による被処理気体の分解作用を効率的に行うことができる。また、浄化処理部の壁に設けられた支持体に触媒体の端部を被処理気体の漏洩を遮断するように固定されていることにより、被処理気体の漏出を防止して確実に有害物を分解処理することができる。   According to the gas purification device of the present invention, the purification treatment unit and the heat exchanger are combined to efficiently decompose the gas to be treated by the catalyst body supporting the oxide semiconductor. it can. In addition, the end of the catalyst body is fixed to the support provided on the wall of the purification treatment section so as to block the leakage of the gas to be treated, thereby preventing the gas to be treated from leaking and reliably Can be decomposed.

気体の浄化装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the gas purification apparatus. 浄化処理部の構成を示す断面図である。It is sectional drawing which shows the structure of a purification process part. 図2のC−C’線における平面図である。FIG. 3 is a plan view taken along line C-C ′ of FIG. 2. 触媒体を支持体により処理容器に支持する構成を示す断面図である。It is sectional drawing which shows the structure which supports a catalyst body in a processing container with a support body. 支持体により触媒体を支持した状態を示す処理容器の平面図である。It is a top view of the processing container which shows the state which supported the catalyst body with the support body. 浄化処理部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a purification process part.

(熱交換器の構成)
図1は、本発明に係る気体の浄化装置の一実施形態の全体構成を示す。本実施形態の浄化装置は、機枠5の上部に設置した熱交換器10と、熱交換器10の下側に設置した浄化処理部20とを備える。
熱交換器10は、VOC等の有害物質を含む導入気体(冷温気体)と、浄化処理部20において浄化された気体(高温気体)とを熱交換させ、導入気体を加温して浄化処理部20に送入し、浄化気体を冷却して熱交換器10から送出させる作用をなす。
(Configuration of heat exchanger)
FIG. 1 shows the overall configuration of an embodiment of a gas purification apparatus according to the present invention. The purification apparatus of the present embodiment includes a heat exchanger 10 installed on the upper part of the machine casing 5 and a purification processing unit 20 installed on the lower side of the heat exchanger 10.
The heat exchanger 10 heat-exchanges the introduced gas (cold gas) containing harmful substances such as VOC and the gas (high temperature gas) purified in the purification processing unit 20, and heats the introduced gas to purify the processing unit. The purified gas is cooled and sent out from the heat exchanger 10.

熱交換器10は、外容器11と、外容器11と長手方向を平行にして外容器11内に配置した通気パイプ12と、外容器11内における浄化気体の通流を制御する通気制御板13を備える。通気パイプ12の上端には被処理気体を導入する導入管14がパイプ連結室14aを介して接続され、通気パイプ12の下端には浄化処理部20に被処理気体を送出する送出管15がパイプ連結室15aを介して接続されている。導入管14には被処理気体を導入する導入用のファンが接続され、被処理気体は導入管14から熱交換器10内に導入される。   The heat exchanger 10 includes an outer container 11, a vent pipe 12 disposed in the outer container 11 with the outer container 11 parallel to the longitudinal direction, and a ventilation control plate 13 that controls the flow of purified gas in the outer container 11. Is provided. An inlet pipe 14 for introducing the gas to be processed is connected to the upper end of the ventilation pipe 12 via a pipe connection chamber 14a, and a delivery pipe 15 for sending the gas to be processed to the purification processing unit 20 is connected to the lower end of the ventilation pipe 12. It is connected via a connecting chamber 15a. An introduction fan that introduces a gas to be treated is connected to the introduction pipe 14, and the gas to be treated is introduced into the heat exchanger 10 from the introduction pipe 14.

通気パイプ12として、本実施形態においてはステンレスからなるフレキシブル管を使用し、パイプ連結室14a、15aの面内に通気パイプ12を8本配置する構成としている。フレキシブル管は管体の外面を波形としていることから、流通気体との接触面積が大きく、熱交換性が良好になるという利点がある。   In this embodiment, a flexible pipe made of stainless steel is used as the ventilation pipe 12, and eight ventilation pipes 12 are arranged in the plane of the pipe connection chambers 14a and 15a. Since the flexible tube has a corrugated outer surface, there is an advantage that the contact area with the flowing gas is large and the heat exchange property is good.

外容器11の上部には、外容器11内を下方から上方へ移動した浄化気体を排出する排気管16が設けられる。外容器11の下部には、浄化処理部20に接続する接続管17が設けられる。
通気制御板13は、接続管17から外容器11内に流入して排気管16から排出される浄化気体の流路が屈曲流路となるように設けたもので、外容器11内の下部から上部へ所定間隔をあけ、外容器11の対向する側板間を、延出方向が互い違いとなるに仕切るように設けている。接続管17から外容器11に流入した浄化気体は、通気制御板13により、外容器11内を屈曲しながら上方に移動し排気管16から排出される。通気制御板13には通気パイプ12が嵌挿され、通気制御板13は通気パイプ12を通過する被処理気体と熱交換する熱交換フィンとして作用する。
In the upper part of the outer container 11, an exhaust pipe 16 for discharging the purified gas that has moved from the lower side to the upper side in the outer container 11 is provided. A connecting pipe 17 connected to the purification processing unit 20 is provided at the lower part of the outer container 11.
The ventilation control plate 13 is provided so that the flow path of the purified gas that flows into the outer container 11 from the connection pipe 17 and is discharged from the exhaust pipe 16 becomes a bent flow path. A predetermined interval is provided at the upper part, and the side plates facing each other of the outer container 11 are provided so as to be separated in an extending direction. The purified gas flowing into the outer container 11 from the connection pipe 17 moves upward while being bent in the outer container 11 by the ventilation control plate 13 and is discharged from the exhaust pipe 16. A ventilation pipe 12 is fitted into the ventilation control plate 13, and the ventilation control plate 13 functions as a heat exchange fin that exchanges heat with the gas to be processed that passes through the ventilation pipe 12.

浄化処理部20においては酸化物半導体を担持させた触媒部が350〜500℃といった高温に加熱されるから、触媒部に接触する気体も高温に加熱されて熱交換器10に流入する。熱交換器10内においては、熱交換器10に導入された被処理気体は高温に加熱された浄化気体と熱交換し、高温に加熱された状態で浄化処理部20へ送出される。
熱交換器12と浄化処理部20とを接続する連絡管18は、浄化処理部20の下部に接続し、加熱された被処理気体は浄化処理部20の下部から浄化処理部20に流入する。
In the purification processing unit 20, the catalyst unit supporting the oxide semiconductor is heated to a high temperature of 350 to 500 ° C., so that the gas contacting the catalyst unit is also heated to a high temperature and flows into the heat exchanger 10. In the heat exchanger 10, the gas to be processed introduced into the heat exchanger 10 exchanges heat with the purified gas heated to a high temperature, and is sent to the purification processing unit 20 while being heated to a high temperature.
The communication pipe 18 that connects the heat exchanger 12 and the purification processing unit 20 is connected to the lower part of the purification processing unit 20, and the heated gas to be processed flows into the purification processing unit 20 from the lower part of the purification processing unit 20.

浄化処理部20においては、触媒作用が効果的に発揮されるように被処理気体をあらかじめ加熱して触媒部に接触させている。本実施形態においては、熱交換器10の作用によって、被処理気体をかなりの高温まで加熱した状態で浄化処理部20に送入するから、浄化処理部20においては、効率的にかつ均一に被処理気体が加熱された状態で分解処理され、触媒部により効率的にかつ確実に分解処理される。   In the purification treatment unit 20, the gas to be treated is heated in advance and brought into contact with the catalyst unit so that the catalytic action is effectively exhibited. In the present embodiment, the gas to be processed is sent to the purification processing unit 20 while being heated to a considerably high temperature by the action of the heat exchanger 10, and therefore the purification processing unit 20 efficiently and uniformly covers the target gas. The process gas is decomposed in a heated state, and is efficiently and reliably decomposed by the catalyst unit.

(浄化処理部の構成)
浄化処理部20は、矩形の有底の箱体状に形成した処理容器22の下段(前段)側に被処理気体を加熱するプリヒート部24を設け、プリヒート部24の上段(後段)側に被処理気体を分解処理する処理部30を設けたものである。
(Configuration of purification processing unit)
The purification processing unit 20 is provided with a preheating unit 24 for heating the gas to be processed on the lower (front) side of the processing container 22 formed in a rectangular bottomed box shape, and on the upper (rear) side of the preheating unit 24. A processing unit 30 for decomposing the processing gas is provided.

プリヒート部24は、ヒータ24aを高さ方向(上下方向)に所定間隔をあけ、ヒータ24a間に拡散板25を配して複数個配置している。拡散板25は処理容器22に流入した被処理気体を処理容器22内の全体に拡散させながら移動させるためのもので、金属板に網目状に透孔を形成したものである。本実施形態においては、プリヒート用のヒータ24aを3段(処理容器20の対向壁面から延出する一対のヒータ24aが1段に相当)設けている。   In the preheating unit 24, a plurality of heaters 24a are arranged with a predetermined interval in the height direction (vertical direction), and a diffusion plate 25 is arranged between the heaters 24a. The diffusion plate 25 is used to move the gas to be processed flowing into the processing container 22 while diffusing it throughout the processing container 22, and is formed by forming a through-hole in a mesh shape on a metal plate. In the present embodiment, three stages of preheat heaters 24a (a pair of heaters 24a extending from the opposing wall surface of the processing container 20 correspond to one stage) are provided.

プリヒート用のヒータ24aは、処理容器22の対向する一対の側面板間に、1段ごとに交互に処理容器22内に差し込むようにして配置する。ヒータ24aには、平面方向から見てU字形に屈曲した形状のシースヒータを使用している。処理容器22の側面板とヒータ24aとの連結部分は、セラミック製のシール材を介して気密に封止する。
処理容器22の底部には熱交換器10から送出される被処理気体を導入する導入室23を設ける。導入室23に流入した被処理気体は、導入室23から拡散しながらプリヒート部24を通過することによって、均一に加熱される。
Preheater heaters 24a are arranged between a pair of opposing side plates of the processing container 22 so as to be alternately inserted into the processing container 22 for each stage. As the heater 24a, a sheath heater that is bent in a U shape when viewed from the plane is used. The connecting portion between the side plate of the processing container 22 and the heater 24a is hermetically sealed through a ceramic sealing material.
An introduction chamber 23 for introducing the gas to be processed sent from the heat exchanger 10 is provided at the bottom of the processing container 22. The gas to be processed that has flowed into the introduction chamber 23 is uniformly heated by passing through the preheating portion 24 while diffusing from the introduction chamber 23.

被処理気体は熱交換器10内を通過する際に加熱されるから、プリヒート部24のヒータ24aの配置数や加熱温度についてはさほど調整することなく使用することができる。熱交換器10を設けていない浄化装置の場合は、処理部30において被処理気体を確実に分解するために、プリヒート部24において被処理気体を所定温度にまで加熱する制御は非常に重要である。被処理気体の温度や被処理気体の流量により、プリヒート部24における被処理気体の加熱温度は大きくばらつくから、使用条件に合わせてプリヒート部24に配置するヒータ24aの配置数や配列、ヒータの加熱温度等を適宜調節しなければならない。   Since the gas to be treated is heated when it passes through the heat exchanger 10, the number of heaters 24a arranged in the preheating unit 24 and the heating temperature can be used without much adjustment. In the case of a purification apparatus not provided with the heat exchanger 10, in order to reliably decompose the gas to be processed in the processing unit 30, the control of heating the gas to be processed to a predetermined temperature in the preheating unit 24 is very important. . Depending on the temperature of the gas to be processed and the flow rate of the gas to be processed, the heating temperature of the gas to be processed in the preheating unit 24 varies greatly. Therefore, the number and arrangement of heaters 24a arranged in the preheating unit 24 according to the use conditions, heating of the heaters The temperature etc. must be adjusted accordingly.

また、処理容器22内に配置する処理部30についても熱交換器10を付設していない場合は、処理部30の設置数や配列についても調節が必要である。
これに対して、本実施形態のように、浄化処理部20に熱交換器10を付設して浄化装置を構成した場合は、被処理気体の温度や被処理気体の流量が使用状態によってばらついている場合でも、熱交換器10の作用によってある程度の温度範囲内で浄化処理部20に送入されるから、プリヒート部24や処理部30の配置を変えることなく、所要の分解処理が可能である。プリヒート部24や処理部30の構造や配置を変えることなく使用できることは、装置の組み立てを容易にし、装置の使用効率を向上させ、メンテナンスを容易にするという大きな利点がある。
In addition, when the heat exchanger 10 is not attached to the processing unit 30 arranged in the processing container 22, it is necessary to adjust the number and arrangement of the processing units 30.
In contrast, when the purification apparatus is configured by attaching the heat exchanger 10 to the purification processing unit 20 as in the present embodiment, the temperature of the gas to be processed and the flow rate of the gas to be processed vary depending on the use state. Even when the heat exchanger 10 is in operation, it is sent to the purification processing unit 20 within a certain temperature range by the action of the heat exchanger 10, so that the required decomposition processing can be performed without changing the arrangement of the preheating unit 24 and the processing unit 30. . The ability to use the preheating unit 24 and the processing unit 30 without changing the structure and arrangement has the great advantage of facilitating assembly of the apparatus, improving the use efficiency of the apparatus, and facilitating maintenance.

処理部30は触媒としての酸化物半導体を担持した触媒体31と、触媒体31の下側に配されたヒータ32とを備える。触媒体31は通気性を有するブロック状に形成された基材に、酸化クロムあるいは酸化チタン等の酸化物半導体を担持して形成したものである。
図2に、浄化処理部20の構成を拡大して示す。処理部30はプリヒート部24の上方に高さ方向に所定間隔をあけて4段設けている。触媒体31の下側に配置するヒータ32は、処理容器22の対向する側面板から、交互に触媒体31の下側に差し込むように配置する。
The processing unit 30 includes a catalyst body 31 that supports an oxide semiconductor as a catalyst, and a heater 32 disposed below the catalyst body 31. The catalyst body 31 is formed by supporting an oxide semiconductor such as chromium oxide or titanium oxide on a base material formed in a block shape having air permeability.
In FIG. 2, the structure of the purification process part 20 is expanded and shown. The processing unit 30 is provided in four stages above the preheating unit 24 at predetermined intervals in the height direction. The heaters 32 disposed below the catalyst body 31 are disposed so as to be alternately inserted into the lower side of the catalyst body 31 from the opposing side plates of the processing vessel 22.

図3に図2のC−C’線における平面図を示す。ヒータ32がU字状に折曲する形状に、触媒体31の下方に配されている。ヒータ32は側面板22aに取り付けた電極32aを介して電源に接続される。ヒータ32と側面板22aとの取り付け部は、セラミック製のシール材を介して気密に封止される。
図3に示すように、触媒体31は平面形状が矩形に形成された部材であり、処理容器22の略中央位置に配されている。触媒体31の温度は触媒体31の中央部に熱電対40を挿入して検知される。
FIG. 3 is a plan view taken along the line CC ′ of FIG. The heater 32 is disposed below the catalyst body 31 so as to be bent in a U shape. The heater 32 is connected to a power source via an electrode 32a attached to the side plate 22a. The attachment portion between the heater 32 and the side plate 22a is hermetically sealed through a ceramic sealing material.
As shown in FIG. 3, the catalyst body 31 is a member having a rectangular planar shape, and is disposed at a substantially central position of the processing container 22. The temperature of the catalyst body 31 is detected by inserting a thermocouple 40 at the center of the catalyst body 31.

図4に、図2のD部分の構成、すなわち触媒体31を処理容器22に支持する構成を示す。触媒体31は、処理容器22の内側面を囲む矩形枠状に形成した支持体34に、支持ボックス35を介して下方から取り付けられる。支持体34は処理容器22の側面板22b、22bに気密に溶接して取り付けられ、ヒータ32(ヒータ24a)を取り付けた側面板22a、22aを、他方の側面板22b、22bと支持体34にねじ止めすることにより、処理容器22が組み立てられ、支持体34により処理容器22は上下に気密に仕切られる。   FIG. 4 shows a configuration of a portion D in FIG. 2, that is, a configuration in which the catalyst body 31 is supported by the processing vessel 22. The catalyst body 31 is attached to the support body 34 formed in a rectangular frame shape surrounding the inner surface of the processing vessel 22 from below via a support box 35. The support 34 is attached to the side plates 22b and 22b of the processing container 22 by airtight welding. The side plates 22a and 22a to which the heater 32 (heater 24a) is attached are connected to the other side plates 22b and 22b and the support 34. The processing container 22 is assembled by screwing, and the processing container 22 is vertically and hermetically partitioned by the support 34.

図5に側面板22a、22bを組み付けた処理容器22の平面図を示す。支持体34は触媒体31の平面寸法よりも若干縮寸する平面形状が矩形に開口し(通過口34a)、支持ボックス35に触媒体31を収容して支持ボックス35を支持体34にねじ止め固定する。図4に示すように、触媒体31はその上面の周縁部が支持体34の下面に当接して支持される。支持ボックス35の下端縁には触媒体31の下面の周縁部を係止するフランジ35aが設けられ、触媒体31はフランジ35aと支持体34とによって挟圧支持される。   FIG. 5 shows a plan view of the processing container 22 in which the side plates 22a and 22b are assembled. The support 34 has a rectangular shape that is slightly smaller than the plane size of the catalyst 31 (opening port 34a), accommodates the catalyst 31 in the support box 35, and screws the support box 35 to the support 34. Fix it. As shown in FIG. 4, the catalyst body 31 is supported with the peripheral edge of the upper surface thereof in contact with the lower surface of the support 34. A flange 35 a that locks the peripheral edge of the lower surface of the catalyst body 31 is provided at the lower end edge of the support box 35, and the catalyst body 31 is pressed and supported by the flange 35 a and the support body 34.

触媒体31は支持ボックス35によって側面が完全に覆われた状態で支持されるから、被処理気体は必ず触媒体31の解放された下面から触媒体31内に進入し、触媒体31中を通過して支持体34の通気口34aから排出される。すなわち、被処理気体は確実に触媒体31と接触して排出されることになる。
触媒体31によっては厚さ寸法にばらつきが生じる場合もあるから、触媒体31と支持体34とをねじ止めする部分に、スペーサーを兼ねてセラミック等の耐熱性を有するシール材を介装してもよい。
Since the catalyst body 31 is supported with the side face completely covered by the support box 35, the gas to be treated always enters the catalyst body 31 from the opened lower surface of the catalyst body 31 and passes through the catalyst body 31. Then, the air is discharged from the vent 34a of the support 34. That is, the gas to be treated is surely discharged in contact with the catalyst body 31.
Since the thickness may vary depending on the catalyst body 31, a sealing material having heat resistance such as ceramic is interposed between the catalyst body 31 and the support 34 so as to serve as a spacer. Also good.

また、支持ボックス35の下端縁に設けるフランジ35aを図4のように、単に平坦状に折り曲げるのではなく、フランジ35aの先端をさらにL字形に折り曲げ、触媒体31に溝を設けておいて、溝にフランジ35aの先端を係入するように構成することも可能である。この場合は、触媒体31にフランジ35aの先端を挿入する溝を形成する必要があるが、フランジ35aの先端を触媒体31の溝に係入することにより、フランジ35aと触媒体31との当接部分から被処理気体が漏出する(触媒体31中を被処理気体が通過せず、支持ボックス35の内側面側に被処理気体が回り込むこと)ことをさらに確実に防止することができる。   Further, the flange 35a provided at the lower end edge of the support box 35 is not simply bent into a flat shape as shown in FIG. 4, but the tip of the flange 35a is further bent into an L shape, and a groove is provided in the catalyst body 31. It is also possible to configure so that the tip of the flange 35a is engaged in the groove. In this case, it is necessary to form a groove for inserting the tip of the flange 35a in the catalyst body 31, but by engaging the tip of the flange 35a into the groove of the catalyst body 31, the contact between the flange 35a and the catalyst body 31 is required. It is possible to more reliably prevent the gas to be processed from leaking out from the contact portion (the gas to be processed does not pass through the catalyst body 31 and the gas to be processed flows around the inner surface of the support box 35).

上述した処理部30における触媒体31を支持する構成は、被処理気体を確実に触媒体31に接触させ、触媒体31による分解作用を効率的にかつ確実に作用させる上で有効である。揮発性有害物質を浄化処理する浄化装置としての信頼性を向上させる上で、被処理気体の漏出を防止する構成はきわめて重要である。   The above-described configuration of supporting the catalyst body 31 in the processing unit 30 is effective in bringing the gas to be treated into contact with the catalyst body 31 and causing the decomposition action by the catalyst body 31 to work efficiently and reliably. In order to improve the reliability as a purification device that purifies volatile harmful substances, a configuration that prevents leakage of the gas to be treated is extremely important.

また、前述したプリヒート部24について説明したと同様に、被処理気体が均一に加熱されることから処理部30の加熱温度も容易に均一温度に保持することができ、個々の処理部30に設置するヒータ32の加熱温度を微調整したりすることなく、確実に被処理気体を分解処理することが可能となる。熱交換器10を付設していない浄化装置では、処理部30における分解作用が有効に作用するように、処理部30の設置段数や、設置位置、個々の処理部30におけるヒータ32の加熱温度を細かく微調整する必要があった。これに対して、本実施形態の浄化装置においては、処理部30の設置段数や設置位置については使用条件によらずにほぼ汎用的に使用することができるという利点がある。   Further, similarly to the description of the preheating unit 24 described above, since the gas to be processed is heated uniformly, the heating temperature of the processing unit 30 can be easily maintained at a uniform temperature and installed in each processing unit 30. Thus, it is possible to reliably decompose the gas to be processed without finely adjusting the heating temperature of the heater 32. In the purification apparatus not provided with the heat exchanger 10, the number of installation stages of the processing unit 30, the installation position, and the heating temperature of the heater 32 in each processing unit 30 are set so that the decomposition action in the processing unit 30 works effectively. It was necessary to make fine adjustments. On the other hand, in the purification apparatus of this embodiment, there exists an advantage that it can be used almost universally about the installation stage number and installation position of the process part 30 irrespective of use conditions.

なお、上記実施形態の浄化装置においては、熱交換器10と浄化処理部20はいずれも断熱性材によりその外周囲を包囲し、熱交換器10と浄化処理部20とを保温して、熱交換と浄化処理が効率的になされるようにしている。   In the purification apparatus of the above embodiment, both the heat exchanger 10 and the purification processing unit 20 surround the outer periphery with a heat insulating material, and the heat exchanger 10 and the purification processing unit 20 are kept warm to generate heat. The replacement and purification process is made efficient.

(浄化装置の他の構成例)
図6は、本発明に係る浄化装置の他の構成例を示す。
本実施の形態の浄化装置は、浄化処理部20のプリヒート部24の上方に配置する処理部30を、上記実施形態とは異なる配置としている。すなわち、最上部に配置する処理部30については、触媒体31a、31bを2段に重ねて使用し、触媒体31a、31bを一つの支持ボックス35に収容して支持している。
(Another configuration example of the purification device)
FIG. 6 shows another configuration example of the purifying device according to the present invention.
In the purification device of the present embodiment, the processing unit 30 disposed above the preheating unit 24 of the purification processing unit 20 is arranged differently from the above embodiment. That is, for the processing unit 30 arranged at the top, the catalyst bodies 31a and 31b are used in two stages, and the catalyst bodies 31a and 31b are accommodated in and supported by one support box 35.

上記実施形態においては処理部30ごとに触媒体とヒータとを対にして配置しているが、本実施形態においては、最上段の処理部30についてはヒータを省略し、第1段と第2段の処理部30のみにヒータ32を配置している。このような配置が可能となる理由は、熱交換器10の作用により被処理気体が加熱されて浄化処理部20に送入され、プリヒート部24を設けたことにより被処理気体が加熱され、処理部30のすべてにヒータ32を設けることなく触媒体31を所要の分解処理温度にまで加熱できるからである。場合によっては、処理部30にはヒータ32を設けずにプリヒート部24のみにヒータを設ける構成とすることもできるし、逆にプリヒート部24を設けずに個々の処理部30にヒータ32を配する構成とすることもできる。   In the above-described embodiment, the catalyst body and the heater are arranged in pairs for each processing unit 30. However, in this embodiment, the heater is omitted for the uppermost processing unit 30, and the first and second stages. The heater 32 is disposed only in the processing unit 30 of the stage. The reason why such an arrangement is possible is that the gas to be processed is heated by the action of the heat exchanger 10 and fed into the purification processing unit 20, and the gas to be processed is heated by providing the preheating unit 24, thereby processing This is because the catalyst body 31 can be heated to a required decomposition treatment temperature without providing the heater 32 in all the portions 30. In some cases, the processing unit 30 may be provided with a heater only in the preheating unit 24 without providing the heater 32, and conversely, the heaters 32 may be arranged in the individual processing units 30 without providing the preheating unit 24. It can also be set as the structure to do.

また、浄化装置の浄化処理部20に設ける処理部30の段数(本実施形態では4段)についても適宜選択することができる。
また、使用条件によっては浄化対象とする被処理気体の分量(流量)や処理対象とする気体の性状が異なるから、処理部30の段数や、処理容器22の大きさ、触媒体31の大きさ等は適宜設定すればよい。ただし、本発明に係る浄化装置は、使用条件によって基本的な設計を大きく変更することなく被処理気体を効率的に加熱して、効率的に分解処理することができるから、装置設計が容易であり、汎用的に使用することができるという利点がある。
Further, the number of processing units 30 provided in the purification processing unit 20 of the purification device (four stages in the present embodiment) can be selected as appropriate.
In addition, since the amount (flow rate) of the gas to be treated and the properties of the gas to be treated differ depending on the use conditions, the number of stages of the treatment unit 30, the size of the treatment container 22, and the size of the catalyst body 31. Etc. may be set as appropriate. However, since the purification apparatus according to the present invention can efficiently heat the gas to be processed and efficiently decompose it without greatly changing the basic design depending on the use conditions, the apparatus design is easy. There is an advantage that it can be used for general purposes.

なお、処理部30に使用する触媒体31は、通気性を有する基材に酸化物半導体を担持させたものであり、通気性を有する基材には、コーディエライト(2MgO・2Al2O3・5SiO2)やゼオライト等からなるセラミックス製の多孔体が使用される。多孔体の構造としては、通気部分がハニカム状に形成されたもの、通気部分が三次元の網目体状に形成されたものが用いられる。
基材に担持させる酸化物半導体には種々のものが利用できるが、酸化クロム(Cr23)、酸化ニッケル(NiO)、酸化鉄(Fe23)、酸化チタン(TiO2)等が好適に用いられる。通気性を有する基材に酸化物半導体を担持させる方法としては、スプレー法、電気泳動電着法、ディップ法等が利用できる。
Note that the catalyst body 31 used in the processing unit 30 is obtained by supporting an oxide semiconductor on a base material having air permeability, and the base material having air permeability includes cordierite (2MgO · 2Al 2 O 3 -A ceramic porous body made of 5SiO 2 ) or zeolite is used. As the structure of the porous body, those in which the ventilation portion is formed in a honeycomb shape and those in which the ventilation portion is formed in a three-dimensional network shape are used.
Various oxide semiconductors supported on the substrate can be used, such as chromium oxide (Cr 2 O 3 ), nickel oxide (NiO), iron oxide (Fe 2 O 3 ), and titanium oxide (TiO 2 ). Preferably used. As a method for supporting an oxide semiconductor on a base material having air permeability, a spray method, an electrophoretic electrodeposition method, a dipping method, or the like can be used.

本発明に係る気体の浄化装置を実際に使用した例について説明する。
処理部30に用いる触媒体として、大きさ100×100×30mm、ハニカム構造あるいは網目体構造の基材に酸化物半導体として酸化クロムを担持したものを使用した。使用した触媒体の段数は4段である。
プリヒート部の3段あるヒータのうち1段目と2段目のヒータに通電する。ヒータ1段は600W(300Wのヒータが一対)。処理部30については、1〜3段目のヒータ32に通電する。ヒータ32は300W。ヒータ24a、32の投入パワーは、合わせて2.1kWとなる。この電力は常時投入されている必要はなく、被処理気体の分解の際の反応熱も活用できるので、投入電力は顕著に減少する。プリヒート部24の熱電対と3段目の処理部30に配置した熱電対により温度を検知し、プリヒート部24及び触媒体31の温度が500℃になるように制御した。本発明に係る浄化装置においては触媒体やヒータを固定設置して使用するが、本実施例のように、処理風量に合わせてプリヒート・ヒータの本数を選択し、加熱温度を制御し、触媒体の温度を容易かつ的確に調節することができる。
An example in which the gas purification apparatus according to the present invention is actually used will be described.
As the catalyst body used in the treatment unit 30, a catalyst body having a size of 100 × 100 × 30 mm and having a honeycomb structure or a network structure supporting chromium oxide as an oxide semiconductor was used. The number of used catalyst bodies is four.
The first and second heaters among the three heaters in the preheat section are energized. One stage of heater is 600W (a pair of 300W heaters). About the process part 30, it supplies with electricity to the heater 32 of the 1-3rd step | paragraph. The heater 32 is 300W. The combined power of the heaters 24a and 32 is 2.1 kW. This electric power does not need to be constantly input, and the reaction heat at the time of decomposition of the gas to be treated can be utilized, so that the input electric power is significantly reduced. The temperature was detected by the thermocouple of the preheating unit 24 and the thermocouple arranged in the third stage processing unit 30, and the temperature of the preheating unit 24 and the catalyst body 31 was controlled to be 500 ° C. In the purification apparatus according to the present invention, the catalyst body and the heater are fixedly installed and used. However, as in this embodiment, the number of preheat heaters is selected in accordance with the processing air volume, the heating temperature is controlled, and the catalyst body Can be easily and accurately adjusted.

プリヒート部24と触媒体31の加熱温度を350〜500℃としたとき、熱交換器10から浄化処理部20へ送出される被処理気体の温度は210〜300℃であった。熱交換器10においては、浄化処理部20から排出される高温の浄化気体が約60%の効率で被処理気体の加熱に用いられる。
本発明に係る気体の浄化装置における熱交換器の作用は、本来、浄化気体の排熱を有効利用することであるが、これだけには止まらない。すなわち、浄化処理部20に熱交換器10を組み合わせて利用すると、浄化処理部20内においては到る所で均一な温度になり、定格値の処理ガス量の変動に対しても所望の温度分布が確保され、十分に対処することが可能となる。
When the heating temperature of the preheating unit 24 and the catalyst body 31 was 350 to 500 ° C., the temperature of the gas to be processed sent from the heat exchanger 10 to the purification processing unit 20 was 210 to 300 ° C. In the heat exchanger 10, the high temperature purified gas discharged from the purification processing unit 20 is used for heating the gas to be processed with an efficiency of about 60%.
The action of the heat exchanger in the gas purification apparatus according to the present invention is to effectively utilize the exhaust heat of the purified gas, but it does not stop there. That is, when the heat exchanger 10 is used in combination with the purification processing unit 20, the temperature becomes uniform everywhere in the purification processing unit 20, and a desired temperature distribution is obtained even with respect to fluctuations in the processing gas amount of the rated value. Is secured and can be dealt with sufficiently.

浄化処理部20に熱交換器10を装着しない場合には、処理部30に配置した熱電対を用いて段ごとに温度検知し、各々のヒータの通電を制御して処理部30の温度が一定となるように保っていた。これに対して、熱交換器10を装着した場合には、浄化処理部20の中央に位置する一個所の熱電対で装置内の温度を検知するだけで、装置内の温度を一様に維持することが可能となった。装置内が一様な温度分布となることは、各々の処理部30に付属している熱電対によって確認した。
このように、熱交換器10と浄化処理部20とを組み合わせると、被処理気体の風量が変動した場合でも、浄化処理部20内の温度が均一に保持される作用が得られることから、装置の温度制御が容易になり、装置の維持管理作業を容易にし、被処理気体を効率的に浄化することが可能になる。
When the heat exchanger 10 is not attached to the purification processing unit 20, temperature is detected for each stage using a thermocouple arranged in the processing unit 30, and the temperature of the processing unit 30 is kept constant by controlling energization of each heater. It was kept so that. On the other hand, when the heat exchanger 10 is mounted, the temperature in the apparatus is kept uniform only by detecting the temperature in the apparatus with a single thermocouple located in the center of the purification processing unit 20. It became possible to do. It was confirmed by a thermocouple attached to each processing unit 30 that the temperature distribution in the apparatus was uniform.
As described above, when the heat exchanger 10 and the purification processing unit 20 are combined, even when the air volume of the gas to be processed fluctuates, it is possible to obtain an effect of maintaining the temperature in the purification processing unit 20 uniformly. Therefore, it becomes easy to control the temperature of the apparatus, facilitate the maintenance work of the apparatus, and efficiently purify the gas to be processed.

空気を搬送ガスとし、200ppmの濃度でトルエンを含む被処理気体について浄化処理を行った。浄化装置の定格風量は5m3/分である。導入管14から熱交換器10に導入された被処理気体は熱交換器10内において加熱され、連絡管18を経由して浄化処理部20の下部に送入される。トルエンはプリヒート部24で加熱され、その後、処理部30を通過して炭酸ガスと水に完全分解される。分解ガスの排熱は熱交換器10の中を階段を上るように移動し、熱交換器10の排気管16から排出される。
トルエン濃度の測定にはThermo Fischer Scientific Inc.社の炭化水素計(TVA-1000B)を用い、導入管14と排気管16の位置でそれぞれ測定した。その結果、分解効率が約98%でトルエンが分解されたことが明らかになった。
A purification treatment was performed on a gas to be treated containing toluene at a concentration of 200 ppm using air as a carrier gas. The rated air volume of the purification device is 5 m 3 / min. The gas to be treated introduced into the heat exchanger 10 from the introduction pipe 14 is heated in the heat exchanger 10 and sent to the lower part of the purification treatment unit 20 via the communication pipe 18. Toluene is heated by the preheating unit 24, and then passes through the processing unit 30 to be completely decomposed into carbon dioxide gas and water. The exhaust heat of the cracked gas moves up the stairs in the heat exchanger 10 and is discharged from the exhaust pipe 16 of the heat exchanger 10.
The toluene concentration was measured using a hydrocarbon meter (TVA-1000B) manufactured by Thermo Fischer Scientific Inc. at the positions of the introduction pipe 14 and the exhaust pipe 16. As a result, it became clear that toluene was decomposed at a decomposition efficiency of about 98%.

上述した条件と同様の設定条件でタバコ10本を、空気を搬送ガスとして導入管14から熱交換器10に送入し、導入管14と排気管16のそれぞれの位置で炭素水素計を用いて測定を行った。測定結果は、導入管14と排気管16の双方における炭化水素計の値は同一であり、空気レベルまで完全に浄化されることが分かった。また、排気管16から排出される排気は、全くの無臭であった。この実験から、本実施例の気体の浄化装置が効果的な浄化作用を有することが確認できた。   Ten cigarettes are sent from the introduction pipe 14 to the heat exchanger 10 using air as a carrier gas under the same setting conditions as described above, and a carbon hydrogen meter is used at each position of the introduction pipe 14 and the exhaust pipe 16. Measurements were made. As a result of the measurement, it was found that the values of the hydrocarbon meters in both the introduction pipe 14 and the exhaust pipe 16 were the same and were completely purified to the air level. Further, the exhaust discharged from the exhaust pipe 16 was completely odorless. From this experiment, it was confirmed that the gas purification apparatus of this example had an effective purification action.

10 熱交換器
11 外容器
12 通気パイプ
14 導入管
15 送出管
16 排気管
18 連絡管
20 浄化処理部
22a、22b 側面板
24 プリヒート部
24a ヒータ
25 拡散板
30 処理部
31、31a、31b 触媒体
32 ヒータ
34 支持体
34a 通気口
35 支持ボックス


DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Outer container 12 Ventilation pipe 14 Introducing pipe 15 Delivery pipe 16 Exhaust pipe 18 Communication pipe 20 Purification process part 22a, 22b Side plate 24 Preheating part 24a Heater 25 Diffusion board 30 Process part 31, 31a, 31b Catalyst body 32 Heater 34 Support 34a Vent 35 Support box


Claims (5)

被処理気体を分解して処理する浄化処理部と、浄化処理部から排出される浄化後の気体と浄化処理部に送入される被処理気体との熱交換器を備え、
前記浄化処理部は、被処理気体の処理空間を構成する処理容器内に、多孔体からなる基材に酸化物半導体を担持させた触媒体と、加熱部とを備え、
前記触媒体の端部は、処理容器の壁に設けられた支持体に固定され、該支持体と触媒体との接触部において被処理気体が通過・漏洩できない構造を特徴とする気体の浄化装置。
A purification processing unit for decomposing and processing the gas to be processed, and a heat exchanger between the purified gas discharged from the purification processing unit and the gas to be processed fed into the purification processing unit,
The purification treatment section includes a catalyst body in which an oxide semiconductor is supported on a base material made of a porous body, and a heating section in a treatment container constituting a treatment space for a gas to be treated.
A gas purification device characterized in that an end of the catalyst body is fixed to a support provided on a wall of a processing vessel, and a gas to be treated cannot pass or leak at a contact portion between the support and the catalyst body .
前記加熱部は、前記触媒体に被処理気体が進入する前段に、被処理気体を加熱するプリヒート部として設けられていることを特徴とする請求項1記載の気体の浄化装置。   The gas purification apparatus according to claim 1, wherein the heating unit is provided as a preheating unit for heating the gas to be processed before the gas to be processed enters the catalyst body. 前記触媒体は、触媒体を収容する支持ボックスを介して前記支持体に支持され、前記支持ボックスあるいは前記支持体との接触部において被処理気体の通過・漏洩を阻止して支持されていることを特徴とする請求項1または2記載の気体の浄化装置。   The catalyst body is supported by the support body via a support box that accommodates the catalyst body, and is supported by preventing the gas to be processed from passing and leaking at the contact portion with the support box or the support body. The gas purification apparatus according to claim 1 or 2, wherein 前記熱交換器は、前記浄化処理部の浄化気体が排出される側に、前記処理容器と外容器とを連通させるとともに、前記外容器内に被処理気体を通流させる通気パイプを配し、
該通気パイプから送出される被処理気体が、前記処理容器の上流側に流入することを特徴とする請求項1〜3のいずれか一項記載の気体の浄化装置。
The heat exchanger, on the side where the purified gas is discharged from the purification unit, communicates the processing container and the outer container, and arranges a ventilation pipe for flowing the gas to be processed in the outer container,
The gas purification apparatus according to any one of claims 1 to 3, wherein the gas to be processed delivered from the ventilation pipe flows into the upstream side of the processing container.
前記外容器には、浄化気体が通過する屈曲流路を構成する通気制御板が、延出向きを互い違いとして複数段に配置され、前記通気パイプが前記通気制御板に嵌挿されていることを特徴とする請求項4記載の気体の浄化装置。
In the outer container, a ventilation control plate constituting a bent flow path through which the purified gas passes is arranged in a plurality of stages with the extending directions being staggered, and the ventilation pipe is inserted into the ventilation control plate. The gas purifier according to claim 4.
JP2011162327A 2011-07-25 2011-07-25 Gas cleaning device Withdrawn JP2013022564A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011162327A JP2013022564A (en) 2011-07-25 2011-07-25 Gas cleaning device
PCT/JP2012/068065 WO2013015149A1 (en) 2011-07-25 2012-07-17 Gas purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162327A JP2013022564A (en) 2011-07-25 2011-07-25 Gas cleaning device

Publications (1)

Publication Number Publication Date
JP2013022564A true JP2013022564A (en) 2013-02-04

Family

ID=47600999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162327A Withdrawn JP2013022564A (en) 2011-07-25 2011-07-25 Gas cleaning device

Country Status (2)

Country Link
JP (1) JP2013022564A (en)
WO (1) WO2013015149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018677A (en) * 2016-07-27 2018-02-01 日亜化学工業株式会社 Light source device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8806832B2 (en) 2011-03-18 2014-08-19 Inotec Global Limited Vertical joint system and associated surface covering system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214359A (en) * 2009-02-17 2010-09-30 Yokohama National Univ Thermocatalyst unit for decomposing volatile organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018677A (en) * 2016-07-27 2018-02-01 日亜化学工業株式会社 Light source device

Also Published As

Publication number Publication date
WO2013015149A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
CN112176318A (en) Temperature control assembly for substrate processing apparatus and method of using the same
JP4299868B2 (en) Hydrogen combustion equipment
WO2004044500A1 (en) Gas heating method and gas heating device
KR20060048613A (en) Heat treatment apparatus
JP2009034682A (en) Catalytic combustion reactor including tube bundle of heat exchanger and catalytic structure
WO2013015149A1 (en) Gas purification apparatus
KR20210049788A (en) Gas separation device
JP2019098314A (en) Volatile organic compound processing method and processing device
JP5679457B2 (en) Heat exchanger integrated reactor with reciprocating duct in reaction section
JP2005169213A (en) Microreactor
JP3780989B2 (en) Deodorizer
JP6994420B2 (en) Discharge electrode and dust collector
JP2010201373A (en) Apparatus for treating gas
JP4051277B2 (en) Hazardous exhaust gas treatment system
JP2017051903A (en) Gas purifier
KR100976372B1 (en) Reaction equipment for hi nitrogen monoxide production
JP2011204462A (en) Solid oxide fuel cell system
KR101670461B1 (en) Apparatus for treating exhaust gas comprising hydrogen
KR20200092046A (en) Catalyst for hydrogen removal and passive autocatalytic hydrogen recombiner having the same
JP2004000920A (en) Reactor and reaction method
CN205481041U (en) Waste gas catalytic combustion unit
KR102480764B1 (en) Catalytic Oxidation System For Harmful Gas Treatment Having Heat Energy Supply Structure Using Carbon-Based Materials
JPWO2005075800A1 (en) Reactor with heat exchange function
CN212167016U (en) Catalytic oxidation VOCs device
WO2024048144A1 (en) Heat-storage-type gas treatment device and gas purification method using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007