JP2013021583A - Drive circuit for current drive type semiconductor switch - Google Patents

Drive circuit for current drive type semiconductor switch Download PDF

Info

Publication number
JP2013021583A
JP2013021583A JP2011154537A JP2011154537A JP2013021583A JP 2013021583 A JP2013021583 A JP 2013021583A JP 2011154537 A JP2011154537 A JP 2011154537A JP 2011154537 A JP2011154537 A JP 2011154537A JP 2013021583 A JP2013021583 A JP 2013021583A
Authority
JP
Japan
Prior art keywords
current
semiconductor switch
variable resistor
heat
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011154537A
Other languages
Japanese (ja)
Inventor
Takashi Fukue
貴史 福榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011154537A priority Critical patent/JP2013021583A/en
Publication of JP2013021583A publication Critical patent/JP2013021583A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: A conventional drive circuit for current drive type semiconductor switch 8 requires a switch and means of controlling the switch in order to suppress power loss in the drive circuit and hence the number of components used increases.SOLUTION: The present invention comprises: a first variable resistor 10 that has a negative temperature characteristic connected between a power supply 1 and the base or gate terminal of a current drive type semiconductor switch 8, and a heat conductive section 11 overheated by operational loss by a collector or drain current of the current drive type semiconductor switch 8. The first variable resistor 10 is positioned so that heat is supplied by the heat conductive section 11. With such a simple configuration, power loss in the drive circuit can be suppressed without increasing the number of components.

Description

本発明は、電流駆動型半導体スイッチの駆動回路に関するものである。   The present invention relates to a drive circuit for a current drive type semiconductor switch.

従来の電流駆動型半導体スイッチの駆動回路を図11に示す。従来の電流駆動型半導体スイッチの駆動回路は、電源1に接続された第1のスイッチング素子2と、接地された第2のスイッチング素子3との間にエネルギー蓄積用のインダクタ4を接続し、前記第1のスイッチング素子2とインダクタ4との間の接続点に逆バイアスとなって接地されるダイオード5を接続し、前記インダクタ4と第2のスイッチング素子3との間の接続点に電源6と負荷7を介してエミッタ又はドレイン接地された電流駆動型半導体スイッチ8の制御電極(ベース又はゲート)を接続し、更には前記第1のスイッチング素子2、第2のスイッチング素子3をオンさせてインダクタ4にエネルギーを蓄積してから、該第1のスイッチング素子2、第2のスイッチング素子3をオフさせてインダクタ4に蓄積されたエネルギーに基づく電流を前記電流駆動型半導体スイッチ8の制御電極(ベース又はゲート)に供給した後、第2のスイッチング素子3をオンさせてインダクタ4を接地し、前記インダクタ4に蓄積されたエネルギーに基づく電流がゼロとなってから、前記第1のスイッチング素子2をオンさせる制御信号を出力する制御部9を備える。   FIG. 11 shows a driving circuit for a conventional current-driven semiconductor switch. A conventional drive circuit for a current-driven semiconductor switch has an energy storage inductor 4 connected between a first switching element 2 connected to a power source 1 and a second switching element 3 grounded. A diode 5 grounded in reverse bias is connected to a connection point between the first switching element 2 and the inductor 4, and a power source 6 is connected to the connection point between the inductor 4 and the second switching element 3. A control electrode (base or gate) of a current-driven semiconductor switch 8 whose emitter or drain is grounded is connected via a load 7, and further, the first switching element 2 and the second switching element 3 are turned on, thereby causing an inductor. Energy stored in the inductor 4 by turning off the first switching element 2 and the second switching element 3. After supplying the current based on the control electrode (base or gate) of the current driven semiconductor switch 8, the second switching element 3 is turned on to ground the inductor 4, and the current based on the energy accumulated in the inductor 4 Is provided with a control unit 9 that outputs a control signal for turning on the first switching element 2.

このように電流駆動型半導体スイッチ8の制御電極(ベース又はゲート)に供給する電流は、電源1から抵抗を介さずに、制御部9で制御される第1のスイッチング素子2、第2のスイッチング素子3を用いてインダクタ4に蓄積されたエネルギーに基づいて供給される。(特許文献1参照)
このように電流駆動型半導体スイッチ8の制御電極(ベース又はゲート)への電流供給について、抵抗を介さずに行うことで電力損失を抑制した駆動回路を提供することができる。
As described above, the current supplied to the control electrode (base or gate) of the current-driven semiconductor switch 8 is supplied from the power source 1 without the resistor, and the first switching element 2 and the second switching controlled by the control unit 9. It is supplied based on the energy stored in the inductor 4 using the element 3. (See Patent Document 1)
In this way, a current supply to the control electrode (base or gate) of the current driven semiconductor switch 8 can be performed without using a resistor, thereby providing a drive circuit that suppresses power loss.

特開平5−243943号公報Japanese Patent Laid-Open No. 5-243943

従来技術の電流駆動型半導体スイッチ8の駆動回路では、制御電極(ベース又はゲート)に供給する電流をインダクタ4に蓄積するために、ダイオード5や第1のスイッチング素子2、第2のスイッチング素子3、該スイッチング素子を駆動するための制御部9が必要となり部品点数が多くなる。更に、制御部9を動作させるための電力や第1のスイッチング素子2、第2のスイッチング素子3を駆動させるための電力が必要となることが課題であった。本発明は部品点数の少ない簡単な構成で且つ電力損失を抑えた電流駆動型半導体スイッチ8の駆動回路を提供することを目的とする。   In the drive circuit of the current-driven semiconductor switch 8 of the prior art, in order to store the current supplied to the control electrode (base or gate) in the inductor 4, the diode 5, the first switching element 2, and the second switching element 3. Therefore, the control unit 9 for driving the switching element is required, and the number of parts increases. Furthermore, there is a problem that electric power for operating the control unit 9 and electric power for driving the first switching element 2 and the second switching element 3 are required. An object of the present invention is to provide a drive circuit for the current drive type semiconductor switch 8 having a simple configuration with a small number of parts and suppressing power loss.

上記課題を解決するために、電源1と電流駆動型半導体スイッチ8のゲート端子の間に接続される負の温度特性を有する第1の可変抵抗10と、前記電流駆動型半導体スイッチ8のエミッタ又はドレイン電流による動作損失により過熱される熱伝導部11を備え、前記第1の可変抵抗10は前記熱伝導部11により熱を供給されるように配置するようにしたものである。   In order to solve the above-described problem, a first variable resistor 10 having a negative temperature characteristic connected between the power source 1 and the gate terminal of the current-driven semiconductor switch 8, and the emitter of the current-driven semiconductor switch 8 or The heat conducting unit 11 is overheated due to operation loss due to drain current, and the first variable resistor 10 is arranged to be supplied with heat by the heat conducting unit 11.

これにより部品点数の少ない簡単な構成で且つ電力損失を抑えた電流駆動型半導体スイッチ8の駆動回路を提供する。   This provides a drive circuit for the current drive type semiconductor switch 8 with a simple configuration with a small number of parts and reduced power loss.

本発明の電流駆動型半導体スイッチ8の駆動回路は、部品点数の少ない簡単な構成で且つ電力損失を抑えた電流駆動型半導体スイッチ駆動を行うことができる。   The drive circuit of the current drive type semiconductor switch 8 of the present invention can perform current drive type semiconductor switch drive with a simple configuration with a small number of parts and reduced power loss.

本発明の電流駆動型半導体スイッチの駆動回路を示す図The figure which shows the drive circuit of the current drive type semiconductor switch of this invention 本発明の電流駆動型半導体スイッチの駆動回路を示す図The figure which shows the drive circuit of the current drive type semiconductor switch of this invention 本発明の実施例における第1の可変抵抗の温度特性を示す図The figure which shows the temperature characteristic of the 1st variable resistance in the Example of this invention. 本発明の実施例における第2の可変抵抗の温度特性を示す図The figure which shows the temperature characteristic of the 2nd variable resistance in the Example of this invention. 本発明の実施例における第3の可変抵抗の温度特性を示す図The figure which shows the temperature characteristic of the 3rd variable resistance in the Example of this invention. 本発明の実施例における電流駆動型半導体スイッチの電気特性を示す図The figure which shows the electrical property of the current drive type semiconductor switch in the Example of this invention 本発明の実施例における電流駆動型半導体スイッチの電気特性を示す図The figure which shows the electrical property of the current drive type semiconductor switch in the Example of this invention 本発明の実施例におけるエアコン用電力変換装置の概略図Schematic of an air conditioner power converter in an embodiment of the present invention 本発明の実施例におけるインバータ回路図Inverter circuit diagram in an embodiment of the present invention 本発明の実施例における電流駆動型半導体スイッチの駆動回路を示す図The figure which shows the drive circuit of the current drive type semiconductor switch in the Example of this invention 従来技術における電流駆動型半導体スイッチの駆動回路を示す図The figure which shows the drive circuit of the current drive type semiconductor switch in a prior art

第1の発明は、電源と電流駆動型半導体スイッチのゲート端子の間に接続される負の温度特性を有する第1の可変抵抗と、前記電流駆動型半導体スイッチのドレイン電流による動作損失により過熱される熱伝導部を備え、前記第1の可変抵抗は前記熱伝導部により熱を供給されるように配置されたことで電流駆動型半導体スイッチのドレイン電流に応じてゲート電流の調整を行うことが可能になり、駆動回路における電力損失を抑制することができる。   The first invention is overheated by a first variable resistor having a negative temperature characteristic connected between a power source and a gate terminal of a current driven semiconductor switch, and an operation loss due to a drain current of the current driven semiconductor switch. The first variable resistor is arranged to be supplied with heat by the heat conducting unit, so that the gate current can be adjusted according to the drain current of the current driven semiconductor switch. Thus, power loss in the drive circuit can be suppressed.

第2の発明は、電源と電流駆動型半導体スイッチのゲート端子の間に直列に接続される負の温度特性を有する第1の可変抵抗と正の温度特性を有する第2の可変抵抗と、
前記電流駆動型半導体スイッチのドレイン電流による動作損失により過熱される熱伝導部を備え、前記第1の可変抵抗は前記熱伝導部により熱を供給され、前記第2の可変抵抗は前記熱伝導部以外(例えば前記電流駆動型半導体スイッチの周辺部)より熱を供給されるように配置され、前記第1と第2の可変抵抗は第1の可変抵抗の温度に対する抵抗値の負の傾きより第2の可変抵抗の温度に対する抵抗値の正の傾きが小さくなるようにすることで、電流駆動型半導体スイッチの周囲温度を考慮したドレイン電流に応じてゲート電流の調整を行うことが可能になり、駆動回路における電力損失を抑制することができる。
A second variable resistor having a negative temperature characteristic and a second variable resistor having a positive temperature characteristic connected in series between a power source and a gate terminal of the current-driven semiconductor switch;
A heat conduction unit that is overheated due to an operation loss due to a drain current of the current-driven semiconductor switch; wherein the first variable resistor is supplied with heat by the heat conduction unit; and the second variable resistor is the heat conduction unit. The first and second variable resistors are arranged with a negative slope of the resistance value with respect to the temperature of the first variable resistor. By reducing the positive slope of the resistance value with respect to the temperature of the variable resistor 2, it becomes possible to adjust the gate current according to the drain current considering the ambient temperature of the current-driven semiconductor switch, Power loss in the drive circuit can be suppressed.

第3の発明は、電源と電流駆動型半導体スイッチのゲート端子の間に直列に接続される負の温度特性を有する第1の可変抵抗と正の温度特性を有する第2の可変抵抗と正の温度特性を有する第3の可変抵抗と、前記電流駆動型半導体スイッチのドレイン電流による動作損失により過熱される熱伝導部を備え、前記第1及び第3の可変抵抗は前記熱伝導部により熱を供給され、前記第2の可変抵抗は前記熱伝導部以外(例えば前記電流駆動型半導体スイッチの周辺部)より熱を供給されるように配置され、前記第1及び第3の可変抵抗は、前記熱伝導部により供給される熱量が所定値未満の場合、前記第1と第3の可変抵抗値の和が負の温度特性を有し、第1と第3の可変抵抗の和の温度に対する抵抗値の負の傾きより第2の可変抵抗の温度に対する抵抗値の正の傾きが小さく、前記第3の可変抵抗は、前記熱伝導部より供給される熱量が所定値を超過した場合、前記電流駆動型半導体スイッチのゲート電流が制限され、ドレイン電流が概ね遮断される抵抗値になるような温度特性を有することで、電流駆動型半導体スイッチの周囲温度を考慮したドレイン電流に応じ
てゲート電流の調整を行うことが可能になり、駆動回路における電力損失を抑制することができ、更に過電流抑制による負荷の保護も合わせて行うことができる。
According to a third aspect of the present invention, there is provided a first variable resistor having a negative temperature characteristic and a second variable resistor having a positive temperature characteristic, which are connected in series between a power source and a gate terminal of a current-driven semiconductor switch, and a positive A third variable resistor having a temperature characteristic; and a heat conduction unit that is overheated due to an operation loss due to a drain current of the current-driven semiconductor switch, wherein the first and third variable resistors are heated by the heat conduction unit. And the second variable resistor is arranged to be supplied with heat from a portion other than the heat conducting portion (for example, a peripheral portion of the current-driven semiconductor switch), and the first and third variable resistors are When the amount of heat supplied by the heat conducting unit is less than a predetermined value, the sum of the first and third variable resistance values has a negative temperature characteristic, and the resistance to the temperature of the sum of the first and third variable resistances From the negative slope of the value to the temperature of the second variable resistor When the positive slope of the resistance value to be performed is small and the amount of heat supplied from the heat conducting unit exceeds a predetermined value, the third variable resistor has a gate current of the current-driven semiconductor switch limited and a drain current Has a temperature characteristic that results in a resistance value that is substantially interrupted, it becomes possible to adjust the gate current according to the drain current in consideration of the ambient temperature of the current-driven semiconductor switch, and the power in the drive circuit Loss can be suppressed, and further load protection by overcurrent suppression can be performed.

第4の発明は、環境温度や電流駆動型半導体スイッチに流れるドレイン電流が条件により大きく変化する空気調和機に適用することで、電流駆動型半導体スイッチの周囲温度を考慮したドレイン電流に応じてゲート電流の調整を行うことが可能になり、駆動回路における電力損失を抑制することができ、更に過電流抑制によりモータなどの負荷の保護も合わせて行うことができる。   The fourth invention is applied to an air conditioner in which the ambient temperature and the drain current flowing through the current-driven semiconductor switch vary greatly depending on the conditions, so that the gate according to the drain current considering the ambient temperature of the current-driven semiconductor switch. The current can be adjusted, power loss in the drive circuit can be suppressed, and overcurrent suppression can also be performed to protect a load such as a motor.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図2は本発明における実施の形態における電流駆動型半導体スイッチ8の駆動回路を示す。
(Embodiment 1)
FIG. 2 shows a drive circuit of the current drive type semiconductor switch 8 in the embodiment of the present invention.

電源1と電流駆動型半導体スイッチ8のベース端子又はゲート端子の間に直列に接続される負の温度特性を有する第1の可変抵抗10と正の温度特性を有する第2の可変抵抗12と、正の温度特性を有する第3の可変抵抗13と、前記電流駆動型半導体スイッチ8のコレクタ又はドレイン電流による動作損失により過熱される熱伝導部11を備え、前記第1の可変抵抗10及び第3の可変抵抗13は前記熱伝導部11により熱を供給され、前記第2の可変抵抗12は前記熱伝導部11以外(例えば前記電流駆動型半導体スイッチ8の周辺部)より熱を供給されるように配置される。   A first variable resistor 10 having a negative temperature characteristic and a second variable resistor 12 having a positive temperature characteristic connected in series between the power source 1 and the base terminal or gate terminal of the current-driven semiconductor switch 8; A third variable resistor 13 having a positive temperature characteristic and a heat conducting unit 11 that is overheated due to an operation loss due to a collector or drain current of the current-driven semiconductor switch 8 are provided. The variable resistor 13 is supplied with heat by the heat conducting unit 11, and the second variable resistor 12 is supplied with heat from other than the heat conducting unit 11 (for example, the peripheral part of the current-driven semiconductor switch 8). Placed in.

前記第1の可変抵抗10及び第3の可変抵抗13は、前記熱伝導部11により供給される熱量が所定値未満の場合、前記第1の可変抵抗10と第3の可変抵抗13の和が負の温度特性を有し、第1の可変抵抗10と第3の可変抵抗13との和の温度に対する抵抗値の負の傾きより第2の可変抵抗12の温度に対する抵抗値の正の傾きが小さく、前記第3の可変抵抗13は、前記熱伝導部11より供給される熱量が所定値を超過した場合、前記電流駆動型半導体スイッチ8のベース又はゲート電流が制限され、コレクタ又はドレイン電流が概ね遮断される抵抗値になるような温度特性を有する。   The first variable resistor 10 and the third variable resistor 13 have a sum of the first variable resistor 10 and the third variable resistor 13 when the amount of heat supplied by the heat conducting unit 11 is less than a predetermined value. It has a negative temperature characteristic, and the positive slope of the resistance value with respect to the temperature of the second variable resistor 12 is less than the negative slope of the resistance value with respect to the temperature of the sum of the first variable resistor 10 and the third variable resistor 13. The third variable resistor 13 is configured such that when the amount of heat supplied from the heat conducting unit 11 exceeds a predetermined value, the base or gate current of the current driven semiconductor switch 8 is limited, and the collector or drain current is reduced. It has a temperature characteristic that provides a resistance value that is substantially interrupted.

以上のように構成された電流駆動型半導体スイッチ8の駆動回路において、以下にその動作と、作用を説明する。   The operation and action of the drive circuit of the current drive type semiconductor switch 8 configured as described above will be described below.

まず、電流駆動型半導体スイッチ8に流れるコレクタ又はドレイン電流の動作損失により過熱される半導体デバイスを外装するパッケージあるいは半導体デバイスに相当する熱伝導部11の温度をTcとし、該熱伝導部11により供給される熱により抵抗値が変化する第1の可変抵抗10及び、第3の可変抵抗13の温度特性をそれぞれ図3、図5に示す。   First, the temperature of the heat conducting part 11 corresponding to the package or semiconductor device covering the semiconductor device that is overheated due to the operation loss of the collector or drain current flowing in the current driven semiconductor switch 8 is Tc, and is supplied by the heat conducting part 11. FIG. 3 and FIG. 5 show the temperature characteristics of the first variable resistor 10 and the third variable resistor 13 whose resistance values are changed by the applied heat, respectively.

第1の可変抵抗10は図3に示すように電流駆動型半導体スイッチ8における熱伝導部11の温度Tcに対して負の温度特性を有し、第3の可変抵抗13は図5に示すように電流駆動型半導体スイッチ8における熱伝導部11の温度Tcに対して正の温度特性を有し、特に熱伝導部11の温度TcがTclim以上ではベース又はゲート電流を制限しコレクタ又はドレイン電流を遮断する抵抗値になるようにする。また、電流駆動型半導体スイッチ8の周辺温度あるいは雰囲気温度Taより供給される熱により抵抗値が変化する第2の可変抵抗12の温度特性を図4に示す。第2の可変抵抗12は図4に示すように雰囲気温度Taに対して正の温度特性を有する。   As shown in FIG. 3, the first variable resistor 10 has a negative temperature characteristic with respect to the temperature Tc of the heat conducting section 11 in the current driven semiconductor switch 8, and the third variable resistor 13 is shown in FIG. The current drive type semiconductor switch 8 has a positive temperature characteristic with respect to the temperature Tc of the heat conducting portion 11, and particularly when the temperature Tc of the heat conducting portion 11 is equal to or higher than Tclim, the base or gate current is limited to reduce the collector or drain current. Make the resistance value to block. FIG. 4 shows the temperature characteristics of the second variable resistor 12 whose resistance value changes due to the heat supplied from the ambient temperature of the current-driven semiconductor switch 8 or the ambient temperature Ta. As shown in FIG. 4, the second variable resistor 12 has a positive temperature characteristic with respect to the ambient temperature Ta.

例えば、電流駆動型半導体スイッチ8にワイドバンドギャップ型の化合物半導体であるGaN(窒化ガリウム)を用いた場合、ゲート電流Igとドレイン電流Idには図6に示すような電気特性を有する。電流駆動型半導体スイッチ8における熱伝導部11の温度TcがTcaで固定されている場合、ゲート電流Ig_a、Ig_b、Ig_cの大小関係をIg_a>Ig_b>Ig_cとすると、流すことのできる最大ドレイン電流はゲート電流IgをIg_aに設定したときに最大となり、ゲート電流IgをIg_cに設定したときに最小となる。   For example, when GaN (gallium nitride), which is a wide bandgap compound semiconductor, is used for the current-driven semiconductor switch 8, the gate current Ig and the drain current Id have electrical characteristics as shown in FIG. When the temperature Tc of the heat conducting unit 11 in the current-driven semiconductor switch 8 is fixed at Tca, the maximum drain current that can flow is given by the relationship between the gate currents Ig_a, Ig_b, and Ig_c: Ig_a> Ig_b> Ig_c It becomes maximum when the gate current Ig is set to Ig_a, and becomes minimum when the gate current Ig is set to Ig_c.

また、電流駆動型半導体スイッチ8における熱伝導部11の温度Tcとドレイン電流Idには図7に示すような電気特性がある。ゲート電流IgがIg_aで固定される場合、電流駆動型半導体スイッチ8の温度Tca、Tcb、Tccの大小関係をTca>Tcb>Tccとすると、流すことのできる最大ドレイン電流は電流駆動型半導体スイッチ8における熱伝導部11の温度TcをTccに設定したときに最大となり、電流駆動型半導体スイッチ8における熱伝導部11の温度TcをTcaに設定したときに最小となる。   Further, the temperature Tc and the drain current Id of the heat conducting unit 11 in the current driven semiconductor switch 8 have electrical characteristics as shown in FIG. When the gate current Ig is fixed at Ig_a, if the magnitude relationship among the temperatures Tca, Tcb, and Tcc of the current-driven semiconductor switch 8 is Tca> Tcb> Tcc, the maximum drain current that can flow is the current-driven semiconductor switch 8. It becomes the maximum when the temperature Tc of the heat conducting part 11 is set to Tcc, and becomes the minimum when the temperature Tc of the heat conducting part 11 in the current drive type semiconductor switch 8 is set to Tca.

ここで雰囲気温度Taが等しく、ドレイン電流Idによる温度上昇ΔT、電流駆動型半導体スイッチ8における熱伝導部11の温度Tcが異なる場合の駆動回路の電力損失について説明する。   Here, the power loss of the drive circuit when the ambient temperature Ta is the same, the temperature rise ΔT due to the drain current Id, and the temperature Tc of the heat conducting section 11 in the current drive type semiconductor switch 8 will be described.

例えば雰囲気温度Ta=20℃、ドレイン電流Idによる温度上昇ΔTがΔT=20℃(Tc=40℃)を条件(a)とし、雰囲気温度Ta=20℃、ドレイン電流Idによる温度上昇ΔTがΔT=40℃(Tc=60℃)を条件(b)とした場合、ドレイン電流Idにより必要なゲート電流が流れるように予め温度特性が考慮された第1から第3の可変抵抗(10、12、13)を用い、雰囲気温度Taに依存する第2の可変抵抗12の抵抗値をRg2(20℃)、熱伝導部11の温度Tcに依存する第1、第3の可変抵抗(10、13)の抵抗値をそれぞれRg1(40℃)、Rg3(40℃)とRg1(60℃)、Rg3(60℃)とすると条件(a)、条件(b)それぞれのゲート抵抗Rg(a)、Rg(b)は以下のようになる。
Rg(a)=Rg1(40℃)+Rg2(20℃)+Rg3(40℃)
Rg(b)=Rg1(60℃)+Rg2(20℃)+Rg3(60℃)
ここでRg1とRg3の抵抗値の和は負の温度特性を有するように予め選択すればRg(a)とRg(b)の大小関係は
Rg(a)>Rg(b)
となり、ドレイン電流Idの大きい駆動回路のゲート電流が大きくなるように調整され、逆にドレイン電流Idの小さい駆動回路のゲート電流が小さくなるように調整される。
For example, the condition (a) is that the ambient temperature Ta = 20 ° C. and the temperature rise ΔT due to the drain current Id is ΔT = 20 ° C. (Tc = 40 ° C.), and the temperature rise ΔT due to the ambient temperature Ta = 20 ° C. and the drain current Id is ΔT = When the condition (b) is 40 ° C. (Tc = 60 ° C.), the first to third variable resistors (10, 12, 13) in which temperature characteristics are considered in advance so that a necessary gate current flows due to the drain current Id. ), The resistance value of the second variable resistor 12 depending on the ambient temperature Ta is Rg2 (20 ° C.), and the first and third variable resistors (10, 13) depending on the temperature Tc of the heat conducting unit 11 When the resistance values are Rg1 (40 ° C.), Rg3 (40 ° C.), Rg1 (60 ° C.), and Rg3 (60 ° C.), the gate resistances Rg (a) and Rg (b) of the conditions (a) and (b), respectively. ) Is as follows.
Rg (a) = Rg1 (40 ° C.) + Rg2 (20 ° C.) + Rg3 (40 ° C.)
Rg (b) = Rg1 (60 ° C.) + Rg2 (20 ° C.) + Rg3 (60 ° C.)
Here, if the sum of the resistance values of Rg1 and Rg3 is selected in advance so as to have a negative temperature characteristic, the magnitude relationship between Rg (a) and Rg (b) is Rg (a)> Rg (b).
Thus, the gate current of the drive circuit having a large drain current Id is adjusted to be large, and conversely, the gate current of the drive circuit having a small drain current Id is adjusted to be small.

よってゲート駆動用電源電圧Ecとすると、ドレイン電流が大きい場合(条件(b))の駆動回路の電力損失はEc/Rg(b)、ドレイン電流が小さい場合(条件(a))の駆動回路の電力損失はEc/Rg(a)(<Ec/Rg(b))となり、ドレイン電流Idの必要に応じたゲート電流を供給することで駆動回路における電力損失を抑制することができる。 Therefore, when the gate drive power supply voltage Ec is used, the power loss of the drive circuit when the drain current is large (condition (b)) is Ec 2 / Rg (b), and the drive circuit when the drain current is small (condition (a)). Is Ec 2 / Rg (a) (<Ec 2 / Rg (b)), and it is possible to suppress the power loss in the drive circuit by supplying the gate current according to the necessity of the drain current Id.

次に電流駆動型半導体スイッチ8における熱伝導部11の温度Tcが等しく、雰囲気温度Ta、ドレイン電流Idが異なる場合の駆動回路の電力損失について説明する。   Next, the power loss of the drive circuit when the temperature Tc of the heat conducting unit 11 in the current drive type semiconductor switch 8 is equal, the ambient temperature Ta, and the drain current Id are different will be described.

例えば電流駆動型半導体スイッチ8における熱伝導部11の温度Tc=80℃、雰囲気温度Ta=20℃、ドレイン電流Idによる温度上昇ΔT=60℃を条件(c)とし、電流駆動型半導体スイッチ8における熱伝導部11の温度Tc=80℃、雰囲気温度Ta=60℃、ドレイン電流Idによる温度上昇ΔT=20℃を条件(d)とした場合、ドレイン電流Idにより必要なゲート電流が流れるように予め温度特性が考慮された第1から第
3の可変抵抗(10、12、13)を用い、熱伝導部11の温度Tcに依存する第1、第3の可変抵抗(10、13)の抵抗値をRg1(80℃)、Rg3(80℃)、雰囲気温度Taに依存する第2の可変抵抗12の抵抗値をRg2(20℃)、Rg2(60℃)とすると条件(c)、条件(d)それぞれのゲート抵抗Rg(c)、Rg(d)は以下のようになる。
Rg(c)=Rg1(80℃)+Rg2(20℃)+Rg3(80℃)
Rg(d)=Rg1(80℃)+Rg2(60℃)+Rg3(80℃)
ここでRg2の抵抗値は正の温度特性を有するためRg(c)とRg(d)の大小関係は
Rg(c)<Rg(d)
となり、ドレイン電流Idの大きい駆動回路のゲート電流が大きくなるように調整され、逆にドレイン電流Idの小さい駆動回路のゲート電流が小さくなるように調整される。
For example, the condition (c) is that the temperature Tc = 80 ° C. of the heat conducting unit 11 in the current drive semiconductor switch 8, the ambient temperature Ta = 20 ° C., and the temperature rise ΔT = 60 ° C. due to the drain current Id. When the temperature Tc = 80 ° C. of the heat conducting unit 11, the ambient temperature Ta = 60 ° C., and the temperature increase ΔT = 20 ° C. due to the drain current Id are set as the condition (d), the necessary gate current flows beforehand by the drain current Id. Resistance values of the first and third variable resistors (10, 13) depending on the temperature Tc of the heat conducting unit 11 using the first to third variable resistors (10, 12, 13) in consideration of the temperature characteristics. Are Rg1 (80 ° C.), Rg3 (80 ° C.), and the resistance value of the second variable resistor 12 depending on the ambient temperature Ta is Rg2 (20 ° C.) and Rg2 (60 ° C.), the conditions (c) and (d ) The respective gate resistances Rg (c) and Rg (d) are as follows.
Rg (c) = Rg1 (80 ° C.) + Rg2 (20 ° C.) + Rg3 (80 ° C.)
Rg (d) = Rg1 (80 ° C.) + Rg2 (60 ° C.) + Rg3 (80 ° C.)
Here, since the resistance value of Rg2 has a positive temperature characteristic, the magnitude relationship between Rg (c) and Rg (d) is Rg (c) <Rg (d).
Thus, the gate current of the drive circuit having a large drain current Id is adjusted to be large, and conversely, the gate current of the drive circuit having a small drain current Id is adjusted to be small.

よってゲート駆動用電源電圧Ecとすると、ドレイン電流が大きい場合(条件(c))の駆動回路の電力損失はEc/Rg(c)、ドレイン電流が小さい場合(条件(d))の駆動回路の電力損失はEc/Rg(d)(<Ec/Rg(c))となり、ドレイン電流Idの必要に応じたゲート電流を供給することで駆動回路における電力損失を抑制することができる。 Therefore, when the gate drive power supply voltage Ec is used, the power loss of the drive circuit when the drain current is large (condition (c)) is Ec 2 / Rg (c), and the drive circuit when the drain current is small (condition (d)). Is Ec 2 / Rg (d) (<Ec 2 / Rg (c)). By supplying a gate current according to the necessity of the drain current Id, the power loss in the drive circuit can be suppressed.

次にドレイン電流Idによる温度上昇ΔTが等しく、雰囲気温度Ta、電流駆動型半導体スイッチ8における熱伝導部11の温度Tcが異なる場合の駆動回路の電力損失について説明する。   Next, the power loss of the drive circuit when the temperature rise ΔT due to the drain current Id is equal, the ambient temperature Ta, and the temperature Tc of the heat conducting part 11 in the current drive type semiconductor switch 8 will be described.

例えばドレイン電流Idによる温度上昇ΔT=20℃、雰囲気温度Ta=20℃、電流駆動型半導体スイッチ8における熱伝導部11の温度Tc=40℃を条件(e)とし、ドレイン電流Idによる温度上昇ΔT=20℃、雰囲気温度Ta=60℃、熱伝導部11の温度Tc=80℃を条件(f)とした場合、ドレイン電流Idにより必要なゲート電流が流れるように予め温度特性が考慮された第1から第3の可変抵抗(10、12、13)を用い、熱伝導部11の温度Tcに依存する第1、第3の可変抵抗(10、13)の抵抗値をそれぞれRg1(40℃)、Rg3(40℃)とRg1(80℃)、Rg3(80℃)、雰囲気温度Taに依存する第2の可変抵抗12の抵抗値をそれぞれRg2(20℃)、Rg2(60℃)とすると条件(c)、条件(d)それぞれのゲート抵抗Rg(c)、Rg(d)は以下のようになる。
Rg(e)=Rg1(40℃)+Rg2(20℃)+Rg3(40℃)
Rg(f)=Rg1(80℃)+Rg2(60℃)+Rg3(80℃)
ここでRg1とRg3の抵抗値の和は負の温度特性を有し、Rg1とRg3の抵抗値の和についての温度に対する負の傾きよりRg2の抵抗値の温度に対する抵抗値の正の傾きが小さくなるように予め選択すればRg(e)とRg(f)の大小関係は
Rg(e)>Rg(f)
となり、ドレイン電流Idが等しい場合、雰囲気温度Ta、熱伝導部11の温度Tcが高くなる駆動回路のゲート電流が大きくなるように調整され、逆に雰囲気温度Ta、熱伝導部11の温度Tcが低くなる駆動回路のゲート電流が小さくなるように調整される。
For example, the temperature rise ΔT = 20 ° C. due to the drain current Id, the ambient temperature Ta = 20 ° C., and the temperature Tc = 40 ° C. of the heat conducting unit 11 in the current drive type semiconductor switch 8 are set as the condition (e). Assuming that the condition (f) is 20 ° C., the ambient temperature Ta = 60 ° C., and the temperature Tc = 80 ° C. of the heat conducting section 11, the temperature characteristics are considered in advance so that the necessary gate current flows due to the drain current Id. The first to third variable resistors (10, 12, 13) are used, and the resistance values of the first and third variable resistors (10, 13) depending on the temperature Tc of the heat conducting section 11 are Rg1 (40 ° C.), respectively. , Rg3 (40 ° C.), Rg1 (80 ° C.), Rg3 (80 ° C.), and the resistance value of the second variable resistor 12 depending on the ambient temperature Ta are Rg2 (20 ° C.) and Rg2 (60 ° C.), respectively. ( c) and gate resistances Rg (c) and Rg (d) of condition (d) are as follows.
Rg (e) = Rg1 (40 ° C.) + Rg2 (20 ° C.) + Rg3 (40 ° C.)
Rg (f) = Rg1 (80 ° C.) + Rg2 (60 ° C.) + Rg3 (80 ° C.)
Here, the sum of the resistance values of Rg1 and Rg3 has a negative temperature characteristic, and the positive slope of the resistance value with respect to the temperature of the resistance value of Rg2 is smaller than the negative slope with respect to the temperature of the sum of the resistance values of Rg1 and Rg3. If preselected so that the relationship between Rg (e) and Rg (f) is Rg (e)> Rg (f)
When the drain current Id is equal, the gate temperature of the drive circuit is increased so that the ambient temperature Ta and the temperature Tc of the heat conducting unit 11 are increased. Conversely, the ambient temperature Ta and the temperature Tc of the heat conducting unit 11 are Adjustment is made so that the gate current of the driving circuit to be lowered becomes small.

よってゲート駆動用電源電圧Ecとすると、雰囲気温度Ta、熱伝導部11の温度Tcが高くなる場合(条件(f))の駆動回路の電力損失はEc/Rg(f)、雰囲気温度Ta、熱伝導部11の温度Tcが低くなる場合(条件(e))の駆動回路の電力損失はEc/Rg(e)(<Ec/Rg(f))となり、ドレイン電流Idの必要に応じたゲート電流を供給することで駆動回路における電力損失を抑制することができる。 Therefore, when the gate drive power supply voltage Ec is used, the power loss of the drive circuit when the ambient temperature Ta and the temperature Tc of the heat conducting unit 11 are high (condition (f)) is Ec 2 / Rg (f), the ambient temperature Ta, When the temperature Tc of the heat conducting unit 11 is low (condition (e)), the power loss of the drive circuit is Ec 2 / Rg (e) (<Ec 2 / Rg (f)), and the drain current Id is required as required. By supplying the gate current, power loss in the drive circuit can be suppressed.

更に電流駆動型半導体スイッチ8の熱伝導部11の温度TcがTclim以上となる場
合について説明する。ドレイン電流Idがほぼ遮断されるゲート電流IgがIglim以下である場合、電流駆動型半導体スイッチ8あるいは負荷7の最大許容以上のドレイン電流が流れた場合の熱伝導部11の温度をTclim、このときの第3の可変抵抗13の抵抗値をRg3(Tclim)とし、以下の関係を満たすように第3の可変抵抗13を予め設定する。
Ec<{Iglim×Rg3(Tclim)}
これにより電流駆動型半導体スイッチ8あるいは負荷7において、過電流に対する機械的な装置を不要にした保護手段となり、他の保護装置と組み合わせることでより高い信頼性を実現することができる。
Further, a case where the temperature Tc of the heat conducting unit 11 of the current drive type semiconductor switch 8 is equal to or higher than Tclim will be described. When the gate current Ig at which the drain current Id is substantially cut off is equal to or less than Iglim, the temperature of the heat conducting unit 11 when the drain current exceeding the maximum allowable current of the current drive type semiconductor switch 8 or the load 7 flows is Tclim, The resistance value of the third variable resistor 13 is Rg3 (Tcrim), and the third variable resistor 13 is set in advance so as to satisfy the following relationship.
Ec <{Iglim × Rg3 (Tclim)}
As a result, the current-driven semiconductor switch 8 or the load 7 becomes a protection means that eliminates the need for a mechanical device against overcurrent, and higher reliability can be realized by combining with other protection devices.

また、図2に示す駆動回路をエアコン等の圧縮機駆動用インバータ回路に適用した場合について説明する。図8はエアコン用電力変換装置の概略図、図9にインバータ回路を示す。交流電源14はリアクタ15を介してダイオードブリッジ16に入力整流され、整流電圧をコンデンサ17で平滑化する。平滑化された電圧をインバータ回路18に入力し、交流電力に変換して負荷7である圧縮機モータ19に電力を伝える。ここでインバータ回路18はパワー半導体として6個(QUH、QUL、QVH、QVL、QWH、QWL)の電流駆動型半導体スイッチ8であるGaN半導体スイッチで構成する。 Moreover, the case where the drive circuit shown in FIG. 2 is applied to an inverter circuit for driving a compressor such as an air conditioner will be described. FIG. 8 is a schematic diagram of an air conditioner power converter, and FIG. 9 shows an inverter circuit. The AC power supply 14 is input rectified to the diode bridge 16 via the reactor 15, and the rectified voltage is smoothed by the capacitor 17. The smoothed voltage is input to the inverter circuit 18, converted into AC power, and transmitted to the compressor motor 19 that is the load 7. Here, the inverter circuit 18 is composed of six (Q UH , Q UL , Q VH , Q VL , Q WH , Q WL ) current-driven semiconductor switches 8 as GaN semiconductor switches as power semiconductors.

一般的にエアコン等の圧縮機駆動用インバータ回路では6個のパワー半導体が1つのモジュール20に配置される構成をとる。図10は該モジュール20におけるU相の上下アームのパワー半導体スイッチ(QUH、QUL)と上アーム側の電流駆動型半導体スイッチ8であるパワー半導体スイッチ(QUH)の駆動回路を示す。 In general, an inverter circuit for driving a compressor such as an air conditioner has a configuration in which six power semiconductors are arranged in one module 20. Figure 10 shows a drive circuit of a power semiconductor switch (Q UH, Q UL) of the upper and lower arm and a power semiconductor switch is a current-driven semiconductor switch 8 on the upper arm side (Q UH) of the U-phase in the module 20.

ここでモジュール20を熱伝導部11として考えれば、第1および第3の可変抵抗(10、13)をモジュール20の内に配置して、第2の可変抵抗12をモジュール20の外に配置すれば、電流駆動型半導体スイッチ8(パワー半導体)を流れるドレイン電流やパワー半導体の雰囲気温度の変化に伴い、前述したようにゲート電流が調整され駆動回路における動作損失を抑制する。   If the module 20 is considered as the heat conducting unit 11, the first and third variable resistors (10, 13) are arranged inside the module 20, and the second variable resistor 12 is arranged outside the module 20. For example, as described above, the gate current is adjusted in accordance with the change in the drain current flowing through the current-driven semiconductor switch 8 (power semiconductor) and the ambient temperature of the power semiconductor, thereby suppressing the operation loss in the drive circuit.

特にインバータエアコン等のようにインバータ回路18が設置される環境温度、雰囲気温度が季節(夏冬)や時間帯(昼夜)により大きく変動し、更にインバータ運転によりインバータ動作電流が大きく変動する場合において、常時最大ドレイン電流値や最もドレイン電流を流しにくい条件(温度)を想定してゲート電流を設定する必要がなく、ドレイン電流や温度により必要となる電流値に調整されたゲート電流を供給することで駆動回路における動作損失を抑制することができる。   Especially when the environmental temperature and the ambient temperature where the inverter circuit 18 is installed, such as an inverter air conditioner, vary greatly depending on the season (summer winter) or time zone (day and night), and the inverter operating current varies greatly due to the inverter operation. By supplying the gate current adjusted to the required current value according to the drain current and temperature, it is not necessary to set the gate current assuming the maximum drain current value or the condition (temperature) where the drain current is most difficult to flow. Operation loss in the drive circuit can be suppressed.

なお、第3の可変抵抗13はなくても構わない。   Note that the third variable resistor 13 may be omitted.

また、エアコン用インバータ回路への適用について説明したが、冷蔵庫、洗濯機、掃除機など温度や電流値の変動のある各種インバータ回路においても同様の効果が期待できる。   Further, the application to the inverter circuit for an air conditioner has been described, but the same effect can be expected in various inverter circuits such as a refrigerator, a washing machine, and a vacuum cleaner that vary in temperature and current value.

以上のように温度により抵抗値が変化する可変抵抗を用いて、電流駆動型半導体スイッチ8の熱伝導部11の温度Tc(デバイスケース温度)や雰囲気温度Ta、ドレイン電流Idに応じてゲート電流を調整することにより駆動回路における電力損失を抑制することができる。   As described above, by using the variable resistor whose resistance value varies depending on the temperature, the gate current is changed according to the temperature Tc (device case temperature) of the heat conducting portion 11 of the current-driven semiconductor switch 8, the ambient temperature Ta, and the drain current Id. By adjusting the power loss, the power loss in the drive circuit can be suppressed.

以上のように、本発明は従来の電流駆動型半導体スイッチ8の駆動回路と比較して、特に環境温度や動作電流の変化の大きなインバータ機器において、部品点数の少ない簡単な
構成で駆動回路における電力損失の抑制を実現することができるためエアコンや冷蔵庫、洗濯機をはじめ様々なインバータ機器への応用が可能である。
As described above, the present invention has a simple configuration with a small number of parts and a low power consumption in the drive circuit, particularly in an inverter device having a large change in environmental temperature and operating current, as compared with the drive circuit of the conventional current-driven semiconductor switch 8. Since loss can be suppressed, it can be applied to various inverter devices such as air conditioners, refrigerators, and washing machines.

1 電源(制御側)
2 第1のスイッチング素子
3 第2のスイッチング素子
4 インダクタ
5 ダイオード
6 電源(負荷側)
7 負荷
8 電流駆動型半導体スイッチ
9 制御部
10 第1の可変抵抗
11 熱伝導部
12 第2の可変抵抗
13 第3の可変抵抗
14 交流電源
15 リアクタ
16 ダイオードブリッジ
17 コンデンサ
18 インバータ回路
19 モータ
20 モジュール
1 Power supply (control side)
2 First switching element 3 Second switching element 4 Inductor 5 Diode 6 Power supply (load side)
DESCRIPTION OF SYMBOLS 7 Load 8 Current drive type semiconductor switch 9 Control part 10 1st variable resistance 11 Heat conduction part 12 2nd variable resistance 13 3rd variable resistance 14 AC power supply 15 Reactor 16 Diode bridge 17 Capacitor 18 Inverter circuit 19 Motor 20 Module

Claims (4)

電源と電流駆動型半導体スイッチのゲート端子の間に接続される負の温度特性を有する第1の可変抵抗と、前記電流駆動型半導体スイッチのドレイン電流による動作損失により過熱される熱伝導部を備え、
前記第1の可変抵抗は前記熱伝導部により熱を供給されるように配置されたことを特徴とする電流駆動型半導体スイッチの駆動回路。
A first variable resistor having a negative temperature characteristic connected between a power supply and a gate terminal of the current-driven semiconductor switch; and a heat conducting portion that is overheated due to an operation loss due to a drain current of the current-driven semiconductor switch. ,
The drive circuit of the current drive type semiconductor switch, wherein the first variable resistor is arranged to be supplied with heat by the heat conducting unit.
電源と電流駆動型半導体スイッチのゲート端子の間に直列に接続される負の温度特性を有する第1の可変抵抗と正の温度特性を有する第2の可変抵抗と、
前記電流駆動型半導体スイッチのドレイン電流による動作損失により過熱される熱伝導部を備え、
前記第1の可変抵抗は前記熱伝導部により熱を供給され、前記第2の可変抵抗は前記熱伝導部以外(例えば前記電流駆動型半導体スイッチの周辺部)より熱を供給されるように配置され、前記第1と第2の可変抵抗は第1の可変抵抗の温度に対する抵抗値の負の傾きより第2の可変抵抗の温度に対する抵抗値の正の傾きが小さくなることを特徴とする電流駆動型半導体スイッチの駆動回路。
A first variable resistor having a negative temperature characteristic and a second variable resistor having a positive temperature characteristic connected in series between the power supply and the gate terminal of the current-driven semiconductor switch;
A heat conduction part that is overheated due to operation loss due to drain current of the current-driven semiconductor switch;
The first variable resistor is arranged to be supplied with heat by the heat conducting part, and the second variable resistor is arranged to be supplied with heat from other than the heat conducting part (for example, the peripheral part of the current driven semiconductor switch). And the first and second variable resistors have a positive slope of the resistance value with respect to the temperature of the second variable resistor smaller than a negative slope of the resistance value with respect to the temperature of the first variable resistor. Drive circuit for drive semiconductor switch.
電源と電流駆動型半導体スイッチのゲート端子の間に直列に接続される負の温度特性を有する第1の可変抵抗と正の温度特性を有する第2の可変抵抗と正の温度特性を有する第3の可変抵抗と、
前記電流駆動型半導体スイッチのドレイン電流による動作損失により過熱される熱伝導部を備え、
前記第1及び第3の可変抵抗は前記熱伝導部により熱を供給され、前記第2の可変抵抗は前記熱伝導部以外(例えば前記電流駆動型半導体スイッチの周辺部)より熱を供給されるように配置され、前記第1及び第3の可変抵抗は、前記熱伝導部により供給される熱量が所定値未満の場合、前記第1と第3の可変抵抗値の和が負の温度特性を有し、第1と第3の可変抵抗の和の温度に対する抵抗値の負の傾きより第2の可変抵抗の温度に対する抵抗値の正の傾きが小さく、前記第3の可変抵抗は、前記熱伝導部より供給される熱量が所定値を超過した場合、前記電流駆動型半導体スイッチのゲート電流が制限され、ドレイン電流が概ね遮断される抵抗値になるような温度特性を有することを特徴とする電流駆動型半導体スイッチの駆動回路。
A first variable resistor having a negative temperature characteristic, a second variable resistor having a positive temperature characteristic, and a third having a positive temperature characteristic are connected in series between the power supply and the gate terminal of the current-driven semiconductor switch. Variable resistance,
A heat conduction part that is overheated due to operation loss due to drain current of the current-driven semiconductor switch;
The first and third variable resistors are supplied with heat from the heat conducting unit, and the second variable resistor is supplied with heat from other than the heat conducting unit (for example, the peripheral portion of the current-driven semiconductor switch). The first and third variable resistors have a temperature characteristic in which the sum of the first and third variable resistance values is negative when the amount of heat supplied by the heat conducting unit is less than a predetermined value. The positive slope of the resistance value with respect to the temperature of the second variable resistor is smaller than the negative slope of the resistance value with respect to the temperature of the sum of the first and third variable resistors, and the third variable resistor has the thermal resistance When the amount of heat supplied from the conduction unit exceeds a predetermined value, the gate current of the current-driven semiconductor switch is limited, and the temperature characteristic is such that the drain current has a resistance value that is substantially cut off. Drive circuit for current-driven semiconductor switch.
出力可変型の空気調和機に適用したことを特徴とする請求項1から3のいずれかに記載の電流駆動型半導体スイッチの駆動回路。 4. The drive circuit for a current driven semiconductor switch according to claim 1, wherein the drive circuit is applied to an output variable type air conditioner.
JP2011154537A 2011-07-13 2011-07-13 Drive circuit for current drive type semiconductor switch Withdrawn JP2013021583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154537A JP2013021583A (en) 2011-07-13 2011-07-13 Drive circuit for current drive type semiconductor switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154537A JP2013021583A (en) 2011-07-13 2011-07-13 Drive circuit for current drive type semiconductor switch

Publications (1)

Publication Number Publication Date
JP2013021583A true JP2013021583A (en) 2013-01-31

Family

ID=47692558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154537A Withdrawn JP2013021583A (en) 2011-07-13 2011-07-13 Drive circuit for current drive type semiconductor switch

Country Status (1)

Country Link
JP (1) JP2013021583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140264A (en) * 2015-04-30 2017-12-20 킴벌리-클라크 월드와이드, 인크. How to distribute a plurality of interconnected tissues

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170140264A (en) * 2015-04-30 2017-12-20 킴벌리-클라크 월드와이드, 인크. How to distribute a plurality of interconnected tissues
KR20180004143A (en) * 2015-04-30 2018-01-10 킴벌리-클라크 월드와이드, 인크. A plurality of interconnected tissues for use in a dispenser

Similar Documents

Publication Publication Date Title
US8351231B2 (en) Power conversion device
CN102545559B (en) Gate driver and semiconductor device
CN101540502B (en) Speed controller including a device for protection against overcurrents and overvoltages
JP5584357B2 (en) Variable speed drive
JP6006866B2 (en) Method and apparatus for controlling thermal cycling
JP5098599B2 (en) Brushless motor drive device for compressor of air conditioner
EP3240185B1 (en) Motor driving control apparatus with winding changeover switch of motor, motor, compressor, and method of controlling winding changeover of motor
CN110401335B (en) Drive circuit, power module, and power conversion system
JP2017195688A (en) Power converter
JP2009198139A (en) Brushless motor driving device for compressor of air conditioner
CN105103427A (en) Insulated gate semiconductor device
JP2009011013A (en) Power conversion equipment
EP3029821A1 (en) Semiconductor device and power conversion device
CN108292917B (en) Circuit arrangement for temperature-dependent actuation of a switching element
WO2019026293A1 (en) Power conversion device, motor drive device, and air conditioner
KR20150053233A (en) Power semiconductor circuit
JP6820825B2 (en) Semiconductor devices and their driving methods
JP6314053B2 (en) Power conversion apparatus and control method thereof
WO2020105414A1 (en) Electric power converting device
JP2003218675A5 (en)
WO2020017008A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
JP5245468B2 (en) Gate drive circuit
JP2013021583A (en) Drive circuit for current drive type semiconductor switch
CN111133577B (en) 2-in-1 chopper module
US9588527B2 (en) Method of operating on-load tap changer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007