JP2013020958A - Nonaqueous electrolyte power storage device, and method for manufacturing the same - Google Patents

Nonaqueous electrolyte power storage device, and method for manufacturing the same Download PDF

Info

Publication number
JP2013020958A
JP2013020958A JP2012133210A JP2012133210A JP2013020958A JP 2013020958 A JP2013020958 A JP 2013020958A JP 2012133210 A JP2012133210 A JP 2012133210A JP 2012133210 A JP2012133210 A JP 2012133210A JP 2013020958 A JP2013020958 A JP 2013020958A
Authority
JP
Japan
Prior art keywords
epoxy resin
separator
storage device
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012133210A
Other languages
Japanese (ja)
Inventor
Hirosuke Yamada
洋佑 山田
Shunsuke Nomi
俊祐 能見
Hiroyoshi Take
弘義 武
Chiharu Yano
千春 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2012133210A priority Critical patent/JP2013020958A/en
Publication of JP2013020958A publication Critical patent/JP2013020958A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte power storage device capable of manufacturing a separator by a relatively easy method for controlling parameters, such as a pore size, without using a solvent with significant environmental burdens, and the decomposition of an electrolytic solution is inhibited.SOLUTION: The nonaqueous electrolyte power storage device comprises a cathode, an anode, a separator disposed between the cathode and the anode, and an electrolytic solution with ionic conductivity. The separator contains a porous epoxy-resin body, and the electrolytic solution contains a nonaqueous solvent, a fluorine-containing electrolyte, and a Lewis base compound.

Description

本発明は、非水電解質蓄電デバイス及びその製造方法に関し、詳しくは、エポキシ樹脂を用いたセパレータを含む非水電解質蓄電デバイス及びその製造方法に関する。   The present invention relates to a nonaqueous electrolyte electricity storage device and a method for producing the same, and more particularly to a nonaqueous electrolyte electricity storage device including a separator using an epoxy resin and a method for producing the same.

地球環境保全、化石燃料の枯渇等の諸問題を背景に、リチウムイオン二次電池やリチウムイオンキャパシタなどに代表される非水電解質蓄電デバイスの需要が年々増加している。非水電解質蓄電デバイスのセパレータとして、従来、ポリオレフィン多孔質膜が使用されている。ポリオレフィン多孔質膜は、以下に説明する方法で製造することができる。   Demand for non-aqueous electrolyte electricity storage devices represented by lithium ion secondary batteries and lithium ion capacitors is increasing year by year against the background of various problems such as global environmental conservation and fossil fuel depletion. Conventionally, polyolefin porous membranes have been used as separators for nonaqueous electrolyte electricity storage devices. The polyolefin porous membrane can be produced by the method described below.

まず、溶媒とポリオレフィン樹脂とを混合及び加熱してポリオレフィン溶液を調製する。Tダイ等の金型を用い、ポリオレフィン溶液をシート形状に成形しながら吐出及び冷却し、シート状の成形体を得る。シート状の成形体を延伸するとともに、成形体から溶媒を除去する。これにより、ポリオレフィン多孔質膜が得られる。成形体から溶媒を除去する工程で、有機溶剤が使用される(特許文献1参照)。   First, a solvent and a polyolefin resin are mixed and heated to prepare a polyolefin solution. Using a mold such as a T-die, the polyolefin solution is discharged and cooled while forming into a sheet shape to obtain a sheet-like molded body. While extending | stretching a sheet-like molded object, a solvent is removed from a molded object. Thereby, a polyolefin porous membrane is obtained. An organic solvent is used in the step of removing the solvent from the molded body (see Patent Document 1).

上記製造方法において、有機溶剤として、ジクロロメタンのようなハロゲン化有機化合物を使用することが多い。ハロゲン化有機化合物の使用は、環境に対する負荷が非常に大きいので問題となっている。   In the above production method, a halogenated organic compound such as dichloromethane is often used as the organic solvent. The use of halogenated organic compounds is problematic because the environmental burden is very large.

他方、特許文献2に記載されている方法(いわゆる乾式法)によれば、環境に対する負荷が大きい溶剤を使用せずにポリオレフィン多孔質膜を製造することができる。しかし、この方法には、多孔質膜の孔径を制御するのが難しいという問題がある。また、この方法で製造された多孔質膜をセパレータとして用いると、蓄電デバイスの内部でイオン透過の偏りが発生しやすいという問題もある。   On the other hand, according to the method described in Patent Document 2 (so-called dry method), a polyolefin porous membrane can be produced without using a solvent that has a large environmental load. However, this method has a problem that it is difficult to control the pore diameter of the porous membrane. Moreover, when the porous membrane manufactured by this method is used as a separator, there is also a problem that bias of ion permeation tends to occur inside the electricity storage device.

一方、リチウムイオン二次電池やリチウムイオンキャパシタなどの非水電解質蓄電デバイスの電解液として用いられるヘキサフルオロリン酸リチウムLiPFなどのリチウム塩は、炭酸プロピレンや1,2−ジメトキシエタンなどの有機溶媒に溶解させて使用される。しかしこのようなリチウム塩は水分に弱く、水と反応してフッ酸、POFなどのフッ素原子含有ルイス酸を生じる。このようなフッ素原子含有ルイス酸(特にフッ酸)は、電解液を分解するなど蓄電デバイスの内部で悪影響を及ぼすことが知られている(例えば、非特許文献1及び特許文献3参照)。 On the other hand, lithium salts such as lithium hexafluorophosphate LiPF 6 used as an electrolyte for non-aqueous electrolyte electricity storage devices such as lithium ion secondary batteries and lithium ion capacitors are organic solvents such as propylene carbonate and 1,2-dimethoxyethane. Used by dissolving in However, such lithium salts are vulnerable to moisture, and react with water to produce fluorine-containing Lewis acids such as hydrofluoric acid and POF 3 . Such a fluorine-atom-containing Lewis acid (particularly hydrofluoric acid) is known to adversely affect the inside of an electricity storage device, for example, by decomposing an electrolytic solution (see, for example, Non-Patent Document 1 and Patent Document 3).

特開2001−192487号公報JP 2001-192487 A 特開2000−30683号公報JP 2000-30683 A 特開2001−250534号公報JP 2001-250534 A

http://monoist.atmarkit.co.jp/feledev/articles/eventrepo/01/li2_a.html(2008年9月3日付け記事)http://monoist.atmarkit.co.jp/feledev/articles/eventrepo/01/li2_a.html (Article dated September 3, 2008)

上記従来技術の問題点に鑑み、本発明は、環境に対する負荷が大きい溶剤の使用を回避できるとともに、孔径などのパラメータの制御も比較的容易な方法によりセパレータを製造することができ、且つ電解液の分解が抑制された非水電解質蓄電デバイスを提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention can avoid the use of a solvent having a large environmental load, and can produce a separator by a method in which the control of parameters such as the pore diameter is relatively easy. An object of the present invention is to provide a non-aqueous electrolyte electricity storage device in which decomposition of is suppressed.

すなわち、本発明は、カソードと、
アノードと、
前記カソードと前記アノードとの間に配置されたセパレータと、
イオン伝導性を有する電解液と、
を備え、
前記セパレータは、エポキシ樹脂多孔体を含み、
前記電解液は、非水溶媒、フッ素原子含有電解質、及びルイス塩基化合物を含む、
非水電解質蓄電デバイスを提供する。
That is, the present invention comprises a cathode,
An anode,
A separator disposed between the cathode and the anode;
An electrolytic solution having ionic conductivity;
With
The separator includes an epoxy resin porous body,
The electrolytic solution includes a non-aqueous solvent, a fluorine atom-containing electrolyte, and a Lewis base compound.
A non-aqueous electrolyte electricity storage device is provided.

別の側面において、本発明は、カソード、アノード、及びエポキシ樹脂多孔体を含むセパレータを準備する工程と、
前記カソード、前記アノード及び前記セパレータを用いて電極群を組み立てる工程と、
前記電極群にイオン伝導性を有する電解液を含浸させる工程と、
を含み、
前記セパレータを準備する工程が、
(i)エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程と、
(ii)エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に成形する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程と、
(iii)ハロゲンフリーの溶剤を用いて前記エポキシ樹脂シートから前記ポロゲンを除去する工程と、
を含み、
前記電解液は、非水溶媒、フッ素原子含有電解質、及びルイス塩基化合物を含む、
非水電解質蓄電デバイスの製造方法を提供する。
In another aspect, the invention provides a separator comprising a cathode, an anode, and a porous epoxy resin;
Assembling an electrode group using the cathode, the anode and the separator;
Impregnating the electrode group with an electrolyte having ion conductivity;
Including
Preparing the separator comprises:
(I) preparing an epoxy resin composition comprising an epoxy resin, a curing agent and a porogen;
(Ii) a step of molding the cured product of the epoxy resin composition into a sheet shape or curing the sheet-shaped molded product of the epoxy resin composition so that an epoxy resin sheet is obtained;
(Iii) removing the porogen from the epoxy resin sheet using a halogen-free solvent;
Including
The electrolytic solution includes a non-aqueous solvent, a fluorine atom-containing electrolyte, and a Lewis base compound.
A method for producing a nonaqueous electrolyte electricity storage device is provided.

本発明の非水電解質蓄電デバイスにおいては、セパレータを、ハロゲンフリーの溶剤を用いてエポキシ樹脂シートからポロゲンを除去して製造することができるため、その製造において環境に対する負荷が大きい溶剤の使用を回避できる。また、ポロゲンを含むエポキシ樹脂シートから製造することができるため、その製造において孔径などのパラメータの制御も比較的容易である。さらに、本発明の非水電解質蓄電デバイスは、電解液の分解が抑制されており、長期にわたって安定してその特性を発揮することができる。   In the non-aqueous electrolyte electricity storage device of the present invention, the separator can be produced by removing porogen from the epoxy resin sheet using a halogen-free solvent, and therefore avoids the use of a solvent that has a large environmental impact in the production. it can. Moreover, since it can manufacture from the epoxy resin sheet containing a porogen, control of parameters, such as a hole diameter, is comparatively easy in the manufacture. Furthermore, the non-aqueous electrolyte electricity storage device of the present invention suppresses the decomposition of the electrolytic solution, and can stably exhibit its characteristics over a long period of time.

本発明の一実施形態に係る非水電解質蓄電デバイスの概略断面図1 is a schematic cross-sectional view of a nonaqueous electrolyte electricity storage device according to an embodiment of the present invention. 切削工程の概略図Schematic diagram of the cutting process

以下、添付の図面を参照しつつ、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、本実施形態に係る非水電解質蓄電デバイス100は、カソード2、アノード3、セパレータ4及びケース5を備えている。セパレータ4は、カソード2とアノード3との間に配置されている。カソード2、アノード3及びセパレータ4は、一体的に巻回されて発電要素としての電極群10を構成している。電極群10は、底部を有するケース5に収容されている。蓄電デバイス100は、典型的には、リチウムイオン二次電池である。   As shown in FIG. 1, the nonaqueous electrolyte electricity storage device 100 according to this embodiment includes a cathode 2, an anode 3, a separator 4, and a case 5. The separator 4 is disposed between the cathode 2 and the anode 3. The cathode 2, the anode 3 and the separator 4 are integrally wound to constitute an electrode group 10 as a power generation element. The electrode group 10 is accommodated in a case 5 having a bottom. The electricity storage device 100 is typically a lithium ion secondary battery.

本実施形態において、ケース5は円筒の形状を有している。すなわち、蓄電デバイス100は円筒の形状を有している。しかし、蓄電デバイス100の形状は特に限定されない。蓄電デバイス100は、例えば、扁平な角型の形状を有していてもよい。また、電極群10は巻回構造を必須としない。カソード2、セパレータ4及びアノード3が単に積層されることによって、板状の電極群が形成されていてもよい。ケース5は、ステンレス、アルミニウム等の金属で作られている。さらに、電極群10が可撓性を有する材料で作られたケースに入れられていてもよい。可撓性を有する材料は、例えば、アルミニウム箔と、アルミニウム箔の両面に貼り合わされた樹脂フィルムとで構成されている。   In the present embodiment, the case 5 has a cylindrical shape. That is, the electricity storage device 100 has a cylindrical shape. However, the shape of the electricity storage device 100 is not particularly limited. The electricity storage device 100 may have, for example, a flat square shape. Moreover, the electrode group 10 does not require a winding structure. A plate-like electrode group may be formed by simply laminating the cathode 2, the separator 4 and the anode 3. The case 5 is made of a metal such as stainless steel or aluminum. Furthermore, the electrode group 10 may be put in a case made of a flexible material. The flexible material is composed of, for example, an aluminum foil and a resin film bonded to both surfaces of the aluminum foil.

蓄電デバイス100は、さらに、カソードリード2a、アノードリード3a、蓋体6、パッキン9及び2つの絶縁板8を備えている。蓋体6は、パッキン9を介してケース5の開口部に固定されている。2つの絶縁板8は、電極群10の上部と下部とにそれぞれ配置されている。カソードリード2aは、カソード2に電気的に接続された一端と、蓋体6に電気的に接続された他端とを有する。アノードリード3aは、アノード3に電気的に接続された一端と、ケース5の底部に電気的に接続された他端とを有する。蓄電デバイス100の内部にはイオン伝導性を有する非水電解液が充填されている。非水電解液は、電極群10に含浸されている。これにより、セパレータ4を通じて、カソード2とアノード3との間でイオン(典型的にはリチウムイオン)の移動が可能となっている。   The power storage device 100 further includes a cathode lead 2a, an anode lead 3a, a lid body 6, a packing 9, and two insulating plates 8. The lid 6 is fixed to the opening of the case 5 via the packing 9. The two insulating plates 8 are respectively disposed on the upper and lower portions of the electrode group 10. The cathode lead 2 a has one end electrically connected to the cathode 2 and the other end electrically connected to the lid body 6. The anode lead 3 a has one end electrically connected to the anode 3 and the other end electrically connected to the bottom of the case 5. The electricity storage device 100 is filled with a non-aqueous electrolyte having ion conductivity. The non-aqueous electrolyte is impregnated in the electrode group 10. As a result, ions (typically lithium ions) can move between the cathode 2 and the anode 3 through the separator 4.

カソード2は、リチウムイオンを吸蔵及び放出しうるカソード活物質と、バインダーと、集電体とで構成されうる。例えば、バインダーを含む溶液にカソード活物質を混合して合剤を調製し、この合剤をカソード集電体に塗布及び乾燥させることによってカソード2を作製できる。   The cathode 2 can be composed of a cathode active material that can occlude and release lithium ions, a binder, and a current collector. For example, the cathode 2 can be produced by mixing a cathode active material with a solution containing a binder to prepare a mixture, and applying and drying the mixture on a cathode current collector.

カソード活物質としては、リチウムイオン二次電池のカソード活物質として用いられている公知の材料を使用できる。具体的には、リチウム含有遷移金属酸化物、リチウム含有遷移金属リン酸化物、カルコゲン化合物等をカソード活物質として使用できる。リチウム含有遷移金属酸化物としては、LiCoO2、LiMnO2、LiNiO2、それらの遷移金属の一部が他の金属で置換された化合物が挙げられる。リチウム含有遷移金属リン酸化物としては、LiFePO4、LiFePO4の遷移金属(Fe)の一部が他の金属で置換された化合物が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデンが挙げられる。 As a cathode active material, the well-known material used as a cathode active material of a lithium ion secondary battery can be used. Specifically, lithium-containing transition metal oxides, lithium-containing transition metal phosphates, chalcogen compounds, and the like can be used as the cathode active material. Examples of the lithium-containing transition metal oxide include LiCoO 2 , LiMnO 2 , LiNiO 2 , and compounds in which a part of these transition metals is substituted with another metal. Examples of the lithium-containing transition metal phosphorous oxide include compounds in which a part of the transition metal (Fe) of LiFePO 4 and LiFePO 4 is substituted with another metal. Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide.

バインダーとしては、公知の樹脂を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ヘキサフロロプロピレン、ポリテトラフルオロエチレン等のフッ素系樹脂、スチレンブタジエンゴム、エチレンプロピレンターポリマー等の炭化水素系樹脂、それらの混合物をバインダーとして使用できる。導電助剤として、カーボンブラック等の導電性粉末がカソード2に含まれていてもよい。   As the binder, a known resin can be used. For example, fluorine resins such as polyvinylidene fluoride (PVDF), hexafluoropropylene, polytetrafluoroethylene, hydrocarbon resins such as styrene butadiene rubber and ethylene propylene terpolymer, and mixtures thereof can be used as the binder. A conductive powder such as carbon black may be contained in the cathode 2 as a conductive aid.

カソード集電体としては、耐酸化性に優れた金属材料、例えば箔状又はメッシュ状に加工されたアルミニウムが好適に用いられる。   As the cathode current collector, a metal material excellent in oxidation resistance, for example, aluminum processed into a foil shape or a mesh shape is preferably used.

アノード3は、リチウムイオンを吸蔵及び放出しうるアノード活物質と、バインダーと、集電体とで構成されうる。アノード3も、カソード2と同様の方法で作製できる。カソード2で用いたバインダーと同様のものをアノード3に使用できる。   The anode 3 can be composed of an anode active material capable of inserting and extracting lithium ions, a binder, and a current collector. The anode 3 can also be produced by the same method as the cathode 2. The same binder as that used for the cathode 2 can be used for the anode 3.

アノード活物質としては、リチウムイオン二次電池のアノード活物質として用いられている公知の材料を使用できる。具体的には、炭素系活物質、リチウムと合金を形成しうる合金系活物質、リチウムチタン複合酸化物(例えばLi4Ti512)等をアノード活物質として使用できる。炭素系活物質としては、コークス、ピッチ、フェノール樹脂、ポリイミド、セルロース等の焼成体、人造黒鉛、天然黒鉛等が挙げられる。合金系活物質としては、アルミニウム、スズ、スズ化合物、シリコン、シリコン化合物等が挙げられる。 As the anode active material, a known material used as an anode active material of a lithium ion secondary battery can be used. Specifically, a carbon-based active material, an alloy-based active material capable of forming an alloy with lithium, a lithium-titanium composite oxide (for example, Li 4 Ti 5 O 12 ), or the like can be used as the anode active material. Examples of the carbon-based active material include calcined bodies such as coke, pitch, phenol resin, polyimide, and cellulose, artificial graphite, and natural graphite. Examples of the alloy active material include aluminum, tin, tin compounds, silicon, and silicon compounds.

アノード集電体としては、還元安定性に優れた金属材料、例えば箔状又はメッシュ状に加工された銅又は銅合金が好適に用いられる。リチウムチタン複合酸化物等の高電位アノード活物質を用いる場合には、箔状又はメッシュ状に加工されたアルミニウムもアノード集電体として使用できる。   As the anode current collector, a metal material excellent in reduction stability, for example, copper or copper alloy processed into a foil shape or a mesh shape is preferably used. When a high potential anode active material such as lithium titanium composite oxide is used, aluminum processed into a foil shape or mesh shape can also be used as the anode current collector.

非水電解液は、非水溶媒、フッ素原子含有電解質、及びルイス塩基化合物を含む。フッ素原子含有電解質は、フッ素原子を含み、非水溶媒に溶解可能なものを用いることができ、ホウ四フッ化リチウム(LiBF4)、六フッ化リン酸リチウム(LiPF6)、トリフロロスルホン酸リチウム(LiCF3SO3)等のフッ素原子含有リチウム塩を好適に用いることができる。 The nonaqueous electrolytic solution includes a nonaqueous solvent, a fluorine atom-containing electrolyte, and a Lewis base compound. As the fluorine atom-containing electrolyte, one containing a fluorine atom and soluble in a non-aqueous solvent can be used, such as lithium borotetrafluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), trifluorosulfonic acid. Fluorine atom-containing lithium salts such as lithium (LiCF 3 SO 3 ) can be suitably used.

非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、メチルエチルカーボネート(MEC)、1,2−ジメトキシエタン(DME)、γ−ブチロラクトン(γ−BL)、これらの混合物等が挙げられる。   Examples of the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), and mixtures thereof. It is done.

ルイス塩基化合物は、電解液中に発生したフッ素原子含有ルイス酸をトラップして電解液の分解を阻害する成分である。蓄電デバイス100では、セパレータ4に、エポキシ樹脂多孔体が用いられており、多孔体中に存在していた未反応のエポキシモノマー化合物が電解液中に溶出してくることがある。未反応のエポキシモノマー化合物は、電解液中のカチオンにより開環を起こし、ヒドロキシル基が生成する。ヒドロキシル基は、フッ素原子含有電解質の分解を促進し、フッ素原子含有ルイス酸の生成を促進することが知られている。従って、エポキシ樹脂多孔体をセパレータ4に用いた場合には、電解液中にフッ素原子含有ルイス酸が比較的生成しやすい。そのため、ルイス塩基化合物をエポキシ樹脂多孔体と組み合わせて用いることの意義が大きい。ルイス塩基化合物としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリエチルホスフェート等のホスフェート化合物や、分子内にホスファゼン環を有する化合物を好適に用いることができ、ホスフェート化合物がより好適である。ルイス塩基化合物の含有量としては、非水溶媒100重量部に対し、1〜30重量部が好ましく、5〜20重量部がより好ましい。   The Lewis base compound is a component that inhibits decomposition of the electrolytic solution by trapping fluorine-containing Lewis acid generated in the electrolytic solution. In the electricity storage device 100, an epoxy resin porous body is used for the separator 4, and an unreacted epoxy monomer compound present in the porous body may be eluted into the electrolytic solution. The unreacted epoxy monomer compound undergoes ring opening by a cation in the electrolytic solution, and a hydroxyl group is generated. It is known that the hydroxyl group promotes the decomposition of the fluorine atom-containing electrolyte and promotes the formation of a fluorine atom-containing Lewis acid. Therefore, when an epoxy resin porous body is used for the separator 4, a fluorine atom-containing Lewis acid is relatively easily generated in the electrolytic solution. Therefore, it is significant to use the Lewis base compound in combination with the epoxy resin porous body. As the Lewis base compound, for example, a phosphate compound such as triphenyl phosphate, tricresyl phosphate, triethyl phosphate, or a compound having a phosphazene ring in the molecule can be preferably used, and a phosphate compound is more preferable. As content of a Lewis base compound, 1-30 weight part is preferable with respect to 100 weight part of non-aqueous solvents, and 5-20 weight part is more preferable.

次に、セパレータ4について詳しく説明する。   Next, the separator 4 will be described in detail.

本実施形態において、セパレータ4は、エポキシ樹脂多孔体、具体的には、三次元網目状骨格と、空孔とを備えたエポキシ樹脂多孔質膜で構成されている。セパレータ4の表面と裏面との間でイオンが移動できるように、つまり、カソード2とアノード3との間をイオンが移動できるように、隣り合う空孔は互いに連通していてもよい。エポキシ樹脂多孔体は、アミノ基を有することが好ましく、このとき、アミノ基によりフッ素原子含有ルイス酸をトラップすることができ、フッ素原子含有ルイス酸の蓄電デバイス100への悪影響を低減することができる。   In the present embodiment, the separator 4 is composed of an epoxy resin porous body, specifically, an epoxy resin porous film having a three-dimensional network skeleton and pores. Adjacent holes may be in communication with each other so that ions can move between the front and back surfaces of the separator 4, that is, ions can move between the cathode 2 and the anode 3. The epoxy resin porous body preferably has an amino group. At this time, the fluorine atom-containing Lewis acid can be trapped by the amino group, and the adverse effect of the fluorine atom-containing Lewis acid on the electricity storage device 100 can be reduced. .

セパレータ4は、例えば、5〜50μmの範囲の厚さを有する。セパレータ4が厚すぎると、カソード2とアノード3との間のイオンの移動が困難となる。5μm未満の厚さのセパレータ4を製造することは不可能ではないが、蓄電デバイス100の信頼性を確保するうえで、5μm以上、特に10μm以上の厚さが好ましい。   For example, the separator 4 has a thickness in the range of 5 to 50 μm. If the separator 4 is too thick, it becomes difficult to move ions between the cathode 2 and the anode 3. Although it is not impossible to manufacture the separator 4 having a thickness of less than 5 μm, in order to ensure the reliability of the power storage device 100, a thickness of 5 μm or more, particularly 10 μm or more is preferable.

セパレータ4は、例えば、20〜80%の範囲の空孔率を有し、0.02〜1μmの範囲の平均孔径を有する。空孔率及び平均孔径がこのような範囲に調節されていると、セパレータ4は、必要とされる機能を十分に発揮しうる。   The separator 4 has a porosity in the range of 20 to 80%, for example, and an average pore diameter in the range of 0.02 to 1 μm. When the porosity and average pore diameter are adjusted to such ranges, the separator 4 can sufficiently exhibit the required functions.

空孔率は、以下の方法で測定できる。まず、測定対象を一定の寸法(例えば、直径6cmの円形)に切断し、その体積及び重量を求める。得られた結果を次式に代入して空孔率を算出する。
空孔率(%)=100×(V−(W/D))/V
V:体積(cm3
W:重量(g)
D:構成成分の平均密度(g/cm3
The porosity can be measured by the following method. First, a measurement object is cut into a certain dimension (for example, a circle having a diameter of 6 cm), and its volume and weight are obtained. The porosity is calculated by substituting the obtained result into the following equation.
Porosity (%) = 100 × (V− (W / D)) / V
V: Volume (cm 3 )
W: Weight (g)
D: Average density of components (g / cm 3 )

平均孔径は、走査型電子顕微鏡でセパレータ4の断面を観察して求めることができる。具体的には、視野幅60μm、かつ表面から所定の深さ(例えば、セパレータ4の厚さの1/5〜1/100)までの範囲内に存在する空孔のそれぞれについて、画像処理を行って孔径を求め、それらの平均値を平均孔径として求めることができる。画像処理は、例えば、フリーソフト「Image J」又はAdobe社製「Photoshop」を使用して行える。   The average pore diameter can be obtained by observing the cross section of the separator 4 with a scanning electron microscope. Specifically, image processing is performed for each of the pores existing in a range from a surface width of 60 μm to a predetermined depth from the surface (for example, 1/5 to 1/100 of the thickness of the separator 4). Thus, the pore diameter can be obtained, and the average value thereof can be obtained as the average pore diameter. Image processing can be performed using, for example, free software “Image J” or “Photoshop” manufactured by Adobe.

また、セパレータ4は、例えば1〜1000秒/100cm3、特に10〜1000秒/100cm3の範囲の通気度(ガーレー値)を有していてもよい。セパレータ4がこのような範囲に通気度を有していることにより、カソード2とアノード3との間をイオンが容易に移動しうる。通気度は、日本工業規格(JIS)P8117に規定された方法に従って測定できる。 The separator 4 may have an air permeability (Gurley value) in the range of, for example, 1 to 1000 seconds / 100 cm 3 , particularly 10 to 1000 seconds / 100 cm 3 . Since the separator 4 has air permeability in such a range, ions can easily move between the cathode 2 and the anode 3. The air permeability can be measured according to a method defined in Japanese Industrial Standard (JIS) P8117.

次に、セパレータ4に使用されたエポキシ樹脂多孔質膜の製造方法を説明する。   Next, the manufacturing method of the epoxy resin porous membrane used for the separator 4 is demonstrated.

エポキシ樹脂多孔質膜は、例えば、下記(a)、(b)及び(c)のいずれかの方法で製造することができる。方法(a)及び(b)は、エポキシ樹脂組成物をシート状に成形した後で硬化工程を実施する点で共通している。方法(c)は、エポキシ樹脂のブロック状の硬化体を作り、その硬化体をシート状に成形することを特徴としている。   The porous epoxy resin membrane can be produced, for example, by any of the following methods (a), (b), and (c). The methods (a) and (b) are common in that the curing step is performed after the epoxy resin composition is formed into a sheet. The method (c) is characterized in that an epoxy resin block-shaped cured body is formed and the cured body is formed into a sheet shape.

方法(a)
エポキシ樹脂組成物のシート状成形体が得られるように、エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を基板上に塗布する。その後、エポキシ樹脂組成物のシート状成形体を加熱してエポキシ樹脂を三次元架橋させる。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、得られたエポキシ樹脂シートからポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔質膜が得られる。基板の種類は特に限定されず、プラスチック基板、ガラス基板、金属板等を基板として使用できる。
Method (a)
An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is applied onto a substrate so that a sheet-like molded body of the epoxy resin composition is obtained. Thereafter, the sheet-like molded body of the epoxy resin composition is heated to three-dimensionally crosslink the epoxy resin. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Thereafter, the porogen is removed from the obtained epoxy resin sheet by washing and dried to obtain an epoxy resin porous film having pores communicating with the three-dimensional network skeleton. The kind of board | substrate is not specifically limited, A plastic substrate, a glass substrate, a metal plate, etc. can be used as a board | substrate.

方法(b)
エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を基板上に塗布する。その後、塗布したエポキシ樹脂組成物の上に別の基板を被せてサンドイッチ構造体を作製する。なお、基板と基板との間に一定の間隔を確保するために、基板の四隅にスペーサー(例えば、両面テープ)を設けてもよい。次に、サンドイッチ構造体を加熱してエポキシ樹脂を三次元架橋させる。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、得られたエポキシ樹脂シートを取り出し、ポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔質膜が得られる。基板の種類は特に制限されず、プラスチック基板、ガラス基板、金属板等を基板として使用できる。特に、ガラス基板を好適に使用できる。
Method (b)
An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is applied on the substrate. Thereafter, another substrate is placed on the applied epoxy resin composition to produce a sandwich structure. Note that spacers (for example, double-sided tape) may be provided at the four corners of the substrate in order to ensure a certain distance between the substrates. Next, the sandwich structure is heated to cross-link the epoxy resin three-dimensionally. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Thereafter, the obtained epoxy resin sheet is taken out, and the porogen is removed by washing, followed by drying, whereby an epoxy resin porous film having pores communicating with the three-dimensional network skeleton is obtained. The kind of board | substrate is not restrict | limited in particular, A plastic substrate, a glass substrate, a metal plate etc. can be used as a board | substrate. In particular, a glass substrate can be suitably used.

方法(c)
エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を所定形状の金型内に充填する。その後、エポキシ樹脂を三次元架橋させることによって、円筒状又は円柱状のエポキシ樹脂組成物の硬化体を作製する。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、エポキシ樹脂組成物の硬化体を円筒軸又は円柱軸を中心に回転させながら、硬化体の表層部を所定の厚さに切削して長尺状のエポキシ樹脂シートを作製する。そして、エポキシ樹脂シートに含まれたポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔質膜が得られる。
Method (c)
An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is filled into a mold having a predetermined shape. Thereafter, a cured product of the cylindrical or columnar epoxy resin composition is produced by three-dimensionally crosslinking the epoxy resin. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Then, while rotating the hardening body of an epoxy resin composition centering on a cylinder axis | shaft or a cylinder axis | shaft, the surface layer part of a hardening body is cut to predetermined thickness, and a long-shaped epoxy resin sheet is produced. Then, the porogen contained in the epoxy resin sheet is removed by washing and dried to obtain an epoxy resin porous film having pores communicating with the three-dimensional network skeleton.

方法(c)を詳細に説明する。なお、エポキシ樹脂組成物を調製する工程、エポキシ樹脂を硬化させる工程、ポロゲンを除去する工程等は、各方法に共通している。また、使用できる材料も各方法に共通である。   The method (c) will be described in detail. In addition, the process of preparing an epoxy resin composition, the process of hardening an epoxy resin, the process of removing a porogen, etc. are common to each method. Moreover, the material which can be used is common to each method.

方法(c)によれば、エポキシ樹脂多孔質膜は、以下の主要な工程を経て製造されうる。
(i)エポキシ樹脂組成物を調製する。
(ii)エポキシ樹脂組成物の硬化体をシート状に成形する。
(iii)エポキシ樹脂シートからポロゲンを除去する。
According to the method (c), the porous epoxy resin membrane can be manufactured through the following main steps.
(I) An epoxy resin composition is prepared.
(Ii) A cured product of the epoxy resin composition is formed into a sheet.
(Iii) The porogen is removed from the epoxy resin sheet.

まず、エポキシ樹脂、硬化剤及びポロゲン(細孔形成剤)を含むエポキシ樹脂組成物を調製する。具体的には、エポキシ樹脂及び硬化剤をポロゲンに溶解させて均一な溶液を調製する。   First, an epoxy resin composition containing an epoxy resin, a curing agent, and a porogen (pore forming agent) is prepared. Specifically, an epoxy resin and a curing agent are dissolved in a porogen to prepare a uniform solution.

エポキシ樹脂としては、芳香族エポキシ樹脂及び非芳香族エポキシ樹脂のいずれも使用可能である。芳香族エポキシ樹脂としては、ポリフェニルベースエポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、複素芳香環(例えば、トリアジン環)を含むエポキシ樹脂等が挙げられる。ポリフェニルベースエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンベースエポキシ樹脂等が挙げられる。非芳香族エポキシ樹脂としては、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。   As the epoxy resin, any of an aromatic epoxy resin and a non-aromatic epoxy resin can be used. Examples of the aromatic epoxy resin include a polyphenyl-based epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, an epoxy resin containing a heteroaromatic ring (for example, a triazine ring), and the like. Polyphenyl-based epoxy resins include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, stilbene type epoxy resins, biphenyl type epoxy resins, and bisphenol A novolak type epoxy resins. , Cresol novolac type epoxy resin, diaminodiphenylmethane type epoxy resin, tetrakis (hydroxyphenyl) ethane base epoxy resin and the like. Non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester type epoxy resins. Etc. These may be used alone or in combination of two or more.

これらの中でも、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂及び脂環族グリシジルエステル型エポキシ樹脂からなる群より選ばれる少なくとも1つであって、6000以下のエポキシ当量及び170℃以下の融点を有するものを好適に使用できる。これらのエポキシ樹脂を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、エポキシ樹脂多孔質膜に優れた耐薬品性及び高い強度を付与できる。   Among these, bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, epoxy resin containing fluorene ring, epoxy resin containing triglycidyl isocyanurate, alicyclic glycidyl At least one selected from the group consisting of an ether type epoxy resin, an alicyclic glycidyl amine type epoxy resin and an alicyclic glycidyl ester type epoxy resin, having an epoxy equivalent of 6000 or less and a melting point of 170 ° C. or less. It can be used suitably. When these epoxy resins are used, a uniform three-dimensional network skeleton and uniform pores can be formed, and excellent chemical resistance and high strength can be imparted to the epoxy resin porous membrane.

硬化剤としては、芳香族硬化剤及び非芳香族硬化剤のいずれも使用可能である。芳香族硬化剤としては、芳香族アミン類(例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルジメチルアミン、ジメチルアミノメチルベンゼン)、芳香族酸無水物(例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸)、フェノール樹脂、フェノールノボラック樹脂、複素芳香環を含むアミン類(例えば、トリアジン環を含むアミン)等が挙げられる。非芳香族硬化剤としては、脂肪族アミン類(例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6−トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン)、脂環族アミン類(例えば、イソホロンジアミン、メンタンジアミン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)2,4,8,10−テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ビス(4−アミノシクロヘキシル)メタン、これらの変性品)、ポリアミン類とダイマー酸とを含む脂肪族ポリアミドアミン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。   As the curing agent, either an aromatic curing agent or a non-aromatic curing agent can be used. Aromatic curing agents include aromatic amines (eg, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, dimethylaminomethylbenzene), aromatic acid anhydrides (eg, phthalic anhydride, trimellitic anhydride) Acid, pyromellitic anhydride), phenol resin, phenol novolac resin, amines containing a heteroaromatic ring (for example, amines containing a triazine ring), and the like. Non-aromatic curing agents include aliphatic amines (eg ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis (hexamethylene) triamine, 1,3,6-trisaminomethylhexane , Polymethylenediamine, trimethylhexamethylenediamine, polyetherdiamine), alicyclic amines (for example, isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4, 8,10-tetraoxaspiro (5,5) undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, modified products thereof), polyamines and dimer acid Including aliphatic polyamide Min, and the like. These may be used alone or in combination of two or more.

これらの中でも、芳香族アミン類、複素芳香環を含むアミン類、脂肪族アミン類、脂環族アミン類等のアミン類を用いることが好ましい。硬化剤としてアミン類を用いた場合には、エポキシ樹脂多孔体がアミノ基を有するようになり、このアミノ基で、フッ素原子含有ルイス酸をトラップすることができ、フッ素原子含有ルイス酸の蓄電デバイス100への悪影響を低減することができる。アミン類として特に好ましくは、分子内に一級アミンを2つ以上有するアミン化合物である。具体的には、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ポリメチレンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン及びビス(4−アミノシクロヘキシル)メタンからなる群より選ばれる少なくとも1つを好適に使用できる。これらのアミン化合物を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、エポキシ樹脂多孔質膜に高い強度及び適切な弾性を付与できる。   Among these, it is preferable to use amines such as aromatic amines, amines containing heteroaromatic rings, aliphatic amines, and alicyclic amines. When amines are used as the curing agent, the epoxy resin porous body has an amino group, and the fluorine group-containing Lewis acid can be trapped by this amino group. The adverse effect on 100 can be reduced. Particularly preferred as amines are amine compounds having two or more primary amines in the molecule. Specifically, at least one selected from the group consisting of metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, polymethylenediamine, bis (4-amino-3-methylcyclohexyl) methane and bis (4-aminocyclohexyl) methane. Can be suitably used. When these amine compounds are used, a uniform three-dimensional network skeleton and uniform pores can be formed, and high strength and appropriate elasticity can be imparted to the epoxy resin porous membrane.

エポキシ樹脂と硬化剤との組み合わせとしては、芳香族エポキシ樹脂と脂肪族アミン硬化剤との組み合わせ、芳香族エポキシ樹脂と脂環族アミン硬化剤との組み合わせ、又は脂環族エポキシ樹脂と芳香族アミン硬化剤との組み合わせが好ましい。これらの組み合わせにより、エポキシ樹脂多孔質膜に優れた耐熱性を付与できる。   As a combination of an epoxy resin and a curing agent, a combination of an aromatic epoxy resin and an aliphatic amine curing agent, a combination of an aromatic epoxy resin and an alicyclic amine curing agent, or an alicyclic epoxy resin and an aromatic amine A combination with a curing agent is preferred. By these combinations, excellent heat resistance can be imparted to the epoxy resin porous membrane.

ポロゲンは、エポキシ樹脂及び硬化剤を溶かすことができる溶剤でありうる。ポロゲンは、また、エポキシ樹脂と硬化剤とが重合した後、反応誘起相分離を生じさせることができる溶剤として使用される。具体的には、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類、ポリオキシエチレンモノメチルエーテル、ポリオキシエチレンジメチルエーテル等のエーテル類をポロゲンとして使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。   The porogen can be a solvent that can dissolve the epoxy resin and the curing agent. Porogens are also used as solvents that can cause reaction-induced phase separation after the epoxy resin and curing agent are polymerized. Specifically, cellosolves such as methyl cellosolve and ethyl cellosolve, esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate, glycols such as polyethylene glycol and polypropylene glycol, polyoxyethylene monomethyl ether and polyoxyethylene Ethers such as dimethyl ether can be used as the porogen. These may be used alone or in combination of two or more.

これらの中でも、メチルセロソルブ、エチルセロソルブ、分子量600以下のポリエチレングリコール、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ポリプロピレングリコール、ポリオキシエチレンモノメチルエーテル及びポリオキシエチレンジメチルエーテルからなる群より選ばれる少なくとも1つを好適に使用できる。特に、分子量200以下のポリエチレングリコール、分子量500以下のポリプロピレングリコール、ポリオキシエチレンモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートからなる群より選ばれる少なくとも1つを好適に使用できる。これらのポロゲンを使用すると、均一な三次元網目状骨格及び均一な空孔を形成できる。これらは単独で用いてもよく、2種以上を併用してもよい。   Among these, at least one selected from the group consisting of methyl cellosolve, ethyl cellosolve, polyethylene glycol having a molecular weight of 600 or less, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, polypropylene glycol, polyoxyethylene monomethyl ether, and polyoxyethylene dimethyl ether. Can be preferably used. In particular, at least one selected from the group consisting of polyethylene glycol having a molecular weight of 200 or less, polypropylene glycol having a molecular weight of 500 or less, polyoxyethylene monomethyl ether, and propylene glycol monomethyl ether acetate can be preferably used. When these porogens are used, a uniform three-dimensional network skeleton and uniform pores can be formed. These may be used alone or in combination of two or more.

また、個々のエポキシ樹脂又は硬化剤と常温で不溶又は難溶であっても、エポキシ樹脂と硬化剤との反応物が可溶となる溶剤についてはポロゲンとして使用可能である。このようなポロゲンとしては、例えば、臭素化ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート5058」)が挙げられる。   Moreover, even if it is insoluble or hardly soluble at room temperature with each epoxy resin or curing agent, a solvent in which a reaction product of the epoxy resin and the curing agent is soluble can be used as a porogen. Examples of such porogen include brominated bisphenol A type epoxy resin (“Epicoat 5058” manufactured by Japan Epoxy Resin Co., Ltd.).

エポキシ樹脂多孔質膜の空孔率、平均孔径及び孔径分布は、原料の種類、原料の配合比率及び反応条件(例えば、反応誘起相分離時における加熱温度及び加熱時間)に応じて変化する。そのため、目的とする空孔率、平均孔径、孔径分布を得るために、最適な条件を選択することが好ましい。また、相分離時におけるエポキシ樹脂架橋体の分子量、分子量分布、溶液の粘度、架橋反応速度等を制御することにより、エポキシ樹脂架橋体とポロゲンとの共連続構造を特定の状態で固定し、安定した多孔質構造を得ることができる。   The porosity, average pore size, and pore size distribution of the epoxy resin porous membrane vary depending on the type of raw material, the mixing ratio of the raw material, and the reaction conditions (for example, heating temperature and heating time during reaction-induced phase separation). Therefore, it is preferable to select optimum conditions in order to obtain the target porosity, average pore diameter, and pore diameter distribution. In addition, by controlling the molecular weight, molecular weight distribution, solution viscosity, crosslinking reaction rate, etc. of the crosslinked epoxy resin during phase separation, the co-continuous structure of the crosslinked epoxy resin and porogen is fixed in a specific state and stable. A porous structure can be obtained.

エポキシ樹脂に対する硬化剤の配合比率は、例えば、エポキシ基1当量に対して硬化剤当量が0.6〜1.5である。適切な硬化剤当量は、エポキシ樹脂多孔質膜の耐熱性、化学的耐久性、力学特性等の特性の向上に寄与する。   As for the compounding ratio of the curing agent to the epoxy resin, for example, the curing agent equivalent is 0.6 to 1.5 with respect to 1 equivalent of epoxy group. Appropriate curing agent equivalent contributes to improvement of properties such as heat resistance, chemical durability and mechanical properties of the porous epoxy resin membrane.

硬化剤の他に、目的とする多孔質構造を得るために、溶液中に硬化促進剤を添加してもよい。硬化促進剤としては、トリエチルアミン、トリブチルアミン等の三級アミン、2−フェノール−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェノール−4,5−ジヒドロキシイミダゾール等のイミダゾール類が挙げられる。   In addition to the curing agent, a curing accelerator may be added to the solution in order to obtain the desired porous structure. Examples of the curing accelerator include tertiary amines such as triethylamine and tributylamine, and imidazoles such as 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. It is done.

エポキシ樹脂、硬化剤及びポロゲンの総重量に対して、例えば40〜80重量%のポロゲンを使用できる。適切な量のポロゲンを使用することにより、所望の空孔率、平均孔径及び通気度を有するエポキシ樹脂多孔質膜を形成しうる。   For example, 40 to 80% by weight of the porogen can be used with respect to the total weight of the epoxy resin, the curing agent and the porogen. By using an appropriate amount of porogen, an epoxy resin porous membrane having a desired porosity, average pore diameter and air permeability can be formed.

エポキシ樹脂多孔質膜の平均孔径を所望の範囲に調節する方法の1つとして、エポキシ当量の異なる2種以上のエポキシ樹脂を混合して用いる方法が挙げられる。その際、エポキシ当量の差は100以上であることが好ましく、常温で液状のエポキシ樹脂と常温で固形のエポキシ樹脂とを混合して用いる場合もある。   One method for adjusting the average pore diameter of the porous epoxy resin membrane to a desired range is a method of using a mixture of two or more epoxy resins having different epoxy equivalents. In this case, the difference in epoxy equivalent is preferably 100 or more, and there are cases where an epoxy resin that is liquid at normal temperature and an epoxy resin that is solid at normal temperature are mixed and used.

なお、エポキシ樹脂多孔質膜は、硬化剤にアミン類を使用した場合には、比表面積が5〜60m2/gの多孔構造を有することが好ましい。このとき、セパレータ4に電解液が接触する表面積が大きくなってフッ素原子含有ルイス酸をトラップする効率が特に高くなる。 The epoxy resin porous membrane preferably has a porous structure having a specific surface area of 5 to 60 m 2 / g when amines are used as the curing agent. At this time, the surface area with which the electrolyte solution contacts the separator 4 is increased, and the efficiency of trapping the fluorine atom-containing Lewis acid is particularly increased.

比表面積は、JIS Z 8830に準拠して、窒素吸着BET法により求めることができる。   The specific surface area can be determined by a nitrogen adsorption BET method according to JIS Z 8830.

次に、エポキシ樹脂、硬化剤及びポロゲンを含む溶液からエポキシ樹脂組成物の硬化体を作製する。具体的には、溶液を金型に充填し、必要に応じて加熱する。エポキシ樹脂を三次元架橋させることによって、所定の形状を有する硬化体が得られる。その際、エポキシ樹脂架橋体とポロゲンとが相分離することにより、共連続構造が形成される。   Next, the hardening body of an epoxy resin composition is produced from the solution containing an epoxy resin, a hardening | curing agent, and a porogen. Specifically, the solution is filled in a mold and heated as necessary. A cured body having a predetermined shape is obtained by three-dimensionally crosslinking the epoxy resin. In that case, a co-continuous structure is formed by phase-separation of a crosslinked epoxy resin and a porogen.

硬化体の形状は特に限定されない。円柱状又は円筒状の金型を使用すれば、円筒又は円柱の形状を有する硬化体を得ることができる。硬化体が円筒又は円柱の形状を有していると、後述する切削工程(図2参照)を実施しやすい。   The shape of the cured body is not particularly limited. If a columnar or cylindrical mold is used, a cured body having a cylindrical or columnar shape can be obtained. When the cured body has a cylindrical or columnar shape, it is easy to carry out a cutting step (see FIG. 2) described later.

エポキシ樹脂組成物を硬化させるために必要な温度及び時間は、エポキシ樹脂及び硬化剤の種類に応じて変化するので特に限定されない。均一な分布及び均一な孔径を持った空孔を有するエポキシ樹脂多孔質膜を得るために、室温にて硬化処理を実施することができる。室温硬化の場合、温度は20〜40℃程度であり、時間は3〜100時間程度、好ましくは20〜50時間程度である。加熱硬化の場合、温度は40〜120℃程度、好ましくは60〜100℃程度であり、時間は10〜300分程度、好ましくは30〜180分程度である。硬化処理後、エポキシ樹脂架橋体の架橋度を高めるためにポストキュア(後処理)を行ってもよい。ポストキュアの条件は特に制限されないが、温度は室温又は50〜160℃程度であり、時間は2〜48時間程度である。   The temperature and time required to cure the epoxy resin composition are not particularly limited because they vary depending on the type of epoxy resin and curing agent. In order to obtain an epoxy resin porous membrane having pores having a uniform distribution and a uniform pore size, a curing treatment can be performed at room temperature. In the case of room temperature curing, the temperature is about 20 to 40 ° C., and the time is about 3 to 100 hours, preferably about 20 to 50 hours. In the case of heat curing, the temperature is about 40 to 120 ° C, preferably about 60 to 100 ° C, and the time is about 10 to 300 minutes, preferably about 30 to 180 minutes. After the curing treatment, post-cure (post-treatment) may be performed to increase the degree of crosslinking of the crosslinked epoxy resin. The post-curing conditions are not particularly limited, but the temperature is room temperature or about 50 to 160 ° C., and the time is about 2 to 48 hours.

硬化体の寸法は特に限定されない。硬化体が円筒又は円柱の形状を有している場合、エポキシ樹脂多孔質膜の製造効率の観点から、硬化体の直径は、例えば20cm以上であり、好ましくは30〜150cmである。硬化体の長さ(軸方向)も、得るべきエポキシ樹脂多孔質膜の寸法を考慮して適宜設定することができる。硬化体の長さは、例えば20〜200cmであり、取扱いやすさの観点から20〜150cmであることが好ましく、20〜120cmであることがより好ましい。   The dimension of a hardening body is not specifically limited. When the cured body has a cylindrical or columnar shape, the diameter of the cured body is, for example, 20 cm or more, and preferably 30 to 150 cm, from the viewpoint of manufacturing efficiency of the epoxy resin porous membrane. The length (axial direction) of the cured body can also be appropriately set in consideration of the dimensions of the epoxy resin porous film to be obtained. The length of the cured body is, for example, 20 to 200 cm, and is preferably 20 to 150 cm, and more preferably 20 to 120 cm from the viewpoint of ease of handling.

次に、硬化体をシート状に成形する。円筒又は円柱の形状を有する硬化体は、以下の方法でシート状に成形されうる。具体的には、図2に示すように、硬化体12をシャフト14に取り付ける。長尺の形状を有するエポキシ樹脂シート16が得られるように、切削刃18(スライサー)を用いて、硬化体12の表層部を所定の厚さで切削(スライス)する。詳細には、硬化体12の円筒軸O(又は円柱軸)を中心として、切削刃18に対して硬化体12を相対的に回転させながら硬化体12の表層部を切削する。この方法によれば、効率的にエポキシ樹脂シート16を作製することができる。   Next, the cured body is formed into a sheet. The cured body having a cylindrical or columnar shape can be formed into a sheet shape by the following method. Specifically, the cured body 12 is attached to the shaft 14 as shown in FIG. The surface layer portion of the cured body 12 is cut (sliced) at a predetermined thickness using a cutting blade 18 (slicer) so that an epoxy resin sheet 16 having a long shape is obtained. Specifically, the surface layer portion of the cured body 12 is cut while rotating the cured body 12 relative to the cutting blade 18 around the cylindrical axis O (or columnar axis) of the cured body 12. According to this method, the epoxy resin sheet 16 can be produced efficiently.

硬化体12を切削するときのライン速度は、例えば2〜70m/minの範囲にある。エポキシ樹脂シート16の厚さは、エポキシ樹脂多孔質膜の目標厚さ(5〜50μm)に応じて決定される。ポロゲンを除去して乾燥させると厚さが若干減少するので、エポキシ樹脂シート16は、通常、エポキシ樹脂多孔質膜の目標厚さよりも若干厚い。エポキシ樹脂シート16の長さは特に限定されないが、エポキシ樹脂シート16の製造効率の観点から、例えば100m以上であり、好ましくは1000m以上である。   The line speed when cutting the cured body 12 is, for example, in the range of 2 to 70 m / min. The thickness of the epoxy resin sheet 16 is determined according to the target thickness (5 to 50 μm) of the epoxy resin porous membrane. Since the thickness slightly decreases when the porogen is removed and dried, the epoxy resin sheet 16 is usually slightly thicker than the target thickness of the porous epoxy resin membrane. Although the length of the epoxy resin sheet 16 is not specifically limited, From a viewpoint of the production efficiency of the epoxy resin sheet 16, it is 100 m or more, for example, Preferably it is 1000 m or more.

最後に、エポキシ樹脂シート16からポロゲンを抽出し、除去する。具体的には、ハロゲンフリーの溶剤にエポキシ樹脂シート16を浸漬することによって、エポキシ樹脂シート16からポロゲンを除去することができる。これにより、セパレータ4として利用できるエポキシ樹脂多孔質膜が得られる。   Finally, the porogen is extracted from the epoxy resin sheet 16 and removed. Specifically, the porogen can be removed from the epoxy resin sheet 16 by immersing the epoxy resin sheet 16 in a halogen-free solvent. Thereby, the epoxy resin porous membrane which can be utilized as the separator 4 is obtained.

エポキシ樹脂シート16からポロゲンを除去するためのハロゲンフリーの溶剤として、水、DMF(N,N−ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)及びTHF(テトラヒドロフラン)からなる群より選ばれる少なくとも1つをポロゲンの種類に応じて使用できる。また、水、二酸化炭素等の超臨界流体もポロゲンを除去するための溶剤として使用できる。エポキシ樹脂シート16からポロゲンを積極的に除去するために、超音波洗浄を行ってもよく、また、溶剤を加熱して用いてもよい。   As the halogen-free solvent for removing the porogen from the epoxy resin sheet 16, at least one selected from the group consisting of water, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide) and THF (tetrahydrofuran) is used as the porogen. It can be used depending on the type. Also, supercritical fluids such as water and carbon dioxide can be used as a solvent for removing porogen. In order to positively remove the porogen from the epoxy resin sheet 16, ultrasonic cleaning may be performed, or the solvent may be heated and used.

ポロゲンを除去するための洗浄装置も特に限定されず、公知の洗浄装置を使用できる。エポキシ樹脂シート16を溶剤に浸漬することによってポロゲンを除去する場合には、洗浄槽を複数備えた多段洗浄装置を好適に使用できる。洗浄の段数としては、3段以上がより好ましい。また、カウンターフローを利用することによって、実質的に多段洗浄を行ってもよい。さらに、各段の洗浄で、溶剤の温度を変えたり、溶剤の種類を変えたりしてもよい。   A cleaning apparatus for removing the porogen is not particularly limited, and a known cleaning apparatus can be used. When removing the porogen by immersing the epoxy resin sheet 16 in a solvent, a multistage cleaning apparatus having a plurality of cleaning tanks can be suitably used. The number of cleaning stages is more preferably 3 or more. Moreover, you may perform multistage washing | cleaning substantially by utilizing a counterflow. Furthermore, the temperature of the solvent may be changed or the type of the solvent may be changed in the cleaning of each stage.

ポロゲンを除去した後、エポキシ樹脂多孔質膜の乾燥処理を行う。乾燥条件は特に限定されず、温度は通常40〜120℃程度であり、50〜100℃程度が好ましく、乾燥時間は10秒〜5分程度である。乾燥処理には、テンター方式、フローティング方式、ロール方式、ベルト方式等の公知のシート乾燥方法を採用した乾燥装置を使用できる。複数の乾燥方法を組み合わせてもよい。   After removing the porogen, the porous epoxy resin membrane is dried. The drying conditions are not particularly limited, and the temperature is usually about 40 to 120 ° C, preferably about 50 to 100 ° C, and the drying time is about 10 seconds to 5 minutes. For the drying treatment, a drying apparatus employing a known sheet drying method such as a tenter method, a floating method, a roll method, or a belt method can be used. A plurality of drying methods may be combined.

本実施形態の方法によれば、セパレータ4として使用できるエポキシ樹脂多孔質膜を極めて簡単に製造できる。従来のポリオレフィン多孔質膜の製造時に必要だった工程、例えば延伸工程を省略できるため、高い生産性でエポキシ樹脂多孔質膜を製造できる。また、従来のポリオレフィン多孔質膜は、その製造過程において、高い温度及び高いせん断力を受けるので、酸化防止剤等の添加剤を使用する必要がある。これに対し、本実施形態の方法によれば、高い温度及び高いせん断力を加えることなく、エポキシ樹脂多孔質膜を製造できる。そのため、従来のポリオレフィン多孔質膜に含まれていた酸化防止剤等の添加剤を使用せずに済む。また、エポキシ樹脂、硬化剤及びポロゲンとして、低廉な材料を使用できるため、セパレータ4の生産コストを低減できる。   According to the method of this embodiment, an epoxy resin porous membrane that can be used as the separator 4 can be manufactured very easily. Since the process required at the time of manufacture of the conventional polyolefin porous membrane, for example, an extending process, can be omitted, an epoxy resin porous membrane can be manufactured with high productivity. Moreover, since the conventional polyolefin porous membrane receives high temperature and high shear force in the manufacturing process, it is necessary to use additives, such as antioxidant. On the other hand, according to the method of this embodiment, an epoxy resin porous membrane can be manufactured without applying high temperature and high shearing force. Therefore, it is not necessary to use an additive such as an antioxidant contained in the conventional polyolefin porous membrane. Moreover, since inexpensive materials can be used as the epoxy resin, the curing agent, and the porogen, the production cost of the separator 4 can be reduced.

なお、セパレータ4は、エポキシ樹脂多孔質膜のみで構成されていてもよいし、エポキシ樹脂多孔質膜と他の多孔質材料との積層体で構成されていてもよい。他の多孔質材料としては、ポリエチレン多孔質膜、ポリプロピレン多孔質膜等のポリオレフィン多孔質膜、セルロース多孔質膜、フッ素樹脂多孔質膜等が挙げられる。他の多孔質材料は、エポキシ樹脂多孔質膜の片面にのみ設けられていてもよいし、両面に設けられていてもよい。   In addition, the separator 4 may be comprised only by the epoxy resin porous membrane, and may be comprised by the laminated body of an epoxy resin porous membrane and another porous material. Examples of other porous materials include polyolefin porous films such as polyethylene porous films and polypropylene porous films, cellulose porous films, and fluororesin porous films. Other porous materials may be provided only on one side of the epoxy resin porous membrane, or may be provided on both sides.

同様に、セパレータ4は、エポキシ樹脂多孔質膜と補強材との積層体で構成されていてもよい。補強材としては、織布、不織布等が挙げられる。補強材は、エポキシ樹脂多孔質膜の片面にのみ設けられていてもよいし、両面に設けられていてもよい。   Similarly, the separator 4 may be configured by a laminate of an epoxy resin porous film and a reinforcing material. Examples of the reinforcing material include woven fabric and non-woven fabric. The reinforcing material may be provided only on one side of the epoxy resin porous membrane, or may be provided on both sides.

さらに、このようにしてセパレータ4を準備するとともにカソード2及びアノード3を準備し、常法に従いこれらを用いて電極群を組み立て、当該電極群に上述の電解液を含浸させることにより、蓄電デバイス100を製造することができる。   Further, the separator 4 is prepared in this way, the cathode 2 and the anode 3 are prepared, an electrode group is assembled using these according to a conventional method, and the electrode group is impregnated with the above-described electrolyte solution, whereby the electricity storage device 100 is obtained. Can be manufactured.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、これら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.

[実施例1]
[エポキシ樹脂多孔質膜の作製]
70重量部のビスフェノールA型エポキシ樹脂(三菱化学社製、jER(登録商標)828)、30重量部のビスフェノールA型エポキシ樹脂(三菱化学社製、jER(登録商標)1009)、及び202重量部のポリエチレングリコール(三洋化成社製、PEG200)を混合し、エポキシ樹脂のポリエチレングリコール溶液を調製した。
[Example 1]
[Production of porous epoxy resin membrane]
70 parts by weight of bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, jER (registered trademark) 828), 30 parts by weight of bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, jER (registered trademark) 1009), and 202 parts by weight Polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., PEG200) was mixed to prepare a polyethylene glycol solution of an epoxy resin.

円筒状の金型(ステンレス製、内径20cm、高さ30cm)の内面に離型剤(ナガセケムテックス社製、QZ−13)を薄く塗布し、金型を40〜100℃に設定した乾燥機中で乾燥させた。この金型にエポキシ樹脂のポリエチレングリコール溶液を充填し、22重量部のビス(4−アミノシクロヘキシル)メタンを加えた。このようにして、エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製した。   A dryer in which a mold release agent (manufactured by Nagase ChemteX Corporation, QZ-13) is thinly applied to the inner surface of a cylindrical mold (stainless steel, inner diameter 20 cm, height 30 cm), and the mold is set at 40 to 100 ° C Dried in. This mold was filled with a polyethylene glycol solution of an epoxy resin, and 22 parts by weight of bis (4-aminocyclohexyl) methane was added. Thus, the epoxy resin composition containing an epoxy resin, a hardening | curing agent, and a porogen was prepared.

次に、アンカー翼で300rpmにてエポキシ樹脂組成物を30分間撹拌した。次に、真空盤(アズワン社製、VZ型)を用いて、約0.1MPaにて泡が消失するまで真空脱泡した。約2時間放置後、再度約30分間撹拌し、再度真空脱泡した。次に、20〜22℃で70.5時間放置して、エポキシ樹脂組成物を硬化させた。そして、130℃に設定した熱風循環乾燥機で17時間二次硬化を行った。これにより、エポキシ樹脂組成物の硬化体を得た。   Next, the epoxy resin composition was stirred for 30 minutes at 300 rpm with an anchor blade. Next, vacuum deaeration was performed using a vacuum disk (manufactured by AS ONE, VZ type) at about 0.1 MPa until the bubbles disappeared. After standing for about 2 hours, the mixture was again stirred for about 30 minutes and vacuum degassed again. Next, the epoxy resin composition was cured by being left at 20 to 22 ° C. for 70.5 hours. Then, secondary curing was performed for 17 hours with a hot air circulating dryer set at 130 ° C. Thereby, the hardening body of the epoxy resin composition was obtained.

次に、切削旋盤装置(東芝機械社製)を用い、図2を参照して説明した方法に従って、硬化体の表層部を厚さ25μmで連続的にスライスし、エポキシ樹脂シートを得た。エポキシ樹脂シートを50体積%のDMF水溶液及び純水でこの順番に洗浄してポリエチレングリコールを除去し、その後、70℃で2分間、80℃で1分間、90℃で1分間乾燥してエポキシ樹脂多孔質膜を得た。エポキシ樹脂多孔質膜の厚さは約20μm、空孔率は48%、ガーレー値は451秒/mlであった。   Next, using a cutting lathe device (manufactured by Toshiba Machine Co., Ltd.), according to the method described with reference to FIG. 2, the surface layer portion of the cured body was continuously sliced with a thickness of 25 μm to obtain an epoxy resin sheet. The epoxy resin sheet is washed with a 50% by volume DMF aqueous solution and pure water in this order to remove polyethylene glycol, and then dried at 70 ° C. for 2 minutes, 80 ° C. for 1 minute, and 90 ° C. for 1 minute. A porous membrane was obtained. The epoxy resin porous membrane had a thickness of about 20 μm, a porosity of 48%, and a Gurley value of 451 seconds / ml.

[リチウム二次電池の作製]
次に、上記作製したエポキシ樹脂多孔質膜をセパレータとして使用し、以下に説明する方法に従って、実施例1のリチウムイオン二次電池を作製した。
[Production of lithium secondary battery]
Next, using the produced epoxy resin porous membrane as a separator, a lithium ion secondary battery of Example 1 was produced according to the method described below.

89重量部のコバルト酸リチウム(日本化学工業社製、セルシードC−10)、10重量部のアセチレンブラック(電気化学工業社製、デンカブラック)、5重量部のPVDF(呉羽化学工業社製、KFポリマーL#1120)を混合し、固形分濃度が15重量%となるようにN−メチル−2−ピロリドンを加えてカソード用スラリーを得た。このスラリーを厚さ20μmのアルミニウム箔(集電体)上に200μmの厚さで塗布した。塗膜を80℃で1時間、120℃で2時間真空乾燥した後、ロールプレスにて加圧した。これにより、100μmの厚さのカソード活物質層を有するカソードを得た。   89 parts by weight of lithium cobaltate (manufactured by Nippon Chemical Industry Co., Ltd., Cellseed C-10), 10 parts by weight of acetylene black (manufactured by Denki Kagaku Co., Ltd., Denka Black), 5 parts by weight of PVDF (manufactured by Kureha Chemical Industry Co., Ltd., KF) Polymer L # 1120) was mixed, and N-methyl-2-pyrrolidone was added so that the solid content concentration was 15% by weight to obtain a cathode slurry. This slurry was applied to a thickness of 200 μm on an aluminum foil (current collector) having a thickness of 20 μm. The coating film was vacuum dried at 80 ° C. for 1 hour and 120 ° C. for 2 hours, and then pressed by a roll press. As a result, a cathode having a cathode active material layer having a thickness of 100 μm was obtained.

80重量部のメソカーボンマイクロビーズ(大阪ガスケミカル社製、MCMB6−28)、10重量部のアセチレンブラック(電気化学工業社製、デンカブラック)、10重量部のPVDF(呉羽化学工業社製、KFポリマーL#1120)を混合し、固形分濃度が15重量%となるようにN−メチル−2−ピロリドンを加えてアノード用スラリーを得た。このスラリーを厚さ20μmの銅箔(集電体)上に200μmの厚さで塗布した。塗膜を80℃で1時間、120℃で2時間真空乾燥した後、ロールプレスにて加圧した。これにより、100μmの厚さのアノード活物質層を有するアノードを得た。   80 parts by weight of mesocarbon microbeads (manufactured by Osaka Gas Chemical Co., MCMB6-28), 10 parts by weight of acetylene black (manufactured by Denki Black), 10 parts by weight of PVDF (manufactured by Kureha Chemical Industries, KF Polymer L # 1120) was mixed, and N-methyl-2-pyrrolidone was added so that the solid concentration was 15% by weight to obtain an anode slurry. This slurry was applied to a thickness of 200 μm on a copper foil (current collector) having a thickness of 20 μm. The coating film was vacuum dried at 80 ° C. for 1 hour and 120 ° C. for 2 hours, and then pressed by a roll press. As a result, an anode having an anode active material layer having a thickness of 100 μm was obtained.

次に、カソード、アノード及びセパレータを用いて電極群を組み立てた。具体的には、カソード、上記作製したエポキシ樹脂多孔質膜(セパレータ)及びアノードを積層し、電極群を得た。電極群をアルミニウムラミネートパッケージに入れた後、パッケージに電解液を注入した。電解液として、エチレンカーボネートとジエチルカーボネートとを1:2の体積比で含む溶媒にLiPF6を1.4mol/リットルの濃度で溶解させ、さらに溶媒100重量部に対し、負極改質剤としてビニレンカーボネートを1重量部及びルイス塩基としてトリフェニルホスフェート(TPP)を10重量部添加したものを用いた。最後に、パッケージを封口して、実施例1のリチウムイオン二次電池を得た。 Next, an electrode group was assembled using a cathode, an anode, and a separator. Specifically, the cathode, the prepared epoxy resin porous membrane (separator), and the anode were laminated to obtain an electrode group. After the electrode group was put in an aluminum laminate package, an electrolytic solution was injected into the package. As an electrolytic solution, LiPF 6 was dissolved at a concentration of 1.4 mol / liter in a solvent containing ethylene carbonate and diethyl carbonate in a volume ratio of 1: 2, and vinylene carbonate was used as a negative electrode modifier with respect to 100 parts by weight of the solvent. 1 part by weight and 10 parts by weight of triphenyl phosphate (TPP) added as a Lewis base were used. Finally, the package was sealed to obtain the lithium ion secondary battery of Example 1.

[実施例2]
電解液に、トリフェニルホスフェート10重量部に代えてトリクレジルホスフェート(TCP)10重量部を添加した以外は実施例1と同様にして、リチウムイオン二次電池を得た。
[Example 2]
A lithium ion secondary battery was obtained in the same manner as in Example 1 except that 10 parts by weight of tricresyl phosphate (TCP) was added to the electrolytic solution instead of 10 parts by weight of triphenyl phosphate.

[実施例3]
電解液に、トリフェニルホスフェート10重量部に代えてトリエチルホスフェート(TEP)10重量部を添加した以外は実施例1と同様にして、リチウムイオン二次電池を得た。
[Example 3]
A lithium ion secondary battery was obtained in the same manner as in Example 1 except that 10 parts by weight of triethyl phosphate (TEP) was added to the electrolytic solution instead of 10 parts by weight of triphenyl phosphate.

[比較例1]
電解液に、トリフェニルホスフェート10重量部を添加しなかった以外は実施例1と同様にして、リチウムイオン二次電池を得た。
[Comparative Example 1]
A lithium ion secondary battery was obtained in the same manner as in Example 1 except that 10 parts by weight of triphenyl phosphate was not added to the electrolytic solution.

[高温保存試験]
実施例及び比較例の各電池を25℃の温度、0.2CmAの電流で、充電は4.2Vまで定電流充電、そこからは定電圧充電とし、放電は定電流放電で、カットオフ電圧は2.75Vとして、各電池の充放電を2回繰り返した。その後、25℃の温度にて、0.2CmAの定電流、4.2Vの定電圧で20時間連続して充電した。次に、満充電状態を維持しつつ、80℃の温度の恒温槽に20日間保持した後、80℃の温度で電池の電圧を測定した。結果を表1に示す。
[High temperature storage test]
Each battery of the example and the comparative example was charged at a constant current up to 4.2 V at a temperature of 25 ° C. and a current of 0.2 CmA, and then a constant voltage charge. The discharge was a constant current discharge, and the cut-off voltage was The charge / discharge of each battery was repeated twice at 2.75V. Thereafter, the battery was continuously charged at a constant current of 0.2 CmA and a constant voltage of 4.2 V at a temperature of 25 ° C. for 20 hours. Next, the battery voltage was measured at a temperature of 80 ° C. after being kept in a constant temperature bath at a temperature of 80 ° C. for 20 days while maintaining a fully charged state. The results are shown in Table 1.

Figure 2013020958
Figure 2013020958

表1が示すように、電解液がルイス塩基を含む場合には、高温保存試験において、高い電圧を維持していた。   As shown in Table 1, when the electrolytic solution contained a Lewis base, a high voltage was maintained in the high temperature storage test.

[参考例]
セパレータ中のエポキシモノマー化合物による電解液の分解の、ルイス塩基による抑制効果について正確に評価するために、次の評価を行った。
[Reference example]
In order to accurately evaluate the inhibitory effect of the Lewis base on the decomposition of the electrolyte solution by the epoxy monomer compound in the separator, the following evaluation was performed.

[参考例1〜3]
ジエチルカーボネートを含む溶媒にLiPF6を1.4mol/リットルの濃度で溶解させた。これに、エポキシモノマー(前記ビスフェノールA型エポキシ樹脂jER828)を、溶媒に対し100g/Lの濃度となるように加え、各実施例で用いたルイス塩基を溶媒100重量部に対し10重量部添加した。このようにして作製した電解液を、室温のグローブボックス内に20日間保持した後、電解液の着色の有無を目視にて観察した。結果を表2に示す。
[Reference Examples 1-3]
LiPF 6 was dissolved in a solvent containing diethyl carbonate at a concentration of 1.4 mol / liter. To this, an epoxy monomer (said bisphenol A type epoxy resin jER828) was added to a concentration of 100 g / L with respect to the solvent, and 10 parts by weight of the Lewis base used in each example was added with respect to 100 parts by weight of the solvent. . The electrolytic solution thus prepared was held in a glove box at room temperature for 20 days, and then the presence or absence of coloring of the electrolytic solution was visually observed. The results are shown in Table 2.

[参考例4]
ルイス塩基を添加しなかった以外は、上記参考例1〜3と同様にして電解液を作製し、評価を行った。結果を表2に示す。
[Reference Example 4]
An electrolyte solution was prepared and evaluated in the same manner as in Reference Examples 1 to 3 except that the Lewis base was not added. The results are shown in Table 2.

[参考例5]
エポキシモノマー及びルイス塩基を添加しなかった以外は、上記参考例1〜3と同様にして電解液を作製し、評価を行った。結果を表2に示す。
[Reference Example 5]
An electrolytic solution was prepared and evaluated in the same manner as in Reference Examples 1 to 3 except that the epoxy monomer and Lewis base were not added. The results are shown in Table 2.

Figure 2013020958
Figure 2013020958

表2に示すように、ルイス塩基を添加しなかった参考例4では、電解液の着色が見られた。これは、参考例4と5との比較からわかるように、エポキシモノマー化合物による電解液の分解に由来するものである。一方で、ルイス塩基を添加した参考例1〜3では、電解液の着色が見られなかった。従って、上記実施例1〜3のリチウムイオン二次電池においては、エポキシモノマー化合物による電解液の分解が抑制されており、これにより、高い電圧が維持されることがわかる。   As shown in Table 2, in Reference Example 4 in which the Lewis base was not added, the electrolyte solution was colored. As can be seen from the comparison between Reference Examples 4 and 5, this is due to the decomposition of the electrolytic solution by the epoxy monomer compound. On the other hand, in Reference Examples 1 to 3 to which the Lewis base was added, the electrolyte solution was not colored. Therefore, in the lithium ion secondary batteries of Examples 1 to 3 above, it is understood that the decomposition of the electrolyte solution by the epoxy monomer compound is suppressed, and thereby a high voltage is maintained.

本発明の非水電解質蓄電デバイスは、特に、車両、オートバイ、船舶、建設機械、産業機械、住宅用蓄電システム等に必要とされる大容量の二次電池に好適に使用できる。   The non-aqueous electrolyte electricity storage device of the present invention can be suitably used particularly for a large-capacity secondary battery required for vehicles, motorcycles, ships, construction machines, industrial machines, residential electricity storage systems, and the like.

2 カソード
3 アノード
4 セパレータ
12 硬化体
16 エポキシ樹脂シート
18 切削刃
100 非水電解質電池
2 Cathode 3 Anode 4 Separator 12 Cured body 16 Epoxy resin sheet 18 Cutting blade 100 Non-aqueous electrolyte battery

Claims (5)

カソードと、
アノードと、
前記カソードと前記アノードとの間に配置されたセパレータと、
イオン伝導性を有する電解液と、
を備え、
前記セパレータは、エポキシ樹脂多孔体を含み、
前記電解液は、非水溶媒、フッ素原子含有電解質、及びルイス塩基化合物を含む、
非水電解質蓄電デバイス。
A cathode,
An anode,
A separator disposed between the cathode and the anode;
An electrolytic solution having ionic conductivity;
With
The separator includes an epoxy resin porous body,
The electrolytic solution includes a non-aqueous solvent, a fluorine atom-containing electrolyte, and a Lewis base compound.
Non-aqueous electrolyte electricity storage device.
前記ルイス塩基化合物が、ホスフェート化合物である請求項1に記載の非水電解質蓄電デバイス。   The nonaqueous electrolyte electricity storage device according to claim 1, wherein the Lewis base compound is a phosphate compound. 前記電解液が、前記ルイス塩基化合物を、前記非水溶媒100重量部に対し、1〜30重量部含む請求項1又は2に記載の非水電解質蓄電デバイス。   The nonaqueous electrolyte electricity storage device according to claim 1 or 2, wherein the electrolytic solution contains 1 to 30 parts by weight of the Lewis base compound with respect to 100 parts by weight of the nonaqueous solvent. 前記セパレータのエポキシ樹脂多孔体が、アミノ基を含む請求項1〜3のいずれかに記載の非水電解質蓄電デバイス。   The nonaqueous electrolyte electricity storage device according to any one of claims 1 to 3, wherein the porous epoxy resin body of the separator includes an amino group. カソード、アノード、及びエポキシ樹脂多孔体を含むセパレータを準備する工程と、
前記カソード、前記アノード及び前記セパレータを用いて電極群を組み立てる工程と、
前記電極群にイオン伝導性を有する電解液を含浸させる工程と、
を含み、
前記セパレータを準備する工程が、
(i)エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程と、
(ii)エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に成形する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程と、
(iii)ハロゲンフリーの溶剤を用いて前記エポキシ樹脂シートから前記ポロゲンを除去する工程と、
を含み、
前記電解液は、非水溶媒、フッ素原子含有電解質、及びルイス塩基化合物を含む、
非水電解質蓄電デバイスの製造方法。
Preparing a separator including a cathode, an anode, and a porous epoxy resin;
Assembling an electrode group using the cathode, the anode and the separator;
Impregnating the electrode group with an electrolyte having ion conductivity;
Including
Preparing the separator comprises:
(I) preparing an epoxy resin composition comprising an epoxy resin, a curing agent and a porogen;
(Ii) a step of molding the cured product of the epoxy resin composition into a sheet shape or curing the sheet-shaped molded product of the epoxy resin composition so that an epoxy resin sheet is obtained;
(Iii) removing the porogen from the epoxy resin sheet using a halogen-free solvent;
Including
The electrolytic solution includes a non-aqueous solvent, a fluorine atom-containing electrolyte, and a Lewis base compound.
A method for producing a nonaqueous electrolyte electricity storage device.
JP2012133210A 2011-06-13 2012-06-12 Nonaqueous electrolyte power storage device, and method for manufacturing the same Pending JP2013020958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133210A JP2013020958A (en) 2011-06-13 2012-06-12 Nonaqueous electrolyte power storage device, and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011131564 2011-06-13
JP2011131564 2011-06-13
JP2012133210A JP2013020958A (en) 2011-06-13 2012-06-12 Nonaqueous electrolyte power storage device, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013020958A true JP2013020958A (en) 2013-01-31

Family

ID=47692164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133210A Pending JP2013020958A (en) 2011-06-13 2012-06-12 Nonaqueous electrolyte power storage device, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013020958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059937A1 (en) * 2013-10-25 2015-04-30 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage devices, nonaqueous electrolyte electricity storage device, method for producing separator for nonaqueous electrolyte electricity storage devices, and method for manufacturing nonaqueous electrolyte electricity storage device
JP2017152242A (en) * 2016-02-25 2017-08-31 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059937A1 (en) * 2013-10-25 2015-04-30 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage devices, nonaqueous electrolyte electricity storage device, method for producing separator for nonaqueous electrolyte electricity storage devices, and method for manufacturing nonaqueous electrolyte electricity storage device
JP2017152242A (en) * 2016-02-25 2017-08-31 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery using the same

Similar Documents

Publication Publication Date Title
JP4940367B1 (en) Separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, and production method thereof
JP5934580B2 (en) Epoxy resin porous membrane, separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, composite semipermeable membrane, and production method thereof
WO2012172789A1 (en) Separator for nonaqueous electrolyte electricity storage devices, nonaqueous electrolyte electricity storage device, method for producing separator for nonaqueous electrolyte electricity storage devices, and method for manufacturing nonaqueous electrolyte electricity storage device
WO2012172782A1 (en) Separator for nonaqueous electrolytic electricity storage device and nonaqueous electrolytic electricity storage device
JP2013020957A (en) Nonaqueous electrolyte power storage device, and method for manufacturing the same
WO2012172784A1 (en) Method for manufacturing separator for non-aqueous electrolyte accumulator and method for manufacturing non-aqueous electrolyte accumulator
WO2012172786A1 (en) Method for fabricating separator for non-aqueous electrolyte electricity storage device and method for fabricating non-aqueous electrolyte electricity storage device
JP2015170394A (en) Separator for power storage device, method of manufacturing the same, and power storage device using the same
WO2012172783A1 (en) Production method for separator for nonaqueous electrolytic electricity storage device and production method for nonaqueous electrolytic electricity storage device
WO2012172785A1 (en) Nonaqueous electrolytic electricity storage device and production method therefor
JP2013020958A (en) Nonaqueous electrolyte power storage device, and method for manufacturing the same
WO2012172787A1 (en) Separator for non-aqueous electrolyte accumulators, non-aqueous electrolyte accumulator and manufacturing methods therefor
JP6405187B2 (en) Separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, and production method thereof
JP2015168694A (en) Porous epoxy resin membrane, separator for electricity storage device using the same and methods of producing them
JP2013020956A (en) Separator for nonaqueous electrolyte power storage device, nonaqueous electrolyte power storage device, and manufacturing methods thereof
JP2015084297A (en) Separator for nonaqueous electrolyte power storage devices, nonaqueous electrolyte power storage device, and manufacturing method thereof
JP2015170393A (en) Separator for power storage device and manufacturing method therefor, and power storage device using the same