JP2013019415A - Integrated power conrol device and method - Google Patents

Integrated power conrol device and method Download PDF

Info

Publication number
JP2013019415A
JP2013019415A JP2012179448A JP2012179448A JP2013019415A JP 2013019415 A JP2013019415 A JP 2013019415A JP 2012179448 A JP2012179448 A JP 2012179448A JP 2012179448 A JP2012179448 A JP 2012179448A JP 2013019415 A JP2013019415 A JP 2013019415A
Authority
JP
Japan
Prior art keywords
power
power generation
output
control device
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012179448A
Other languages
Japanese (ja)
Other versions
JP5461632B2 (en
Inventor
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2012179448A priority Critical patent/JP5461632B2/en
Publication of JP2013019415A publication Critical patent/JP2013019415A/en
Application granted granted Critical
Publication of JP5461632B2 publication Critical patent/JP5461632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Inverter Devices (AREA)
  • Wind Motors (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve system interconnection of wind power generation and solar power generation at low costs and in large amounts.SOLUTION: A power generation output control system 10 can inhibit rapid output fluctuations by matching outputs of multiple power generation apparatus, and allows multiple wind power generation apparatuses 1 and the power conditioners 4, and an integrated control device 7 to be communicably connected via a network 8. The integrated control device 7 receives output powers from the wind power generation apparatuses 1 and the power conditioners 4, and sends power fluctuation inhibition commands to individual wind power generation apparatuses 1 and the power conditioners 4, according to the output powers. More specifically, the integrated control device 7 calculates a total sum of the output powers of the wind power generation apparatuses 1 within an area, and the power conditioners 4 connected to solar power generation apparatuses 3, and in a case where a power fluctuation speed based on the total sum exceeds a prescribed value, transmits the power fluctuation inihibition commands to the wind power generation apparatuses 1 and the power conditioners 4. In this case, the integrated control device 7 sends the inhibition commands with assigned priorities to each of the wind power generation apparatuses 1 and the power conditioners 4.

Description

本発明は、風力発電装置や太陽光発電装置を電力系統に連系する際に、電力系統に出力する電力を制御する装置及び方法に関する。   The present invention relates to an apparatus and a method for controlling power output to a power system when a wind power generator or a solar power generator is connected to the power system.

風力発電においては、風のエネルギーを効率よく取り出すために、風車の羽根(ブレード)のピッチ角の制御が行われている(特許文献1参照)。また、太陽光発電においては、パワーコンディショナにて、太陽電池の出力電力.が最大になる点(最適動作点)に追従する最大電力点追従制御(MPPT[Maximum Power Point Tracking]制御)が行われている(特許文献2参照)。   In wind power generation, in order to efficiently extract wind energy, the pitch angle of wind turbine blades (blades) is controlled (see Patent Document 1). In solar power generation, the power conditioner performs maximum power point tracking control (MPPT [Maximum Power Point Tracking] control) to follow the point where the output power of the solar cell is maximized (optimum operating point). (See Patent Document 2).

特開2002−48050号公報JP 2002-48050 A 特開平7−281775号公報JP-A-7-281775

ところで、風力発電や太陽光発電を電力系統に連系する際には、風や太陽光の強さにより発電電力が大きく変動しやすいことから、電力系統の調整能力に応じた、連系可能量の制限が存在する。そこで、連系可能量を増大させるために、蓄電池を設置することが提案されている。しかしながら、蓄電池は高価で、その設置には多額の費用がかかり、そのことにより、風力発電・太陽光発電の導入が妨げられるおそれもある。   By the way, when linking wind power generation or solar power generation to the power grid, the generated power tends to fluctuate greatly depending on the strength of the wind or sunlight. There are limitations. Therefore, it has been proposed to install a storage battery in order to increase the possible amount of interconnection. However, storage batteries are expensive and expensive to install, which may impede the introduction of wind and solar power generation.

本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、風力発電や太陽光発電を安価かつ大量に系統連系することにある。   This invention is made | formed in view of the said subject, The main objective is to carry out grid connection of wind power generation and photovoltaic power generation cheaply and in large quantities.

上記課題を解決するために、本発明は、電力系統に連系した分散型電源の出力電力を制御する複数の発電電力制御装置と通信する統括電力制御装置であって、各発電電力制御装置から出力電力を受信する手段と、受信した各出力電力を合計し、記憶する手段と、合計した前記出力電力の変動速度を計算し、計算した変動速度が所定値を越えた場合に、当該変動に係る前記発電電力制御装置に優先して電力変動抑制指令を送信する手段と、を備えることを特徴とする。   In order to solve the above-described problems, the present invention provides a general power control device that communicates with a plurality of generated power control devices that control output power of a distributed power source that is linked to a power system. A means for receiving the output power, a means for summing up and storing each received output power, and calculating a fluctuation speed of the total output power, and when the calculated fluctuation speed exceeds a predetermined value, And a means for transmitting a power fluctuation suppression command in preference to the generated power control apparatus.

この構成によれば、合計した出力電力の上昇速度が所定値を超えた場合には、出力電力の上昇に係る発電電力制御装置に優先して抑制指令を送信し、一方、合計した出力電力の低下速度が所定値を超えた場合には、出力電力の低下に係る発電電力制御装置に優先して抑制指令を送信する。これによれば、複数の発電電力制御装置に係る出力電力の合計を判定することにより、急な出力変動を極力抑えるとともに、所定値を超えた変動速度を検出したとしても、変動状況に応じて選択された発電電力制御装置に抑制指令を送信するので、効率的に出力変動を抑制することができる。   According to this configuration, when the total output power increase rate exceeds a predetermined value, the suppression command is transmitted in preference to the generated power control device related to the output power increase, while the total output power When the decrease rate exceeds a predetermined value, the suppression command is transmitted with priority over the generated power control device related to the decrease in output power. According to this, by determining the total of the output power related to the plurality of generated power control devices, it is possible to suppress sudden output fluctuation as much as possible, and even if a fluctuation speed exceeding a predetermined value is detected, depending on the fluctuation situation Since the suppression command is transmitted to the selected generated power control device, the output fluctuation can be efficiently suppressed.

請求項における分散型電源は、実施の形態における風力発電装置1と、太陽光発電装置3及びパワーコンディショナ4に対応する。請求項における発電出力制御装置は、実施の形態におけるピッチ角制御部16と、パワーコンディショナ4に対応する。請求項における統括電力制御装置は、実施の形態における統括制御装置7に対応する。   The distributed power source in the claims corresponds to the wind power generator 1, the solar power generator 3, and the power conditioner 4 in the embodiment. The power generation output control device in the claims corresponds to the pitch angle control unit 16 and the power conditioner 4 in the embodiment. The overall power control device in the claims corresponds to the overall control device 7 in the embodiment.

なお、本発明は、統括電力制御方法を含む。その他、本願が開示する課題及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   The present invention includes a general power control method. In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description of the mode for carrying out the invention and the drawings.

本発明によれば、風力発電や太陽光発電を安価かつ大量に系統連系することができる。   According to the present invention, wind power generation and solar power generation can be grid-connected at low cost and in large quantities.

第1の実施の形態に係る発電装置の構成を示す図であり、(a)は風力発電装置及びその周辺の構成を示し、(b)は電力系統における電力調整能力の限界を示し、(c)は太陽光発電装置及びその周辺の構成を示す。It is a figure which shows the structure of the electric power generating apparatus which concerns on 1st Embodiment, (a) shows the structure of a wind power generator and its periphery, (b) shows the limit of the power adjustment capability in an electric power grid, (c ) Shows the configuration of the photovoltaic power generation apparatus and its surroundings. 発電電力の時間的な変動例を示す図である。It is a figure which shows the example of a fluctuation | variation with time of generated electric power. 電力変動に対応した発電出力制御方法の詳細を示す図であり、(a)は風力発電装置1の制御方法を示し、(b)は太陽光発電装置3につながるパワーコンディショナ4の制御方法を示す。It is a figure which shows the detail of the power generation output control method corresponding to electric power fluctuation | variation, (a) shows the control method of the wind power generator 1, (b) shows the control method of the power conditioner 4 connected to the solar power generation device 3. Show. 第2の実施の形態に係る発電出力制御システムの構成を示す図である。It is a figure which shows the structure of the electric power generation output control system which concerns on 2nd Embodiment.

以下、図面を参照しながら、本発明を実施するための形態を説明する。本発明の実施の形態に係る発電出力制御装置は、風力発電や太陽光発電等の発電装置による発電電力に基づいて、電力系統への出力電力を最大にする制御を行う際に、発電電力の変動が所定の条件を満たすときに、最大点から動作点をずらす制御を行うものである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The power generation output control device according to the embodiment of the present invention, when performing control to maximize the output power to the power system based on the power generated by the power generation device such as wind power generation or solar power generation, When the fluctuation satisfies a predetermined condition, control is performed to shift the operating point from the maximum point.

これによれば、発電電力の変動後又は変動前に出力電力を抑制することにより、出力電力の変動速度を抑制することができるので、発電装置の電力系統への連系可能量を増加させることができる。換言すれば、発電装置の発電電力が急に上がったり、下がったりすると、出力電力に対する電力系統側の調整能力が付いて行かないことがあるが、出力電力の変動速度を抑制することにより、電力系統側の調整範囲内に収めることができる。   According to this, since the fluctuation speed of the output power can be suppressed by suppressing the output power after the fluctuation of the generated power or before the fluctuation, it is possible to increase the amount of the power generation apparatus that can be connected to the power system Can do. In other words, if the generated power of the power generator suddenly increases or decreases, the power system side adjustment capability for the output power may not be attached, but by suppressing the fluctuation speed of the output power, the power system Within the adjustment range on the side.

≪第1の実施の形態≫
本発明に係る第1の実施の形態では、個別に発電装置単体の出力制御を行う。図1は、第1の実施の形態に係る発電装置の構成を示す図である。図1(a)は、風力発電装置及びその周辺の構成を示す。風力発電装置1は、電力系統2に接続され、風力により発電した電力を電力系統2に出力するものであり、ブレード11、可変ピッチ12、ロータ13、増速機14、発電機15及びピッチ角制御部16を備える。ブレード11は、風車の羽根である。可変ピッチ12は、ブレード11と、ロータ13とを接続するとともに、ブレード11の向き、すなわち、ピッチ角を変更する駆動機構である。ロータ13は、可変ピッチ12を介してブレード11を支持し、ブレード11が受風することにより回転する。増速機14は、ロータ13と、発電機15との間にあって、ロータ13の回転速度を増加させて、発電機15に伝達する。発電機15は、増速機14から伝達された回転により発電を行う。
<< First Embodiment >>
In the first embodiment according to the present invention, output control of a single power generator is individually performed. FIG. 1 is a diagram illustrating the configuration of the power generation device according to the first embodiment. Fig.1 (a) shows the structure of a wind power generator and its periphery. The wind power generator 1 is connected to the power system 2 and outputs the power generated by the wind power to the power system 2. The blade 11, the variable pitch 12, the rotor 13, the speed increaser 14, the generator 15, and the pitch angle are output. A control unit 16 is provided. The blade 11 is a blade of a windmill. The variable pitch 12 is a drive mechanism that connects the blade 11 and the rotor 13 and changes the direction of the blade 11, that is, the pitch angle. The rotor 13 supports the blade 11 via the variable pitch 12 and rotates when the blade 11 receives wind. The step-up gear 14 is between the rotor 13 and the generator 15, increases the rotational speed of the rotor 13, and transmits it to the generator 15. The generator 15 generates power by the rotation transmitted from the speed increaser 14.

ピッチ角制御部16は、風力発電装置1に内蔵又は外付け接続されるCPU(Central Processing Unit)、DSP(Digital Signal Processor)等のマイクロプロセッサで構成され、発電機15の出力電力を取得しながらブレード11のピッチ角が適切になるように可変ピッチ12を制御する。通常時は、動作点が最高効率点になる最適ピッチ角にする制御を行うが、発電機15の出力電力の変動速度(単位は、例えば、[%/分])が速過ぎる時は、ピッチ角を最適ピッチ角から少しずらして、変動速度を抑制する。ピッチ角をずらす量としては、例えば、風力発電装置1の定格出力の数%程度の出力低下分に相当する角度だけずらす。   The pitch angle control unit 16 includes a microprocessor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor) that is built in or externally connected to the wind turbine generator 1, and acquires output power of the generator 15. The variable pitch 12 is controlled so that the pitch angle of the blade 11 becomes appropriate. Normally, control is performed so that the operating point becomes the optimum pitch angle at which the maximum efficiency point is reached. The angle is slightly shifted from the optimum pitch angle to suppress the fluctuation speed. As an amount of shifting the pitch angle, for example, the angle corresponding to an output decrease of about several percent of the rated output of the wind turbine generator 1 is shifted.

図1(b)は、電力系統における電力調整能力の限界を示し、横軸を時間とし、縦軸を発電機出力とするグラフである。LFC(Load Frequency Control)は、需要予測困難な電力変動(数分から十数分程度の周期)や需給ミスマッチに対応する制御であり、LFC制御範囲は、そのLFCにより許容可能な電力変動範囲を示し、実際には発電機出力の±5%程度の範囲になる。ガバナフリーは、LFCでは追従できないような電力変動(数秒から数分程度の周期)に対応する制御であり、例えば、タービン等の機械的な慣性力による吸収等による。EDC(Economic Load Dispatching Control)は、比較的長時間の電力変動(十数分から数時間程度の周期)に対応する制御であり、需給予測に合わせて先行的に制御する。   FIG.1 (b) is a graph which shows the limit of the electric power adjustment capability in an electric power grid | system, sets a horizontal axis as time, and makes a vertical axis | shaft a generator output. LFC (Load Frequency Control) is a control that responds to power fluctuations (periods of several minutes to a few tens of minutes) and supply / demand mismatches that are difficult to predict demand. Actually, it is in the range of about ± 5% of the generator output. Governor-free is control corresponding to power fluctuations (periods of several seconds to several minutes) that cannot be followed by LFC, for example, by absorption due to mechanical inertial force of a turbine or the like. EDC (Economic Load Dispatching Control) is control corresponding to a relatively long-time power fluctuation (a period of about ten minutes to several hours), and is controlled in advance in accordance with supply and demand prediction.

図1(c)は、太陽光発電装置及びその周辺の構成を示す。太陽光発電装置3は、パワーコンディショナ4を通じて電力系統5につながり、パワーコンディショナ4と、電力系統5との間に電力モニタ6が設けられる。太陽光発電装置3は、太陽光を受けて発電し、発電した電力をパワーコンディショナ4に出力するものであり、例えば、太陽電池により実現される。パワーコンディショナ4は、CPU、DSP等のマイクロプロセッサ及びHDD(Hard Disk Drive)、SSD(Solid State Drive)等の記憶装置を備え、電力系統5に出力する電力を調整する装置であり、太陽光発電装置3からの発電電力を受け、その発電電力の変動に応じて、最適動作点からわずかにずれた点で動作するように制御し、その動作点に対応する出力電圧を100Vに変換して、電力系統5に出力する。動作点は、太陽光発電装置3の電圧・電流特性に沿って調整される。電力モニタ6は、パワーコンディショナ4から電力系統5に出力される電力を監視する。   FIG.1 (c) shows the structure of a solar power generation device and its periphery. The solar power generation device 3 is connected to the power system 5 through the power conditioner 4, and a power monitor 6 is provided between the power conditioner 4 and the power system 5. The solar power generation device 3 receives sunlight and generates power, and outputs the generated power to the power conditioner 4, and is realized by, for example, a solar battery. The power conditioner 4 includes a microprocessor such as a CPU and a DSP, and a storage device such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive), and adjusts the power output to the power system 5. The power generated from the power generation device 3 is received and controlled so as to operate at a point slightly deviated from the optimum operating point according to fluctuations in the generated power, and the output voltage corresponding to the operating point is converted to 100V. , Output to the power system 5. The operating point is adjusted according to the voltage / current characteristics of the photovoltaic power generator 3. The power monitor 6 monitors the power output from the power conditioner 4 to the power system 5.

図2及び図3は、発電出力制御方法の詳細を示す図である。図2は、発電電力の時間的な変動例を示し、横軸を時間として、縦軸を発電電力とするグラフである。風力発電装置1や太陽光発電装置3による発電電力は、例えば、上昇→安定→降下のように変動する。そして、風力発電装置1の電力変動に対しては、風力発電装置1に備えられたピッチ角制御部16がブレード11のピッチ角を制御することにより、風力発電装置1から電力系統2への出力電力を調整する。つまり、風力発電装置1の発電電力そのものを調整する。一方、太陽光発電装置3の電力変動に対しては、太陽光発電装置3に接続されたパワーコンディショナ4が、太陽光発電装置3から受けた発電電力に応じて、電力系統5へ出力する電力を調整する。従って、太陽光発電装置3の発電電力そのものを調整することはしない。それらの詳細を以下に説明する。   2 and 3 are diagrams showing details of the power generation output control method. FIG. 2 is a graph showing an example of temporal variation in generated power, with the horizontal axis representing time and the vertical axis representing generated power. The power generated by the wind power generator 1 or the solar power generator 3 fluctuates, for example, as rising → stable → falling. And with respect to the electric power fluctuation of the wind power generator 1, the pitch angle control part 16 with which the wind power generator 1 was equipped controls the pitch angle of the braid | blade 11, and the output from the wind power generator 1 to the electric power grid | system 2 is carried out. Adjust the power. That is, the generated power itself of the wind power generator 1 is adjusted. On the other hand, the power conditioner 4 connected to the solar power generation device 3 outputs the power fluctuation of the solar power generation device 3 to the power system 5 according to the generated power received from the solar power generation device 3. Adjust the power. Therefore, the generated power itself of the solar power generation device 3 is not adjusted. Details thereof will be described below.

図3(a)は、図2の電力変動に対応した、風力発電装置1の制御方法を示し、周速比を横軸とし、ブレード11のピッチ角を縦軸とするグラフである。グラフに描かれた曲線は、ブレード11の周速比と、最大出力を得るための最適ピッチ角との関係を示す。周速比とは、羽根に当たる風速[m/秒]に対する羽根の外周部の回転速度[m/秒]の比であり、風車翼端速度を風速で除算することにより算出される。ピッチ角制御部16は、この曲線の示す特性データを記憶し、通常は、記憶した特性データに従い、周速比に応じてブレード11のピッチ角を最適値に調整する制御を行うが、電力変動に対しては、以下のような制御を行う。   FIG. 3A shows a control method of the wind turbine generator 1 corresponding to the power fluctuation of FIG. 2, and is a graph with the peripheral speed ratio as the horizontal axis and the pitch angle of the blade 11 as the vertical axis. The curve drawn in the graph shows the relationship between the peripheral speed ratio of the blade 11 and the optimum pitch angle for obtaining the maximum output. The peripheral speed ratio is a ratio of the rotational speed [m / sec] of the outer peripheral portion of the blade to the wind speed [m / sec] hitting the blade, and is calculated by dividing the wind turbine blade tip speed by the wind speed. The pitch angle control unit 16 stores the characteristic data indicated by this curve, and normally performs control to adjust the pitch angle of the blade 11 to the optimum value according to the peripheral speed ratio according to the stored characteristic data. Is controlled as follows.

(1)発電電力が上昇している場合(電力の上昇を検知又は予測した場合)
発電電力の上昇速度が所定値(例えば、5[%/分])を超えた場合、最適ピッチ角からずれたピッチ角にすることにより、発電電力の上昇を極力抑える。これにより、上昇の傾きが小さくなり、発電電力の上昇速度を抑制することができる。「最適ピッチ角からずれたピッチ角」とは、その時点の周速比に対応する最適ピッチ角に対して、所定値を引いたピッチ角又は所定の比率(<1)を乗じたピッチ角をいう。
電力の上昇を検知するには、電力を逐次計測し、上がり始めたときの勾配を検知する。そして、その勾配を上昇速度に換算し、その換算した上昇速度を所定値と比較する。
(1) When the generated power is rising (when the increase in power is detected or predicted)
When the rising speed of the generated power exceeds a predetermined value (for example, 5 [% / min]), the increase in the generated power is suppressed as much as possible by setting the pitch angle to be deviated from the optimum pitch angle. Thereby, the inclination of the increase is reduced, and the increase rate of the generated power can be suppressed. “Pitch angle deviated from the optimum pitch angle” means a pitch angle obtained by multiplying a pitch angle obtained by subtracting a predetermined value or a predetermined ratio (<1) with respect to the optimum pitch angle corresponding to the peripheral speed ratio at that time. Say.
In order to detect an increase in electric power, the electric power is sequentially measured, and a gradient when the electric power starts increasing is detected. Then, the gradient is converted into an ascending speed, and the converted ascending speed is compared with a predetermined value.

(2)発電電力が安定している場合
発電電力の降下に備えて、ピッチ角をあえて最適ピッチ角の手前にずらす。これにより、安定時の電力と、降下後の電力との差が小さくなり、降下時の傾斜が小さくなる。なお、発電電力が降下することを予測したときに、ピッチ角を最適ピッチ角からずらすようにしてもよい。逆に言えば、発電電力の降下を予測しないときには、発電電力の上昇を予測する又は予測しないにかかわらず、そのまま最適動作点で動作させる。これによれば、安定時の電力損失を減らし、最大出力を維持することができる。
電力の安定を検知するには、電力を逐次計測し、上がり、下がりがないことを検知する。
(2) When the generated power is stable In preparation for a drop in the generated power, the pitch angle is intentionally shifted to the front of the optimum pitch angle. Thereby, the difference between the power at the time of stabilization and the power after the drop is reduced, and the slope at the time of the drop is reduced. Note that when it is predicted that the generated power will drop, the pitch angle may be shifted from the optimum pitch angle. In other words, when a decrease in generated power is not predicted, it is operated as it is at the optimum operating point, regardless of whether or not an increase in generated power is predicted. According to this, the power loss at the time of stability can be reduced and the maximum output can be maintained.
In order to detect the stability of the power, the power is sequentially measured and it is detected that there is no increase or decrease.

(3)発電電力が降下している場合
安定時にピッチ角を最適ピッチ角の手前にした後、発電電力の降下が始まって、降下速度が所定値(例えば、−5[%/分])を下回る場合、ピッチ角を最適ピッチ角に戻す。これにより、降下後の電力を上げることができ、安定時の電力と、降下後の電力との差を小さくすることができ、その結果、発電電力の降下速度を抑制することができる。
電力の降下を検知するには、電力を逐次計測し、下がり始めたときの勾配を検知する。そして、その勾配を降下速度に換算し、その換算した降下速度を所定値と比較する。
(3) When the generated power is falling After the pitch angle is set to be close to the optimum pitch angle at the stable time, the generated power starts to drop, and the descending speed reaches a predetermined value (for example, -5 [% / min]). If lower, the pitch angle is returned to the optimum pitch angle. Thereby, the electric power after the descent can be increased, and the difference between the stable electric power and the electric power after the descent can be reduced, and as a result, the descent speed of the generated power can be suppressed.
To detect a drop in power, the power is measured sequentially and the slope when it starts to drop is detected. Then, the gradient is converted into a descending speed, and the converted descending speed is compared with a predetermined value.

なお、風力発電装置1の発電電力を予測するには、気象情報のデータから風速及び風向を予測したり、過去の実績データを用いたりする方法があり、その一例として、オンラインで風力発電によって給電される電力量を把握する風力発電予測ツールAWPT(Advanced Wind Power Prediction Tool)がある。   In addition, in order to predict the generated power of the wind power generator 1, there are methods of predicting the wind speed and direction from the data of weather information, or using past performance data, for example, power supply by wind power generation online. There is a wind power generation prediction tool AWPT (Advanced Wind Power Prediction Tool) that grasps the amount of electric power generated.

図3(b)は、図2の電力変動に対応した、太陽光発電装置3につながるパワーコンディショナ4の制御方法を示し、横軸を電圧Vとし、縦軸を電流Iとするグラフである。グラフに描かれた曲線は、一定の光源下における太陽電池のV−I出力特性を示す。それぞれの破線で囲まれた矩形の面積が出力電力になる。   FIG. 3B shows a control method of the power conditioner 4 connected to the photovoltaic power generation apparatus 3 corresponding to the power fluctuation of FIG. 2, and is a graph in which the horizontal axis is the voltage V and the vertical axis is the current I. . The curve drawn in the graph shows the VI output characteristics of the solar cell under a certain light source. A rectangular area surrounded by each broken line is output power.

最適動作点Pでは、電圧Vと、電流Iとのバランスがよく、出力電力が最大になる。電圧Vの動作点では、電流は大きいが、電圧が低いので、出力電力が小さい。電圧Vの動作点では、電圧は高いが、電流が小さいので、出力電力が小さい。なお、開放電圧はVで示し、短絡電流はIで示す。 In the optimum operating point P A, and the voltage V P, the balance of the current I P well, the output power is maximized. The operating point of the voltage V 1, while the current is large, because the voltage is low, a small output power. The operating point of the voltage V 2, the voltage is high, because the current is small, a small output power. Incidentally, the open-circuit voltage is shown in V O, the short-circuit current indicated by I S.

パワーコンディショナ4は、この曲線の示す特性データを記憶し、通常は、記憶した特性データに従い、太陽光に応じて最適に動作するように制御を行うが、電力変動に対しては、以下のような制御を行う。なお、動作点は、一定の光源下における特性データの曲線上を移動するものとする。   The power conditioner 4 stores the characteristic data indicated by this curve, and normally performs control so as to operate optimally according to sunlight in accordance with the stored characteristic data. Perform such control. It is assumed that the operating point moves on a characteristic data curve under a certain light source.

(1)発電電力が上昇している場合(電力の上昇を検知又は予測した場合)
発電電力の上昇速度が所定値(例えば、5[%/分])を超えた場合、最適動作点からずれた動作点で動作させることにより、出力電力の上昇を極力抑える。これにより、上昇後の出力電力が小さくなり、上昇の傾きが小さくなるので、出力電力の上昇速度を抑制することができる。「最適動作点からずれた動作点で動作させる」とは、最適動作点における電力に対して、所定値を引いた電力又は所定の比率(<1)を乗じた電力を出力すること、又は、最適動作点における電圧若しくは電流を所定値分増加又は減少させたときの動作点に対応する電力を出力することをいう。
発電電力の上昇を検知するには、発電電力を逐次計測し、上がり始めたときの勾配を検知する。そして、その勾配を上昇速度に換算し、その換算した上昇速度を所定値と比較する。
(1) When the generated power is rising (when the increase in power is detected or predicted)
When the rising speed of the generated power exceeds a predetermined value (for example, 5 [% / min]), an increase in output power is suppressed as much as possible by operating at an operating point deviating from the optimal operating point. As a result, the output power after the increase is reduced and the inclination of the increase is reduced, so that the increase rate of the output power can be suppressed. “Operating at an operating point deviating from the optimal operating point” means outputting power obtained by multiplying power at the optimal operating point by a predetermined value or a predetermined ratio (<1), or The output of power corresponding to the operating point when the voltage or current at the optimal operating point is increased or decreased by a predetermined value.
In order to detect an increase in generated power, the generated power is sequentially measured, and the gradient when it starts to increase is detected. Then, the gradient is converted into an ascending speed, and the converted ascending speed is compared with a predetermined value.

(2)発電電力が安定している場合
発電電力の降下に備えて、動作点をあえて最適動作点の手前にずらして動作させる。これにより、安定時の出力電力と、降下後の出力電力との差が小さくなり、降下時の傾斜が小さくなる。なお、発電電力が降下することを予測したときに、動作点を最適動作点からずらすようにしてもよい。逆に言えば、発電電力の降下を予測しないときには、発電電力の上昇を予測する又は予測しないにかかわらず、そのまま最適動作点で動作させる。これによれば、安定時の電力損失を減らし、最大出力を維持することができる。
発電電力の安定を検知するには、発電電力を逐次計測し、上がり、下がりがないことを検知する。
(2) When the generated power is stable In preparation for a drop in the generated power, the operating point is intentionally shifted before the optimum operating point. Thereby, the difference between the output power at the time of stabilization and the output power after the drop is reduced, and the slope at the time of the drop is reduced. Note that the operating point may be shifted from the optimal operating point when it is predicted that the generated power will drop. In other words, when a decrease in generated power is not predicted, it is operated as it is at the optimum operating point, regardless of whether or not an increase in generated power is predicted. According to this, the power loss at the time of stability can be reduced and the maximum output can be maintained.
In order to detect the stability of the generated power, the generated power is measured sequentially and it is detected that there is no increase or decrease.

(3)発電電力が降下している場合
安定時に動作点を最適動作点の手前にして動作させた後、発電電力の降下が始まって、降下速度が所定値(例えば、−5%/分)を下回る場合、動作点を最適動作点に戻す。これにより、降下後の出力電力を上げることができ、安定時の出力電力と、降下後の出力電力との差を小さくすることができる。これによれば、出力電力の降下速度を抑制することができる。
発電電力の降下を検知するには、発電電力を逐次計測し、下がり始めたときの勾配を検知する。そして、その勾配を降下速度に換算し、その換算した降下速度を所定値と比較する。
(3) When the generated power is decreasing After operating at the operating point before the optimum operating point at the stable time, the generated power starts to decrease and the decreasing speed is a predetermined value (for example, -5% / min) If the value is below, the operating point is returned to the optimum operating point. As a result, the output power after the drop can be increased, and the difference between the output power at the stable time and the output power after the drop can be reduced. According to this, the rate of decrease in output power can be suppressed.
In order to detect the drop in generated power, the generated power is sequentially measured, and the gradient when it starts to drop is detected. Then, the gradient is converted into a descending speed, and the converted descending speed is compared with a predetermined value.

なお、太陽光発電装置3の発電電力を予測するには、例えば、気象情報のデータから日射量を予測し、その日射量から発電量を予測する方法がある。   In order to predict the generated power of the solar power generation device 3, for example, there is a method of predicting the amount of solar radiation from the data of weather information and predicting the amount of power generation from the amount of solar radiation.

≪第2の実施の形態≫
本発明に係る第2の実施の形態では、あるエリア内に位置する複数の発電装置につながる制御装置を統括制御する。図4は、発電出力制御システムの構成を示す図である。発電出力制御システム10は、限られたエリアに位置する複数の発電装置の出力を合わせることにより、急な出力変動を抑えることを可能とするものであり、複数の風力発電装置1(ピッチ角制御部16)及び複数のパワーコンディショナ4と、統括制御装置7とがネットワーク8を介して通信可能に接続される。統括制御装置7は、通信部(NIC[Network Interface Card]等)、処理部(CPU)及び記憶部(HDD、SSD等)を備えたPC(Personal Computer)やサーバによって実現され、風力発電装置1やパワーコンディショナ4のそれぞれから出力電力を受信し、その出力電力に応じて、個々の風力発電装置1やパワーコンディショナ4に電力変動抑制指令を送る。
<< Second Embodiment >>
In the second embodiment according to the present invention, a control device connected to a plurality of power generation devices located in a certain area is comprehensively controlled. FIG. 4 is a diagram illustrating a configuration of the power generation output control system. The power generation output control system 10 makes it possible to suppress sudden output fluctuations by combining outputs of a plurality of power generation devices located in a limited area, and a plurality of wind power generation devices 1 (pitch angle control). Unit 16) and the plurality of power conditioners 4 and the overall control device 7 are communicably connected via the network 8. The overall control device 7 is realized by a PC (Personal Computer) or server including a communication unit (NIC [Network Interface Card], etc.), a processing unit (CPU), and a storage unit (HDD, SSD, etc.). The output power is received from each of the power conditioner 4 and a power fluctuation suppression command is sent to each wind power generator 1 and the power conditioner 4 according to the output power.

詳細には、エリア内の風力発電装置1と、太陽光発電装置3につながるパワーコンディショナ4との出力電力の総和を計算し、その総和に基づく電力変動速度が規定値を超えていた場合には、風力発電装置1及びパワーコンディショナ4に電力変動抑制指令を送信する。その際に、各々の風力発電装置1及びパワーコンディショナ4に対して優先順位を付けて抑制指令を送る。優先順位の付け方には、以下の2通りが考えられる。   Specifically, when the sum of output power of the wind power generator 1 in the area and the power conditioner 4 connected to the solar power generator 3 is calculated, and the power fluctuation speed based on the sum exceeds the specified value Transmits a power fluctuation suppression command to the wind turbine generator 1 and the power conditioner 4. In that case, a priority order is given with respect to each wind power generator 1 and the power conditioner 4, and the suppression command is sent. There are the following two ways of assigning priorities.

(1)各装置が電力上昇中、安定運転中及び電力降下中のうち、どの状態にあるかを見て、必要な状態のものの電力抑制を行う。電力抑制が必要な状態のものとは、例えば、電力の合計値が上昇していれば、出力電力が上昇中の装置を抑制の対象とするわけであり、すなわち、変動の原因になっているものを抑制する。これは、抑制効果の大きい方法である。
(電力上昇抑制が必要なら、電力上昇中の装置だけを選択して、抑制指令を送る)
具体的には、電力上昇中の装置に対しては、動作点を最適点からずらす指令を出す。電力降下中の装置に対しては、動作点を最適点に戻す指令を出す。
(1) By checking which state each device is in during the power increase, stable operation, and power decrease, the power in the necessary state is suppressed. For example, if the total value of power is increasing, the device in a state where power suppression is necessary means that the device whose output power is increasing is the target of suppression, that is, the cause of fluctuation. Suppress things. This is a method with a great suppression effect.
(If power increase suppression is required, select only the device whose power is increasing and send a suppression command.)
Specifically, a command to shift the operating point from the optimum point is issued to the device whose power is increasing. A command for returning the operating point to the optimum point is issued to the device whose power is dropping.

(2)出力電力の小さいものから優先的に電力抑制(カット)する。これは、コストを優先する(発電した電力を有効に使う)方法であり、出力電力の小さいものは、十分な風・光が当たっておらず、最高効率点で動作していないという考え方に基づく。 (2) The power is suppressed (cut) preferentially from the one with a small output power. This is a method that prioritizes costs (effectively uses the generated power), and those with low output power are based on the idea that they are not operating at the highest efficiency point because they are not exposed to sufficient wind and light. .

なお、風力発電装置1(ピッチ角制御部16)やパワーコンディショナ4による個々の発電装置の制御と、統括制御装置10によるエリア全体の制御とを両方組合せてもよいし、エリア全体の制御だけを行ってもよい。また、統括制御装置10は、他のエリアに位置する発電装置を監視制御する統括制御装置10や、発電装置が連系する電力系統2、5と情報をやりとりすることにより、より細やかな制御を行うようにしてもよい。例えば、統括制御装置10が、複数のエリアにおける発電出力の総和を計算して、その総和出力の変動速度が所定値を超えた場合に、特定の風力発電装置1やパワーコンディショナ4に電力変動抑制指令を送ったり、電力系統2、5の電力調整能力が不足した場合に、風力発電装置1やパワーコンディショナ4に電力変動抑制指令を送ったりすることが考えられる。   In addition, you may combine both control of each power generator by the wind power generator 1 (pitch angle control part 16) and the power conditioner 4, and control of the whole area by the integrated control apparatus 10, or only control of the whole area. May be performed. In addition, the overall control device 10 performs finer control by exchanging information with the overall control device 10 that monitors and controls the power generation devices located in other areas and the power systems 2 and 5 that are connected to the power generation devices. You may make it perform. For example, when the overall control device 10 calculates the sum of the power generation outputs in a plurality of areas and the fluctuation speed of the sum output exceeds a predetermined value, power fluctuations are caused in a specific wind power generator 1 or power conditioner 4. It is conceivable to send a suppression command or send a power fluctuation suppression command to the wind power generator 1 or the power conditioner 4 when the power adjustment capabilities of the power systems 2 and 5 are insufficient.

なお、上記実施の形態では、図1(a)に示す風力発電装置1のピッチ角制御部16や、図1(c)に示すパワーコンディショナ4を機能させるために、CPUやDSPで実行されるプログラムをコンピュータにより読み取り可能な記録媒体に記録し、その記録したプログラムをコンピュータに読み込ませ、実行させることにより、本発明の実施の形態に係るピッチ角制御部16やパワーコンディショナ4が実現されるものとする。この場合、プログラムをインターネット等のネットワーク経由でコンピュータに提供してもよいし、プログラムが書き込まれた半導体チップ等をコンピュータに組み込んでもよい。   In the above-described embodiment, the CPU and the DSP execute the function of the pitch angle control unit 16 of the wind turbine generator 1 shown in FIG. 1A and the power conditioner 4 shown in FIG. The pitch angle control unit 16 and the power conditioner 4 according to the embodiment of the present invention are realized by recording the program to be recorded on a computer-readable recording medium, causing the computer to read and execute the recorded program. Shall be. In this case, the program may be provided to the computer via a network such as the Internet, or a semiconductor chip or the like in which the program is written may be incorporated in the computer.

以上説明した本発明の実施の形態によれば、風力発電装置1や太陽光発電装置3について、発電電力が上昇した場合に、電力系統への出力電力を最大からずらすことにより、上昇前の出力電力と、上昇後の最大からずらした出力電力との差が小さくなる。次に、発電電力の安定時に、電力系統への出力電力を最大からずらすことにより、発電電力が低下した場合に、安定時の最大からずらした出力電力と、低下後の出力電力との差が小さくなる。そして、実際に発電電力が低下した場合に、電力系統への出力電力を最大に戻すことにより、安定時の最大からずらした出力電力と、低下後の最大に戻った出力電力との差が小さくなる。   According to the embodiment of the present invention described above, when the generated power rises with respect to the wind power generator 1 or the solar power generator 3, the output before rising is shifted by shifting the output power to the power system from the maximum. The difference between the power and the output power shifted from the maximum after the increase is reduced. Next, when the generated power is reduced by shifting the output power to the power system from the maximum when the generated power is stable, the difference between the output power shifted from the maximum at the stable time and the output power after the decrease is Get smaller. And when the generated power is actually reduced, by returning the output power to the power system to the maximum, the difference between the output power shifted from the stable maximum and the output power returned to the maximum after the decrease is small. Become.

以上によれば、蓄電池を用いずに、風力発電装置1や太陽光発電装置3から電力系統に出力する電力が変化する傾斜、すなわち、変動速度を抑制することにより、連系可能量を増やすことができる。これによれば、連系可能量に制約のある風力発電装置1や太陽光発電装置3を、安価かつ大量に系統連系することができる。さらに、これにより、風力発電装置1や太陽光発電装置3の導入を促進する効果が期待できる。   According to the above, the possible amount of interconnection is increased by suppressing the slope at which the power output from the wind power generator 1 or the solar power generator 3 to the power system changes, that is, the fluctuation speed, without using a storage battery. Can do. According to this, the wind power generation device 1 and the solar power generation device 3 that are limited in the possible amount of interconnection can be grid-connected in a large amount at a low cost. Furthermore, the effect which accelerates | stimulates introduction of the wind power generator 1 and the solar power generation device 3 by this can be anticipated.

以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。   As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.

なお、上記実施の形態には、以下の発明も含まれる。   The above embodiments also include the following inventions.

(1)電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、前記分散型電源の発電電力が安定していることを検知したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする発電出力制御装置。 (1) A power generation output control device that controls output power of a distributed power source connected to a power system, and when detecting that the generated power of the distributed power source is stable, A power generation output control device, wherein an operating point is shifted from an operating point at which the output power is maximum.

(2)電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、前記分散型電源の発電電力が安定していることを検知し、かつ、前記発電電力が低下することを予測したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする発電出力制御装置。 (2) A power generation output control device for controlling output power of a distributed power source connected to a power system, wherein the generated power of the distributed power source is detected to be stable, and the generated power is reduced. A power generation output control device characterized by shifting an operating point of the distributed power source from an operating point at which the output power becomes maximum when it is predicted to do so.

(3)(1)又は(2)に記載の発電出力制御装置であって、前記発電電力が低下したことを検知したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点に戻すことを特徴とする発電出力制御装置。 (3) The power generation output control device according to (1) or (2), wherein the operation is such that the output power is maximized at an operating point of the distributed power source when it is detected that the generated power is reduced. A power generation output control device characterized by returning to a point.

(4)電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置による発電出力制御方法であって、前記発電出力制御装置は、前記分散型電源の発電電力が安定していることを検知したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする発電出力制御方法。 (4) A power generation output control method by a power generation output control device that controls output power of a distributed power source linked to a power system, wherein the power generation output control device has stable power generation power of the distributed power source. When this is detected, the operating point of the distributed power source is shifted from the operating point at which the output power becomes maximum.

(5)電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置による発電出力制御方法であって、前記発電出力制御装置は、前記分散型電源の発電電力が安定していることを検知し、かつ、前記発電電力が低下することを予測したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする発電出力制御方法。 (5) A power generation output control method by a power generation output control device that controls output power of a distributed power source linked to a power system, wherein the power generation output control device has stable power generation power of the distributed power source. When this is detected and when it is predicted that the generated power will decrease, the operating point of the distributed power source is shifted from the operating point at which the output power becomes maximum.

(6)(4)又は(5)に記載の発電出力制御方法であって、前記発電出力制御装置は、前記発電電力が低下したことを検知したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点に戻すことを特徴とする発電出力制御方法。 (6) The power generation output control method according to (4) or (5), wherein the power generation output control device determines an operating point of the distributed power source when detecting that the generated power is reduced. A power generation output control method characterized by returning to an operating point at which output power is maximized.

1 風力発電装置
2 電力系統
3 太陽光発電装置
4 パワーコンディショナ(発電出力制御装置)
5 電力系統
7 統括制御装置(統括電力制御装置)
16 ピッチ角制御部(発電出力制御装置)
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Electric power system 3 Solar power generator 4 Power conditioner (power generation output control apparatus)
5 Power system 7 Overall control device (Overall power control device)
16 Pitch angle control unit (Power generation output control device)

Claims (2)

電力系統に連系した分散型電源の出力電力を制御する複数の発電電力制御装置と通信する統括電力制御装置であって、
各発電電力制御装置から出力電力を受信する手段と、
受信した各出力電力を合計し、記憶する手段と、
合計した前記出力電力の変動速度を計算し、計算した変動速度が所定値を越えた場合に、当該変動に係る前記発電電力制御装置に優先して電力変動抑制指令を送信する手段と、
を備えることを特徴とする統括電力制御装置。
A general power control device that communicates with a plurality of generated power control devices that control output power of a distributed power source linked to a power system,
Means for receiving output power from each generated power control device;
Means for summing and storing each received output power;
Means for calculating the total fluctuation speed of the output power, and when the calculated fluctuation speed exceeds a predetermined value, transmitting a power fluctuation suppression command in preference to the generated power control apparatus related to the fluctuation;
A general power control apparatus comprising:
電力系統に連系した分散型電源の出力電力を制御する複数の発電電力制御装置と通信する統括電力制御装置による統括電力制御方法であって、
前記統括電力制御装置は、
各発電電力制御装置から出力電力を受信するステップと、
受信した各出力電力を合計し、記憶するステップと、
合計した前記出力電力の変動速度を計算し、計算した変動速度が所定値を越えた場合に、当該変動に係る前記発電電力制御装置に優先して電力変動抑制指令を送信するステップと、
を実行することを特徴とする統括電力制御方法。
A general power control method by a general power control device that communicates with a plurality of generated power control devices that control output power of a distributed power source connected to a power system,
The overall power control device
Receiving output power from each generated power control device;
Summing and storing each received output power; and
Calculating the total fluctuation speed of the output power, and when the calculated fluctuation speed exceeds a predetermined value, transmitting a power fluctuation suppression command in preference to the generated power control apparatus related to the fluctuation;
The integrated power control method characterized by performing.
JP2012179448A 2012-08-13 2012-08-13 General power control apparatus and general power control method Expired - Fee Related JP5461632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179448A JP5461632B2 (en) 2012-08-13 2012-08-13 General power control apparatus and general power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179448A JP5461632B2 (en) 2012-08-13 2012-08-13 General power control apparatus and general power control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010036525A Division JP5089715B2 (en) 2010-02-22 2010-02-22 Power generation output control device and power generation output control method

Publications (2)

Publication Number Publication Date
JP2013019415A true JP2013019415A (en) 2013-01-31
JP5461632B2 JP5461632B2 (en) 2014-04-02

Family

ID=47691060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179448A Expired - Fee Related JP5461632B2 (en) 2012-08-13 2012-08-13 General power control apparatus and general power control method

Country Status (1)

Country Link
JP (1) JP5461632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196199A (en) * 2017-05-15 2018-12-06 東光電気工事株式会社 Power generation system and power generation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284006A (en) * 1999-01-27 2000-10-13 Canon Inc Information-displaying device used for generation system, solar light generation system, information relay device, information display method, information relay method, computer product, and information transmission method
JP2002317750A (en) * 2001-04-23 2002-10-31 Mitsubishi Heavy Ind Ltd Control method of generator system by combination of wind power generation with diesel power generation, and generator system
JP2005295713A (en) * 2004-03-31 2005-10-20 Central Res Inst Of Electric Power Ind Power stable supply system and method
JP2006174694A (en) * 2004-12-17 2006-06-29 General Electric Co <Ge> Control method and control system of wind turbine generator
JP2006288079A (en) * 2005-03-31 2006-10-19 Toshiba Corp Power equipment connection device, power supply system, power equipment connection method, and power system operation method
JP2008182859A (en) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd Hybrid system, wind power generating system, power control device for wind power generating device and storage device
WO2009078072A1 (en) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. Wind power generation system and its operation control method
JP2009213186A (en) * 2008-02-29 2009-09-17 Toshiba Corp Power system linkage device between different systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284006A (en) * 1999-01-27 2000-10-13 Canon Inc Information-displaying device used for generation system, solar light generation system, information relay device, information display method, information relay method, computer product, and information transmission method
JP2002317750A (en) * 2001-04-23 2002-10-31 Mitsubishi Heavy Ind Ltd Control method of generator system by combination of wind power generation with diesel power generation, and generator system
JP2005295713A (en) * 2004-03-31 2005-10-20 Central Res Inst Of Electric Power Ind Power stable supply system and method
JP2006174694A (en) * 2004-12-17 2006-06-29 General Electric Co <Ge> Control method and control system of wind turbine generator
JP2006288079A (en) * 2005-03-31 2006-10-19 Toshiba Corp Power equipment connection device, power supply system, power equipment connection method, and power system operation method
JP2008182859A (en) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd Hybrid system, wind power generating system, power control device for wind power generating device and storage device
WO2009078072A1 (en) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. Wind power generation system and its operation control method
JP2009213186A (en) * 2008-02-29 2009-09-17 Toshiba Corp Power system linkage device between different systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196199A (en) * 2017-05-15 2018-12-06 東光電気工事株式会社 Power generation system and power generation method

Also Published As

Publication number Publication date
JP5461632B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5306258B2 (en) Power generation output control device and power generation output control method
US11448187B2 (en) Power system and method for operating a wind power system with a dispatching algorithm
RU2565235C2 (en) Regulating contribution of secondary power supply sources to distribution network
JP4551921B2 (en) Wind power generation system with storage system
EP2603696B1 (en) Wind-power production with reduced power fluctuations
EP2954605B1 (en) Power plant&amp;energy storage system for provision of grid ancillary services
US10060414B2 (en) Method for coordinating frequency control characteristics between conventional plants and wind power plants
US9915244B2 (en) Wind power plant frequency control
JP6081133B2 (en) Wind farm output control device, method, and program
US20120049516A1 (en) Method, system, and computer program product to optimize power plant output and operation
US20110227343A1 (en) Wind power plant and wind-power-plant control method
TWI543492B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
JP4896233B2 (en) Power management control system for a storage battery-equipped natural energy power generation system
JP7011881B2 (en) Hybrid power generation system and power control device
EP2824791A1 (en) Method and system for limitation of power output variation in variable generation renewable facilities
JP6082811B2 (en) Renewable energy power generation facility control system, control method therefor, and renewable energy power generation system
US20130144450A1 (en) Generator system
JP5272113B1 (en) Wind power generation system, control device therefor, and control method therefor
JP2011229205A (en) Electric power management control system used in natural energy generating system incorporating storage battery
KR20200022954A (en) Electric power system contol device according to output fluctuation of renewable energy source and electric power system contol method using the same
JP2013219941A (en) Control method and control device of power generation system using renewable energy
JP5342496B2 (en) Wind turbine generator group control device and control method thereof
JP5461632B2 (en) General power control apparatus and general power control method
JP5089715B2 (en) Power generation output control device and power generation output control method
US8598726B1 (en) Wind turbine generator system and control method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees