JP2013015542A - Method for predicting lifetime of solder joint part, device for predicting lifetime of solder joint part, and electronic apparatus - Google Patents

Method for predicting lifetime of solder joint part, device for predicting lifetime of solder joint part, and electronic apparatus Download PDF

Info

Publication number
JP2013015542A
JP2013015542A JP2012235607A JP2012235607A JP2013015542A JP 2013015542 A JP2013015542 A JP 2013015542A JP 2012235607 A JP2012235607 A JP 2012235607A JP 2012235607 A JP2012235607 A JP 2012235607A JP 2013015542 A JP2013015542 A JP 2013015542A
Authority
JP
Japan
Prior art keywords
temperature
solder joint
strain
storage unit
strain range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012235607A
Other languages
Japanese (ja)
Other versions
JP5481551B2 (en
Inventor
Takahiro Omori
隆広 大森
Kenji Hirohata
賢治 廣畑
Tomoko Kadota
朋子 門田
Katsuaki Hiraoka
克章 平岡
Minoru Mukai
稔 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012235607A priority Critical patent/JP5481551B2/en
Publication of JP2013015542A publication Critical patent/JP2013015542A/en
Application granted granted Critical
Publication of JP5481551B2 publication Critical patent/JP5481551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for predicting the lifetime of a solder joint part, which accurately evaluates the lifetime of a joint part in consideration of the reduction of rigidity due to advance of damage in individual solder joint parts, and to provide an electronic apparatus.SOLUTION: The method for predicting the lifetime of a solder joint part includes the steps of: referring to history information of a temperature of a measurement target including a solder joint part; examining at least one of physical quantities of an amplitude of temperature variation, the number of cycles, an average temperature, and a period by cycle counting in accordance with the history information of the temperature; calculating a distortion range from at least one of the physical quantities examined by cycle counting by using a preliminarily generated response curved surface; and calculating a distortion range increase rate by referring to a preliminarily obtained damage value and a distortion variation history of the distortion range in accordance with the distortion range.

Description

本発明の実施形態は、はんだ接合部の寿命予測方法、はんだ接合部の寿命予測装置、及び電子機器に係る。   Embodiments described herein relate generally to a solder joint life prediction method, a solder joint life prediction apparatus, and an electronic apparatus.

電子機器の使用状態下における不良には様々な種類が存在する。中でも、特に、はんだ接合部などの接合部の不良は、頻繁に発生する上、一度発生すると動作に重大な影響を及ぼす点において厄介な不良現象の一つである。はんだ接合部には、電源ON、OFFによる熱負荷、外部からの機械的負荷などの様々な負荷によってひずみが生じる。一回では破断しない程度のひずみであっても、繰り返し負荷を受けることにより、ひずみ振幅が蓄積し金属疲労を発生させることがある。このような疲労現象による破断にいたるまでの寿命を推定するための技術として、電子機器の構造ヘルスモニタリング技術が知られている。   There are various types of defects under use of electronic devices. Among them, in particular, defects in joints such as solder joints occur frequently and are one of the troublesome troubles in that once they occur, the operation is seriously affected. The solder joint is distorted by various loads such as a thermal load caused by power ON / OFF and an external mechanical load. Even if the strain is such that it does not break at a time, strain amplitude may accumulate and metal fatigue may occur due to repeated loading. As a technique for estimating the life until breakage due to such a fatigue phenomenon, a structural health monitoring technique for electronic devices is known.

はんだ接合部をはじめとする金属の疲労寿命評価を高い精度で行うためには、評価点に発生するひずみの値を正しく見積もることが重要である。しかしながら、BGAはんだ接合部の寿命予測においては、き裂をはじめとして、はんだ接合部の損傷の進行によって発生するひずみの変動は考慮されない場合が多い。すなわち、はんだ接合部にき裂による損傷が進展し、剛性低下によりひずみの変動量が大きくなった後においても、損傷進行前と同じひずみ予測方法を使用する場合が多い。損傷モデル(温度変動からはんだ接合部の損傷値を予測するためのモデル)の作成にかかる手間や、実装時のアルゴリズムの簡略化を考慮すると、損傷を考慮しない方法でも、寿命予測自体の精度は劣るが実用的な予測は可能である。しかしながら、本来ははんだ接合部にひずみ振幅が蓄積すると、はんだ内をき裂が進展し、はんだ接合部の剛性が低下することから、温度変動の進行に伴って個々のはんだ接合部が受け持つ応力の割合も変化する。よって、外側に存在するダミーバンプよりさらに内側の信号バンプの寿命を予測する場合、損傷の進行を考慮しないと現実の寿命との間に誤差が生じることになる。ここでの寿命誤差の主な原因は、剛性の変化により各バンプに予測されるひずみの値と現実のひずみとの間に差が生じることである。   In order to evaluate the fatigue life of metals including solder joints with high accuracy, it is important to correctly estimate the value of strain generated at the evaluation point. However, in the life prediction of BGA solder joints, fluctuations in strain caused by the progress of damage to the solder joints, including cracks, are often not considered. In other words, the same strain prediction method as before the progress of damage is often used even after damage due to cracks progresses in the solder joint and the amount of strain fluctuation increases due to a decrease in rigidity. Considering the time and effort required to create a damage model (model for predicting damage values of solder joints from temperature fluctuations) and simplification of the algorithm at the time of mounting, the accuracy of life prediction itself can be achieved even in a method that does not consider damage. Inferior but practical predictions are possible. However, when strain amplitude accumulates in the solder joints, cracks propagate in the solder and the rigidity of the solder joints decreases, so the stress that each solder joint takes on as the temperature fluctuates. The ratio also changes. Therefore, when predicting the lifetime of the signal bumps further inside than the dummy bumps existing outside, an error occurs between the actual lifetime and the progress of damage is not considered. The main cause of the life error here is that a difference occurs between the strain value predicted for each bump and the actual strain due to the change in rigidity.

特開2010−73795号公報JP 2010-73795 A

第1実施形態では、個々のはんだ接合部に損傷が進行することにより発生する剛性の低下を考慮し、接合部の寿命をより高精度に評価を行うはんだ接合部の寿命予測方法を提供する。   The first embodiment provides a method for predicting the life of a solder joint that evaluates the life of the joint with higher accuracy in consideration of the decrease in rigidity caused by the progress of damage to individual solder joints.

第2実施形態では、第1実施形態を実現するはんだ接合部の寿命予測装置を提供することを目的とする。   The second embodiment is intended to provide a solder joint life prediction apparatus that realizes the first embodiment.

第3本実施形態では、効率的な破断検知が可能な構成を有する電子機器を提供することを目的とする。   An object of the third embodiment is to provide an electronic apparatus having a configuration capable of efficiently detecting breakage.

第1実施形態によれば、はんだ接合部を有する被測定対象 の温度の履歴情報を参照するステップと、前記温度の履歴情報からサイクルカウントにより温度変動の振幅、サイクル数、平均温度、及び周期の少なくともいずれか1つの物理量を調べるステップと、予め作成しておいた応答曲面を用いて前記サイクルカウントにより調べた物理量の中の少なくともいずれか1つからひずみ範囲を算出するステップと、前記ひずみ範囲から、予め求められている損傷値およびひずみ範囲のひずみ変動履歴を参照してひずみ範囲増加率を算出するステップと、を含むことを特徴とするはんだ接合部の寿命予測方法が提供される。   According to the first embodiment, the step of referring to the temperature history information of the measurement target having a solder joint, and the temperature fluctuation amplitude, the number of cycles, the average temperature, and the cycle by the cycle count from the temperature history information. A step of examining at least one physical quantity; a step of calculating a strain range from at least one of the physical quantities examined by the cycle count using a response surface prepared in advance; and And a step of calculating a strain range increase rate with reference to a damage value obtained in advance and a strain fluctuation history of the strain range.

第2実施形態によれば、はんだ接合部を有する被測定対象の温度の履歴情報を保存した第1の記憶部と、温度変動の振幅、サイクル数、平均温度、周期の少なくともいずれか1つの物理量からひずみ範囲を求めるための応答曲面を保存した第2の記憶部と、損傷値の履歴情報が保存された第3の記憶部と、損傷値からひずみ範囲の増加率を求めるためのひずみ変動履歴が保存された第4の記憶部と、前記第1の記憶部を参照し、温度の履歴情報を取得する第1の制御部と、前記温度の履歴情報からサイクルカウントにより温度変動の振幅、サイクル数、平均温度、及び周期の少なくともいずれか1つの物理量を調べる第2の制御部と、前記第2の記憶部を参照し、前記サイクルカウントにより調べた物理量物理量の中の少なくともいずれか1つからひずみ範囲を算出する第3の制御部と、前記第3の記憶部及び前記第4の記憶部を参照し、前記第3の制御部により算出されたひずみ範囲からひずみ範囲増加率を算出する第4の制御部と、を有することを特徴とするはんだ接合部の寿命予測装置が提供される。   According to the second embodiment, the first storage unit that stores the history information of the temperature of the measurement target having a solder joint, and the physical quantity of at least one of the amplitude of the temperature fluctuation, the number of cycles, the average temperature, and the period. A second storage unit storing a response surface for determining a strain range from the third storage unit storing a damage value history information, and a strain fluctuation history for determining an increase rate of the strain range from the damage value Is stored, a first control unit that obtains temperature history information with reference to the first storage unit, and a temperature fluctuation amplitude and cycle by cycle count from the temperature history information. A second control unit that examines at least one physical quantity of number, average temperature, and period; and at least one of physical quantities and physical quantities examined by the cycle count with reference to the second storage unit A strain range increase rate is calculated from the strain range calculated by the third control unit with reference to the third control unit that calculates the strain range from the third control unit, the third storage unit, and the fourth storage unit. And a fourth control unit. A solder joint life prediction device is provided.

第3実施形態によれば、電子部品と、実装基板と、前記電子機器と前記実装基板とを機械的に接合し、かつ前記電子機器と前記実装基板との間で電気信号をやり取りを媒介する第1の接合部と、前記電子機器と前記実装基板とを機械的に接合し、かつ前記電子機器と前記実装基板との間で電気信号をやり取りを媒介しない第2の接合部と、前記第1の接合部と前記第2との間に形成され、前記電子機器と前記実装基板とを機械的に接合し、かつ、前記実装基板と前記電子部品との接合状態を監視する第3の接合部と、を有することを特徴とする電子機器が提供される。   According to the third embodiment, an electronic component, a mounting substrate, the electronic device and the mounting substrate are mechanically joined, and an electric signal is exchanged between the electronic device and the mounting substrate. A first joint, a second joint that mechanically joins the electronic device and the mounting substrate and does not mediate an electrical signal exchange between the electronic device and the mounting substrate; 3rd joining formed between 1 joining part and the said 2nd, mechanically joining the said electronic device and the said mounting substrate, and monitoring the joining state of the said mounting substrate and the said electronic component And an electronic device characterized by having a unit.

第1実施形態に係るプロセスフロー図。The process flow figure concerning a 1st embodiment. 第2実施形態に係るブロック図。The block diagram which concerns on 2nd Embodiment. 第2実施形態の構成を示す概念図。The conceptual diagram which shows the structure of 2nd Embodiment. 図3のA1の範囲に係るはんだ接合部の拡大図。FIG. 4 is an enlarged view of a solder joint according to a range of A1 in FIG. 3. 図4のA2の範囲に係るはんだ接合部の拡大図。The enlarged view of the solder joint which concerns on the range of A2 of FIG. はんだ接合部の位置、温度サイクル、ひずみ範囲の関係を示す概念図。The conceptual diagram which shows the relationship between the position of a solder joint part, a temperature cycle, and a strain range. 温度サイクル数とひずみ範囲との関係を示す概念図。The conceptual diagram which shows the relationship between the number of temperature cycles and a strain range. ひずみ範囲の変動履歴をFEMによる数値解析により求めた結果。Results of strain history fluctuation history obtained by FEM numerical analysis. 理論的な一定温度幅、一定時間の負荷状態を示す概念図。The conceptual diagram which shows the load state of a theoretical fixed temperature range and a fixed time. 実際の温度変動履歴を示す概念図。The conceptual diagram which shows an actual temperature fluctuation history. はんだが破断に到るまでの指数則を示す概念図。The conceptual diagram which shows the power law until solder reaches a fracture | rupture. 温度振幅とその頻度の関係を示す概念図。The conceptual diagram which shows the relationship between a temperature amplitude and its frequency. ひずみ範囲とその頻度の関係を示す概念図。The conceptual diagram which shows the relationship between a strain range and its frequency. 損傷値とひずみ範囲の増加率との関係を示す図。The figure which shows the relationship between a damage value and the increase rate of a strain range. ひずみ変動履歴データベースの作成プロセスフロー図。Flow chart of creation process of strain fluctuation history database. ひずみ変動履歴データベースを作成する装置のブロック図。The block diagram of the apparatus which produces a distortion fluctuation history database. 第1実施形態の変形例を示すプロセスフロー図。The process flow figure showing the modification of a 1st embodiment. 誤差修正ルーチンを実行する装置のブロック図。The block diagram of the apparatus which performs an error correction routine. 第1実施形態の変形例に係る寿命予測修正の実施例。The example of the lifetime prediction correction which concerns on the modification of 1st Embodiment. 第3実施形態の構成を示す概念図。The conceptual diagram which shows the structure of 3rd Embodiment. 第3実施形態の変形例を示す概念図。The conceptual diagram which shows the modification of 3rd Embodiment.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(第1実施形態)
第1実施形態としてはんだ寿命予測方法を図1〜2を用いて説明する。
(First embodiment)
A solder life prediction method will be described as a first embodiment with reference to FIGS.

(第001〜002ステップ)
第1の制御部(更新イベント検出部)11は寿命更新のイベントが検出されると、その時点まで保存されていた第2の記憶部(温度履歴データベース)22に温度情報を参照する。
(Step 001-002)
When a life update event is detected, the first control unit (update event detection unit) 11 refers to the temperature information in the second storage unit (temperature history database) 22 stored up to that point.

寿命更新のイベントは、第1の記憶部(更新イベント保存部)21に保存されたファームウエアに一定時間ごとにイベントのトリガーを与える指示プログラムを保存しておき、更新イベント検出部11がこれを実行することにより実現することが出来る。   The life update event is stored in the firmware stored in the first storage unit (update event storage unit) 21 by an instruction program for triggering the event at regular intervals, and the update event detection unit 11 stores the instruction program. It can be realized by executing.

温度履歴データベース22には過去の温度履歴が保存されている。基板1の温度は検出部7にて測定され、温度履歴データベース22に保存される。   The temperature history database 22 stores past temperature history. The temperature of the substrate 1 is measured by the detection unit 7 and stored in the temperature history database 22.

(第003ステップ)
第2の制御部(サイクルカウント調査部)12は、温度履歴データベース22を参照し、サイクルカウントにより温度振幅、サイクル数、平均温度、周期などの情報を調べる。
(Step 003)
The second control unit (cycle count investigation unit) 12 refers to the temperature history database 22 and examines information such as temperature amplitude, number of cycles, average temperature, and cycle by cycle count.

温度履歴データベース22は、検出部7で測定される温度と、その温度が測定された時刻を時系列データとして保存している。   The temperature history database 22 stores the temperature measured by the detection unit 7 and the time when the temperature was measured as time series data.

(第004ステップ)
第3の制御部(温度振幅−ひずみ範囲変換部)13はサイクルカウント調査部12により得られた温度振幅、サイクル数、平均温度、周期などの情報から、第3の記憶部(応答曲面データベース)23に保存されている応答曲面を参照し、温度振幅ΔTをひずみ範囲Δεに変換する。
(Step 004)
The third control unit (temperature amplitude-strain range conversion unit) 13 is a third storage unit (response surface database) based on information such as temperature amplitude, number of cycles, average temperature, and period obtained by the cycle count investigation unit 12. 23, the temperature amplitude ΔT is converted into a strain range Δε.

応答曲面データベース23は温度変動の振幅、サイクル数、平均温度、周期とひずみ範囲との関数である応答曲面を保存している。この応答曲面を用いれば、温度変動の振幅、サイクル数、平均温度、周期からひずみ範囲を求めることが出来る。この応答曲面は事前に第3の記憶部(応答曲面データベース)23に保存されている。   The response surface database 23 stores response surfaces that are functions of temperature fluctuation amplitude, number of cycles, average temperature, period and strain range. By using this response curved surface, the strain range can be obtained from the amplitude of the temperature fluctuation, the number of cycles, the average temperature, and the period. This response surface is stored in advance in the third storage unit (response surface database) 23.

(第005ステップ)
第4の制御部(ひずみ範囲増加率算出部)14は、第4の記憶部(損傷値データベース)24及び第5の記憶部(ひずみ変動履歴データベース)25を参照し、変換されたひずみ範囲Δεを用いて、今回イベントが更新された時点におけるはんだ接合部71に蓄積した損傷の進行により発生した、ひずみ範囲の増加率を算出する。
(Step 005)
The fourth control unit (strain range increase rate calculation unit) 14 refers to the fourth storage unit (damage value database) 24 and the fifth storage unit (strain fluctuation history database) 25, and converts the converted strain range Δε. Is used to calculate the rate of increase of the strain range caused by the progress of the damage accumulated in the solder joint 71 when the current event is updated.

損傷値データベース24は損傷値と、その損傷値が求められた時刻とを時系列データとして保存している。ひずみ変動履歴データベース25は損傷値とひずみ範囲増加率との関数を保存している。   The damage value database 24 stores the damage value and the time when the damage value was obtained as time series data. The strain fluctuation history database 25 stores a function of a damage value and a strain range increase rate.

例えば、損傷値データベース24により、ある時刻t1における損傷値D1が求められると、その損傷値D1からひずみ範囲増加率αが求められる。このひずみ範囲増加率αを用いて、ひずみ範囲Δε1から例えば新たなひずみ範囲Δε2=α・Δε1が求められる。   For example, when the damage value D1 at a certain time t1 is obtained from the damage value database 24, the strain range increase rate α is obtained from the damage value D1. For example, a new strain range Δε2 = α · Δε1 is obtained from the strain range Δε1 using the strain range increase rate α.

(第006ステップ)
第5の制御部(ひずみ範囲再カウント部)15は第005ステップで算出されたひずみ範囲の増加率を考慮して、損傷値をカウントし直す。そして、新たに求められた損傷値を今回のイベントが更新された時刻と共に第4の記憶部(損傷値データベース)24に保存する。
(Step 006)
The fifth control unit (strain range recounting unit) 15 counts the damage value again in consideration of the increase rate of the strain range calculated in step 005. Then, the newly obtained damage value is stored in the fourth storage unit (damage value database) 24 together with the time when the current event is updated.

前述の例をとれば、新たに求められたひずみ範囲Δε2から後述する式1、式2を用いて新たな損傷値D2を求めることができる。この新たに求められた損傷値D2を損傷値データベースにその時刻t2と共に保存する。   Taking the above example, a new damage value D2 can be obtained from the newly obtained strain range Δε2 using equations 1 and 2 described later. The newly obtained damage value D2 is stored in the damage value database together with the time t2.

(第007ステップ)
第6の制御部(損傷値判断部)16は、第7の記憶部(しきい値データベース)27を参照し、新たな損傷値が特定のしきい値以上であるか否かを判断する。新たな損傷値が特定のしきい値以上である場合には、所定のアクションを取ることを指示する信号を損傷値判断部26が発信することを許容する。
(Step 007)
The sixth control unit (damage value determination unit) 16 refers to the seventh storage unit (threshold value database) 27 and determines whether or not the new damage value is greater than or equal to a specific threshold value. When the new damage value is equal to or greater than a specific threshold value, the damage value determination unit 26 is allowed to transmit a signal instructing to take a predetermined action.

所定のアクションとしては、故障が近いことを想定してデータのバックアップを自動的に取る、ユーザーに故障の可能性を伝える、機器を管理しているサーバーに寿命が近いことを伝える、などが考えられる。   Possible actions include automatically backing up data assuming that a failure is near, telling the user about the possibility of failure, and telling the server that manages the device that the life is near. It is done.

特定のしきい値は、製品の種類に応じて、または製品の用途等に応じて適宜設定される。例えば、発電所や医療機器などの高い信頼性が求められる場合には、そのしきい値は厳しく設定できる。これに対し、故障した場合にも補償される機構が準備されているネットワークシステムのサーバーなどに適用される場合には、そのしきい値は緩く設定できる。   The specific threshold value is appropriately set according to the type of product or the use of the product. For example, when high reliability such as a power plant or medical equipment is required, the threshold value can be set strictly. On the other hand, when it is applied to a server of a network system in which a mechanism for compensating for a failure is prepared, the threshold can be set loosely.

(作用・機能・技術的意義)
ここで、被測定対象である製品としてはんだ接合部を有する実装基板を想定し、この製品が出荷された後、使用環境下での温度変動負荷を対象とした、BGAの疲労寿命予測方法を例として、第1実施形態の技術的意義について更に説明する。
(Action, function, technical significance)
Here, assuming a mounting board having a solder joint as a product to be measured, and an example of a method for predicting fatigue life of a BGA for a temperature fluctuation load in a use environment after this product is shipped The technical significance of the first embodiment will be further described.

第1実施形態では、各はんだ接合部の損傷によって剛性が低下した効果を考慮してはんだ接合部の寿命予測を行うことを特徴とする。   The first embodiment is characterized in that the life prediction of the solder joint portion is performed in consideration of the effect that the rigidity is lowered due to the damage of each solder joint portion.

はんだ接合部の損傷進行の模式図を図6に示す。この図は、図5に示すはんだ接合部のうち、ダミーバンプ1(A−1)、ダミーバンプ2(B−2)、信号バンプの3(C−3)について、BGAが温度サイクル負荷を受けた際、損傷の進行によるひずみ範囲の変動を模式的に示したものである。なお、ダミーバンプ1、ダミーバンプ2、信号バンプの3は図4に示す部品4−7の右上隅の一点破線で囲った領域A2を示している。そして、領域A2は図3に示す電子機器の部品4−7の一点破線で囲った領域A1の詳細図である。なお、本明細書では、図5において、左上のダミーバンプ1を基点に、右から左にA、B、C、・・・、上から下に1、2、3、・・・としてはんだ接合部の位置を表記することがある。   A schematic diagram of the progress of damage at the solder joint is shown in FIG. This figure shows that when the BGA is subjected to a temperature cycle load for the dummy bump 1 (A-1), the dummy bump 2 (B-2), and the signal bump 3 (C-3) among the solder joints shown in FIG. FIG. 4 schematically shows the variation of the strain range due to the progress of damage. Note that the dummy bump 1, the dummy bump 2, and the signal bump 3 indicate a region A2 surrounded by a dashed line in the upper right corner of the component 4-7 shown in FIG. And area | region A2 is detail drawing of area | region A1 enclosed with the dashed-dotted line of the components 4-7 of the electronic device shown in FIG. In this specification, in FIG. 5, the solder joints are denoted as A, B, C,... From right to left, 1, 2, 3,. May be indicated.

温度サイクルΔTの進行に従って、最も外側に位置するダミーバンプ1のひずみ範囲がまず大きくなる。次にダミーバンプ2、最後に信号バンプ3の順にひずみ範囲が大きくなっていく。この現象は、ひずみが蓄積することにより、はんだ接合部のき裂が進行し、はんだ接合部の剛性が低下することが原因となって発生する。そこで、温度変動の情報からひずみを算出する際にあらかじめダミーバンプのひずみ変動履歴を数値解析で調べておくことにより、剛性の低下を考慮したひずみ算出が可能になり、寿命の高精度化が期待できる。   As the temperature cycle ΔT progresses, the strain range of the outermost dummy bump 1 first increases. Next, the strain range increases in the order of the dummy bump 2 and finally the signal bump 3. This phenomenon occurs because cracks in the solder joint progress due to accumulation of strain, and the rigidity of the solder joint decreases. Therefore, by calculating the strain fluctuation history of the dummy bumps in advance by numerical analysis when calculating the strain from temperature fluctuation information, it is possible to calculate the strain taking into account the decrease in rigidity, and expect high life accuracy. .

図7はFEMによる数値解析から図4に示すダミーバンプ(A−2〜E−2)及び信号バンプのひずみ変動履歴を示した一例である。この場合、外側のダミーバンプから順にひずみ変動が大きくなっていくことが観察され、上記図6と同様の傾向を示す結果となっていることが理解される。   FIG. 7 shows an example of strain fluctuation history of dummy bumps (A-2 to E-2) and signal bumps shown in FIG. 4 from numerical analysis by FEM. In this case, it is observed that the strain variation increases in order from the outer dummy bump, and it is understood that the result shows the same tendency as in FIG.

これに対し、図8は従来の評価方法でひずみ振幅を評価した場合である。この場合、はんだ接合部におけるき裂等の損傷の進行や破断とは無関係にひずみ振幅が決定される。   On the other hand, FIG. 8 shows a case where the strain amplitude is evaluated by a conventional evaluation method. In this case, the strain amplitude is determined regardless of the progress or fracture of damage such as a crack in the solder joint.

(データベースの準備)
これらの考察を基に、次のように第1実施形態を以下の通りに実施することが出来る。
(Preparing the database)
Based on these considerations, the first embodiment can be implemented as follows.

まず、寿命を予測する必要がある各はんだ接合部に関して、温度サイクル進行に伴って発生する剛性の低下を考慮するための、ひずみの変動履歴を表すデータベースを事前に作成する。   First, a database representing a strain change history is prepared in advance for each solder joint for which the life needs to be predicted in order to take into account the decrease in rigidity that occurs as the temperature cycle progresses.

ここで、図9に示すような温度サイクルが作用する状態を想定した、有限要素法などの数値解析において、はんだ接合部の損傷による剛性の低下を考慮した方法を適用することにより、図6のような温度サイクル数とひずみ範囲Δεの関係を得ることができる。しかし、図6の温度サイクル数とひずみ範囲Δεの関係は、温度幅(図9におけるΔT)や保持時間(図9におけるΔt2、Δt4)、上昇、下降時間(図9におけるΔt1、Δt3)の値によって変動する。また、市場で製品が受ける温度履歴は、図9に示すような一定温度幅、一定時間のサイクルではなく、図10に示すような、より複雑な温度変動を受ける。このような複雑な温度の変動に対して、損傷を考慮した上で正しいひずみ範囲を推定するためのデータベースが必要とされる。   Here, in a numerical analysis such as a finite element method assuming a state in which a temperature cycle as shown in FIG. 9 acts, by applying a method that considers a decrease in rigidity due to damage of the solder joint, FIG. Such a relationship between the number of temperature cycles and the strain range Δε can be obtained. However, the relationship between the number of temperature cycles and the strain range Δε in FIG. 6 is the value of temperature width (ΔT in FIG. 9), holding time (Δt2, Δt4 in FIG. 9), rise time, and fall time (Δt1, Δt3 in FIG. 9). Fluctuates depending on. Further, the temperature history experienced by the product in the market is not a cycle of a constant temperature width and a constant time as shown in FIG. 9, but is subjected to more complicated temperature fluctuations as shown in FIG. For such complicated temperature fluctuations, a database for estimating a correct strain range in consideration of damage is required.

そこで、データベースに保存する情報として、寿命予測が必要とされる各はんだ接合部の損傷値とひずみ範囲の増加量の関係を用いる。損傷値Dとは、異なる振幅の負荷が作用する場合の疲労度合を示す指標であり、D=1に達した時点で寿命に達し、破断に至る。図11に一定ひずみ範囲Δεの振幅が繰り返された場合の寿命予測方法を示す。一定ひずみ範囲Δεの振幅が繰り返される場合には、破断までの繰り返し数Nは指数則(特にはんだの場合はCoffin-Manson則やBasquin則と呼ばれる指数則)に従って導かれる。ここで、
α、β:材料によって決定される定数
Nf:き裂発生サイクル
はΔεのひずみが繰り返されたと仮定した際のき裂発生サイクル数
N:実際にΔεが負荷されたサイクル数、
Δε:ひずみ範囲
DはNサイクル負荷時の損傷値
である。
Therefore, as information stored in the database, the relationship between the damage value of each solder joint that requires life prediction and the increase in strain range is used. The damage value D is an index indicating the degree of fatigue when a load having a different amplitude is applied. When D = 1 is reached, the service life is reached and breakage occurs. FIG. 11 shows a life prediction method when the amplitude of the constant strain range Δε 0 is repeated. When the amplitude of the constant strain range Δε 0 is repeated, the number of repetitions N 0 until the fracture is derived according to an exponential rule (in particular, in the case of solder, an exponential rule called Coffin-Manson rule or Basquin rule). here,
α, β: constants determined by the material Nf: crack initiation cycle N 0 is the number of crack initiation cycles assuming that the strain of Δε 0 is repeated N: the number of cycles in which Δε 0 is actually loaded,
Δε: Strain range D is a damage value under N-cycle load.

これに対し、図1、図12〜14には異なるひずみ範囲(温度範囲)の振幅が複数作用した場合の寿命予測方法を示す。   On the other hand, FIGS. 1 and 12 to 14 show a life prediction method when a plurality of amplitudes in different strain ranges (temperature ranges) are applied.

温度履歴データ(図10)はサイクルカウントと呼ばれる方法により、温度振幅データに変換される(図1の第0003ステップ)。また、温度履歴のサイクル数、及び周期も同時に調査される。温度振幅データの例を図12に示す。サイクルカウントの具体的な手法は例えばASTM E 1049-85, “Standard Practices for cycle counting in fatigue analysis”, ASTM Standards, Vol. 03.01(Reapproved 1997), Philadelphia, 1999.参照。   The temperature history data (FIG. 10) is converted into temperature amplitude data by a method called cycle count (step 0003 in FIG. 1). In addition, the number of cycles and the period of the temperature history are simultaneously investigated. An example of temperature amplitude data is shown in FIG. See, for example, ASTM E 1049-85, “Standard Practices for cycle counting in fatigue analysis”, ASTM Standards, Vol. 03.01 (Reapproved 1997), Philadelphia, 1999.

さらに、温度振幅データは、事前に作成しておいた応答曲面により、はんだ接合部に発生するひずみ範囲に変換される(図1の第0004ステップ)。ひずみ範囲に変換された例を図13に示す。ここで、応答曲面は、事前にさまざまな温度範囲のケースを想定した数値解析により作成され、はんだ接合部に発生するひずみを高精度に予測できる式である。この応答曲面作成の時点では、複雑になることを避けるために、各はんだ接合部は進行サイクルに関わらず一定の剛性を持つものと仮定し、損傷の進行による剛性の低下は考慮しないものとすることを許容する。異なるひずみ範囲Δεの振幅が作用する場合の寿命は、線形累積損傷則(Miner則とも呼ばれる)に従い、それぞれのひずみ範囲によって導かれる破断寿命Nの逆数の和Dを求めることができる(式1、式2)。この損傷値Dが1に達した時点ではんだ接合部は破断に至る。このDを損傷値として定義することにより、疲労寿命に至るまでのはんだ接合部の損傷の進行度合を表すことができる。

Figure 2013015542
Further, the temperature amplitude data is converted into a strain range generated in the solder joint by a response curved surface prepared in advance (step 0004 in FIG. 1). An example converted to the strain range is shown in FIG. Here, the response curved surface is an equation that is created by numerical analysis assuming cases of various temperature ranges in advance and can predict the strain generated in the solder joint with high accuracy. At the time of creating this response surface, it is assumed that each solder joint has a constant rigidity regardless of the progress cycle in order to avoid complication, and the decrease in rigidity due to the progress of damage is not considered. Allow that. The life when amplitudes of different strain ranges Δε k act can be obtained according to a linear cumulative damage law (also referred to as Miner law), and the sum D of reciprocals of the fracture life N k derived by each strain range can be obtained (formulae) 1, Formula 2). When the damage value D reaches 1, the solder joint portion breaks. By defining D as a damage value, it is possible to represent the degree of progress of damage in the solder joint until the fatigue life is reached.
Figure 2013015542

Figure 2013015542
Figure 2013015542

はんだ接合部(図5のA−1、A−2、B−1)に対して、損傷値Dの値を横軸にとり、縦軸にひずみ範囲Δεの増加率をとった関係図の一例を図14に示す。ここで、ひずみ範囲Δεの増加率とは、損傷が進行する前の初期状態において,ある温度振幅が加えられた時にはんだ接合部に発生するひずみ範囲を初期状態のひずみ範囲Δε0として、損傷値がDの際に同じ温度振幅を加えることによって発生するひずみ範囲が,初期状態のひずみ範囲Δε0に対して増加した割合を示す値であり、損傷の進行を考慮したFEM等の数値解析によって求めることができる。具体的な手法は、例えば日本機械学会論文集(A編)73巻736号(2007-12)"はんだバンプ接合部の損傷パスシミュレーション"を参照。 An example of a relationship diagram in which the horizontal axis represents the damage value D and the vertical axis represents the increase rate of the strain range Δε for the solder joints (A-1, A-2, B-1 in FIG. 5). As shown in FIG. Here, the increase rate of the strain range Δε is a damage value in which the strain range generated in the solder joint when a certain temperature amplitude is applied in the initial state before damage progresses is defined as the initial strain range Δε 0. The strain range generated by applying the same temperature amplitude when D is D is a value indicating the rate of increase with respect to the strain range Δε 0 in the initial state, and is obtained by numerical analysis such as FEM in consideration of the progress of damage. be able to. For the specific method, refer to, for example, the Japan Society of Mechanical Engineers Proceedings (A), Volume 73, No. 736 (2007-12) "Damage path simulation of solder bump joint"

この関係を数値解析等によってひずみ変動履歴データベース25に事前に保存し、製品の使用環境下における温度履歴から求められる損傷値Dと照らし合わせることにより、損傷の進行によるひずみ範囲Δεの増加率を知ることができる。図15〜16にひずみ変動履歴データベースの作成手順、及びひずみ変動履歴データベースを作成する装置のブロック図を示す。   This relationship is stored in advance in the strain fluctuation history database 25 by numerical analysis or the like and is compared with the damage value D obtained from the temperature history under the use environment of the product, thereby knowing the increasing rate of the strain range Δε due to the progress of damage. be able to. 15 to 16 show a procedure for creating a strain fluctuation history database and a block diagram of an apparatus for creating a strain fluctuation history database.

(ひずみ変動履歴データベースの作成手順)
(第011〜012ステップ)
第11の制御部(サイクル決定部)31は温度範囲、温度保持時間、温度上昇時間、温度下降時間、温度繰り返しサイクル数を決定する。
(Procedure for creating strain fluctuation history database)
(Steps 011 to 012)
The eleventh control unit (cycle determination unit) 31 determines a temperature range, a temperature holding time, a temperature rise time, a temperature fall time, and a temperature repetition cycle number.

(第013ステップ)
第12の制御部(数値解析部)32は損傷の進行を考慮した数値解析を行う。具体的には、FEMにより指定された温度条件を設定し、はんだ内部に発生するひずみ範囲がCoffin-Manson則やBasquin則で定められた疲労寿命回数に達した段階で、寿命に達した部分を削除または剛性を極端に低下させることによってき裂を模擬し、損傷の進行を考慮する。詳細は前記日本機械学会論文集(A編)73巻736号(2007-12)を参照。
(Step 013)
The twelfth control unit (numerical analysis unit) 32 performs numerical analysis in consideration of the progress of damage. Specifically, the temperature conditions specified by the FEM are set, and when the strain range generated in the solder reaches the fatigue life number specified by the Coffin-Manson rule or the Basquin rule, Simulate a crack by removing or drastically reducing stiffness and consider the progression of damage. For details, see the Japan Society of Mechanical Engineers Proceedings (A), Volume 73, Issue 736 (2007-12).

(第014ステップ)
第13の制御部(ひずみ変動履歴算出部)33は各温度サイクル毎のひずみ変動履歴を算出する。また、ひずみ変動履歴算出部33は求めた各温度サイクル毎のひずみ変動履歴を第5の記憶部(ひずみ変動履歴情報データベース)25に保存する。
(Step 014)
A thirteenth control unit (strain variation history calculation unit) 33 calculates a strain variation history for each temperature cycle. The strain fluctuation history calculation unit 33 stores the obtained strain fluctuation history for each temperature cycle in the fifth storage unit (strain fluctuation history information database) 25.

(第015ステップ)
第14の制御部(損傷値算出部)34は第11の記憶部(はんだ疲労データベース)26を参照し、各温度サイクル毎の損傷値Dを算出(推定)する。また、損傷値算出部34は、各温度サイクルにおけるひずみ範囲Δεの増加率と、これに対応する求めた損傷値Dとを第5の記憶部(ひずみ変動履歴情報データベース)25に保存する。
(Step 015)
The fourteenth control unit (damage value calculation unit) 34 refers to the eleventh storage unit (solder fatigue database) 26 and calculates (estimates) the damage value D for each temperature cycle. Further, the damage value calculation unit 34 stores the increase rate of the strain range Δε in each temperature cycle and the calculated damage value D corresponding thereto in the fifth storage unit (strain variation history information database) 25.

なお、この第015ステップは、リアルタイム、または定められたタイミングなど、任意の機会に行うことができる。定められたタイミングとしては、例えば、定期的や電源ON時または/及びOFF時が例示される。   The 015th step can be performed at an arbitrary opportunity such as real time or a predetermined timing. As the determined timing, for example, periodically or when the power is turned on and / or off.

(効果)
ここで、ひずみ範囲Δεの増加量を知るために損傷値Dを利用することの第一の利点として、加えられた温度の範囲や保持時間、上昇、下降時間を考慮しなくとも、損傷値のみを参照することでひずみ範囲の増加率を知ることができることが挙げられる。すなわち、一定温度振幅のような単純な温度変動ではなく、実使用環境下の複雑な温度変動に対しても、適用が容易である。第二の利点として、損傷値Dとひずみ範囲Δεの増加率の関係にロバスト性があり、加えられる温度範囲や保持時間等によって関係が大きく変わることが少ない点が挙げられる。
(effect)
Here, as a first advantage of using the damage value D to know the increase amount of the strain range Δε, only the damage value is considered without considering the applied temperature range, holding time, rise time, and fall time. It is mentioned that the increase rate of the strain range can be known by referring to. That is, the present invention can be easily applied not only to a simple temperature fluctuation such as a constant temperature amplitude but also to a complicated temperature fluctuation in an actual use environment. The second advantage is that the relationship between the damage value D and the increasing rate of the strain range Δε is robust, and the relationship is unlikely to change greatly depending on the applied temperature range and holding time.

これらの利点により、代表的な温度履歴による損傷値とひずみ範囲の関係を数値解析によって事前に調べておくことにより、様々な温度履歴に対するひずみ範囲の増加率を簡易かつ比較的高い精度で知ることが可能になる。   Because of these advantages, the relationship between the damage value and strain range due to typical temperature history is examined in advance by numerical analysis, and the rate of increase in strain range for various temperature histories can be known easily and with relatively high accuracy. Is possible.

より高精度なひずみ範囲増加率の推定のために、温度範囲や保持時間、上昇、下降時間をパラメータとした数値解析によって、図14の関係をデータベースに複数保持し、加えられた温度範囲によって適切な関係式を適用する方法をとることも可能である。   In order to estimate the strain range increase rate with higher accuracy, numerical analysis using the temperature range, holding time, ascending and descending time as parameters is held in the database, and multiple relationships are retained depending on the added temperature range. It is also possible to adopt a method of applying various relational expressions.

なお、第1実施形態では、温度の履歴情報からサイクルカウントにより温度変動の振幅、サイクル数、平均温度、及び周期を調べ、予め作成しておいた応答曲面を用いてひずみ範囲を算出する方法を示したが、これに限定されるものではない。被測定対象の使用環境等によっては、温度の振幅,サイクル数,周期の,全ての物理量を使用しなくても推定可能な場合がある。具体的には、振幅とサイクル数だけで推定が可能な場合もある。   In the first embodiment, a method is used in which the temperature variation amplitude, the number of cycles, the average temperature, and the period are checked from the temperature history information by the cycle count, and the strain range is calculated using a response surface prepared in advance. Although shown, it is not limited to this. Depending on the usage environment of the object to be measured, estimation may be possible without using all physical quantities of temperature amplitude, number of cycles, and period. Specifically, there are cases where estimation is possible only by the amplitude and the number of cycles.

よって、温度の履歴情報からサイクルカウントにより温度変動の振幅、サイクル数、平均温度、及び周期の少なくともいずれか1つの物理量が調べられること、及び、この調査した物理量に対応する応答曲面が準備されていて、サイクルカウントにより調べた物理量の中の少なくともいずれか1つからひずみ範囲を算出することできれば、はんだ接合部の寿命予測が可能となる場合がある。   Therefore, it is possible to check the physical quantity of at least one of the amplitude of the temperature fluctuation, the number of cycles, the average temperature, and the period by the cycle count from the temperature history information, and a response surface corresponding to the investigated physical quantity is prepared. If the strain range can be calculated from at least one of the physical quantities examined by the cycle count, the life prediction of the solder joint may be possible.

(第1実施形態の変形例)
第1実施形態の変形例について説明する。本変形例と第1実施形態とは、寿命予測する手順は同じであるが、ダミーバンプの破断が検出された際に、ダミーバンプの予測される寿命と、実際の寿命との間の誤差を算出し、誤差を修正するルーチンを組み込む点が相違する。図17は誤差修正のルーチンを組み込んだ寿命予測方法を示す。また、図18はこの寿命予測方法を実行するために必要となる構成のうち、第1実施形態に追加される構成を示す。
(Modification of the first embodiment)
A modification of the first embodiment will be described. In this modification and the first embodiment, the procedure for predicting the life is the same, but when a break of the dummy bump is detected, an error between the expected life of the dummy bump and the actual life is calculated. The difference is that a routine for correcting the error is incorporated. FIG. 17 shows a life prediction method incorporating an error correction routine. Moreover, FIG. 18 shows the structure added to 1st Embodiment among the structures required in order to perform this lifetime prediction method.

(第021〜022ステップ)
第1実施形態の寿命予測方法(ステップS025)の前に、ダミーバンプ破断検出イベントを設ける。
(Steps 021 to 022)
A dummy bump break detection event is provided before the life prediction method (step S025) of the first embodiment.

第21の制御部(破断イベント検出部)51はダミーバンプが破断されているか否かを判断する(第022ステップ)。ダミーバンプが破断されていないと判断した場合、第1実施形態(第001〜009ステップ)を実行する(図1)。   The twenty-first control unit (break event detecting unit) 51 determines whether or not the dummy bump is broken (step 022). When it is determined that the dummy bump is not broken, the first embodiment (steps 001 to 009) is executed (FIG. 1).

(第023ステップ)
ダミーバンプが破断されていると判断した場合、第22の制御部(損傷値修正部)52は、損傷値データベース24を参照し、予め求められている損傷値を読み出す。そして、
損傷値修正部52は、予め与えられている損傷値と、新たに求められた損傷値とを比較する。さらに、損傷値修正部52は、比較した結果における損傷値に差が認められる時は、破断していないはんだ接合部の寿命予測値を修正する(第023ステップ)。
(Step 023)
If it is determined that the dummy bump is broken, the twenty-second control unit (damage value correcting unit) 52 refers to the damage value database 24 and reads a damage value obtained in advance. And
The damage value correcting unit 52 compares a damage value given in advance with a newly obtained damage value. Further, when a difference is found in the damage value in the comparison result, the damage value correcting unit 52 corrects the life prediction value of the solder joint portion that is not broken (step 023).

寿命予測値の修正方法について図19に示す例を用いて説明する。損傷値Dは1に達した時点で破断するはずだが、図19に示すようにD=0.75の時点ではんだ接合部の破断が検出されたとする。この場合、ΔD=0.25(=1−0.75)に相当する損傷値が予測されない何らかの理由で加えられたものと判断し、破断されていない残りのはんだ接合部の損傷値をD=0.75で除する。すなわち、損傷値0.4を0.75で除した0.533を新たな損傷値とする。   A method for correcting the predicted life value will be described with reference to an example shown in FIG. The damage value D should be broken when it reaches 1, but it is assumed that the breakage of the solder joint is detected when D = 0.75 as shown in FIG. In this case, it is determined that a damage value corresponding to ΔD = 0.25 (= 1−0.75) is added for some reason that is not predicted, and the damage value of the remaining unjoined solder joint is D = Divide by 0.75. That is, 0.533 obtained by dividing the damage value 0.4 by 0.75 is set as a new damage value.

また、損傷値修正部52は、算出された修正後の損傷値0.533を第21の記憶部(ダミーバンプ状況データベース)61に記憶する。第21の記憶部(ダミーバンプ状況データベース)61に保存されたはんだ接合部破断の情報や損傷値は、必要に応じてSMART(Self-Monitoring, Analysis and Reporting Technology)等の情報伝達手段を用いてホスト側に提供される。その後、第1実施形態(第001〜009ステップ)を実行する(図1)。   Further, the damage value correcting unit 52 stores the calculated corrected damage value 0.533 in the twenty-first storage unit (dummy bump situation database) 61. Solder joint breakage information and damage values stored in the 21st storage unit (dummy bump status database) 61 can be hosted using information transmission means such as SMART (Self-Monitoring, Analysis and Reporting Technology) as necessary. Provided on the side. Thereafter, the first embodiment (steps 001 to 009) is executed (FIG. 1).

(第2実施形態)
第2実施形態について、図2、図3を用いて説明する。第2実施形態ははんだ接合部の寿命予測装置の実施形態である。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. The second embodiment is an embodiment of a solder joint life prediction apparatus.

図3は実装基板1に半導体メモリ4−1〜4−8、コンデンサ6、測定部7、制御部10が搭載されている第2実施形態の例を示した模式図である。半導体メモリ4−1〜4−8は実装基板にはんだ等の接合部を介して接続されている。検出部7は半導体メモリ4−1〜4−8の各接合部について電気的特性を測定し、その接続状態を観察する。また検出部7は実装基板1の温度を測定する。半導体メモリの一部は記憶部20として用いることができる。   FIG. 3 is a schematic diagram showing an example of the second embodiment in which the semiconductor memory 4-1 to 4-8, the capacitor 6, the measurement unit 7, and the control unit 10 are mounted on the mounting substrate 1. The semiconductor memories 4-1 to 4-8 are connected to the mounting substrate via joints such as solder. The detector 7 measures the electrical characteristics of each junction of the semiconductor memories 4-1 to 4-8, and observes the connection state. The detection unit 7 measures the temperature of the mounting substrate 1. A part of the semiconductor memory can be used as the storage unit 20.

図2は第2実施形態にかかるブロック図である。第2実施形態は、検出部7、制御部10、記憶部20を構成要素として有する。これらは情報や信号の受け渡しを媒介する信号ラインLを介して互いに接続されている。信号ラインは有線、無線、これらを混在させた形態を用いることができる。   FIG. 2 is a block diagram according to the second embodiment. 2nd Embodiment has the detection part 7, the control part 10, and the memory | storage part 20 as a component. These are connected to each other via a signal line L that mediates the exchange of information and signals. The signal line can be wired, wireless, or a mixture of these.

制御部10は、第1実施形態に対応して、更新イベント検出部11、サイクルカウント調査部12、温度−ひずみ範囲変換部13、ひずみ範囲増加率算出部14、ひずみ範囲再カウント部15、損傷値判断部16を有する。記憶部20は、更新イベント保存部21、温度履歴データベース22、応答曲面データベース23、損傷値データベース24、ひずみ変動履歴データベース25、はんだ疲労データベース26、しきい値データベース27を有する。   Corresponding to the first embodiment, the control unit 10 includes an update event detection unit 11, a cycle count investigation unit 12, a temperature-strain range conversion unit 13, a strain range increase rate calculation unit 14, a strain range recount unit 15, a damage A value determination unit 16 is included. The storage unit 20 includes an update event storage unit 21, a temperature history database 22, a response surface database 23, a damage value database 24, a strain variation history database 25, a solder fatigue database 26, and a threshold database 27.

第1実施形態の変形例に対応して、制御部10は破断イベント検出部31、損傷値修正部32を、記憶部20はダミーバンプ状況データベース61を更に有してもよい。   Corresponding to the modification of the first embodiment, the control unit 10 may further include a fracture event detection unit 31 and a damage value correction unit 32, and the storage unit 20 may further include a dummy bump situation database 61.

具体的な態様としては、例えば、制御部10にはCPUを用いることができる。また、記憶部20には半導体メモリを用いることができる。記憶部はこれに限られるものではなく、情報やプログラムを記憶できる記録媒体であればよく、NAND型半導体メモリ、HDD、ROMなどのLSIを用いることができる。   As a specific aspect, for example, a CPU can be used for the control unit 10. Further, a semiconductor memory can be used for the storage unit 20. The storage unit is not limited to this, and any storage medium that can store information and programs can be used, and an LSI such as a NAND semiconductor memory, HDD, or ROM can be used.

検出部7(破断イベント検出部31)には、例えばはんだ接合部71の抵抗値を測定する回路、または/及びインピーダンスを測定する回路等を具備することができる。検出部7は接合部の電気的特性を測定することにより、破断を検出することができる。例えば、接合部が破断すると電気抵抗が急激に大きくなることから、破断を検出することが可能となる。また、温度を測定するために、検出部7には熱電対を具備することができる。はんだ接合部の抵抗値を測定する回路、インピーダンスを測定する回路がアナログ回路、熱電対の出力がアナログ信号である場合には、検出部7にA/D変換器を含んでもよい。アナログ信号がデジタル信号に変換されることにより、制御部10、記憶部20でこれらの信号を容易に取り扱うことが出来るようになる。   The detection unit 7 (break event detection unit 31) can include, for example, a circuit that measures the resistance value of the solder joint 71, and / or a circuit that measures impedance. The detection part 7 can detect a fracture | rupture by measuring the electrical property of a junction part. For example, when the joint portion breaks, the electric resistance suddenly increases, so that the breakage can be detected. Further, in order to measure the temperature, the detection unit 7 can be provided with a thermocouple. When the circuit for measuring the resistance value of the solder joint, the circuit for measuring the impedance is an analog circuit, and the output of the thermocouple is an analog signal, the detection unit 7 may include an A / D converter. By converting analog signals into digital signals, the control unit 10 and the storage unit 20 can easily handle these signals.

第2実施形態の動作、作用、効果については第1実施形態及びその変形例にて述べたので省略する。   Since the operation, operation, and effect of the second embodiment have been described in the first embodiment and its modifications, the description thereof will be omitted.

(第3実施形態)
第3実施形態について説明する。第3実施形態は、破断を検出するための信号線の形成の仕方に工夫がある。この様子を図20を用いて説明する。
(Third embodiment)
A third embodiment will be described. The third embodiment is devised in the way of forming a signal line for detecting breakage. This will be described with reference to FIG.

図20では、矩形状の半導体メモリ4にはんだ接合部71が複数配置されている。半導体メモリ4に含まれているシリコンチップ73は、半導体メモリ4の最外周よりも一回り小さく、半導体メモリ4の内部にして形成されている。   In FIG. 20, a plurality of solder joints 71 are arranged in the rectangular semiconductor memory 4. The silicon chip 73 included in the semiconductor memory 4 is slightly smaller than the outermost periphery of the semiconductor memory 4 and is formed inside the semiconductor memory 4.

はんだ接合部71は矩形状の線対象軸の方向に、ダミーバンプ領域(第2の接合部、B−1)、破断検出領域(第3の接合部、B−2)、信号線領域(第1の接合部、B−3)、破断検出領域(第3の接合部、B−4)、ダミーバンプ領域(第2の接合部、B−5)が、この順番で形成されている。すなわち、信号線領域とダミーバンプ領域の間に破断検出領域が介挿された構成となっている。   The solder joint portion 71 has a dummy bump region (second joint portion, B-1), a break detection region (third joint portion, B-2), a signal line region (first portion) in the direction of the rectangular line target axis. , B-3), a fracture detection region (third joint, B-4), and a dummy bump region (second joint, B-5) are formed in this order. That is, the break detection area is interposed between the signal line area and the dummy bump area.

ダミーバンプ領域(B−1、B−5)は、図20において二点破線で囲まれた領域である。この領域のダミーバンプは、電子機器である半導体メモリ4と実装基板1とを機械的に接合しているが、半導体メモリ4と実装基板1との間の電気信号をやり取りは媒介しない。   The dummy bump areas (B-1, B-5) are areas surrounded by a two-dot broken line in FIG. The dummy bumps in this region mechanically join the semiconductor memory 4 and the mounting substrate 1 which are electronic devices, but do not mediate exchange of electrical signals between the semiconductor memory 4 and the mounting substrate 1.

信号線領域(B−3)は、図20において一点破線で囲まれた領域である。この領域のはんだ接合部は、電子機器である半導体メモリ4と実装基板1とを機械的に接合するだけでなく、半導体メモリ4と実装基板1との間の電気信号をやり取りも媒介する。   The signal line region (B-3) is a region surrounded by a one-dot broken line in FIG. The solder joints in this region not only mechanically join the semiconductor memory 4 and the mounting substrate 1 which are electronic devices, but also mediate exchange of electrical signals between the semiconductor memory 4 and the mounting substrate 1.

破断検出領域(B−2、B−4)は、図20において破線で囲まれた領域である。この領域のはんだ接合部は、電子機器である半導体メモリ4と実装基板1とを機械的に接合しているが、半導体メモリ4と実装基板1との間の電気信号をやり取りは媒介しない。しかし、破断を検出するための信号線72がこの領域に存在するはんだ接合部の一部を利用して形成されている。信号線72は検出部7に接続されていて、半導体メモリ4と実装基板1との接合状態を監視することができる。図20に示す例では、破断検出領域の最も外側のはんだ接合部のうち互いに隣接する2個を1組とした時に、互いに対向する4組を一本の電気回路で直列に接続しているが、状況に応じて、対偶関係にある2箇所のみ、或いは1箇所のみとすることもできる。この時、四隅の中でも最も温度変化が激しい領域を含むように選択すると、早期にはんだ接合部の破断を検出することが可能となる。   The fracture detection areas (B-2, B-4) are areas surrounded by a broken line in FIG. The solder joint in this region mechanically joins the semiconductor memory 4 that is an electronic device and the mounting substrate 1, but does not mediate the exchange of electrical signals between the semiconductor memory 4 and the mounting substrate 1. However, the signal line 72 for detecting breakage is formed using a part of the solder joint portion existing in this region. The signal line 72 is connected to the detection unit 7 and can monitor the bonding state between the semiconductor memory 4 and the mounting substrate 1. In the example shown in FIG. 20, when two adjacent solder joints in the outermost detection area of the rupture detection region are set as one set, four sets facing each other are connected in series with one electric circuit. Depending on the situation, it is possible to have only two places or only one place in an even number relationship. At this time, if it is selected so as to include a region where the temperature change is most severe among the four corners, it becomes possible to detect the breakage of the solder joint portion at an early stage.

このように、ダミーバンプ領域と信号線領域の間に破断検出領域を設ける利点として、破断検出領域はダミーバンプ領域と比較して相対的にばらつきによる寿命の影響が小さく、高い精度での寿命予測が可能になる点が挙げられる。ダミーバンプ領域はパッケージの外周部周辺に存在するため、破断検出領域や信号領域と比較して早期に破断する。物理的に解釈すると、この現象は、パッケージ外側のはんだ接合部ほど大きな機械的負荷を受け持ち、パッケージ内部側のはんだ接合部は、外側のはんだ接合部が受け持った負荷以外の残りの負荷を平均的に受け持っていることに相当する。このとき、パッケージ内部側の各はんだ接合部に発生するひずみ範囲は外側と比較すると平均化(内部側の各はんだ接合部は平均的に同等な負荷を受け持つ)されているため、結果として寿命のばらつきが小さくなる。このばらつきの傾向は、温度サイクル試験などの負荷試験により実験的に検証されている。   As described above, the advantage of providing a break detection area between the dummy bump area and the signal line area is that the break detection area is relatively less affected by the variation than the dummy bump area, and the life can be predicted with high accuracy. The point becomes. Since the dummy bump area exists around the periphery of the package, it breaks earlier than the break detection area and the signal area. Physically, this phenomenon is subject to a greater mechanical load on the solder joints on the outside of the package, and the solder joints on the inner side of the package average the remaining loads other than those on the outer solder joints. Is equivalent to At this time, the strain range generated in each solder joint on the inside of the package is averaged compared to the outside (each solder joint on the inner side bears an equivalent load on average). Variation is reduced. This variation tendency is experimentally verified by a load test such as a temperature cycle test.

破断検出領域のばらつきが小さいことの利点は、第1実施形態における第023ステップで行われる信号バンプの損傷値修正の際にも利点として働く。すなわち、破断を検出するはんだ接合部のばらつきが小さいことから、破断の検出により損傷値を修正する他のはんだ接合部においても、修正後の損傷値のばらつきが小さくなり、結果として高精度な寿命予測が可能となる。早期検出を優先する場合はパッケージ外側のダミーバンプ領域で破断検出を行うことが望ましいが、寿命予測精度の視点では、ダミーバンプ領域より内側のはんだ接合部で破断検出を行う方が高精度の予測が可能になる。破断検出をするはんだ接合部を適切に選択することにより、早期検出と高精度の寿命予測のバランスをとることが可能となる。   The advantage that the variation in the breakage detection area is small also works as an advantage when the damage value of the signal bump is corrected in step 023 in the first embodiment. In other words, since the variation in the solder joints for detecting breakage is small, the variation in the damage value after correction is reduced in other solder joints for which the damage value is corrected by detecting the breakage. Prediction becomes possible. If priority is given to early detection, it is desirable to detect fracture in the dummy bump area outside the package, but from the viewpoint of life prediction accuracy, it is possible to predict with higher accuracy by detecting fracture at the solder joint inside the dummy bump area. become. By appropriately selecting a solder joint for detecting breakage, it is possible to balance early detection with high-precision life prediction.

(第3実施形態の変形例)
第3実施形態の変形例として、第2実施形態を第1実施形態とを破断検出用のチェーンにより結合することにより、適格に寿命評価を行うことが出来る。この様子を図21に示す。
(Modification of the third embodiment)
As a modification of the third embodiment, the life evaluation can be performed properly by combining the second embodiment with the first embodiment by a chain for detecting breakage. This is shown in FIG.

図21における各半導体メモリ(4−1、4−2、・・・4−N)は破断検出用信号線72にて一筆書きにて検出部7に接続されている。これにより、1箇所の検出部7にて複数の半導体メモリ4のはんだ接合部を監視できる。   Each semiconductor memory (4-1, 4-2,..., 4-N) in FIG. 21 is connected to the detection unit 7 by one stroke writing through a break detection signal line 72. Thereby, the solder joint part of the some semiconductor memory 4 can be monitored in the detection part 7 of one place.

以上説明した少なくとも1つの実施形態によれば、診断自体が機器に与える負荷を考慮した、効率的なテスト項目の実施を可能とするテストスケジュールを作成することが可能となる。   According to at least one embodiment described above, it is possible to create a test schedule that enables efficient test item implementation in consideration of the load that the diagnosis itself places on the device.

これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、様々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同時に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   These embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention and are also included in the invention described in the claims and the equivalents thereof.

1 ・・・ 実装基板(回路基板)
2 ・・・ コネクタ
3 ・・・ ボス穴
4、4−1〜4−8 ・・・ 被測定対象(半導体メモリ)
6 ・・・ コンデンサ
7 ・・・ 検出部(破断検出部、温度測定部)
10 ・・・ 制御部
11 ・・・ 第1の制御部(更新イベント検出部)
12 ・・・ 第2の制御部(サイクルカウント調査部)
13 ・・・ 第3の制御部(温度−ひずみ範囲変換部)
14 ・・・ 第4の制御部(ひずみ範囲増加率算出部)
15 ・・・ 第5の制御部(ひずみ範囲再カウント部)
16 ・・・ 第6の制御部(損傷値判断部)
31 ・・・ 第11の制御部(サイクル決定部)
32 ・・・ 第12の制御部(数値解析部)
33 ・・・ 第13の制御部(ひずみ変動履歴算出部)
34 ・・・ 第14の制御部(損傷値算出部)
51 ・・・ 第21の制御部(破断イベント検出部)
52 ・・・ 第22の制御部(損傷値修正部)
20、20−1、20−2 ・・・ 記憶部
21 ・・・ 第1の記憶部(更新イベント保存部)
22 ・・・ 第2の記憶部(温度履歴データベース)
23 ・・・ 第3の記憶部(応答曲面データベース)
24 ・・・ 第4の記憶部(損傷値データベース)
25 ・・・ 第5の記憶部(ひずみ変動履歴データベース)
26 ・・・ 第6の記憶部(はんだ疲労データベース)
27 ・・・ 第7の記憶部(しきい値データベース)
61 ・・・ 第21の記憶部(ダミーバンプ状況データベース)
71 ・・・ はんだ接合部(はんだバンプ)
72 ・・・ 破断検出用信号線
73 ・・・ Siチップ
81 ・・・ ホスト機器
B−1、B−5 ・・・ ダミーバンプ領域
B−2、B−4 ・・・ 破断検出領域
B−3 ・・・ 信号線領域
1 ... Mounting board (circuit board)
2 ... Connector 3 ... Boss holes 4, 4-1 to 4-8 ... Measurement target (semiconductor memory)
6: Capacitor 7: Detection unit (break detection unit, temperature measurement unit)
10: Control unit 11: First control unit (update event detection unit)
12 ... 2nd control part (cycle count investigation part)
13 ... 3rd control part (temperature-strain range conversion part)
14 ... 4th control part (strain range increase rate calculation part)
15 ... 5th control part (strain range recount part)
16 ... 6th control part (damage value judgment part)
31 ... 11th control part (cycle determination part)
32 ... 12th control part (numerical analysis part)
33 ... 13th control part (strain fluctuation history calculation part)
34 ... 14th control part (damage value calculation part)
51 ... 21st control part (break event detection part)
52 ... 22nd control part (damage value correction part)
20, 20-1, 20-2 ... storage unit 21 ... first storage unit (update event storage unit)
22 ... 2nd memory | storage part (temperature history database)
23 ... 3rd memory | storage part (response curved surface database)
24 ... 4th memory | storage part (damage value database)
25 ... 5th memory | storage part (strain fluctuation history database)
26 ・ ・ ・ Sixth storage section (solder fatigue database)
27: Seventh storage unit (threshold value database)
61 ... 21st memory | storage part (dummy bump situation database)
71 ・ ・ ・ Solder joint (solder bump)
72 ... Break detection signal line 73 ... Si chip 81 ... Host equipment B-1, B-5 ... Dummy bump area B-2, B-4 ... Break detection area B-3 ..Signal line area

Claims (4)

電子部品と、
実装基板と、
前記電子機器と前記実装基板とを機械的に接合し、かつ前記電子機器と前記実装基板との間で電気信号のやり取りを媒介する第1の接合部と、
前記電子機器と前記実装基板とを機械的に接合し、かつ前記電子機器と前記実装基板との間で電気信号のやり取りを媒介しない第2の接合部と、
前記第1の接合部と前記第2との間に形成され、前記電子機器と前記実装基板とを機械的に接合し、かつ、前記実装基板と前記電子部品との接合状態を監視する第3の接合部と、
を有することを特徴とする電子機器。
Electronic components,
A mounting board;
A first joint that mechanically joins the electronic device and the mounting substrate, and mediates exchange of electrical signals between the electronic device and the mounting substrate;
A second joint that mechanically joins the electronic device and the mounting substrate and does not mediate the exchange of electrical signals between the electronic device and the mounting substrate;
A third part formed between the first joint and the second, mechanically joins the electronic device and the mounting board, and monitors a joining state between the mounting board and the electronic component. A joint of
An electronic device comprising:
前記第3の接合部は、はんだ接合部の互いに隣接する2個を一組とし、互いに対向する4組のうちの少なくとも一組以上を直列に接続することを特徴とする請求項1に記載の電子機器。   2. The third joint portion according to claim 1, wherein two adjacent solder joint portions are set as one set, and at least one of four pairs facing each other is connected in series. Electronics. 複数個の前記電子部品が前記実装基板に実装され、前記電子部品は複数個の前記第3の接合部を有し、前記第3の接合部を全て直列に接続することを特徴とする請求項1または請求項2に記載の電子機器。   The plurality of electronic components are mounted on the mounting board, the electronic component has a plurality of the third joint portions, and the third joint portions are all connected in series. The electronic device according to claim 1 or 2. はんだ接合部を有する被測定対象の温度の履歴情報を保存した第1の記憶部と、
温度変動の振幅、サイクル数、平均温度、周期の少なくともいずれか1つの物理量からひずみ範囲を求めるための応答曲面を保存した第2の記憶部と、
損傷値の履歴情報が保存された第3の記憶部と、
損傷値からひずみ範囲の増加率を求めるためのひずみ変動履歴が保存された第4の記憶部と、
前記第1の記憶部を参照し、温度の履歴情報を取得する第1の制御部と、
前記温度の履歴情報からサイクルカウントにより温度変動の振幅、サイクル数、平均温度、及び周期の少なくともいずれか1つの物理量を調べる第2の制御部と、
前記第2の記憶部を参照し、前記サイクルカウントにより調べた物理量の中の少なくともいずれか1つからひずみ範囲を算出する第3の制御部と、
前記第3の記憶部及び前記第4の記憶部を参照し、前記第3の制御部により算出されたひずみ範囲からひずみ範囲増加率を算出する第4の制御部と、
を含むはんだ接合部の寿命予測装置を更に具備することを特徴とする請求項1から請求項3のいずれか1項に記載の電子機器。
A first storage unit that stores history information of the temperature of the measurement target having a solder joint;
A second storage unit storing a response curved surface for obtaining a strain range from at least one physical quantity of temperature fluctuation amplitude, number of cycles, average temperature, and period;
A third storage unit storing history information of damage values;
A fourth storage unit storing a strain fluctuation history for obtaining an increase rate of the strain range from the damage value;
A first control unit that refers to the first storage unit and acquires temperature history information;
A second control unit that examines at least one physical quantity of the amplitude of the temperature fluctuation, the number of cycles, the average temperature, and the period by a cycle count from the history information of the temperature;
A third control unit that refers to the second storage unit and calculates a strain range from at least one of the physical quantities examined by the cycle count;
A fourth control unit that refers to the third storage unit and the fourth storage unit and calculates a strain range increase rate from the strain range calculated by the third control unit;
The electronic device according to any one of claims 1 to 3, further comprising a life prediction device for a solder joint including:
JP2012235607A 2012-10-25 2012-10-25 Solder joint life prediction method, solder joint life prediction apparatus, and electronic device Expired - Fee Related JP5481551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012235607A JP5481551B2 (en) 2012-10-25 2012-10-25 Solder joint life prediction method, solder joint life prediction apparatus, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012235607A JP5481551B2 (en) 2012-10-25 2012-10-25 Solder joint life prediction method, solder joint life prediction apparatus, and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010208553A Division JP5175911B2 (en) 2010-09-16 2010-09-16 Solder joint life prediction method, solder joint life prediction device

Publications (2)

Publication Number Publication Date
JP2013015542A true JP2013015542A (en) 2013-01-24
JP5481551B2 JP5481551B2 (en) 2014-04-23

Family

ID=47688311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235607A Expired - Fee Related JP5481551B2 (en) 2012-10-25 2012-10-25 Solder joint life prediction method, solder joint life prediction apparatus, and electronic device

Country Status (1)

Country Link
JP (1) JP5481551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234413B2 (en) 2015-03-27 2019-03-19 Kabushiki Kaisha Toshiba Electronic device, abnormality determination method, and computer program product
CN112285595A (en) * 2020-10-15 2021-01-29 厦门多彩光电子科技有限公司 Cyclic test method for LED lamp beads

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234413B2 (en) 2015-03-27 2019-03-19 Kabushiki Kaisha Toshiba Electronic device, abnormality determination method, and computer program product
CN112285595A (en) * 2020-10-15 2021-01-29 厦门多彩光电子科技有限公司 Cyclic test method for LED lamp beads
CN112285595B (en) * 2020-10-15 2023-10-10 深圳市南北半导体有限责任公司 Circulation test method for LED lamp beads

Also Published As

Publication number Publication date
JP5481551B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5175911B2 (en) Solder joint life prediction method, solder joint life prediction device
US9451709B2 (en) Damage index predicting system and method for predicting damage-related index
JP5025676B2 (en) Monitoring device and monitoring method
JP4938695B2 (en) Crack growth evaluation apparatus and crack growth evaluation method
US9500693B2 (en) Electronic apparatus, measuring method, and monitoring apparatus
KR101526313B1 (en) Method for predicting fatigue life
JP5808285B2 (en) Solder joint life prediction method
US9699891B2 (en) Substrate and method for mounting semiconductor package
JP5481551B2 (en) Solder joint life prediction method, solder joint life prediction apparatus, and electronic device
JP2015094717A (en) Thermal fatigue life prediction device, thermal fatigue life prediction method, and program
Lall et al. Resistance spectroscopy-based condition monitoring for prognostication of high reliability electronics under shock-impact
US20040158450A1 (en) Solder joint life prediction method
US20140052392A1 (en) Technique for monitoring structural health of a solder joint in no-leads packages
JP2011058888A (en) Apparatus and method for predicting crack initiation life
Lall et al. Assessment of residual damage in leadfree electronics subjected to multiple thermal environments of thermal aging and thermal cycling
JP2019158732A (en) Device and method for diagnosing residual life of power device
JP5572741B2 (en) Damage index prediction system and damage prediction method
CN106501360A (en) Based on the porcelain insulator defect detecting device from comparative trend analysis and vibroacoustics, system and method
JP6139619B2 (en) Electronic component and measuring method
JP2004045343A (en) Life diagnostic method and device of solder joint part
Cui et al. Interconnect reliability prediction for wafer level packages (WLP) for temperature cycle and drop load conditions
JP2011109145A (en) Damage index prediction system and damage prediction method
Tunga et al. Fatigue life prediction model development for decoupling capacitors
Li et al. Board level drop reliability study and orthotropic PCB material property test methodology
JP2011109145A5 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5481551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees