JP2013015366A - Total tension measuring apparatus for band-shaped body - Google Patents

Total tension measuring apparatus for band-shaped body Download PDF

Info

Publication number
JP2013015366A
JP2013015366A JP2011147286A JP2011147286A JP2013015366A JP 2013015366 A JP2013015366 A JP 2013015366A JP 2011147286 A JP2011147286 A JP 2011147286A JP 2011147286 A JP2011147286 A JP 2011147286A JP 2013015366 A JP2013015366 A JP 2013015366A
Authority
JP
Japan
Prior art keywords
total tension
band
shaped body
belt
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011147286A
Other languages
Japanese (ja)
Other versions
JP5566961B2 (en
Inventor
Hirotoshi Arihara
広敏 在原
Toru Okada
徹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011147286A priority Critical patent/JP5566961B2/en
Publication of JP2013015366A publication Critical patent/JP2013015366A/en
Application granted granted Critical
Publication of JP5566961B2 publication Critical patent/JP5566961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact type total tension measuring apparatus which is capable of accurately measuring a total tension, in simple configuration, even for a low-density band-shaped body or a thin band-shaped body.SOLUTION: A non-contact type displacement gage 3 is disposed which measures, between supporting portions, the oscillation displacement of a band-shaped body 1 supported by supporting rolls 2a, 2b in two portions in a traveling direction. The total tension of the band-shaped body 1 is arithmetically operated and measured by an arithmetic unit 4 from an eigen-frequency of the band-shaped body 1 determined from the oscillation displacement measured by the displacement gage 3, a mass of the band-shaped body 1 between the supporting portions and an additional mass of air in contact with the band-shaped body 1 between the supporting portions. Thus, even for a low-density band-shaped body or a thin band-shaped body, the total tension can be measured accurately while taking into account the additional mass of surrounding air that affects the oscillation.

Description

本発明は、帯状体の総張力を測定する総張力測定装置に関する。   The present invention relates to a total tension measuring device for measuring the total tension of a strip.

金属板、樹脂板、紙等の帯状体を通板して、圧延、熱処理、表面処理、印刷等の各種処理を連続的に行うラインでは、走行する帯状体の蛇行を防止するためや、各種処理を良好に行うために、帯状体の走行方向に張力を付与することが多い。この帯状体に付与される張力は、高すぎると帯状体が破断する恐れがあり、低すぎると、蛇行が生じたり、適正な処理ができなかったりするので、帯状体の強度や断面寸法に応じて、総張力が所定の値に設定される。   In a line that passes through strips such as metal plates, resin plates, paper, etc., and continuously performs various treatments such as rolling, heat treatment, surface treatment, printing, etc. In order to carry out the treatment satisfactorily, tension is often applied in the running direction of the strip. If the tension applied to the strip is too high, the strip may be broken, and if it is too low, meandering may occur or proper processing cannot be performed, so depending on the strength and cross-sectional dimensions of the strip. Thus, the total tension is set to a predetermined value.

従来、このように帯状体に付与される総張力を制御や監視等のために測定する際には、走行する帯状体をロール等によって走行方向の2箇所の部位で支持し、この2箇所の支持部位間で張力検出ロールを転接させる接触式の総張力測定装置が多く用いられている(例えば、特許文献1、2参照)。特許文献1に記載されたものでは、帯状体に押し当てられる張力検出ロールの押圧反力をロードセルで検出して、総張力を測定している。特許文献2に記載されたものでは、回動されるルーパの張力検出ロールを帯状体に押し当て、ルーパを回動する電動機のトルクを検出して、総張力を測定している。また、張力検出ロールを一定の力で帯状体に押し当て、そのときの帯状体の変位を検出して、総張力を測定するようにしたものもある。   Conventionally, when measuring the total tension applied to the strip in this way for control or monitoring, the traveling strip is supported at two locations in the traveling direction by a roll or the like. Many contact-type total tension measuring devices that roll-contact a tension detection roll between support parts are used (for example, refer to Patent Documents 1 and 2). In the device described in Patent Document 1, the total tension is measured by detecting the pressing reaction force of the tension detecting roll pressed against the belt-like body with a load cell. In the technique described in Patent Document 2, the tension detection roll of the rotating looper is pressed against the belt-like body, the torque of the electric motor that rotates the looper is detected, and the total tension is measured. There is also a type in which a tension detection roll is pressed against a belt-like body with a constant force, and the displacement of the belt-like body at that time is detected to measure the total tension.

上述した接触式の総張力測定装置は、走行する帯状体に押し当てられる張力検出ロールによって、帯状体の表面に疵が付く恐れがある。このような接触式の総張力測定装置の難点を解消するために、走行方向の2箇所の部位で支持された帯状体の固有振動数を非接触で計測することにより、総張力を測定する非接触式の総張力測定装置が提案されている(例えば、非特許文献1参照)。非特許文献1に記載された非接触式の総張力測定装置は、2箇所の支持部位間を走行する帯状体には自然に振動が生じるので、特段の振動負荷手段を必要とせず、装置の機器構成をシンプルなものとすることができる利点もある。   The contact-type total tension measuring device described above may be wrinkled on the surface of the strip by the tension detection roll pressed against the traveling strip. In order to eliminate the difficulty of such a contact-type total tension measuring device, the non-contact measurement of the total frequency of the strip supported by two parts in the running direction is performed. A contact-type total tension measuring device has been proposed (see, for example, Non-Patent Document 1). The non-contact type total tension measuring device described in Non-Patent Document 1 naturally generates vibration in the belt-like body that travels between the two support parts. There is also an advantage that the device configuration can be simplified.

なお、前記2箇所の支持部位間で振動する帯状体の総張力Tは、帯状体の密度をρ、帯状体の断面積をA、支持部位間のスパンをL、帯状体の一次の固有振動数をfとすると、次式で算出される。
T=4ρAL (1)
ここに、ρALは支持部位間での帯状体の質量であり、所定のスパンLを設定すると、総張力Tは帯状体の質量ρALと固有振動数fとから算出される。
Note that the total tension T of the belt-like body that vibrates between the two support portions is expressed as follows. The density of the belt-like body is ρ, the cross-sectional area of the belt-like body is A, the span between the support portions is L, the primary natural vibration of the belt-like body When the number and f 1, is calculated by the following equation.
T = 4ρAL 2 f 1 2 (1)
Here, ρAL is the mass of the belt-like body between the support portions, and when a predetermined span L is set, the total tension T is calculated from the mass ρAL of the belt-like body and the natural frequency f 1 .

特開平7−128164号公報JP-A-7-128164 特開平7−265930号公報JP-A-7-265930

上田宏樹、坂谷亨、原田宗和、宇津野秀夫著、「振動法による非接触板張力計測技術」、R&D 神戸製鋼技報、Vol.56、No.1(2006年4月)、p.59〜63Hiroki Ueda, Satoshi Sakatani, Munekazu Harada, Hideo Utsuno, “Noncontact Plate Tension Measurement Technology by Vibration Method”, R & D Kobe Steel Engineering Reports, Vol. 56, no. 1 (April 2006), p. 59-63

非特許文献1に記載された非接触式の総張力測定装置は、帯状体に疵を付けることなく、シンプルな構成で帯状体の総張力を測定することができるが、密度の低いアルミニウム等の金属板、樹脂板、紙等の帯状体や、密度が高くても板厚の薄い帯状体の総張力を測定する場合に、振動する帯状体が、これと接する空気等の流体の影響を受けやすくなり、総張力を求める前記(1)式では流体の付加質量を考慮していないことから、総張力を精度よく測定できない問題がある。   The non-contact type total tension measuring device described in Non-Patent Document 1 can measure the total tension of the belt-shaped body with a simple configuration without wrinkling the belt-shaped body. When measuring the total tension of a strip such as a metal plate, resin plate, or paper, or a strip that is dense but thin, the vibrating strip is affected by the fluid such as air that is in contact with it. The above formula (1) for obtaining the total tension does not take into account the additional mass of the fluid, and therefore there is a problem that the total tension cannot be measured accurately.

そこで、本発明の課題は、密度の低い帯状体や板厚の薄い帯状体であっても、シンプルな構成で総張力を精度よく測定できる非接触式の総張力測定装置を提供することである。   Accordingly, an object of the present invention is to provide a non-contact type total tension measuring device that can accurately measure the total tension with a simple configuration even if the band is a low density or a thin band. .

上記の課題を解決するために、本発明は、走行方向に張力を付与された帯状体の総張力を、走行方向の2箇所の部位で支持された支持部位間で測定する帯状体の総張力測定装置において、前記2箇所の支持部位間で前記帯状体の振動変位を非接触で計測する手段を設け、この計測された振動変位から求められる前記帯状体の固有振動数と、前記支持部位間での帯状体の質量と、前記支持部位間で帯状体に接する流体の付加質量とから、前記帯状体の総張力を演算して測定する構成を採用した。   In order to solve the above-mentioned problems, the present invention is to measure the total tension of a belt-like body that is tensioned in the running direction between the support parts supported by two parts in the running direction. In the measuring apparatus, a means for measuring the vibration displacement of the belt-like body between the two support parts in a non-contact manner is provided, and the natural frequency of the belt-like body obtained from the measured vibration displacement is measured between the support parts. A configuration is adopted in which the total tension of the strip is calculated and measured from the mass of the strip and the additional mass of the fluid in contact with the strip between the support portions.

すなわち、2箇所の支持部位間で帯状体の振動変位を非接触で計測する手段を設け、計測された振動変位から求められる帯状体の固有振動数と、支持部位間での帯状体の質量と、支持部位間で帯状体に接する流体の付加質量とから、帯状体の総張力を演算して測定することにより、密度の低い帯状体や板厚の薄い帯状体であっても、その振動に影響する周りの流体の付加質量を考慮に入れて、総張力を精度よく測定できるようにした。また、この帯状体の総張力測定装置は、固有振動数の計測手段を帯状体のラインに配設するのみでシンプルな構成で設置でき、既設ラインに設置された従来の総張力測定装置の精度検証等にも好適に用いることができる。   That is, there is provided a means for measuring the vibration displacement of the belt-like body between the two support parts in a non-contact manner, the natural frequency of the belt-like body obtained from the measured vibration displacement, and the mass of the belt-like body between the support parts. By calculating and measuring the total tension of the strip from the additional mass of the fluid in contact with the strip between the support parts, even if it is a strip with a low density or a thin strip, Taking into account the additional mass of the surrounding fluid that affects it, the total tension can be measured accurately. In addition, this total tension measuring device for strips can be installed with a simple configuration simply by placing the natural frequency measuring means on the strip line, and the accuracy of the conventional total tension measuring device installed on the existing line It can be suitably used for verification and the like.

前記流体の付加質量を、前記支持部位間の帯状体に1箇所で集中して作用する集中質量として、前記帯状体の総張力を演算することにより、帯状体の総張力の演算を簡略化することができる。   The calculation of the total tension of the strip is simplified by calculating the total tension of the strip as a concentrated mass that acts on the strip between the support portions at one location. be able to.

前記帯状体の振動変位を計測する手段を、前記2箇所の支持部位間の中間位置に設けることにより、支持部位間の中間位置で振幅が最大となる帯状体の振動変位を、より精度よく計測することができる。   By providing means for measuring the vibration displacement of the belt-like body at an intermediate position between the two support parts, the vibration displacement of the belt-like body having the maximum amplitude at the intermediate position between the support parts can be measured with higher accuracy. can do.

本発明に係る帯状体の総張力測定装置は、2箇所の支持部位間で帯状体の振動変位を計測する手段を設け、この計測された振動変位から求められる帯状体の固有振動数と、支持部位間での帯状体の質量と、支持部位間で帯状体に接する流体の付加質量とから、帯状体の総張力を演算して測定するようにしたので、密度の低い帯状体や板厚の薄い帯状体であっても、その振動に影響する周りの流体の付加質量を考慮に入れて、総張力を精度よく測定することができる。また、この帯状体の総張力測定装置は、固有振動数の計測手段を帯状体のラインに配設するのみでシンプルな構成で設置でき、既設ラインに設置された従来の総張力測定装置の精度検証等にも好適に用いることができる。   The strip total tension measuring device according to the present invention is provided with means for measuring the vibration displacement of the strip between two support parts, the natural frequency of the strip obtained from the measured vibration displacement, and the support Since the total tension of the strip was calculated from the mass of the strip between the parts and the additional mass of the fluid in contact with the band between the support parts, the density of the strips with low density Even in the case of a thin strip, the total tension can be accurately measured in consideration of the additional mass of the surrounding fluid that affects the vibration. In addition, this total tension measuring device for strips can be installed with a simple configuration simply by placing the natural frequency measuring means on the strip line, and the accuracy of the conventional total tension measuring device installed on the existing line It can be suitably used for verification and the like.

帯状体の総張力測定装置の実施形態を示す構成図The block diagram which shows embodiment of the total tension measuring apparatus of a strip | belt-shaped body 図1の総張力測定装置で総張力を測定する手順を示すフローチャートThe flowchart which shows the procedure which measures total tension with the total tension measuring device of FIG. 実施例1で用いた簡易計算式による付加質量の計算モデルの概念図Conceptual diagram of an additional mass calculation model using a simple calculation formula used in Example 1 (a)、(b)は、実施例1での総張力測定結果を、それぞれFEM解析結果および実験結果と対比して示すグラフ(A), (b) is the graph which shows the total tension measurement result in Example 1 in contrast with a FEM analysis result and an experimental result, respectively. 実施例2で用いた距離・流体力曲線法による付加質量の計算モデルの概念図Conceptual diagram of calculation model of added mass by distance / fluid force curve method used in Example 2 図5の計算モデルで付加質量を計算する方法を説明する説明図Explanatory drawing explaining the method of calculating additional mass with the calculation model of FIG. 図5の計算モデルを用いた付加質量分布の計算例Example of calculation of additional mass distribution using the calculation model of FIG.

以下、図面に基づき、本発明の実施形態を説明する。この帯状体の総張力測定装置は、図1に示すように、走行方向に張力を付与された帯状体1の総張力を、走行方向の2箇所の部位で支持ロール2a、2bによって支持された支持部位間で測定するものであり、支持部位間の中間位置で帯状体1の振動変位を非接触で計測する変位計3と、変位計3の出力に基づいて、帯状体1の総張力Tを演算する演算装置4とからなる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the total tension measuring device for the belt-like body is supported by the support rolls 2a and 2b at the two locations in the running direction for the total tension of the belt-like body 1 given tension in the running direction. The measurement is performed between the support parts. The displacement meter 3 that measures the vibration displacement of the strip 1 in a non-contact manner at an intermediate position between the support parts, and the total tension T of the strip 1 based on the output of the displacement gauge 3. And an arithmetic unit 4 that calculates

変位計3は、光反射式のレーザ変位計とされているが、非接触式のものであればよい。帯状体1が導電性を有するものである場合は、帯状体1に生じさせた渦電流の大きさを検出する渦電流式変位計や、帯状体1とセンサヘッド間の静電容量を検出する静電容量式変位計等とすることもできる。   The displacement meter 3 is a light reflection type laser displacement meter, but may be a non-contact type. When the strip 1 is conductive, an eddy current displacement meter that detects the magnitude of the eddy current generated in the strip 1 or the capacitance between the strip 1 and the sensor head is detected. A capacitance displacement meter or the like can also be used.

前記演算装置4は、支持部位間で帯状体1に接する流体としての空気の付加質量Maddをモデル化する付加質量モデル化部4aと、モデル化された付加質量Maddを算出する付加質量算出部4bと、変位計3の出力から帯状体1の一次の固有振動数をfを算出する振動特性算出部4cと、算出された固有振動数をfおよび付加質量Maddと、予め設定された支持部位間のスパンL、およびスパンLによって決まる支持部位間での帯状体の質量Mとから、次式で総張力Tを算出する張力算出部4dとで構成されている。
T=4L(M+Madd)f (2)
(2)式は、空気の付加質量Maddを、支持部位間の帯状体に1箇所で集中して作用する集中質量としたときの総張力Tと固有振動数fとの関係を表す式である。質量Mは、帯状体の密度をρ、断面積をAとすると、次式で表される。
M=ρAL (3)
なお、付加質量モデル化部4aと付加質量算出部4bの詳細については、後述する。
The arithmetic device 4 includes an additional mass modeling unit 4a that models an additional mass M add of air as a fluid that is in contact with the strip 1 between support portions, and an additional mass calculation that calculates the modeled additional mass M add. Unit 4b, a vibration characteristic calculation unit 4c for calculating the primary natural frequency f 1 of the strip 1 from the output of the displacement meter 3, and the calculated natural frequency f 1 and additional mass M add The tension calculating unit 4d calculates the total tension T by the following equation from the span L between the supporting portions and the mass M of the belt-like member between the supporting portions determined by the span L.
T = 4L (M + M add ) f 1 2 (2)
The expression (2) is an expression representing the relationship between the total tension T and the natural frequency f 1 when the additional mass M add of air is a concentrated mass that acts in a concentrated manner on the belt-like body between the support parts. It is. The mass M is represented by the following equation, where ρ is the density of the strip and A is the cross-sectional area.
M = ρAL (3)
Details of the additional mass modeling unit 4a and the additional mass calculating unit 4b will be described later.

図2は、上述した総張力測定装置を用いて総張力Tを測定する手順を示す。まず、付加質量モデル化部4aで空気の付加質量Maddをモデル化して(ステップ1)、モデル化した付加質量Maddを付加質量算出部4bで算出する(ステップ2)。こののち、帯状体1の走行に伴って、変位計3によって帯状体1の振動変位を計測し(ステップ3)、計測された振動変位から、振動特性算出部4cで帯状体1の固有振動数fを算出し(ステップ4)、さらに張力算出部4dで、(2)式を用いて総張力Tを算出して(ステップ5)、1回の張力測定を行う。こののち、必要に応じて、ステップ3からステップ5までの手順を繰り返して複数回の張力測定を連続して行い、所望回数の張力測定を行ったのち、測定を終了する。 FIG. 2 shows a procedure for measuring the total tension T using the total tension measuring apparatus described above. First, the additional mass modeling unit 4a models the additional mass M add of air (step 1), and the modeled additional mass M add is calculated by the additional mass calculating unit 4b (step 2). After that, along with the travel of the strip 1, the displacement displacement of the strip 1 is measured by the displacement meter 3 (step 3), and the natural frequency of the strip 1 is measured by the vibration characteristic calculator 4 c from the measured vibration displacement. calculates f 1 (step 4), further tension calculating unit 4d, and calculates the total tension T (step 5), once the tension measurement carried out by using the expression (2). After that, if necessary, the procedure from step 3 to step 5 is repeated, and a plurality of tension measurements are continuously performed. After a desired number of tension measurements, the measurement is terminated.

上述した実施形態では、帯状体1の走行に伴って自然に発生する自由振動の振動変位を変位計3で計測するようにしたが、帯状体1を強制振動させる振動付与手段を設けて、強制振動の振動変位を計測するようにしてもよい。この場合は、帯状体1の走行を停止した状態でも振動変位を計測することができる。   In the embodiment described above, the vibration displacement of the free vibration that naturally occurs as the belt 1 travels is measured by the displacement meter 3, but vibration applying means for forcibly vibrating the belt 1 is provided to You may make it measure the vibration displacement of a vibration. In this case, the vibration displacement can be measured even in a state where the travel of the belt 1 is stopped.

実施例1では、前記付加質量モデル化部4aに、簡易計算式による付加質量の計算モデルを用いて、帯状体1の総張力Tを測定した。図3は、簡易計算式による付加質量の計算モデルを示す。この計算モデルは、支持部位間で帯状体1に接する空気の付加質量Maddを、直径が帯状体1の板幅Wと等しく、長さが支持部位間のスパンLと等しい円柱部5の質量とするものであり、付加質量算出部4bで算出される付加質量Maddは、次式で表される。
add=ρairL(W/2)π (4)
ここに、ρairは空気の密度であり、空気の温度Tair(℃)を用いて次式で表される。
ρair=1.293×273.2/(273.2+Tair) (5)
空気の温度Tairがあまり変化せず、例えば、0℃に近い場合は、ρair=1.293としてもよい。
In Example 1, the total tension T of the strip 1 was measured in the additional mass modeling unit 4a using an additional mass calculation model based on a simple calculation formula. FIG. 3 shows a calculation model of the additional mass by a simple calculation formula. In this calculation model, an additional mass M add of air in contact with the strip 1 between the support portions is equal to the plate width W of the strip 1 and the length of the cylindrical portion 5 is equal to the span L between the support portions. The additional mass M add calculated by the additional mass calculator 4b is expressed by the following equation.
M add = ρ air L (W / 2) 2 π (4)
Here, ρ air is the density of air and is expressed by the following equation using the air temperature T air (° C.).
ρ air = 1.293 × 273.2 / (273.2 + T air ) (5)
If the air temperature T air does not change so much, for example, it is close to 0 ° C., ρ air = 1.293 may be set.

図4(a)、(b)のグラフは、上述した簡易計算式による付加質量の計算モデルを用いて総張力Tを測定した実施例の測定結果を、それぞれ空気の付加質量を考慮したFEM解析で総張力Tを求めた解析結果、および帯状体1にひずみゲージを添付して総張力Tを測定した実験結果と対比して示す。各グラフには、空気の付加質量Maddを考慮しない(1)式を用いて総張力Tを測定した比較例の測定結果も併せて示す。 The graphs of FIGS. 4A and 4B show the measurement results of the example in which the total tension T was measured using the additional mass calculation model based on the above-described simple calculation formula, and the FEM analysis in consideration of the additional mass of air, respectively. The results are shown in comparison with the analysis results obtained for the total tension T and the experimental results obtained by measuring the total tension T with a strain gauge attached to the strip 1. Each graph also shows a measurement result of a comparative example in which the total tension T is measured using the equation (1) that does not consider the additional mass M add of air.

解析条件および実験条件は、いずれも帯状体1を板幅Wが1m、板厚が0.5mm(断面積A=5×10−4)のアルミニウム板(ρ=2699kg/m)とし、支持部位間のスパンLを2m、空気の温度Tairを20℃(ρair=1.205)とした。実施例および比較例のいずれについても、図4(a)に示した解析結果との対比の場合は、固有値解析によって得られた固有振動数を入力し、図4(b)に示した実験結果との対比の場合は、実際に変位計3で計測された固有振動数を入力した。 The analysis conditions and the experimental conditions were that the strip 1 was an aluminum plate (ρ = 2699 kg / m 3 ) having a plate width W of 1 m and a plate thickness of 0.5 mm (cross-sectional area A = 5 × 10 −4 m 2 ). The span L between the support parts was 2 m, and the air temperature T air was 20 ° C. (ρ air = 1.205). For both the example and the comparative example, in the case of comparison with the analysis result shown in FIG. 4 (a), the natural frequency obtained by the eigenvalue analysis is input, and the experimental result shown in FIG. 4 (b). In contrast, the natural frequency actually measured by the displacement meter 3 was input.

これらの解析結果および実験結果との対比から分かるように、付加質量Maddを考慮しない比較例の測定結果が、解析結果および実験結果とかなりずれているのに対して、実施例の測定結果は、実験結果との対比では実験のばらつき等によって若干のずれが認められるものの、解析結果および実験結果とよく一致している。これらの測定結果より、アルミニウム板のように密度の低い帯状体の総張力測定では、本願発明のように、空気の付加質量Maddを考慮することにより、測定精度を大幅に向上できることが確認された。 As can be seen from the comparison with these analysis results and experimental results, the measurement results of the comparative example that does not consider the additional mass M add are considerably different from the analysis results and experimental results, whereas the measurement results of the example are In contrast to the experimental results, although there are some deviations due to variations in the experiments, etc., the results agree well with the analytical results and the experimental results. From these measurement results, it was confirmed that in the total tension measurement of a belt-like body having a low density such as an aluminum plate, the measurement accuracy can be greatly improved by considering the additional mass M add of air as in the present invention. It was.

実施例2では、前記付加質量モデル化部4aに、距離・流体力曲線法による付加質量の計算モデルを用いて総張力Tを測定した。図5は、距離・流体力曲線法による付加質量の計算モデルを示す。この計算モデルは、支持部位間の帯状体1の表面を微小面積の要素6に区分し、以下に説明するように、振動変位によって各要素6に作用する音圧から空気の付加質量Maddを計算するものである。なお、要素6の区分は、帯状体1の表面積に比較して各要素6の面積が十分に小さければよく、例えば、縦横10×10程度の区分でよい。 In Example 2, the total tension T was measured in the additional mass modeling unit 4a by using an additional mass calculation model by the distance / fluid force curve method. FIG. 5 shows a calculation model of the added mass by the distance / fluid force curve method. In this calculation model, the surface of the band 1 between the support parts is divided into elements 6 having a small area, and as described below, the additional mass M add of air is calculated from the sound pressure acting on each element 6 by vibration displacement. It is to calculate. The element 6 may be divided as long as the area of each element 6 is sufficiently small compared to the surface area of the strip 1, and may be, for example, a vertical and horizontal 10 × 10 section.

図6に示すように、半無限大平面を想定して、振動する要素をs、音圧が作用する要素をi、要素sと要素i間の距離をrisとし、各要素i、sの面積をAi、As、要素sの速度をvs、加速度をαs、要素iに作用する音圧をpiとすると、帯状体1の振動による音響放射で要素iに作用する音圧による力Piは次式で表される。
i≠sの場合は、
i=sの場合は、
ここに、ρairは空気の密度、ωは振動の角周波数、cは空気中の音速、kは波長常数(=ω/c)であり、ρairは、実施例1と同様に、(5)式から算出するか、または定数とすることができる。
As shown in FIG. 6, assuming a semi-infinite plane, s is an oscillating element, i is an element on which sound pressure acts, and ris is a distance between the element s and the element i. If the area is A i , A s , the velocity of the element s is v s , the acceleration is α s , and the sound pressure acting on the element i is p i , the sound pressure acting on the element i by acoustic radiation due to the vibration of the band 1 The force P i is expressed by the following equation.
If i ≠ s,
If i = s,
Here, ρ air is the density of air, ω is the angular frequency of vibration, c is the speed of sound in the air, k is the wavelength constant (= ω / c), and ρ air is (5 ) Or can be a constant.

一方、要素sの振動に伴う音圧の発生で要素iに作用する力Piは複素数のベクトルとなり、実部を振動速度vsの係数cairで、虚部を振動速度と90°位相がずれた加速度αsの係数mairで、次式のように表すことができる。
i=cairs+mairαs (8)
ここに、実部は付加減衰項、虚部は付加質量項となり、虚部の係数mairを空気の付加質量とみなすことができる。したがって、(6)、(7)式と(8)式から求められるmairを、要素数nの全ての要素sの振動に対して積算し、帯状体1の表裏両面分として2倍することにより、要素iの付加質量maddを、次式で計算することができる。
図7は、(9)式で計算した付加質量maddの分布の計算例を示す。
On the other hand, the force P i acting on element i in generation of the sound pressure caused by the vibration of the element s becomes a complex vector, the real part by a factor c air vibration velocity v s, the vibration velocity and the 90 ° phase the imaginary part The coefficient m air of the shifted acceleration α s can be expressed as the following equation.
P i = c air v s + m air α s (8)
Here, the real part is an additional attenuation term, the imaginary part is an additional mass term, and the coefficient m air of the imaginary part can be regarded as the additional mass of air. Accordingly, m air obtained from the equations (6), (7) and (8) is integrated with respect to the vibrations of all elements s having the number n of elements, and doubled as the front and back surfaces of the band 1. Thus, the additional mass m add of the element i can be calculated by the following equation.
FIG. 7 shows a calculation example of the distribution of the additional mass m add calculated by the equation (9).

(9)式で計算した各要素iの空気の付加質量maddを全ての要素について積分することにより、集中質量としての付加質量Maddを次式で求めることができる。
したがって、(10)式で求めた付加質量Maddを(2)式に代入することにより、帯状体1の総張力Tを測定することができる。図示は省略するが、実施例2で測定した総張力Tの測定結果も、図4(a)、(b)に示した実施例1のものと同様に、解析結果および実験結果とよく一致することが確認された。
By integrating the air additional mass m add of each element i calculated by the equation (9) for all the elements, the additional mass M add as the concentrated mass can be obtained by the following equation.
Therefore, the total tension T of the strip 1 can be measured by substituting the additional mass M add obtained by the equation (10) into the equation (2). Although illustration is omitted, the measurement result of the total tension T measured in Example 2 also agrees well with the analysis result and the experimental result, as in Example 1 shown in FIGS. 4 (a) and 4 (b). It was confirmed.

上述した各実施例では、付加質量の計算モデルに簡易計算式と距離・流体力曲線法を採用したが、これらの替りに境界要素法を採用することもできる。   In each of the above-described embodiments, the simple calculation formula and the distance / fluid force curve method are employed as the additional mass calculation model, but the boundary element method may be employed instead.

また、上述した各実施例では、測定対象の帯状体をアルミニウム板としたが、本発明に係る帯状体の総張力測定装置は、他の密度の低い金属板、樹脂板、紙等の帯状体や、板厚の非常に薄い金属箔、樹脂フィルム等の帯状体の総張力測定にも好適である。   Further, in each of the above-described embodiments, the strip-shaped body to be measured is an aluminum plate, but the strip-like total tension measuring device according to the present invention is another strip-shaped body such as a metal plate, a resin plate, or paper having a low density. It is also suitable for measuring the total tension of strips such as metal foils and resin films with very thin plate thickness.

1 帯状体
2a、2b 支持ロール
3 変位計
4 演算装置
4a 付加質量モデル化部
4b 付加質量算出部
4c 振動特性算出部
4d 張力算出部
5 円柱部
6 要素
DESCRIPTION OF SYMBOLS 1 Band 2a, 2b Support roll 3 Displacement meter 4 Arithmetic device 4a Additional mass modeling part 4b Additional mass calculation part 4c Vibration characteristic calculation part 4d Tension calculation part 5 Cylindrical part 6 Element

Claims (3)

走行方向に張力を付与された帯状体の総張力を、走行方向の2箇所の部位で支持された支持部位間で測定する帯状体の総張力測定装置において、前記2箇所の支持部位間で前記帯状体の振動変位を非接触で計測する手段を設け、この計測された振動変位から求められる前記帯状体の固有振動数と、前記支持部位間での帯状体の質量と、前記支持部位間で帯状体に接する流体の付加質量とから、前記帯状体の総張力を演算して測定するようにしたことを特徴とする帯状体の総張力測定装置。   In the total tension measuring device for a belt-like body that measures the total tension of the belt-like body given tension in the running direction between the support parts supported at two parts in the running direction, A means for measuring the vibration displacement of the belt-like body in a non-contact manner is provided, and the natural frequency of the belt-like body obtained from the measured vibration displacement, the mass of the belt-like body between the support parts, and between the support parts An apparatus for measuring the total tension of a band-shaped body, wherein the total tension of the band-shaped body is calculated and measured from an additional mass of a fluid in contact with the band-shaped body. 前記流体の付加質量を、前記支持部位間の帯状体に1箇所で集中して作用する集中質量として、前記帯状体の総張力を演算するようにした請求項1に記載の帯状体の総張力測定装置。   The total tension of the belt-like body according to claim 1, wherein the total mass of the belt-like body is calculated by using the additional mass of the fluid as a concentrated mass that acts on the belt-like body between the support portions at one location. measuring device. 前記帯状体の振動変位を計測する手段を、前記2箇所の支持部位間の中間位置に設けた請求項1または2に記載の帯状体の総張力測定装置。   The total tension measuring device for a band according to claim 1 or 2, wherein means for measuring the vibration displacement of the band is provided at an intermediate position between the two support parts.
JP2011147286A 2011-07-01 2011-07-01 Total tension measuring device for strips Active JP5566961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147286A JP5566961B2 (en) 2011-07-01 2011-07-01 Total tension measuring device for strips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147286A JP5566961B2 (en) 2011-07-01 2011-07-01 Total tension measuring device for strips

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014109955A Division JP5756211B2 (en) 2014-05-28 2014-05-28 Total tension measuring device for strips

Publications (2)

Publication Number Publication Date
JP2013015366A true JP2013015366A (en) 2013-01-24
JP5566961B2 JP5566961B2 (en) 2014-08-06

Family

ID=47688180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147286A Active JP5566961B2 (en) 2011-07-01 2011-07-01 Total tension measuring device for strips

Country Status (1)

Country Link
JP (1) JP5566961B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212737A (en) * 1985-03-18 1986-09-20 Yokogawa Electric Corp Power detector
JPS63191036A (en) * 1987-02-03 1988-08-08 Teijin Ltd Tension measurement for running filament body
JPH06249725A (en) * 1993-02-25 1994-09-09 Nippon Steel Corp Tension distribution measuring method
JPH09504867A (en) * 1993-11-05 1997-05-13 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド Force compensator of inertial mass measuring instrument
JP2010091370A (en) * 2008-10-07 2010-04-22 Kobe Steel Ltd Noncontact vibration applying apparatus of band, tension measurement apparatus using same, and tension measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212737A (en) * 1985-03-18 1986-09-20 Yokogawa Electric Corp Power detector
JPS63191036A (en) * 1987-02-03 1988-08-08 Teijin Ltd Tension measurement for running filament body
JPH06249725A (en) * 1993-02-25 1994-09-09 Nippon Steel Corp Tension distribution measuring method
JPH09504867A (en) * 1993-11-05 1997-05-13 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド Force compensator of inertial mass measuring instrument
JP2010091370A (en) * 2008-10-07 2010-04-22 Kobe Steel Ltd Noncontact vibration applying apparatus of band, tension measurement apparatus using same, and tension measurement method

Also Published As

Publication number Publication date
JP5566961B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
CN101920267B (en) Variable wrap angle plate shape control parameter processing method for cold rolling mill
Varney et al. Rough surface contact of curved conformal surfaces: an application to rotor–stator rub
Ngo et al. The BFGS method for estimating the interface temperature and convection coefficient in ultrasonic welding
JP2016144292A (en) Servo controller for measuring lubrication characteristic of machine by using experiment mode analysis
Li et al. Stress wave analysis and optical force measurement of servo-hydraulic machine for high strain rate testing
Yan et al. Experimental determination of aerodynamic admittance functions of a bridge deck considering oscillation effect
US20240027290A1 (en) Systems and methods for measuring tension distribution in webs of roll-to-roll processes
JP5756211B2 (en) Total tension measuring device for strips
Nagai et al. Experiments and analysis on chaotic vibrations of a shallow cylindrical shell-panel
JP5792705B2 (en) Strain distribution measuring apparatus, strain distribution measuring method, and strain distribution measuring program
JP2009281932A (en) Concentration measuring instrument and solution concentration measuring method
JP5566961B2 (en) Total tension measuring device for strips
El-Kafrawy Crack detection by modal analysis in 3D beams based on FEM
Ma et al. Simultaneous determination of position and mass of a particle by the vibration of a diaphragm-based nanomechanical resonator
Vedrines et al. Moving web-tension determination by out-of-plane vibration measurements using a laser
Rucki et al. Dynamic properties of small chamber air gages
Chesne et al. Identification of plate boundary forces from measured displacements
JP2009068914A (en) Inner state measuring instrument, inner state measuring method, program and computer readable storage medium
JP5566964B2 (en) Device for measuring the tension distribution of strips
JP5664577B2 (en) Measuring device, measuring method, program, and storage medium
JP2015175628A (en) Stress distribution measurement instrument, strain distribution measurement instrument, and stress distribution measurement program
Liem et al. Improving model parameters in vibrating systems using Neumann series
Kagotani et al. Transmission error due to resonance in synchronous belt drive with eccentric pulley
Pfister et al. Novel Dynamic Rotor and Blade Deformation and Vibration Monitoring Technique
JP6079652B2 (en) Ultrasonic fatigue testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150