JP2013013883A - Water purification plant soil-based adsorbing material for environmental preservation, production method thereof and use thereof - Google Patents

Water purification plant soil-based adsorbing material for environmental preservation, production method thereof and use thereof Download PDF

Info

Publication number
JP2013013883A
JP2013013883A JP2011162555A JP2011162555A JP2013013883A JP 2013013883 A JP2013013883 A JP 2013013883A JP 2011162555 A JP2011162555 A JP 2011162555A JP 2011162555 A JP2011162555 A JP 2011162555A JP 2013013883 A JP2013013883 A JP 2013013883A
Authority
JP
Japan
Prior art keywords
soil
water
mass
water purification
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011162555A
Other languages
Japanese (ja)
Inventor
Seiji Okabayashi
誠治 岡林
Masao Takahashi
正男 高橋
Takashi Tokita
孝至 時田
Ei Tada
瑛 多田
Tomohiro Takahashi
朋弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO PROJECT KK
Original Assignee
ECO PROJECT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO PROJECT KK filed Critical ECO PROJECT KK
Priority to JP2011162555A priority Critical patent/JP2013013883A/en
Publication of JP2013013883A publication Critical patent/JP2013013883A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive water purification plant soil-based adsorbing material for environmental preservation, in which material is obtained by using the water purification plant soil as a supporting base material and used for fixing contaminative ionic species, which are dissolved in soil materials such as various kinds of sludge and natural soil, as insoluble matter and to provide a recycling waste processing method for insolubilizing/fixing contaminating ionic species in various contaminated soil materials by using the obtained adsorbing material to obtain useful soil materials as reclaimed products.SOLUTION: The water purification plant soil-based adsorbing material for environmental preservation to adsorb and insolubilize contaminating ionic species is obtained by impregnating the water purification plant soil as the supporting base material with a metal sulfate salt of aluminum sulfate of 0.1-2.5 parts mass in terms of anhydride thereof on the basis of 100 parts mass of the water purification plant soil in terms of the dried one obtained by heating the water purification plant soil at 110°C for 24 hours.

Description

本発明は、環境保全用の浄水発生土系吸着材に関し、より詳細には、浄水場で多量に発生する浄水発生土を有効利用するため、それを担持基材に用いて、各種の汚泥や天然の土壌等の土材中に溶存する汚染イオン種を吸着・固定化させる環境保全用の安価な浄水発生土系吸着材及びその低廉な製造方法に関する。  The present invention relates to a water purification soil-based adsorbent for environmental conservation, and more specifically, in order to effectively use the water generation soil generated in a large amount at a water purification plant, using it as a supporting substrate, various sludges and The present invention relates to an inexpensive water-purifying soil-based adsorbent for environmental preservation that adsorbs and immobilizes contaminating ion species dissolved in a soil material such as natural soil and a low-cost manufacturing method thereof.

また、本発明は、各種の浚渫汚泥、産業汚泥及び天然土壌等の汚染土材の再資源化方法にも関し、より詳細には、各種の溶存イオン種で汚染されている汚染土材に、浄水発生土系吸着材を添加させ、これらの汚染イオン種を土材中に吸着・固定化させて有用土材に再生する再資源化方法にも関する。  The present invention also relates to a method for recycling contaminated soil materials such as various sludges, industrial sludges and natural soils, and more specifically, to contaminated soil materials contaminated with various dissolved ion species, The present invention also relates to a recycling method in which purified water-generated soil-based adsorbents are added and these polluted ion species are adsorbed and fixed in the soil materials to regenerate them into useful soil materials.

従来から地盤改良工事、河川工事、トンネル工事、ダム工事、ビル建設の現場などから発生する工事・建設汚泥や、河川、港湾等の工事で発生する浚渫泥奨や、各種の産業排出物として工場廃水浄化施設から発生する産業汚泥や、下水処理場で発生する下水処理汚泥や、更には天然土壌等の土材中には、通常、一般的に、例えば、可溶性フッ素イオン、リン酸イオン、鉛イオン、その他の規制で対象となるイオン種が溶存している。従って、これらの土材は、各種のイオン種が溶存する所謂汚染土材とも言える。  Conventionally, ground improvement works, river construction, tunnel construction, dam construction, construction / sludge generated from construction sites, dredging mud from construction of rivers, ports, etc., and various industrial waste In general, for example, soluble fluorine ions, phosphate ions, lead in industrial sludge generated from wastewater purification facilities, sewage treatment sludge generated in sewage treatment plants, and even soil materials such as natural soil. Ion and other ionic species subject to other regulations are dissolved. Therefore, it can be said that these soil materials are so-called contaminated soil materials in which various ionic species are dissolved.

しかも、これらの土材は通常軟弱な土材で、また、その大部分の汚染土材は発生現場や発生施設から産業廃棄物として搬出・廃棄されているのが現状である。そこで、これらの土材を有用土材として再資源化利用するためには、このような溶存汚染イオン種、例えば、フッ素イオン種であれば、国が規定する土壌汚染対策法に係わる特定有害物質の土壌溶出基準である0.8mg/L以下に低減させなければならない。  In addition, these soil materials are usually soft soil materials, and most of the contaminated soil materials are currently carried out and discarded as industrial waste from the generation site or facility. Therefore, in order to recycle these soil materials as useful soil materials, specific harmful substances related to the Soil Contamination Countermeasures Law stipulated by the government are required for such dissolved pollutant ion species, for example, fluorine ion species. Must be reduced to 0.8 mg / L or less which is the soil elution standard.

そこで、従来からフッ素イオン等で汚染された土壌の処理方法として[特許文献1]には、フッ素含有土壌中に、カルシウム成分(水酸化カルシウム、炭酸カルシウム、塩化カルシウム、〜)およびリン酸成分(リン酸、リン酸ナトリウム、リン酸水素ナトリウム)を互いに解離した状態で存在させた後、両成分を化学的に結合させてカルシウムフルオロアパタイトを形成させるフッ素汚染土壌の処理方法が提案されている。  Thus, as a method for treating soil contaminated with fluorine ions or the like, [Patent Document 1] includes calcium components (calcium hydroxide, calcium carbonate, calcium chloride,...) And phosphate components ( A treatment method for fluorine-contaminated soil is proposed in which phosphoric acid, sodium phosphate, and sodium hydrogen phosphate are present in a dissociated state, and then both components are chemically bonded to form calcium fluoroapatite.

また、[特許文献2]には、弗素で汚染された土壌または土壌スラリーにアルミニウム塩(硫酸アルミニウムまたはポリ塩化アルミニウム)または鉄塩(硫酸第一鉄、塩化第二鉄、〜)のうちの少なくとも1種を添加し、次いで弱酸性域ないしアルカリ性域に調節してアルミニウムまたは鉄の水酸化物のうちの少なくとも1種の水酸化物を生成させることにより弗素を不溶化させる汚染土壌の無害化処理方法が提案されている。  [Patent Document 2] describes at least one of an aluminum salt (aluminum sulfate or polyaluminum chloride) or an iron salt (ferrous sulfate, ferric chloride, ˜) on fluorine-contaminated soil or soil slurry. A method for detoxifying contaminated soil in which fluorine is insolubilized by adding at least one kind and then adjusting to a weakly acidic or alkaline range to produce at least one hydroxide of aluminum or iron hydroxide Has been proposed.

また、[特許文献3]には、被処理水中のリン酸、砒素、フッ素イオンを吸着固定させ、その濃度を低減させ、河川や湖沼などの水質浄化材として、浄水発生土に硫酸アルミ塩を添加・混合させた後、成形・焼成させてなるリン酸、砒素、フッ素イオンの吸着材が記載されている。また、その実施例には、乾燥物換算100gの浄水発生土に、硫酸アルミ3gを添着させ、600℃×20分焼成させてなる浄水発生土系の吸着材が提案されている。  In [Patent Document 3], phosphoric acid, arsenic, and fluorine ions in the water to be treated are adsorbed and fixed, and the concentration thereof is reduced, and aluminum sulfate is used as the water purification material for rivers and lakes, etc. It describes an adsorbent for phosphoric acid, arsenic, and fluorine ions, which is added and mixed and then molded and fired. Moreover, the Example has proposed the adsorbent of the purified water generation | occurrence | production soil type | system | group which attaches 3g of aluminum sulfate to the purified water generation | occurrence | production soil of 100g of dry matter, and baked at 600 degreeC * 20 minutes.

また、[特許文献4]には、フッ素汚染土壌を、リン酸水素カルシウム二水和物(CaHPO・2HO)物水性スラリー中に懸濁処理した後、所要期間養生させてフッ素汚染土壌中のフッ素をフッ素アパタイトとして不溶化させる。また、フッ素アパタイトそれ自体は周知の通り天然のリン鉱石の主成分であり、他に有機物質や重金属類等を使用しないことから、この処理方法によれば、二次的な環境汚染を引き起こすことなく、簡単な作業で経済的に且つ確実にフッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができる。[Patent Document 4] discloses that fluorine-contaminated soil is suspended in a calcium hydrogen phosphate dihydrate (CaHPO 4 .2H 2 O) aqueous slurry and then cured for a required period of time to be fluorine-contaminated soil. The fluorine inside is insolubilized as fluorapatite. Also, as is well known, fluorapatite itself is the main component of natural phosphate ore, and no other organic substances or heavy metals are used. This treatment method causes secondary environmental pollution. In addition, the amount of fluorine eluted from the fluorine-contaminated soil can be reduced to 0.8 mg / L or less of the soil environment standard with a simple operation economically and reliably.

また[特許文献5]には、可溶性フッ素に汚染された土壌にリン酸およびセメント系固化材または石灰系固化材と接触処理させてリン酸とカルシウムおよび土壌中の可溶性フッ素イオンとを反応させてフッ素リン灰石の結晶構造中にフッ素イオンを取り込み可溶性フッ素に汚染された土壌中のフッ素イオンを固定化させる土壌の固化方法が提案されている。  In [Patent Document 5], soil contaminated with soluble fluorine is contacted with phosphoric acid and cement-based solidified material or lime-based solidified material to react phosphoric acid with calcium and soluble fluorine ions in the soil. A soil solidification method has been proposed in which fluorine ions are incorporated into the crystal structure of fluorapatite to immobilize fluorine ions in soil contaminated with soluble fluorine.

また[技術文献1]には、三重県内の7ヶ所の浄水場で発生する浄水発生土の焼成品(300℃〜500℃)及びその105℃乾燥品を用いて、リン酸イオン及びセレンイオンを吸着除去させる技術が報告されている。  In [Technical Document 1], phosphoric acid ions and selenium ions are obtained using the baked products (300 ° C to 500 ° C) of the purified water generated at seven water treatment plants in Mie Prefecture and the 105 ° C dried products. Techniques for adsorption removal have been reported.

特開2005−305387号公報  JP 2005-305387 A 特開2002−326081号公報  JP 2002-326081 A 特開平10−57804号公報  JP-A-10-57804 特開2007−216156号公報  JP 2007-216156 A 特開2009−2622035号公報  JP 2009-26222035 A

技術文献1Technical Literature 1

三重保環年報第11号(通巻第54号),67−73頁(2009)  Mie Hokan Annual Report No. 11 (Vol. 54), 67-73 (2009)

以上のような状況下に、このような溶存イオン種で汚染されている自然土壌を含む各種の汚泥等の汚染土材を、各種の盛土、土地造成(宅地、公園・緑地)の地盤改良、スポーツグランド用土材、園芸用植生培土等にリサイクル・リユースさせるに際しては、周辺の土壌、生物及び自然・社会環境を保全させる土材でなければならない。そのためにこれらの土材中に溶存する汚染イオン種を、(1)安価な処理材で且つ(2)低廉な処理法で、(3)処理土材中に吸着・固定化させ、(4)安価な再資源化土材として有用させることが重要課題且つ切望されている。  Under such circumstances, various soil materials such as sludge including natural soil contaminated with such dissolved ionic species can be used to improve the ground for various embankments and land preparation (residential land, parks and green spaces) When recycling and reusing materials for sports ground, vegetation for horticulture, etc., it must be a soil that preserves the surrounding soil, organisms, and the natural and social environment. For this purpose, the contaminating ion species dissolved in these soil materials are adsorbed and fixed in the treated soil materials by (1) an inexpensive treatment material and (2) an inexpensive treatment method, and (4) It is an important subject and eagerly desired to make it useful as an inexpensive recycled material.

また、このような実態から現状では、多量かつ広域的に散在して発生・廃棄され、しかも、再資源化の可能性を占めている上記する汚染土材を有効利用させる等の取組みは、必ずしも積極的に展開されているとは言えない。  In addition, due to such actual conditions, efforts such as the effective use of the above contaminated soil materials that are generated and discarded in large quantities and widely distributed and that occupy the possibility of recycling are not necessarily required. It cannot be said that it is actively deployed.

以上のような状況から、本発明の目的は、天然土壌を含む各種の汚泥等の土材中に潜在的に溶存する汚染イオン種、例えば、その代表的なフッ素イオンを不溶化させて、その土材中に固定化させる安価な環境保全用吸着材及びその低廉な製造方法を提供することである。  In view of the above situation, the object of the present invention is to insolubilize contaminating ionic species that are potentially dissolved in soil materials such as various sludges including natural soil, such as typical fluorine ions, It is an object of the present invention to provide an inexpensive adsorbent for environmental conservation that is fixed in a material and a low-cost manufacturing method thereof.

また、本発明の更なる目的は、このような安価な吸着材を用いて、これらの汚染土材中に溶存する汚染イオン種を吸着・固定化(又は不溶化)させ、しかも、環境を保全させるために二次的な環境汚染を引き起こさない有用土材に再生させる再資源化方法を提供することである。  A further object of the present invention is to use such an inexpensive adsorbent to adsorb and immobilize (or insolubilize) contaminating ion species dissolved in these contaminated soil materials, and to preserve the environment. Therefore, it is to provide a recycling method that recycles useful soil materials that do not cause secondary environmental pollution.

そこで、上記課題を解決すべく鋭意努力した結果、本発明者らは、浄水場で多量に発生し且つ安価に入手でき、また、必ずしも有効利用されていない浄水発生土に着目し、この発生土に硫酸バンドを添着させた風乾物が、溶存性フッ素イオンを効果的に吸着・固定させることを見出して、本発明を完成させるに至った。  Therefore, as a result of diligent efforts to solve the above-mentioned problems, the present inventors have paid attention to the generated water that is generated in a large amount at a water purification plant and can be obtained at low cost, and is not necessarily effectively used. It was found that an air-dried product with a sulfate band attached thereto effectively adsorbs and fixes dissolved fluorine ions, and the present invention was completed.

すなわち、本発明によれば、シリカ、アルミナを主成分に、酸化鉄成分などを含有する浄水発生土を担持基材とする吸着材が、各種の浚渫汚泥、産業汚泥及び天然土壌等の土材中に溶存する各種の汚染イオン種を吸着・固定化させる環境保全用の浄水発生土系吸着材を提供したのである。
より詳細には、
(1)本発明による浄水発生土系吸着材は、前記担持基材の110℃×24時間乾燥物換算の100質量部数当たり、硫酸バンドを無水物換算で0.1〜2.5質量部数範囲で添着させていることを特徴とする。
(2)この浄水発生土なる担持基材の110℃×24時間の乾燥物換算で表す成分が、
SiO ; 30〜50 質量%
A1; 15〜50 質量%
Fe; 5〜15 質量%
その他 ; 5〜10 質量%
[*印のその他はIg−lossを除くCaO,MgO,KO,Cl,SO等の合量成分を示す。]
である浄水発生土を担持基材として好適に利用できる。
(3)本発明において、効果的に吸着・固定化(又は不溶化)される汚染イオン種としてリン酸、フッ素、ヨウ素、セレン、鉛、セシウムの群から選ばれる少なくとも1種を挙げることができる。
(4)また、本発明による浄水発生土系吸着材を粒度4〜12meshに成型させた後、温度300℃〜500℃で仮焼させた顆粒状物も、浄水発生土系吸着材としての吸着機能を発揮させる。
(5)また、本発明が提供する浄水発生土系吸着材の製造方法によれば、
浄水場で多量に発生する浄水発生土を用いて、各種の浚渫汚泥、産業汚泥及び天然の土壌等の土材中に溶存する各種の汚染イオン種を吸着・固定化させる浄水発生土系吸着材は、下記のような低廉・単純工程で製造することができる。
先ずこの浄水発生土を固形分濃度換算で60〜90質量%範囲に脱水又は乾燥させ、
次いで、硫酸バンドの金属硫酸塩又はその水溶液を、この浄水発生土の110℃乾燥物換算の100質量部数当たり、無水物換算で0.1〜2.5質量部数範囲で添加させ、
次いで、混合(又は混練)・乾燥・(又は粉砕)させた後、必要に応じて成型させることを特徴とする。
(6)また、本発明が提供する各種のイオン種で汚染された土材の再資源化方法によれば、
この浄水発生土系吸着材(=FWCS)を用いて、各種の浚渫汚泥、産業汚泥及び天然土壌中に溶存する各種の汚染イオン種を吸着・固定化させて、これらの汚染土材を有効土材として再資源化させることができる。
即ち、
先ず固形分濃度が60〜90質量%範囲にあるこの汚染土材の固形分換算の100質量部数当たり、このFWCSを1〜10質量部数範囲で添加・混合・混練させ、
次いで、乾燥・解砕させ又は乾燥・造粒させ、得られた再生土材中に溶存する汚染イオン種を環境庁基準値以下に低減させることを特徴とする。
That is, according to the present invention, the adsorbent using the purified water-producing soil containing silica, alumina as the main component and containing the iron oxide component as the supporting substrate is a variety of soil materials such as sludge, industrial sludge, and natural soil. They provided a water-purifying soil-based adsorbent for environmental conservation that adsorbs and immobilizes various pollutant ion species dissolved inside.
More specifically,
(1) The water-purifying soil-based adsorbent according to the present invention has a sulfuric acid band in the range of 0.1 to 2.5 parts by mass in terms of anhydride per 100 parts by mass in terms of dry matter at 110 ° C. for 24 hours. It is characterized by being attached with.
(2) The component expressed in terms of a dry matter of 110 ° C. × 24 hours of the support base material which is the purified water generation soil,
SiO 2; 30 to 50 wt%
A1 2 O 3 ; 15-50 mass%
Fe 2 O 3; 5~15 wt%
Other * ; 5-10% by mass
[Others marked with * indicate total components such as CaO, MgO, K 2 O, Cl, SO 4 excluding Ig-loss. ]
The purified water generating soil can be suitably used as a supporting substrate.
(3) In the present invention, at least one selected from the group of phosphoric acid, fluorine, iodine, selenium, lead, and cesium can be cited as a contaminating ion species that is effectively adsorbed and immobilized (or insolubilized).
(4) Further, after the water-purifying soil-based adsorbent according to the present invention is molded into a particle size of 4 to 12 mesh, the granular product calcined at a temperature of 300 ° C. to 500 ° C. is also adsorbed as the water-purifying soil-based adsorbent. Demonstrate the function.
(5) Moreover, according to the manufacturing method of the purified water generation soil type adsorption material which this invention provides,
Water purification soil adsorbent that adsorbs and immobilizes various pollutant ion species dissolved in soil such as various sludge, industrial sludge and natural soil, using a large amount of purified water generated at the water treatment plant Can be manufactured by the following inexpensive and simple processes.
First, this purified water generation soil is dehydrated or dried in the range of 60 to 90% by mass in terms of solid content concentration,
Next, a metal sulfate of a sulfate band or an aqueous solution thereof is added in a range of 0.1 to 2.5 parts by mass in terms of anhydride per 100 parts by mass in terms of 110 ° C. dry matter of the purified water generation soil,
Next, after mixing (or kneading), drying, and (or pulverizing), it is formed as necessary.
(6) Moreover, according to the method for recycling soil materials contaminated with various ionic species provided by the present invention,
By using this water purification soil-based adsorbent (= FWCS), various polluted ionic species dissolved in various sludge, industrial sludge and natural soil are adsorbed and immobilized, and these contaminated soil materials are used as effective soil. It can be recycled as a material.
That is,
First, this FWCS is added, mixed and kneaded in a range of 1 to 10 parts by mass per 100 parts by mass in terms of solids of this contaminated soil material having a solids concentration in the range of 60 to 90% by mass,
Next, it is characterized in that it is dried / pulverized or dried / granulated, and the contaminated ion species dissolved in the obtained recycled soil material is reduced below the standard value of the Environment Agency.

本発明による浄水発生土系吸着材は、各種の浚渫汚泥、産業汚泥及び天然土壌等の土材中に溶存する可溶性フッ素イオンを、効果的に不溶化・固定化させることができる。
すなわち、本発明の浄水発生土系吸着材を用いることで、上記する土材中に溶存する可溶性フッ素イオンを、環境庁告示第46号溶出試験において、土壌基準の0.8mg/L以下に低減させる。
The water-purifying soil-based adsorbent according to the present invention can effectively insolubilize and immobilize soluble fluoride ions dissolved in various types of soot sludge, industrial sludge, and natural soil.
That is, by using the water purification soil-based adsorbent of the present invention, the soluble fluorine ions dissolved in the above-mentioned soil material is reduced to 0.8 mg / L or less of the soil standard in the Environment Agency Notification No. 46 elution test. Let

また、本発明による浄水発生土系吸着材は、これらの土材中に溶存するリン酸、ヨウ素、セレン、鉛及びセシウム等の汚染イオン種に対しても、フッ素汚染イオンと同様に効果的に吸着固定化させる。  In addition, the water-purifying soil-based adsorbent according to the present invention is also effective for contaminating ion species such as phosphoric acid, iodine, selenium, lead and cesium dissolved in these soil materials as well as fluorine-contaminated ions. Adsorb and immobilize.

これによって、本発明の浄水発生土系吸着材を用いることで、従来から産業廃棄物として特定埋立管理地に廃棄されていた自然土壌を含む各種の汚染土材を有用土材として、環境保全のために二次的な環境汚染を引き起こすことなく、有用させることができる。  As a result, by using the water purification soil-based adsorbent of the present invention, various contaminated soil materials including natural soil that have been conventionally disposed of as industrial waste in specified landfill management land can be used as useful soil materials for environmental conservation. Therefore, it can be made useful without causing secondary environmental pollution.

以下に、本発明による環境保全用浄水発生土系吸着材、その製造方法、その用途についての最良の実施形態を更に詳細に説明する。  Below, the best embodiment about the water purification generation | occurrence | production soil type adsorption material for environmental conservation by this invention, its manufacturing method, and its use is described in detail.

既に詳細に説明した如く、本発明によれば、浄水場で多量に発生し、しかも、安価に入手できる浄水発生土の担持基材に、硫酸バンドを添着させていることを特徴とする環境保全用浄水発生土系吸着材(以後、単に本吸着材と記すこともある。)を提供したのである。  As already described in detail, according to the present invention, environmental preservation characterized in that a large amount of water is generated at a water purification plant and a sulfuric acid band is attached to a support substrate of water purification soil that can be obtained at a low cost. Water-purifying soil-based adsorbent (hereinafter sometimes simply referred to as the present adsorbent).

また、本発明によるこの浄水発生土系吸着材は、各種の汚泥及び天然土壌等の土材中に溶存する汚染イオン種を吸着させて、その土材中に不溶物として固定化させることを特徴とする安価な環境保全用浄水発生土系吸着材及び低廉・単純工程のその調製方法を提供したのである。Further, this water purification soil-based adsorbent according to the present invention is characterized by adsorbing contaminating ion species dissolved in various sludges and soil materials such as natural soil and immobilizing them as insoluble matter in the soil material. An inexpensive water purification soil-based adsorbent for environmental conservation and a method for preparing an inexpensive and simple process were provided.

また、本発明によれば、このように溶存する汚染イオン種を不溶化された各種の浚渫汚泥、産業汚泥及び天然土壌等の汚染土材は、産業廃棄物として特定廃棄されることなく、再生資源化土材として有効利用されることを特徴とする汚染土材の再資源化方法を提供したのである。  In addition, according to the present invention, various types of dredged sludge, industrial sludge, natural soil, and other contaminated soil materials insolubilized in this manner are dissolved resources that are not disposed of as industrial waste. It provided a method for recycling contaminated soil, which is characterized by being effectively used as a soil.

<浄水場発生土>
そこで、本発明による本吸着材の担持基材に用いた浄水発生土は、全国の各自治体に多数敷設されている浄水場から発生するものである。その浄水場では、河川から取水した原水を清澄水に変換させて水道水として大量に、その地域の社会生活圏に供給している。その変換する過程で、河川中の土砂などの濁りや浄水処理に使用されたPAC(ポリ塩化アルミ)等の凝集剤などの濾過処理物が、浄水場発生土の含水物(以後、単に浄水発生土と記す)として大量に発生するものである。
<Wastewater generation soil>
Accordingly, the water purification soil used for the adsorbent carrying base material according to the present invention is generated from water purification plants installed in many local governments nationwide. In the water purification plant, raw water taken from the river is converted into clear water and supplied in large quantities as tap water to the social life zone of the area. In the process of conversion, turbidity such as sediment in rivers and flocculants such as PAC (polyaluminum chloride) used for water purification treatment are treated with hydrated water from the water purification plant (hereinafter simply referred to as water purification). Abundantly generated).

例えば、全国の各自治体における年間の発生量はほぼ30〜40万トンの範囲で発生されている。その60〜80%が園芸倍土、植栽土、公園用土、造成土、道路緑地等として有効に利用されているものの、残る40〜20%が利用されることなく、産業廃棄物として特定処分場に埋立処分されているのが実状である。  For example, the annual generation amount in each local government in the country is generated in the range of about 300,000 to 400,000 tons. Although 60 to 80% is effectively used as horticultural soil, planting soil, park soil, reclaimed soil, road green space, etc., the remaining 40 to 20% is not used and is specifically disposed as industrial waste. The actual situation is that it has been landfilled on site.

また、近年に至っては、廃棄することで、その周辺の自然環境を破壊させるため、その産業廃棄物を埋立廃棄処分させる特定最終処分場を確保することが困難を極めている。このような実状から、近年、特に地域環境保全の観点から、廃棄処分量を低減させるために、より付加価値を高めて有効利用することが緊急且つ重要な課題と言われている。  In recent years, it has been extremely difficult to secure a specific final disposal site where the industrial waste is disposed of in landfills because the surrounding natural environment is destroyed by disposal. In view of such a situation, in recent years, particularly from the viewpoint of regional environmental conservation, it is said that it is an urgent and important issue to increase the added value and effectively use it in order to reduce the amount of disposal.

そこで、本発明で主に用いた浄水発生土は、新潟県新潟市に敷設されている下記浄水場から発生したものである。その水性分散系でのPHが5〜8であって、下記にその組成の一例を示す。なお、下記分析値は110℃×24時間の乾燥物換算値である。
<信濃川浄水場発生土(質量%)> <阿賀野川浄水場発生土(質量%)>
Al 22.3 24.8
SiO 38.6 40.7
Fe 12.2 6.2
その他 8.7 7.1
*印のその他は、Ig−lossを除くCaO,MgO,KO,Cl,SO等の合量成分である。
Therefore, the water purification soil mainly used in the present invention is generated from the following water purification plant laid in Niigata City, Niigata Prefecture. The pH in the aqueous dispersion is 5 to 8, and an example of the composition is shown below. In addition, the following analysis value is a dry matter conversion value of 110 degreeC x 24 hours.
<Shinanogawa water purification plant generated soil (% by mass)><Aganogawa water purification plant generated soil (% by mass)>
Al 2 O 3 22.3 24.8
SiO 2 38.6 40.7
Fe 2 O 3 12.2 6.2
Others * 8.7 7.1
Others marked with * are total components such as CaO, MgO, K 2 O, Cl, SO 4 excluding Ig-loss.

なお、この浄水発生土の主成分の組成は、全国に敷設されている各浄水場ごとに異なり、特に取水する河川の原水中の濁り成分(土砂など)等に依存し、その110℃×24時間の乾燥物換算で表す成分は、一般的に下記組成割合で表わされる。また、本発明においては、これらの何れの浄水発生土をも、本発明の浄水発生土系吸着材の担持基材として好適に利用することができる。
SiO ; 30〜50 質量%
Al; 15〜50 質量%
Fe; 5〜15 質量%
その他 ; 5〜10 質量%
なお*印のその他はIg−lossを除くCaO,MgO,KO,SO4,Cl等の合量成分である。
In addition, the composition of the main component of this water purification soil is different for each water purification plant laid throughout the country, and particularly depends on turbid components (such as earth and sand) in the raw water of the river to be taken, 110 ° C. × 24 The component expressed in terms of dry matter of time is generally expressed by the following composition ratio. In the present invention, any of these water purification soils can be suitably used as a supporting substrate for the water purification soil-based adsorbent of the present invention.
SiO 2; 30 to 50 wt%
Al 2 O 3; 15~50 wt%
Fe 2 O 3; 5~15 wt%
Other * ; 5-10% by mass
Others marked with * are total components such as CaO, MgO, K 2 O, SO 4 and Cl excluding Ig-loss.

<本発明による環境保全用浄水発生土系吸着材、その製造方法及びその用途>
<浄水発生土系吸着材>
すでに詳細に説明しているように、本発明による環境保全用浄水発生土系吸着材は、上記するような浄水場で発生する浄水発生土を担持基材に用いている。その担持基材の110℃乾燥物換算で表わす100質量部数当たりに、硫酸バンド(=Al(SO金属硫酸塩)を、無水物換算で表わして0.1〜2.5質量部数の範囲で、好ましくは0.2〜1.0質量部数の範囲で添着されてなるその風乾物又は200℃以下、好ましくは110℃以下の乾燥物として適宜好適に用いられる。
<Environmentally Conserving Water-Generating Soil-Based Adsorbent According to the Present Invention, Its Manufacturing Method and Its Use>
<Water-purified soil-based adsorbent>
As already explained in detail, the purified water generating soil-based adsorbent for environmental protection according to the present invention uses the purified water generating soil generated at the water purification plant as described above as the supporting substrate. A sulfuric acid band (= Al 2 (SO 4 ) 3 metal sulfate) per 100 mass parts expressed in terms of 110 ° C. dry matter of the supporting substrate is expressed in terms of anhydride, 0.1 to 2.5 mass parts. The air-dried product that is attached in the range of 0.2 to 1.0 parts by mass or the dried product of 200 ° C. or lower, preferably 110 ° C. or lower, is suitably used.

<顆粒状の浄水発生土系吸着材>
更には、本発明による浄水発生土系吸着材を、粒度4〜14meshに、好ましくは粒度6〜12meshに造粒させた後、必要に応じて温度300℃〜500℃で仮焼させた顆粒状の仮焼物も、本発明の本吸着材として適宜好適に用いることができる。即ち、本発明が対象とする汚染イオン種であるリン酸、ヨウ素、フッ素、セレン、鉛及びセシウム等から選ばれる何れかの汚染イオン種が溶存する汚染水を、その顆粒状物を充填させた充填塔に通すことによって、後述する実施例からも明らかなように、その汚染水は容易に浄化されます。よって、その処理水をそのまま排出させても、周辺の土壌、自然及び生活環境に二次的な汚染を引き起こすことはない。また、上記するように仮焼することで、顆粒状の本吸着材は、水浸漬下に全く崩壊することなく適宜好適に吸着浄化材として使用することができる。
<Granular clean water generating soil-based adsorbent>
Further, the water-purifying soil-based adsorbent according to the present invention is granulated to a particle size of 4 to 14 mesh, preferably 6 to 12 mesh, and then calcined at a temperature of 300 ° C. to 500 ° C. as necessary. These calcined materials can also be suitably used as the present adsorbent of the present invention. That is, the granular water is filled with contaminated water in which any of the contaminating ion species selected from phosphoric acid, iodine, fluorine, selenium, lead, cesium, and the like, which are the contaminating ion species targeted by the present invention, is filled. By passing through the packed tower, the contaminated water can be easily purified, as will be apparent from the examples below. Therefore, even if the treated water is discharged as it is, it does not cause secondary pollution to the surrounding soil, nature and living environment. Moreover, by carrying out calcination as described above, the granular adsorbent can be suitably used as an adsorbent purification material without being completely disintegrated under water immersion.

また、上記する硫酸バンドの添着量に係わって本発明においては、上記配合部数範囲を外れて下限値以下では、例えば、後述する実施例からも明らかなように、溶存フッ素イオンを十分に吸着固定化させることができない。一方、その上限値の2.5以上にあっては、むしろその吸着量を低下させて好ましくない。また、本発明においては、より好ましくは、下限値が0.2以上で、上限値が1.0以下であることによって吸着量及びその吸着固定化を適宜より安定化させることができる。  In addition, in the present invention, in relation to the amount of sulfate band attached as described above, the dissolved fluorine ions are sufficiently adsorbed and fixed, for example, as will be apparent from the examples described later, when the number of parts is out of the range and below the lower limit. It cannot be made. On the other hand, if the upper limit is 2.5 or more, the amount of adsorption is rather lowered, which is not preferable. In the present invention, more preferably, the lower limit value is 0.2 or more and the upper limit value is 1.0 or less, so that the amount of adsorption and its adsorption immobilization can be stabilized as appropriate.

従って、本発明における上記添着質量部数範囲は、上記のように0.1〜2.5質量部数範囲で、好ましくは0.2〜1.0質量部数範囲であることで、本発明の目的である安価な環境保全用浄水発生土系吸着材を提供することができた。  Therefore, the range of the number of parts by mass in the present invention is in the range of 0.1 to 2.5 parts by mass as described above, and preferably in the range of 0.2 to 1.0 parts by mass. We were able to provide an inexpensive, clean water-generating soil-based adsorbent for environmental conservation.

<環境保全用浄水発生土系吸着材の製造方法>
そこで、これまでに再三に亘って説明するように、各種の浚渫汚泥、産業汚泥及び天然の土壌等の土材中に溶存する各種の汚染イオン種を不溶性物として吸着固定化させる本発明による浄水発生土系吸着材は、下記するような低廉・単純工程で製造することができる。
(1)先ず、浄水場で多量に発生する水性分散系のpHが5〜8である浄水発生土を、この浄水発生土を固形分濃度換算で60〜90質量%範囲に脱水又は乾燥させる。
(2)次いで、110℃×24時間の乾燥物換算での浄水発生土100質量部数当たり、好ましくはpHが3.0〜3.5の範囲にある硫酸バンドの金属硫酸塩又はその水溶液を、硫酸バンドを固形分換算で0.2〜1質量部数範囲で添加・混合(又は混練)させた後、乾燥・解砕(又は粉砕)させることを特徴とする。また、必要に応じて、成型工程を取り入れて顆粒状の本吸着材として適宜好適に有用することができる。
<Manufacturing method of clean water generating soil-based adsorbent for environmental conservation>
Therefore, as will be explained repeatedly, the water purification according to the present invention that adsorbs and immobilizes various pollutant ion species dissolved in various soil materials such as various sludge, industrial sludge and natural soil as insoluble matter. The generated soil-based adsorbent can be produced by the following inexpensive and simple process.
(1) First, dewatering or drying the purified water generating soil having a pH of 5 to 8 of the aqueous dispersion generated in a large amount at the water purification plant in the range of 60 to 90% by mass in terms of solid content concentration.
(2) Next, per 100 parts by mass of the purified water-generated soil in terms of dry matter at 110 ° C. × 24 hours, preferably a metal sulfate of a sulfate band having a pH in the range of 3.0 to 3.5 or an aqueous solution thereof. A sulfuric acid band is added and mixed (or kneaded) in a range of 0.2 to 1 part by mass in terms of solid content, and then dried and crushed (or pulverized). Further, if necessary, it can be suitably used as a granular adsorbent by incorporating a molding step.

より詳細には、先ず担持基材に用いる浄水場から入手する浄水発生土は、その含水量に係わってスラリー状、粘土状及び塊状等の形状を呈している。しかしながら、本発明においては、下記に説明するように浄水発生土系吸着材を調製する上で、このような形状に関係することなく吸着材の担持基材として適宜好適に用いることができる。
(一)浄発生土の含水量が80%以上のスラリー状であれば、硫酸バンド添加後、湿式混合、乾燥、粉砕、粒度調整をして吸着材とする。
(二)浄水発生土の含水量が40〜80%の粘土状であれば、硫酸バンド添加後、例えば、セメントミキサーでの混合混練後、乾燥、粉砕、粒度調整をして吸着材とする。
(三)浄水発生土の含水量が40〜20%の固形状であれば、硫酸バンドの水溶液を添加・解砕・混錬後、乾燥、粉砕、粒度調整をして吸着剤とする。
(四)浄水発生土の含水量が20%以下の固形状であれば、粉砕、粒度調整後、硫酸バンド水溶液添加、混合後、乾燥させて吸着材とする。(一)〜(四)のいずれの対処方法においても、粒度調整後、必要に応じて成形工程を取り入れ、顆粒状物として有用される。
More specifically, firstly, the purified water generation soil obtained from the water purification plant used for the supporting substrate has a slurry shape, a clay shape, a lump shape, or the like depending on the water content. However, in the present invention, as described below, when preparing a water purification soil-based adsorbent, it can be suitably used as a support substrate for the adsorbent regardless of the shape.
(1) If the water content of the generated soil is 80% or more, the adsorbent is prepared by wet mixing, drying, pulverization and particle size adjustment after addition of the sulfuric acid band.
(2) If the water content of the purified water generation soil is 40 to 80% in the form of clay, after adding the sulfuric acid band, for example, after mixing and kneading in a cement mixer, drying, pulverization, and particle size adjustment are made into an adsorbent.
(3) If the water content of the purified water generation soil is 40 to 20% solid, an aqueous solution of sulfuric acid band is added, pulverized and kneaded, and then dried, ground, and particle size adjusted to make an adsorbent.
(4) If the water content of the purified water generation soil is 20% or less, the adsorbent is obtained by crushing, adjusting the particle size, adding a sulfuric acid band aqueous solution, mixing and drying. In any one of the countermeasures (1) to (4), after adjusting the particle size, a molding step is incorporated as necessary, and it is useful as a granular product.

<浄水発生土系吸着材の用途とその汚染対象物質>
そこで、本発明における用途に係わっての対象土材として、例えば、従来から地盤改良工事、河川工事、トンネル工事、ダム工事、ビル建設の現場などから発生する工事・建設汚泥や、河川、港湾等の工事で発生する浚渫泥奨や、各種の産業排出物として工場廃水浄化施設から発生する産業汚泥や、下水処理場から発生する下水処理汚泥や、更には天然土壌を含めた土材等を挙げることができる。
<Uses of soil-based adsorbents for water purification and substances subject to contamination>
Therefore, as the target soil material related to the use in the present invention, for example, ground improvement work, river construction, tunnel construction, dam construction, construction construction sludge generated from the construction site, rivers, harbors, etc. Dredging mud from the construction work, industrial sludge from industrial wastewater purification facilities as various industrial waste, sewage treatment sludge from sewage treatment plants, and soil materials including natural soil be able to.

また、既に説明済みのように、これらの土材中には、例えば、可溶性フッ素イオン、リン酸イオン、鉛イオン、更には、その他の規制対象に挙げられているイオン種を溶存している。従って、本発明が用途の対象にする土材は、所謂各種のイオン種を溶存する観点から汚染土材と言えるのである。  Moreover, as already demonstrated, in these earth materials, for example, soluble fluorine ions, phosphate ions, lead ions, and other ionic species listed as other regulated objects are dissolved. Therefore, the soil material to which the present invention is applied is a contaminated soil material from the viewpoint of dissolving so-called various ionic species.

そこで、これらの汚染土材を有用土材として各種の盛土、土地造成(宅地、公園・緑地)の地盤改良材、道路路床材、河川堤防、建設地盤の埋め戻し材、スポーツグランド用土材、園芸用植生培土等に再資源化土材として有効利用するためには、このようなリサイクル土材に求められる課題は、周辺の土壌、生物及び社会環境を保全させるために二次的な環境汚染を引き起こさないことである。  Therefore, using these contaminated soils as useful soils, various embankments, land improvement materials (land, parks, green spaces), road road materials, river dikes, backfill materials for construction ground, sports ground soil materials, In order to effectively use as a recycled soil material for horticultural vegetation soil, etc., the issues required for such recycled soil materials are secondary environmental pollution in order to preserve the surrounding soil, organisms and social environment. It is not to cause.

また、本発明に係わって、このような二次的に環境汚染を引き起こさせる物質とは、本発明による浄水発生土系吸着材が、吸着・固定化させようとする対象物質である。また、その対象物質には、環境庁が告示する環境基準法に基づく、多くの種類の特定有害物質が存在している。本発明においては、このような関わりのある多くの種類の中で、その対象物質とは、土壌汚染対策法に関わる特定有害物質として告知されているPb,As,Se,F等を吸着・固定化させる対象物質である。また、本発明においては、環境基準法の水質汚濁に関わる環境基準の中で、生活環境保全項目に該当している無機リン(PO)を吸着・固定化させる対象物質である。In addition, in connection with the present invention, such a substance that causes secondary environmental pollution is a target substance that the water purification soil-based adsorbent according to the present invention intends to adsorb and immobilize. In addition, there are many types of specified hazardous substances based on the environmental standards law announced by the Environment Agency. In the present invention, among many types having such a relationship, the target substance adsorbs / fixes Pb, As, Se, F, etc., which are announced as specific harmful substances related to the soil pollution control law. It is a target substance to be converted. In the present invention, among the environmental standards relating to water pollution environmental standards method, a substance to be adsorbed and fixed inorganic phosphorus that corresponds to the living environment preservation item (PO 4).

また、環境汚染を引き起こす対象物質を検討するに際して、土壌1kgに含有する要件と土壌溶出基準の要件の2種類あるが、本発明においては、後者の土壌溶出基準の要件に適宜対処させて、本発明が対処させる汚染物質を評価した。なお、その土壌汚染に関わる環境基準及び生活環境の保全に係わる排水基準を[表1]にまとめて示した。また、リンについては最終改正/平成一八年一一月一〇日環境省令第三三号水質汚濁防止法第三条第一項の規定に基づき、排水基準を定める総理府令を定めており、生活環境の保全に係る排水基準として、一日平均として8mg/Lとなっている。水質汚濁防止法第三条第一項、排水基準として、燐化合物製造業では一日平均10mg/L以下となっている。なお、リンについて、土壌汚染に関わる環境基準には規定されていない。  In addition, when examining target substances that cause environmental pollution, there are two types of requirements: the requirements for inclusion in 1 kg of soil and the requirements for soil elution standards. The pollutants that the invention addresses were evaluated. The environmental standards related to soil contamination and the drainage standards related to the preservation of the living environment are summarized in [Table 1]. In addition, for phosphorus, the Prime Minister's Ordinance that establishes wastewater standards based on the provisions of Article 3, Paragraph 1 of the Water Pollution Control Act No. 33 of the Ordinance of the Ministry of the Environment, January 10, 1998, As a drainage standard for the preservation of the living environment, the daily average is 8 mg / L. As the water pollution control law Article 3 Clause 1 and drainage standards, the average is 10 mg / L or less per day in the phosphorus compound manufacturing industry. Phosphorus is not stipulated in environmental standards related to soil contamination.

また、カドミウム、鉛、六価クロム、砒素、総水銀、セレン、フッ素及びホウ素等に係わる環境上の条件のうち検液中濃度に係る値については、汚染土壌が地下水面から離れており、且つ現状において地下水中のこれらの物質濃度が、それぞれ地下水1Lにつき0.01mg、0.01mg、0.05mg、0.0005mg、0.01mg、0.8mg及び1mgを超えていない場合には、それぞれ検液1Lにつき0.03mg、0.03mg、0.15mg、0.03mg、0.0015mg、0.03mg、2.4mg及び3mgとするとされている。  Regarding the environmental conditions related to cadmium, lead, hexavalent chromium, arsenic, total mercury, selenium, fluorine, boron, etc., regarding the value related to the concentration in the test solution, the contaminated soil is separated from the groundwater surface, and At present, when the concentrations of these substances in groundwater do not exceed 0.01 mg, 0.01 mg, 0.05 mg, 0.0005 mg, 0.01 mg, 0.8 mg, and 1 mg per liter of groundwater, respectively, It is supposed that it is 0.03 mg, 0.03 mg, 0.15 mg, 0.03 mg, 0.0015 mg, 0.03 mg, 2.4 mg and 3 mg per 1 L of the liquid.

表1Table 1

また、このように本発明による浄水発生土系吸着材で処理されたリサイクル土材を上記するような用途に再利用するに際しては、上記するような理由からアルカリ分溶出を抑制させて、周辺の土壌及び自然環境に優しくあらねばならない。  Further, when reusing the recycled soil material treated with the water-purifying soil-based adsorbent according to the present invention for the above-mentioned use, alkali elution is suppressed for the above-described reason, It must be gentle to the soil and the natural environment.

そこで、本発明によるリサイクル土材のPHが、例えば、自然環境に係わって特に水質汚濁防止法の排出基準のpH5.8〜8.6を満足し、好ましくは上限値のアルカリ性を超えない土材であることが適宜好適に有用することができる。  Accordingly, the PH of the recycled soil material according to the present invention satisfies, for example, the pH 5.8 to 8.6 of the discharge standard of the Water Pollution Control Law particularly related to the natural environment, and preferably does not exceed the upper limit alkalinity. It can be suitably used as appropriate.

すなわち、上記する生物多様性・生態系の保全の観点から、リサイクル土材(=土壌)としてのPHは、草木類の植物を植生、繁茂させるに適正な土壌(培地)としても不可欠である。その適正な土壌(培地)のPHは、自然の土壌中に多種多様の微生物が関与して、自然界の動・植物の生態系から発生する排泄叉は腐敗物を浄化するなど、環境保全に深く係わっているからである。  That is, from the viewpoint of biodiversity / ecosystem conservation described above, PH as a recycled soil material (= soil) is indispensable as an appropriate soil (medium) for vegetation and vegetation. The pH of the appropriate soil (medium) is deeply preserved in the environment, such as purifying excretion and septics generated from natural animal and plant ecosystems by involving a variety of microorganisms in the natural soil. Because it is involved.

その土壌中で微生物の増殖に適するPHとは、5〜9付近とされていることから、土壌のPHは自然の生態系、すなわち草木の植生にとっても、これらの微生物の働きで適正な土壌が確保されている。  Since the pH suitable for the growth of microorganisms in the soil is around 5-9, the pH of the soil is also appropriate for the natural ecosystem, that is, for the vegetation of plants. It is secured.

従って、上記する如く本発明による再資源化土材(=リサイクル土材)の用途として挙げた各種の盛土、土地造成(宅地、公園・緑地)の地盤改良材、道路路床材、河川堤防、建設地盤の埋め戻し材、スポーツグランド用土材、園芸用植生培土等の何れもが、我々人間の環境だけでなく、上記する生物多様性・生態系の環境保全の上で、この再資源化土材が有効利用されるのである。  Therefore, as described above, various embankments listed as uses of recycled soil materials (= recycled soil materials) according to the present invention, ground improvement materials for land preparation (residential land, parks / green spaces), road road floor materials, river dikes, All of the backfill materials for construction ground, materials for sports ground, vegetation soil for horticulture, etc. are not only for our environment but also for the environmental conservation of the above-mentioned biodiversity and ecosystem. The material is effectively used.

<汚染土材の再資源化方法>
そこで、本発明の再資源化方法によって、適宜好適に有用化される汚染土材には、既に説明済みであるが、例えば、地盤改良工事、河川工事、トンネル工事、ダム工事、ビル建設の現場などから発生する(1)工事・建設汚泥や、(2)河川、港湾等の工事で発生する浚渫汚泥や、(3)各種の産業排出物として工場廃水浄化施設から発生する産業汚泥や、(4)天然土壌や、更には、必要に応じて下水処理場で発生する(5)下水処理汚泥等を挙げることができる。
<Recycling method for contaminated soil>
Thus, the contaminated soil material that is suitably and suitably used by the recycling method of the present invention has already been explained, but for example, ground improvement work, river construction, tunnel construction, dam construction, building construction sites (1) Construction / construction sludge generated from such as (2) Dredging sludge generated during construction of rivers, harbors, etc. (3) Industrial sludge generated from factory wastewater purification facilities as various industrial emissions, ( 4) Natural soil, and further, (5) sewage treatment sludge generated at a sewage treatment plant as required.

また、既に詳細に説明するように再資源化させるために、本発明による浄水発生土系吸着材で吸着・不溶化させる汚染対象物質(又は汚染イオン種)とは、これらの汚染土材中に溶存する汚染対象物質(又は汚染イオン種)であって、本発明においては、その汚染イオン種としてPb、As、Se、F及び無機リン(PO)から選ばれる少なくとも一種以上のイオン種を挙げるものである。In addition, as already explained in detail, in order to recycle, the pollutants to be adsorbed and insolubilized by the water-purifying soil-based adsorbent according to the present invention (or contaminating ionic species) are dissolved in these contaminated soils. In the present invention, at least one or more ionic species selected from Pb, As, Se, F, and inorganic phosphorus (PO 4 ) are listed as the contaminating ionic species. It is.

再資源化させる汚染土材中に溶存する汚染イオンの含有量にもよるが、本発明においては、固形分濃度で表わして60〜90質量%範囲にある汚染土材の固形分換算の100質量部数当たり、本発明による浄水発生土系吸着材を1〜10質量部数範囲で添加・混合・混練・乾燥・解砕(又は粉砕)することで、汚染イオン種を、その汚染土材中に吸着・固定化(=不溶化)させる。溶存汚染イオン種を環境庁基準値以下に低減された再生土材を適宜好適に調製することができる。  Depending on the content of contaminating ions dissolved in the contaminated soil material to be recycled, in the present invention, 100 mass in terms of solid content of the contaminated soil material in the range of 60 to 90% by mass expressed in terms of solid content concentration. By adding, mixing, kneading, drying, and crushing (or crushing) the water-purifying soil-based adsorbent according to the present invention in the range of 1 to 10 parts by mass, the contaminated ion species are adsorbed in the contaminated soil. -Immobilize (= insolubilize). A recycled soil material in which dissolved polluted ion species are reduced below the standard value of the Environment Agency can be suitably prepared.

以上のようにして得られた再生土材の水分散系におけるPHは、何れもPH5.8〜8.6範囲を満足していることから、本発明によって、適宜好適に環境に優しい有用土材を提供することができた。
以下に本発明を実施例により説明するが、本発明は、これらの実施例にいささかも限定されるものではない。
Since the PH in the aqueous dispersion system of the regenerated soil obtained as described above satisfies the range of pH 5.8 to 8.6, the present invention suitably suitably uses an environmentally friendly useful soil material. Could be provided.
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1〜9
本発明による環境保全用の浄水発生土系吸着材(以下、単に本吸着材と記す。)の担持基材として、新潟市の信濃川浄水場及び新潟市の阿賀野川浄水場より入手した浄水発生土の110℃×24時間乾燥物を、それぞれ担持基材−1(乾燥減量;29%)、担持基材−2(乾燥減量;54%)として用いた(なお、これら乾燥物の2質量%の水分散系のPHは、それぞれ6.21/25.3℃、6.75/25.0℃であった。)。
本実施例において、これら担持基材用の浄水発生土乾燥物を、予めポットミルで1時間粉砕し、粒径0.5mmφ以下の粉末状の上記担持基材−1、−2として、その100質量部当たりに、イオン交換水30mlに硫酸バンドの無水塩を、それぞれ0.1質量部〜2.5質量部の範囲で溶解させた硫酸バンド溶液を添加・混合・1時間静置させた後、110℃×24時間乾燥させて、それぞれ本発明による本吸着材として用いた。次いで、下記する「汚染フッ素イオン吸着試験」に供し、その結果を[表2]にまとめて表示した。
Examples 1-9
Water purification generation obtained from Shinanogawa water purification plant in Niigata city and Aganogawa water purification plant in Niigata city as a supporting substrate for water purification soil-based adsorbent material for environmental conservation according to the present invention (hereinafter simply referred to as this adsorbent material) The dried material of soil at 110 ° C. for 24 hours was used as a supporting substrate-1 (loss on drying; 29%) and a supporting substrate-2 (loss on drying; 54%), respectively (note that 2% by mass of these dried materials) The pH of the aqueous dispersion was 6.21 / 25.3 ° C. and 6.75 / 25.0 ° C., respectively.)
In this example, the dried water for generating purified water for the supporting base material was previously pulverized in a pot mill for 1 hour, and the above-mentioned supporting base materials-1 and -2 having a particle size of 0.5 mmφ or less were used as 100 masses. After adding an sulfuric acid band solution obtained by dissolving an anhydrous salt of a sulfuric acid band in 30 ml of ion-exchanged water in a range of 0.1 to 2.5 parts by mass to each part, mixing and allowing to stand for 1 hour, They were dried at 110 ° C. for 24 hours and used as the present adsorbents according to the present invention. Then, it used for the "contamination fluoride ion adsorption test" mentioned below, and the result was put together and displayed on [Table 2].

<濃度100[mg/L]の汚染フッ素イオン溶液の調製>
汚染フッ化物イオン標準原液(100mg/L、100ppm)の調製は、日本工業規格K8005に規定する容量分析用標準物質のフッ化ナトリウムを、約500℃×約1時間加熱曝露させた後、デシケータ中で放冷させた仮焼物の0.221gを秤量して少量の水に溶かし、全量1000mlフラスコに移し入れて濃度標量をした。次いて、フッ素イオン濃度100[mg/L]の標準溶液10mlをイオン交換水90mlに希釈して、フッ素イオン濃度10[mg/L]として、その100mlをフッ素イオン吸着試験用に供した。
<Preparation of contaminated fluoride ion solution with a concentration of 100 [mg / L]>
Preparation of a contaminated fluoride ion standard stock solution (100 mg / L, 100 ppm) was carried out in a desiccator after exposing sodium fluoride, a standard material for volumetric analysis specified in Japanese Industrial Standard K8005, to about 500 ° C. for about 1 hour. Then, 0.221 g of the calcined product allowed to cool was measured and dissolved in a small amount of water, and transferred to a 1000 ml flask in total to measure the concentration. Next, 10 ml of a standard solution having a fluoride ion concentration of 100 [mg / L] was diluted in 90 ml of ion-exchanged water to obtain a fluoride ion concentration of 10 [mg / L], and 100 ml thereof was used for a fluoride ion adsorption test.

<汚染フッ素イオン吸着試験>
フッ素イオン濃度10mg/L(NaF溶液)の100ml中に、本吸着材の1.0質量部数を投入・30分撹拌後・30分静置させた後、Whatman Filter paper NO.42を使用して濾別してその濾液について、イオンクロマトグラフを使用して分析した結果を[表2]にまとめて表示した。なお、分析方法は、JIS K0102の測定方法に準拠させて行い、その概要を[表1]に記載した。
<Contamination fluoride ion adsorption test>
In 100 ml of a fluoride ion concentration of 10 mg / L (NaF solution), 1.0 part by mass of the adsorbent was added, stirred for 30 minutes, allowed to stand for 30 minutes, then Whatman Filter paper NO. The results of analyzing the filtrate using an ion chromatograph were collected and displayed in [Table 2]. The analysis method was carried out in accordance with the measurement method of JIS K0102, and the outline was described in [Table 1].

比較例1〜7
本発明による硫酸バンド添着の本吸着材の作用効果(又は発明性)を明確にさせるために、比較例として、硫酸バンド無添着品の試料添加量1.0及び0.5をそれぞれ比較例1、比較例2、硫酸バンド添着質量部数3及び3.5をそれぞれ比較例3、比較例4の吸着材として調製した。また、本吸着材の硫酸バンド添着に置換えて、実施例と同様にして硫酸第2鉄塩を1質量部、3質量部及び5質量部を添着させた吸着材を調製して、実施例と同様にして「汚染フッ素イオン吸着試験」に供し、それぞれ比較例5、6及び7として、その結果を[表2]に表示した。
Comparative Examples 1-7
In order to clarify the effect (or inventiveness) of the present adsorbent adhering to the sulfuric acid band according to the present invention, as comparative examples, the sample addition amounts 1.0 and 0.5 of the non-sulfuric acid band adsorbed product were respectively Comparative Example 1. Comparative Example 2 and parts 3 and 3.5 parts by mass of sulfuric acid band attached were prepared as the adsorbents of Comparative Example 3 and Comparative Example 4, respectively. Also, replacing the adsorbent with sulfuric acid band attachment, an adsorbent adsorbed with 1 part by mass, 3 parts by mass and 5 parts by mass of ferric sulfate was prepared in the same manner as in the examples. Similarly, it used for the "contamination fluoride ion adsorption test", and the result was displayed in [Table 2] as comparative examples 5, 6, and 7, respectively.

表2に表示した結果から明らかなように、本吸着材は、その担持硫酸バンドの担持量0.1〜2.5質量%に亘って、汚染フッ素イオンを吸着固定させる事がよく理解される。また、その作用効果は、硫酸バンドに置換えた硫酸第二鉄塩を示す比較例5〜7の結果と対比すると、本発明による環境保全用の浄水発生土系吸着材が、発揮させる汚染イオン種の吸着・固定化能が優れていることがよく理解される。  As is clear from the results shown in Table 2, it is well understood that the present adsorbent adsorbs and fixes contaminating fluorine ions over the supported amount of the supported sulfuric acid band of 0.1 to 2.5% by mass. . In addition, when compared with the results of Comparative Examples 5 to 7 showing the ferric sulfate salt substituted with the sulfate band, the action and effect are exhibited by the contaminated ion species that the water purification soil-based adsorbent for environmental conservation according to the present invention exhibits. It is well understood that the adsorption / immobilization ability is excellent.

表2Table 2

なお、表中のNO.1は信濃川浄水発生土基材を、NO.2は阿賀野川浄水発生土基材を、乾燥品は110℃×24時間乾燥させた本素吸着材を、また、その乾燥品を500℃×2時間仮焼させた本吸着材を仮焼品と表示する。  In the table, NO. 1 is the Shinanogawa water purification soil base material, NO. 2 is the Aganogawa water purification soil base material, the dried product is 110 ° C x 24 hours dried main adsorbent, and the dried product is calcined 500 ° C x 2 hours calcined product Is displayed.

実施例10〜15
実施例1〜9で調製した本吸着材を用いて、本吸着材の鉛、砒素、セレン、リン酸等の溶存汚染イオンに対しての吸着・固定化能を評価し、その結果を表3に表示した。なお、各イオンの吸着試験方法について:鉛はPbClを使用し、砒素ではHAsO・0.5HO、セレンでは、HSeO・HOを使用し、リンはリン酸アンモニウムを使用した。また、各イオンを約10ppmに調製し、その溶液100mlに対し吸着剤1gの割合で投入、攪拌30分、静置30分の後、ろ過を行い、ろ液について各対象イオンを[表1]における各JISKに基づき分析を行った。
Examples 10-15
Using this adsorbent prepared in Examples 1 to 9, the adsorbent was evaluated for its ability to adsorb and immobilize dissolved ions such as lead, arsenic, selenium and phosphoric acid, and the results are shown in Table 3. Displayed. Regarding the adsorption test method for each ion: PbCl 2 is used for lead, H 3 AsO 4 · 0.5H 2 O is used for arsenic, H 2 SeO 4 · H 2 O is used for selenium, and phosphoric acid is used for phosphorus. Ammonium was used. Further, each ion was prepared to about 10 ppm, and the adsorbent was added at a rate of 1 g with respect to 100 ml of the solution, followed by stirring for 30 minutes and standing for 30 minutes, followed by filtration. Analysis was performed based on each JISK.

表3Table 3

[表3]に表示した結果から明らかなように、本吸着材は、鉛、砒素、セレン及びリン酸等の汚染イオン種に対しても、汚染フッ素イオンに対して発揮させたと同様又は同程度の吸着・固定化能を示すことが理解される。  As is apparent from the results shown in [Table 3], the present adsorbent is the same as or similar to the case where it is exerted against contaminating fluorine ions, such as lead, arsenic, selenium and phosphoric acid. It is understood that it exhibits the ability to adsorb and immobilize.

実施例16〜18
本実施例において、A社より入手したフッ素イオンを溶存する汚染土材について、環境庁告示第46号における公害対策基本法第9条の規定に基づき、土壌の汚染に係る環境基準について告示された付表の測定方法に準じて、その溶存フッ素イオンを溶出させて、その溶出イオン量を測定した。その結果、溶出フッ素イオン濃度は3ppmであった。次いで、この汚染土材の100gに対して、実施例7で調製した本吸着剤を、それぞれ1,5,10及び20gを混合し、1日静置した。1日静置後の処理土材の2gをイオン交換水に懸濁し、30分間静置させた後PHを測定し、その結果を[表4]に表示した。
Examples 16-18
In this example, for contaminated soil materials that dissolve fluorine ions obtained from Company A, the attached table is notified of the environmental standards related to soil contamination based on the provisions of Article 9 of the Environmental Pollution Control Basic Law in Notification 46 of the Environment Agency According to the measurement method, dissolved fluorine ions were eluted and the amount of the eluted ions was measured. As a result, the eluted fluorine ion concentration was 3 ppm. Next, 1, 5, 10 and 20 g of the present adsorbent prepared in Example 7 were mixed with 100 g of this contaminated soil material, respectively, and allowed to stand for 1 day. 2 g of the treated soil after standing for 1 day was suspended in ion-exchanged water, allowed to stand for 30 minutes and then measured for PH. The results are shown in [Table 4].

次いで、汚染土材の100gに対して実施例8で使用した本吸着剤を1g、5g及び10gをそれぞれ添加混合して、それぞれ実施例16、17及び18として処理土材のフッ素溶出試験を行い、その結果を実施例16,17及び18として[表4]に表示した。併せて、本吸着剤未添加及び20gを添加混合した処理土材のフッ素溶出試験を行い、その結果を比較例13、14として、併せて[表4]に表示した。  Next, 1 g, 5 g and 10 g of the present adsorbent used in Example 8 were added to and mixed with 100 g of the contaminated soil material, respectively, and the fluorine elution test of the treated soil material was performed as Examples 16, 17 and 18, respectively. The results are shown in Table 4 as Examples 16, 17 and 18. In addition, a fluorine elution test was performed on the treated soil material to which the present adsorbent was not added and 20 g was added and mixed, and the results are shown in Table 4 as Comparative Examples 13 and 14.

以上から、[表4]に表示した結果から明らかなように、実汚染土材中に溶存する汚染フッ素イオンに対して、本吸着材が、効果的に吸着・固定化させることがよく理解される。また、このように本吸着材を汚染土材に添加させて資源化土材に再生された処理土材のPHは、6.5〜8.0で、何れも環境保全の観点で満足されるものである。  From the above, as is apparent from the results shown in [Table 4], it is well understood that the present adsorbent effectively adsorbs and immobilizes the contaminated fluorine ions dissolved in the actual contaminated soil material. The In addition, the pH of the treated soil material thus regenerated as a resource-recovered soil material by adding this adsorbent to the contaminated soil material is 6.5 to 8.0, both of which are satisfied from the viewpoint of environmental conservation. Is.

表4Table 4

実施例19
本実施例においては、実施例1〜9で調製したものと同様の本吸着材の乾燥物を、粒度10〜14meshの顆粒状に成型した後、温度500℃×1時間仮焼させて、本吸着材の顆粒状品を調製した。次いで、この顆粒状本吸着材の所定量をカラム(内径20mmφ、高さ64mm)に20ml充填させて、SV[空塔速度(hr−1)]≒10(hr−1)の条件で、上記実施例で調製し使用したと同様のフッ素イオン濃度10[mg/L]溶液を、フッ素イオン汚染水として用いた。
Example 19
In this example, after drying the adsorbent material similar to that prepared in Examples 1 to 9 into granules having a particle size of 10 to 14 mesh, it was calcined at a temperature of 500 ° C. for 1 hour. A granular product of the adsorbent was prepared. Next, 20 ml of a predetermined amount of this granular adsorbent is packed in a column (inner diameter 20 mmφ, height 64 mm), and under the condition of SV [superficial velocity (hr −1 )] ≈10 (hr −1 ) The same fluoride ion concentration 10 [mg / L] solution prepared and used in the examples was used as fluorine ion contaminated water.

即ち、この汚染水を上記カラムに供給させて汚染水の浄化処理を行った。その通液8時間後の分析結果、この汚染水中に溶存しているフッ素イオン濃度は0.6mg/Lであり、フッ素イオンは吸着除去され、連続して浄水された。  That is, the contaminated water was supplied to the column to purify the contaminated water. As a result of analysis 8 hours after the liquid flow, the concentration of fluorine ions dissolved in the contaminated water was 0.6 mg / L, and the fluorine ions were adsorbed and removed and continuously purified.

よって、本発明による環境保全用の浄水発生土系吸着材は、顆粒状に成型することで、汚染水中の汚染イオン種を吸着・除去させる浄水化剤として適宜好適に有用されることが判明された。  Therefore, it has been found that the water purification soil-based adsorbent for environmental conservation according to the present invention is suitably used suitably as a water purification agent that adsorbs and removes contaminating ion species in the contaminated water by molding it into granules. It was.

以上から、本発明によって、各種の浚渫汚泥、産業汚泥及び天然の土壌等の汚染土材に、本発明による環境保全用浄水発生土系吸着材を添加させて、この吸着材の作用効果(溶存イオン種の吸着・不溶化)が活かされて、従来から産業廃棄物として廃棄処分されていた汚染土材を、再資源化土材(路盤材、造成盛土材、築堤盛土材、スポーツグランド用土材、園芸用植生培土など)として、周辺の土壌、生物及び社会環境を保全させる有用土材として提供することができた。

Figure 2013013883
Figure 2013013883
Figure 2013013883
Figure 2013013883
From the above, according to the present invention, by adding the water-generating soil-based adsorbent for environmental conservation according to the present invention to various soil materials such as various sludge, industrial sludge and natural soil, the effect (dissolution) of this adsorbent Utilizing ionic species adsorption / insolubilization), contaminated soil materials that have been disposed of as industrial waste in the past can be recycled into recyclable soil materials (roadbed materials, reclaimed embankment materials, embankment embankment materials, sports ground soil materials, As vegetation cultivation soil for horticulture, etc., it could be provided as a useful soil material that preserves the surrounding soil, organisms and social environment.
Figure 2013013883
Figure 2013013883
Figure 2013013883
Figure 2013013883

Claims (6)

浄水発生土を担持基材に用いて、各種の汚泥や天然の土壌等の土材中に溶存する汚染イオン種を吸着・固定化させる環境保全用の浄水発生土系吸着材であって、
前記担持基材の110℃×24時間乾燥物換算の100質量部数当たり、硫酸バンドを無水物換算で0.1〜2.5質量部数範囲で添着させ、
てなることを特徴とする環境保全用の浄水発生土系吸着材。
A clean water generation soil-based adsorbent for environmental conservation that uses purified water generation soil as a supporting substrate to adsorb and immobilize polluted ion species dissolved in various sludge and natural soil materials,
Per 100 parts by mass of the support substrate at 110 ° C. × 24 hours in terms of dry matter, a sulfuric acid band is attached in the range of 0.1 to 2.5 parts by mass in terms of anhydride,
A soil-based adsorbent for generating water for environmental conservation.
前記担持基材が、110℃×24時間乾燥物換算で表す成分が、
SiO ; 30〜50 質量%
Al; 15〜50 質量%
Fe; 5〜15 質量%
その他 ; 5〜10 質量%
[*印のその他はIg−lossを除くCaO,MgO,KO,NaO,Cl,SO等の合量成分を示す。]
である請求項1に記載の環境保全用の浄水発生土系吸着材。
The component that the support substrate represents in terms of dry matter at 110 ° C. for 24 hours is:
SiO 2; 30 to 50 wt%
Al 2 O 3; 15~50 wt%
Fe 2 O 3; 5~15 wt%
Other * ; 5-10% by mass
[Others marked with * indicate total components such as CaO, MgO, K 2 O, Na 2 O, Cl, SO 4 excluding Ig-loss. ]
The water-purifying soil-based adsorbent for environmental conservation according to claim 1.
前記汚染イオン種がリン酸、フッ素、ヨウ素、セレン、鉛、セシウムの群から選ばれる少なくとも1種である請求項1又は2に記載の環境保全用の浄水発生土系吸着材。  The purified water-generating soil-based adsorbent for environmental conservation according to claim 1 or 2, wherein the contaminating ion species is at least one selected from the group consisting of phosphoric acid, fluorine, iodine, selenium, lead and cesium. 請求項1乃至3に記載する何れかの環境保全用の浄水発生土系吸着材を用いて、粒度4〜14meshに成型後、温度300℃〜500℃で仮焼させいることを特徴とする環境保全用の浄水発生土系顆粒状吸着材。  An environment characterized by being preliminarily calcined at a temperature of 300 ° C to 500 ° C after being molded into a particle size of 4 to 14 mesh using any one of the environmentally-purified water-purifying soil-based adsorbents according to claims 1 to 3. Soil-based granular adsorbent for water purification. 浄水場で多量に発生する浄水発生土を用いて、前記土材中に溶存する各種の汚染イオン種を吸着・固定化させる前記請求項1乃至3に記載する環境保全用の浄水発生土系吸着材の製造方法であって、
前記浄水発生土を固形分濃度換算で60〜90質量%に脱水又は乾燥させ、
次いで、前記浄水発生土の110℃×24時間乾燥物換算の100質量部数当たり、硫酸バンドの金属硫酸塩又はその水溶液を、硫酸バンドの無水物換算で0.1〜2.5質量部数範囲で添加させ、
次いで、混合(又は混練)・乾燥・(又は粉砕)させることを特徴とする環境保全用の浄水発生土系吸着材の製造方法。
The environmentally-accepted water purification soil-based adsorption according to any one of claims 1 to 3, wherein various pollutant ion species dissolved in the soil material are adsorbed and immobilized using a large amount of purified water generation soil generated at a water purification plant. A method of manufacturing a material,
The purified water generating soil is dehydrated or dried to 60 to 90% by mass in terms of solid content,
Next, per 100 parts by mass of the purified water generating soil at 110 ° C. × 24 hours in terms of dry matter, the metal sulfate of the sulfate band or its aqueous solution is in the range of 0.1 to 2.5 parts by mass in terms of anhydride of the sulfate band. Add
Next, a method for producing a purified water-generating soil-based adsorbent for environmental conservation, which is mixed (or kneaded), dried and / or pulverized.
請求項1乃至3に記載する何れかの環境保全用の浄水発生土系吸着材(=FWCS)を用いて、前記土材中に溶存する各種の汚染イオン種を吸着固定化させて、溶存汚染イオン種を環境庁基準値以下に低減させて有用土材に再生させる前記汚染土材の再資源化方法であって、
固形分濃度が60〜90質量%範囲にある前記土材の固形分換算の100質量部数当たり、前記FWCSを1〜10質量部数範囲で添加・混合(又は混練)させ、
次いで、風乾(又は乾燥)・解砕(又は粉砕)させることを特徴とする汚染土材の再資源化方法。
Using any one of the environmentally-conserved water-purifying soil-based adsorbents (= FWCS) according to claim 1 to 3, various contaminant ion species dissolved in the soil material are adsorbed and immobilized, and dissolved contamination A method for recycling contaminated soil material that reduces ionic species to a value less than the Environmental Agency standard value and regenerates it as useful soil material,
Per 100 parts by mass of the earth material in terms of solid content in the range of 60 to 90% by mass of solid content, the FWCS is added and mixed (or kneaded) in the range of 1 to 10 parts by mass,
Next, a method for recycling contaminated soil material, characterized by air drying (or drying) and crushing (or pulverization).
JP2011162555A 2011-07-06 2011-07-06 Water purification plant soil-based adsorbing material for environmental preservation, production method thereof and use thereof Withdrawn JP2013013883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162555A JP2013013883A (en) 2011-07-06 2011-07-06 Water purification plant soil-based adsorbing material for environmental preservation, production method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162555A JP2013013883A (en) 2011-07-06 2011-07-06 Water purification plant soil-based adsorbing material for environmental preservation, production method thereof and use thereof

Publications (1)

Publication Number Publication Date
JP2013013883A true JP2013013883A (en) 2013-01-24

Family

ID=47687099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162555A Withdrawn JP2013013883A (en) 2011-07-06 2011-07-06 Water purification plant soil-based adsorbing material for environmental preservation, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP2013013883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085471A (en) * 2017-11-06 2019-06-06 常陽化成株式会社 Production method of soil improving material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085471A (en) * 2017-11-06 2019-06-06 常陽化成株式会社 Production method of soil improving material

Similar Documents

Publication Publication Date Title
Ahmad et al. Sustainable management of water treatment sludge through 3 ‘R’concept
KR100860017B1 (en) Soil aggregate composition for civil engineering and construction materials using process sludge and manufacturing method thereof
KR100919620B1 (en) The artificial soil composition and its manufacturing method that using the industrial by-product for recovering an abandoned quarry mining
CN101955345B (en) Neutral inorganic composite material for dehydration, solidification and modification of high water content sludge
EP2003096B1 (en) Inorganic electrolyte setting agent capable of rendering heavy metal ion nonhazardous and method of treatment for utilization as resource therewith
Hendrych et al. Stabilisation/solidification of landfill leachate concentrate and its residue obtained by partial evaporation
JP2014057949A (en) Treatment method of pollution type waste gypsum and non-pollution type gypsum composition
CN103436265A (en) Reductive degradable stabilizer of polluted soil, bottom mud and sludge as well as preparation method and using method of stabilizer
JP2003225640A (en) Solidifying and insolubilizing agent for contaminated soil
KR100956593B1 (en) Manufacturing method of artificial soil by solidifying organic or inorganic sludge
JP2011036846A (en) Method of manufacturing moisture adsorbent, and moisture adsorbent
JP2011136311A (en) Development of adsorbent-insolubilizer for arsenic and heavy metals using natural zeolite as main raw material, and contaminated-soil reforming method
CN105084847A (en) Curing agent repairing heavy metal and lasting organic matter combined pollution bottom sediment
JP2006247645A (en) Modification treatment agent, modification treatment method of heat history silicate and binding shape body modified it
Pallewatta et al. Reprocessed construction and demolition waste as an adsorbent: An appraisal
Kamarzamann et al. Hydroxyapatite/Dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials
JP4958400B2 (en) Inorganic electrolytic coagulant capable of detoxifying heavy metal ions and detoxification treatment method
JP2006273921A (en) Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
Huang et al. Ceramsite made from drinking water treatment residue for water treatment: a critical review in association with typical ceramsite making
US7678192B2 (en) Method of solidifying and detoxifying soil, incinerated ash and coal ash and method of detoxifying polluted water containing dioxins and PCB
JP3455952B2 (en) How to fix harmful substances
KR101156737B1 (en) Additive for sludge solidifying agent, method of preparing the same, and solidification treatment method of sludge using the same
JP2009102518A (en) Treatment material for reducing heavy metals, treatment method for reducing heavy metals, method for manufacturing material for granulation treatment, and ground material
CN112676333A (en) Long-acting slow-release alkali granules for fixing soil heavy metals and preparation method thereof
CN111517439A (en) Compound phosphorus removal material based on collophanite and application method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007