JP2013013857A - Nitrification apparatus, and wastewater treating apparatus provided with the same - Google Patents

Nitrification apparatus, and wastewater treating apparatus provided with the same Download PDF

Info

Publication number
JP2013013857A
JP2013013857A JP2011148508A JP2011148508A JP2013013857A JP 2013013857 A JP2013013857 A JP 2013013857A JP 2011148508 A JP2011148508 A JP 2011148508A JP 2011148508 A JP2011148508 A JP 2011148508A JP 2013013857 A JP2013013857 A JP 2013013857A
Authority
JP
Japan
Prior art keywords
nitrification
carrier
tank
sludge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011148508A
Other languages
Japanese (ja)
Inventor
Naoki Abe
直樹 安部
Takeshi Takamori
毅 高森
Satoshi Kan
敏 韓
Kazunori Kaeri
一能 顧
Naoki Okuma
那夫紀 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2011148508A priority Critical patent/JP2013013857A/en
Priority to KR20120066014A priority patent/KR20130004877A/en
Priority to CN2012102242330A priority patent/CN102863083A/en
Publication of JP2013013857A publication Critical patent/JP2013013857A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/101Arranged-type packing, e.g. stacks, arrays
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a running cost and an equipment investment cost as much as possible while sufficiently utilizing high nitrification treatment efficiency by an inclusively fixing carrier, and moreover, to allow easy introduction also to an existing wastewater treatment plant having no primary sedimentation basin.SOLUTION: In the nitrification apparatus 10 where ammonia nitrogen in wastewater is subjected to nitrification treatment by nitrifying bacteria under an aerobic condition to obtain nitrate nitrogen, there is provided at least one series of a sludge-carrier nitrification line 58 that has: a sludge nitrification tank 12 in which wastewater flows and ammonia nitrogen is nitrified by active sludge 18 containing nitrifying bacteria; a solid-liquid separation tank 14 in which solid in nitrified water subjected to nitrification treatment in the sludge nitrification tank 12 is subjected to solid-liquid separation to obtain supernatant water; and a carrier nitrification tank 16 in which the supernatant water flows and ammonia nitrogen remaining in the supernatant water is nitrified by the inclusively fixing carrier 30 for inclusively fixing the nitrifying bacteria to obtain final nitrification treatment water and further a carrier separation screen 36 of the inclusively fixing carrier 30 is provided.

Description

本発明は硝化装置及び廃水処理装置に係り、特に、特にランニングコストや設備コストを抑制しながら高い硝化処理効率を得るための硝化装置を構築する技術に関する。   The present invention relates to a nitrification apparatus and a wastewater treatment apparatus, and more particularly to a technique for constructing a nitrification apparatus for obtaining high nitrification treatment efficiency while suppressing running costs and equipment costs.

アンモニア性窒素を含む廃水から窒素を除去する廃水処理装置としては、従来から活性汚泥循環変法が知られている。活性汚泥循環変法は、活性汚泥を使用した処理方法で、廃水を嫌気性の脱窒槽を介して好気性の硝化槽に送り、この硝化槽において活性汚泥中の硝化菌によってアンモニア性窒素を硝酸性窒素に硝化(酸化)する。そして、硝化した硝化水の一部を硝化槽から脱窒槽に戻して活性汚泥中の脱窒菌によって硝酸性窒素を窒素ガスに変換する。また、硝化槽で硝化処理された処理水の残部は最終沈殿池を介して放流される。   As a waste water treatment apparatus for removing nitrogen from waste water containing ammonia nitrogen, an activated sludge circulation modification method has been conventionally known. The activated sludge circulation method is a treatment method using activated sludge. Waste water is sent to an aerobic nitrification tank through an anaerobic denitrification tank, and ammonia nitrogen is nitrated by nitrifying bacteria in the activated sludge in this nitrification tank. Nitrates (oxidizes) to reactive nitrogen. Then, a part of the nitrified water that has been nitrified is returned from the nitrification tank to the denitrification tank, and nitrate nitrogen is converted into nitrogen gas by denitrifying bacteria in the activated sludge. Moreover, the remainder of the treated water nitrified in the nitrification tank is discharged through the final sedimentation basin.

しかし、活性汚泥による硝化処理は、硝化槽内に硝化菌を高濃度に維持できないため、高負荷運転を行うことができず、硝化処理効率が悪いという問題がある。このことから、近年、硝化槽に硝化菌を包括固定化した担体を投入する硝化促進型循環変法が行われている(例えば特許文献1)。この硝化促進型循環変法は、図14に示すように基本的な構成は活性汚泥循環変法と同様であり、包括固定化担体4が投入された硝化槽1で硝化された硝化水が脱窒槽2で脱窒処理され、処理水は最終沈殿池3で固液分離されてから放流される。しかし、包括固定化担体4を投入した硝化槽1には、担体流出を防止する担体分離スクリーン5が設けられるため、廃水の原水が流入する前段において廃水中の夾雑物等の目詰まり物質を除去するための最初沈殿池6が必須となる。この場合、包括固定化担体の硝化性能を上げるためには、担体粒径は小さくし(例えば3mm程度)、比表面積を大きくすることが好ましく、その担体4を硝化槽1から流入しないようにするには、目幅が1.5〜2mm程度の担体分離スクリーン5が必要になる。この場合、担体分離スクリーン5の目開きを大きくして夾雑物が目詰まりしないようにすると、担体の大きさも大きくせざるをえないので、上記の如く硝化処理効率が低下する。   However, the nitrification treatment with activated sludge has a problem that the nitrification bacteria cannot be maintained at a high concentration in the nitrification tank, so that a high load operation cannot be performed and the nitrification treatment efficiency is poor. For this reason, in recent years, a nitrification-promoting circulation modification method in which a carrier in which nitrifying bacteria are comprehensively immobilized is introduced into a nitrification tank has been performed (for example, Patent Document 1). As shown in FIG. 14, the nitrification promoting circulation modification method has the same basic configuration as the activated sludge circulation modification method, and the nitrification water nitrified in the nitrification tank 1 in which the entrapping immobilization carrier 4 is introduced is removed. The denitrification treatment is performed in the nitriding tank 2, and the treated water is separated into solid and liquid in the final sedimentation basin 3 and then discharged. However, since the nitrification tank 1 in which the entrapping immobilization carrier 4 is introduced is provided with a carrier separation screen 5 for preventing carrier outflow, clogging substances such as contaminants in the waste water are removed before the raw water of the waste water flows. The first settling basin 6 is essential. In this case, in order to improve the nitrification performance of the entrapping immobilization carrier, it is preferable to reduce the carrier particle size (for example, about 3 mm) and increase the specific surface area so that the carrier 4 does not flow from the nitrification tank 1. Requires a carrier separation screen 5 having a mesh width of about 1.5 to 2 mm. In this case, if the opening of the carrier separation screen 5 is increased so as to prevent clogging of impurities, the size of the carrier must be increased, so that the nitrification efficiency is reduced as described above.

特開2008−012383号公報JP 2008-012383 A

このように、包括固定化担体を用いた硝化装置は、活性汚泥を用いた硝化装置に比べて高い硝化処理効率が得られるが、下記に示す問題点がある。   As described above, the nitrification apparatus using the entrapping immobilization support can obtain higher nitrification efficiency than the nitrification apparatus using activated sludge, but has the following problems.

(1)包括固定化担体を購入する費用が必要になる。また、担体の添加量が多くなると酸素溶解効率が低下し、曝気量が多くなるデメリットがある。   (1) The cost for purchasing the entrapping immobilization carrier is required. Moreover, when the addition amount of the carrier increases, there is a demerit that the oxygen dissolution efficiency decreases and the aeration amount increases.

(2)硝化装置の前段には、廃水中の夾雑物等の目詰まり物質を除去するための固液分離槽(例えば最初沈殿池)を必要とするが、簡易的な処理法の場合、最初沈殿池等を有しない場合もある。したがって、包括固定化担体を用いた硝化装置を設置するには最初沈殿池などを設置して夾雑物を除去する必要があり、設備コストが高くなると共に、最初沈殿池のための用地確保が必要になる。   (2) A solid-liquid separation tank (for example, a first sedimentation tank) for removing clogging substances such as contaminants in the wastewater is required in the front stage of the nitrification apparatus. There may be no sedimentation pond. Therefore, in order to install the nitrification equipment using the entrapping immobilization support, it is necessary to install the first sedimentation basin etc. to remove the impurities, which increases the equipment cost and secures the site for the first sedimentation basin. become.

本発明はこのような事情に鑑みてなされたもので、包括固定化担体による高い硝化処理効率を充分に活用しつつ、ランニングコストや設備投資コストを極力押さえることができ、しかも最初沈殿池を有しない既設の廃水処理場にも容易に導入することのできる硝化装置及びそれを備えた廃水処理装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to suppress running costs and capital investment costs as much as possible while fully utilizing the high nitrification treatment efficiency of the entrapping immobilization support, and to have an initial settling basin. It is an object of the present invention to provide a nitrification apparatus that can be easily introduced into an existing wastewater treatment plant that does not, and a wastewater treatment apparatus including the nitrification apparatus.

本発明の硝化装置は前記目的を達成するために、廃水中のアンモニア性窒素を硝化菌により好気性条件下で硝化処理して硝酸性窒素にする硝化装置において、前記廃水が流入し、前記硝化菌を含む活性汚泥により前記アンモニア性窒素を硝化する汚泥用硝化槽と、前記汚泥用硝化槽で硝化処理された活性汚泥による硝化処理水中の固形分を固液分離して上澄み水を得る固液分離槽と、前記上澄み水が流入し、前記硝化菌を包括固定した包括固定化担体により前記上澄み水中に残存するアンモニア性窒素を硝化して最終硝化処理水を得ると共に、前記包括固定化担体の担体分離スクリーンが設けられた担体用硝化槽と、を有する汚泥・担体硝化ラインを少なくとも1系列備えたことを特徴とする。   In order to achieve the above object, the nitrification apparatus of the present invention is a nitrification apparatus in which ammonia nitrogen in waste water is nitrified under aerobic conditions by nitrifying bacteria to form nitrate nitrogen. Solid liquid to obtain supernatant water by solid-liquid separation of sludge nitrification tank that nitrifies ammonia nitrogen with activated sludge containing fungi, and solid content in nitrification water by activated sludge nitrified in the sludge nitrification tank Nitrogen nitrogen remaining in the supernatant water is nitrified by a entrapping immobilization carrier in which the supernatant water flows in and the nitrifying bacteria are entrapped and fixed to obtain a final nitrification treated water. And at least one series of sludge / carrier nitrification lines having a carrier nitrification tank provided with a carrier separation screen.

なお、硝化菌を包括固定するとは、純粋培養した硝化菌を包括固定する場合と、硝化菌を含む活性汚泥を包括固定する場合との両方を含む。また、特に断らなかったが、廃水は合成廃水ではないので、廃水中には、アンモニア性窒素の他に夾雑物やBOD成分等を含む。   In addition, entrapping and fixing nitrifying bacteria includes both cases where cultivated nitrifying bacteria are included and fixed and activated sludge containing nitrifying bacteria is included and fixed. Although not specifically stated, since the wastewater is not a synthetic wastewater, the wastewater contains impurities, BOD components and the like in addition to ammoniacal nitrogen.

本発明者は、廃水中のアンモニア性窒素の硝化を、汚泥用硝化槽での活性汚泥による汚泥硝化と担体用硝化槽での包括固定化担体による担体硝化とで分担することにより、汚泥用硝化槽の滞留時間を短くし且つ担体用硝化槽の容量(キャパシティ)を小さくしても高い硝化処理効率が得られるとの知見を得た。   The present inventor clarifies sludge nitrification by sharing the nitrification of ammonia nitrogen in wastewater by sludge nitrification by activated sludge in the sludge nitrification tank and carrier nitrification by the entrapping immobilization support in the carrier nitrification tank. It was found that high nitrification efficiency can be obtained even if the residence time of the tank is shortened and the capacity (capacity) of the carrier nitrification tank is reduced.

本発明の硝化装置によれば、廃水中のアンモニア性窒素の硝化処理を、汚泥硝化槽において硝化菌を含む活性汚泥で汚泥硝化を行い、固液分離槽で固形物を除去した上澄み水を得る。そして、この上澄み水を、担体用硝化槽において硝化菌を包括固定した包括固定化担体で担体硝化を行うようにした。   According to the nitrification apparatus of the present invention, nitrification of ammonia nitrogen in wastewater is performed, sludge nitrification is performed with activated sludge containing nitrifying bacteria in a sludge nitrification tank, and supernatant water from which solid matter is removed in a solid-liquid separation tank is obtained. . The supernatant water was subjected to carrier nitrification with a entrapping immobilization carrier in which nitrifying bacteria were entrapped and immobilized in a carrier nitrification tank.

これにより、廃水の全てを包括固定化担体の硝化槽で硝化する場合に比べて、包括固定化担体の使用量を大幅に低減できると共に曝気量も削減できるので、ランニング設備コストを低減できる。また、担体用硝化槽の容量(キャパシティ)を小さくしてコンパクト化することができると共に、担体用硝化槽の前段に固液分離槽があるので、担体用硝化槽の担体分離スクリーンが廃水中の夾雑物等の目詰まり物質で目詰まりすることもなく、運転管理も容易となる。   Thereby, compared to the case where all waste water is nitrified in the nitrification tank of the entrapping immobilization carrier, the usage amount of the entrapping immobilization carrier can be greatly reduced and the aeration amount can be reduced, so that the running equipment cost can be reduced. In addition, the capacity (capacity) of the carrier nitrification tank can be reduced, and the carrier nitrification tank has a solid-liquid separation tank in front of the carrier nitrification tank. Operation control is also facilitated without clogging with clogging substances such as foreign substances.

更によいことには、汚泥用硝化槽と固液分離槽(最終沈殿池)は、従来技術で述べたように既設の廃水処理場に備わっているので、固液分離槽の後段に担体用硝化槽のみを新設すれば、本願発明の硝化装置を構成することができ、既設の廃水処理場に容易に導入でき且つ設備コストも安価になる。   Even better, the sludge nitrification tank and the solid-liquid separation tank (final sedimentation basin) are installed in the existing wastewater treatment plant as described in the prior art, so that the nitrification for the carrier is placed after the solid-liquid separation tank. If only the tank is newly installed, the nitrification apparatus of the present invention can be configured, and can be easily introduced into an existing wastewater treatment plant, and the equipment cost can be reduced.

本発明の硝化装置においては、前記担体用硝化槽を迂回して前記上澄み水を前記硝化処理水の処理水配管にバイパスさせるバイパス配管と、前記上澄み水及び/又は前記硝化処理水のアンモニア性窒素濃度を測定する窒素濃度測定計と、前記上澄み水を前記担体用硝化槽と前記バイパス配管とに分配する上澄み水分配器と、前記濃度測定計の測定結果に基づいて前記上澄み水分配器を制御し、前記担体用硝化槽と前記バイパス配管とに分配する上澄み水分配量を調整する制御手段を備えることが好ましい。   In the nitrification apparatus of the present invention, a bypass pipe that bypasses the carrier nitrification tank and bypasses the supernatant water to the treatment water pipe of the nitrification water, and ammonia nitrogen of the supernatant water and / or the nitrification water A nitrogen concentration meter for measuring the concentration, a supernatant water distributor for distributing the supernatant water to the nitrification tank for carrier and the bypass pipe, and controlling the supernatant water distributor based on the measurement result of the concentration meter, It is preferable to include a control means for adjusting the amount of supernatant water distributed to the carrier nitrification tank and the bypass pipe.

なお、上澄み水分配器による担体用硝化槽と前記バイパス配管との分配比率は一方が100%の場合も含む。   The distribution ratio between the carrier nitrification tank and the bypass pipe by the supernatant water distributor includes the case where one is 100%.

このように構成することで、廃水中のアンモニア性窒素濃度の変動、廃水の水温の変動、廃水流量の変動等があっても、担体用硝化槽とバイパス配管とに流す上澄み水の分配量を制御することで、担体用硝化槽における負荷調整(例えば負荷の軽減)を行うことができる。   By configuring in this way, even if there are fluctuations in the concentration of ammoniacal nitrogen in the wastewater, fluctuations in the temperature of the wastewater, fluctuations in the wastewater flow rate, etc., the amount of supernatant water distributed to the nitrification tank for the carrier and the bypass pipe can be reduced. By controlling, load adjustment (for example, reduction of load) in the nitrification tank for carrier can be performed.

これにより、水質基準に見合った一定の硝化処理水を得ることができるだけでなく、担体用硝化槽を過剰に運転することもなくなるので、より効率的な運転が可能となる。   As a result, it is possible not only to obtain a fixed nitrification water that meets the water quality standard, but also to eliminate the excessive operation of the carrier nitrification tank, thereby enabling more efficient operation.

この場合、前記汚泥・担体硝化ラインに並列に設けられ、前記汚泥用硝化槽と前記固液分離槽とから構成される汚泥硝化ラインと、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとに前記廃水を分配する廃水分配器と、前記廃水の水質を測定する廃水測定計と、前記廃水測定計の測定結果に基づいて前記廃水分配器を制御し、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとに分配する廃水の分配量を調整する制御手段と、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとの上澄み水を合流させて前記汚泥・担体硝化ラインの担体用硝化槽に導入する合流配管と、を備えることがより好ましい。   In this case, provided in parallel with the sludge / carrier nitrification line, the sludge nitrification line composed of the sludge nitrification tank and the solid-liquid separation tank, the sludge / carrier nitrification line, and the sludge nitrification line A wastewater distributor that distributes wastewater; a wastewater meter that measures the quality of the wastewater; and the wastewater distributor that is controlled based on the measurement results of the wastewater meter, the sludge / carrier nitrification line and the sludge nitrification line Control means for adjusting the distribution amount of wastewater distributed to each other, and a merging pipe that joins the supernatant water of the sludge / carrier nitrification line and the sludge nitrification line and introduces it into the nitrification tank for the carrier of the sludge / carrier nitrification line And more preferably.

なお、廃水分配器による汚泥・担体硝化ラインと汚泥硝化ラインとの分配比率は一方が100%の場合も含む。   The distribution ratio between the sludge / carrier nitrification line and the sludge nitrification line by the wastewater distributor includes the case where one is 100%.

これにより、廃水の水質(例えば、アンモニア性窒素濃度、水温、水量)に応じて、汚泥用硝化槽に加わる負荷調整(例えば負荷の軽減)を行うことができるので、水質基準に見合った一定の硝化処理水をより効率的に得ることができる。   This makes it possible to adjust the load applied to the sludge nitrification tank (for example, to reduce the load) according to the quality of the wastewater (for example, ammonia nitrogen concentration, water temperature, amount of water). Nitrification water can be obtained more efficiently.

この場合、前記バイパス配管に代えて、前記担体用硝化槽を設けると更によい。これにより、廃水の水質(例えば、アンモニア性窒素濃度、水温、水量)に応じて、2つの担体用硝化槽によって担体硝化の負荷調整を行うことができる。これにより、バイパス配管の場合よりもフレキシビリティー性が向上する。したがって、汚泥用硝化槽及び担体用硝化槽の両方の負荷調整を行うことができるので、水質基準に見合った一定の硝化処理水をより効率的に得ることができる。   In this case, it is better to provide the carrier nitrification tank instead of the bypass pipe. Thereby, according to the quality of waste water (for example, ammonia nitrogen concentration, water temperature, amount of water), the load of carrier nitrification can be adjusted by the two carrier nitrification tanks. Thereby, flexibility improves compared with the case of bypass piping. Therefore, since it is possible to adjust the load in both the sludge nitrification tank and the carrier nitrification tank, it is possible to more efficiently obtain a fixed nitrification water that meets the water quality standard.

本発明の硝化装置においては、前記汚泥・担体硝化ラインに並列に設けられ、前記汚泥用硝化槽及び前記固液分離槽から構成された汚泥硝化ラインと、前記廃水の水質を測定する廃水測定計と、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとのライン選択を行うライン選択手段と、前記廃水測定計の測定結果に基づいて前記ライン選択手段を制御して、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとのうち使用するラインを選択する制御手段と、を備えることが好ましい。   In the nitrification apparatus of the present invention, a sludge nitrification line that is provided in parallel with the sludge / carrier nitrification line and includes the sludge nitrification tank and the solid-liquid separation tank, and a wastewater meter that measures the quality of the wastewater. Line selection means for performing line selection between the sludge / carrier nitrification line and the sludge nitrification line, and controlling the line selection means based on the measurement result of the wastewater meter, It is preferable to include a control unit that selects a line to be used from the sludge nitrification line.

これは、廃水の水質(例えば、アンモニア性窒素濃度、水温、水量)に応じて、汚泥用硝化槽と担体用硝化槽との負荷調整を行うための別態様であり、担体用硝化槽を有する汚泥・担体硝化ラインと担体用硝化槽を有しない汚泥硝化ラインとのうち使用するラインを選択できるようにしたものである。   This is another mode for adjusting the load between the sludge nitrification tank and the carrier nitrification tank according to the quality of the wastewater (for example, the concentration of ammoniacal nitrogen, the water temperature, the amount of water), and has a nitrification tank for the carrier. The line to be used can be selected from the sludge / carrier nitrification line and the sludge nitrification line without the carrier nitrification tank.

これにより、汚泥用硝化槽及び担体用硝化槽の両方の負荷調整を行うことができるので、水質基準に見合った一定の硝化処理水をより効率的に得ることができる。   Thereby, since load adjustment of both the nitrification tank for sludge and the nitrification tank for support | carrier can be performed, the fixed nitrification water corresponding to a water quality standard can be obtained more efficiently.

本発明の硝化装置においては、前記担体用硝化槽において、前記包括固定化担体は、該包括固定化担体が通過しない大きさの複数の通水孔が形成された容器内に流動可能に収納された状態で、前記担体用硝化槽に充填されていることが好ましい。   In the nitrification apparatus of the present invention, in the carrier nitrification tank, the entrapping immobilization carrier is stored in a container in which a plurality of water passage holes having a size that the entrapping immobilization carrier does not pass are formed to be flowable. In this state, it is preferable that the carrier nitrification tank is filled.

これにより、担体用硝化槽内では槽内を好気性にするためのエア曝気により容器が流動し、更に容器内で包括固定化担体が流動する。この2重の流動により、包括固定化担体と廃水との接触効率が良くなり、担体用硝化槽での硝化処理効率を向上させることができる。この場合、担体用硝化槽の前段に固液分離槽を設け、容器の通水孔を目詰まりさせる目詰まり物質を除去するので、通水孔が小さくても目詰まりしない。これにより、担体粒径が小さく硝化効率の良い包括固定化担体を容器内に収納できる。   Thereby, in the nitrification tank for carriers, the container flows by air aeration for making the inside of the tank aerobic, and further, the entrapping immobilization carrier flows in the container. By this double flow, the contact efficiency between the entrapping immobilization support and the waste water is improved, and the nitrification efficiency in the support nitrification tank can be improved. In this case, since a solid-liquid separation tank is provided in front of the carrier nitrification tank to remove clogging substances that clog the water passage holes of the container, clogging does not occur even if the water passage holes are small. Thereby, the entrapping immobilization carrier having a small carrier particle size and good nitrification efficiency can be stored in the container.

更には、容器を使用しない場合(包括固定化担体を担体用硝化槽に直接投入する場合)に比べて担体分離スクリーンの目幅を大きくすることができるので、担体分離スクリーンの簡略化、例えば市販の金網やパンチングメタル等を使用することが可能となる。   Furthermore, since the mesh width of the carrier separation screen can be increased as compared with the case where a container is not used (when the entrapping immobilization carrier is directly introduced into the carrier nitrification tank), the carrier separation screen can be simplified, for example, commercially available. It is possible to use a metal mesh or punching metal.

本発明の廃水処理装置は前記目的を達成するために、請求項1〜7の何れか1に記載の硝化装置と、前記硝化装置で硝化処理された硝化処理水中の硝酸性窒素を、脱窒菌により嫌気性条件下で脱窒処理して窒素ガスに変換する脱窒槽と、を備えたことを特徴とする。   In order to achieve the above object, a wastewater treatment apparatus according to the present invention uses the nitrification apparatus according to any one of claims 1 to 7 and nitrate nitrogen in nitrification water nitrified by the nitrification apparatus. And a denitrification tank for denitrification under anaerobic conditions to convert to nitrogen gas.

本発明は、本発明の硝化装置を組み込んだ廃水処理装置として構成し、硝化装置で処理された硝化処理水中の硝酸性窒素を脱窒槽で窒素ガスとして除去するようにしたものである。   The present invention is configured as a wastewater treatment apparatus incorporating the nitrification apparatus of the present invention, and nitrate nitrogen in nitrification water treated by the nitrification apparatus is removed as nitrogen gas in a denitrification tank.

本発明の廃水処理装置においては、前記脱窒槽は、前記硝化装置の前段に設けられ、前記担体用硝化槽で処理された最終硝化処理水の一部が循環配管を介して前記脱窒槽に循環されることが好ましい。   In the wastewater treatment apparatus of the present invention, the denitrification tank is provided in the front stage of the nitrification apparatus, and a part of the final nitrification water treated in the nitrification tank for the carrier is circulated to the denitrification tank through a circulation pipe. It is preferred that

脱窒槽を硝化装置の前段に配置することで、廃水中の有機物を脱窒菌の栄養源として効率的に使用することができる。   By disposing the denitrification tank in the front stage of the nitrification apparatus, the organic matter in the wastewater can be efficiently used as a nutrient source for the denitrifying bacteria.

本発明の廃水処理装置においては、前記脱窒槽の他に、前記硝化装置の後段に前記脱窒菌を包括固定した包括固定化担体を含む補助脱窒槽が設けられ、前記担体用硝化槽で処理された最終硝化処理水の残部に残留する硝酸性窒素を前記補助脱窒槽で窒素ガスに変換することが好ましい。   In the wastewater treatment apparatus of the present invention, in addition to the denitrification tank, an auxiliary denitrification tank including a entrapping immobilization support in which the denitrifying bacteria are comprehensively fixed is provided at a subsequent stage of the nitrification apparatus, and is treated in the nitrification tank for the carrier. It is preferable to convert nitrate nitrogen remaining in the remaining final nitrification water into nitrogen gas in the auxiliary denitrification tank.

担体用硝化槽で処理された最終硝化処理水中には硝酸性窒素が少量残留しているので、補助脱窒槽で確実に窒素ガスに変換することができる。   Since a small amount of nitrate nitrogen remains in the final nitrification water treated in the carrier nitrification tank, it can be reliably converted to nitrogen gas in the auxiliary denitrification tank.

以上説明したように本発明の硝化装置及びそれを備えた廃水処理装置によれば、包括固定化担体による高い硝化処理効率を充分に活用しつつ、ランニングコストや設備投資コストを極力押さえることができ、しかも最初沈殿池を有しない既設の廃水処理場にも容易に導入することができる。   As described above, according to the nitrification apparatus of the present invention and the wastewater treatment apparatus equipped with the nitrification apparatus, running costs and capital investment costs can be suppressed as much as possible while fully utilizing the high nitrification treatment efficiency by the entrapping immobilization support. Moreover, it can be easily introduced into an existing wastewater treatment plant that does not have a settling basin.

本発明の硝化装置の基本構成図Basic configuration diagram of nitrification apparatus of the present invention 容器に収納した包括固定化担体を担体用硝化槽に充填した説明図Explanatory drawing of filling the carrier nitrification tank with the entrapping immobilization carrier stored in the container 本発明の硝化装置の第1の実施の形態を説明する説明図Explanatory drawing explaining 1st Embodiment of the nitrification apparatus of this invention 本発明の硝化装置の第2の実施の形態を説明する説明図Explanatory drawing explaining 2nd Embodiment of the nitrification apparatus of this invention 本発明の硝化装置の第3の実施の形態を説明する説明図Explanatory drawing explaining 3rd Embodiment of the nitrification apparatus of this invention 本発明の硝化装置の第4の実施の形態を説明する説明図Explanatory drawing explaining 4th Embodiment of the nitrification apparatus of this invention 基本構成の硝化装置を組み込んだ廃水処理装置の説明図Illustration of wastewater treatment equipment incorporating a basic nitrification equipment 第1の実施の形態の硝化装置を組み込んだ廃水処理装置の説明図Explanatory drawing of the wastewater treatment apparatus incorporating the nitrification apparatus of the first embodiment 第2の実施の形態の硝化装置を組み込んだ廃水処理装置の説明図Explanatory drawing of the wastewater treatment equipment incorporating the nitrification device of the second embodiment 第3の実施の形態の硝化装置を組み込んだ廃水処理装置の説明図Explanatory drawing of the wastewater treatment equipment incorporating the nitrification device of the third embodiment 第4の実施の形態の硝化装置を組み込んだ廃水処理装置の説明図Explanatory drawing of the wastewater treatment equipment incorporating the nitrification device of the fourth embodiment 担体用硝化槽の後に脱窒槽を設けた廃水処理装置の説明図Explanatory drawing of the waste water treatment equipment which provided the denitrification tank after the nitrification tank for the carrier 本発明の硝化装置を用いた実施例のグラフExample graph using the nitrification apparatus of the present invention 従来の硝化促進型循環変法の説明図Illustration of a conventional nitrification-promoting circulation modification method

以下、添付図面に従って本発明に係る硝化装置及びそれを備えた廃水処理装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a nitrification apparatus according to the present invention and a wastewater treatment apparatus including the nitrification apparatus according to the present invention will be described in detail.

[硝化装置]
(基本構成)
図1は、本発明の硝化装置10の基本構成図である。
[Nitrification equipment]
(Basic configuration)
FIG. 1 is a basic configuration diagram of a nitrification apparatus 10 of the present invention.

図1に示すように、本発明の硝化装置10は主として、汚泥用硝化槽12と、固液分離槽14と、担体用硝化槽16と、で構成される。なお、図1では、汚泥用硝化槽12、固液分離槽14、及び担体用硝化槽16の各槽間における廃水の送液手段は省略している。また、図1では、汚泥用硝化槽12、固液分離槽14、及び担体用硝化槽16を離れた別個の槽として図示したが、1つの槽を3つの部屋に区画した一体的構造に形成してもよい。また、汚泥用硝化槽12と固液分離槽14とを1つの槽を2つに区画し、担体用硝化槽16のみを別槽とすることもできる。   As shown in FIG. 1, the nitrification apparatus 10 of the present invention mainly includes a sludge nitrification tank 12, a solid-liquid separation tank 14, and a carrier nitrification tank 16. In FIG. 1, wastewater feeding means between the sludge nitrification tank 12, the solid-liquid separation tank 14, and the carrier nitrification tank 16 is omitted. In FIG. 1, the sludge nitrification tank 12, the solid-liquid separation tank 14, and the carrier nitrification tank 16 are illustrated as separate tanks. However, one tank is formed into an integral structure divided into three rooms. May be. Alternatively, the sludge nitrification tank 12 and the solid-liquid separation tank 14 may be divided into two tanks, and only the carrier nitrification tank 16 may be a separate tank.

アンモニア性窒素を含有する廃水は、原水配管11を介して先ず汚泥用硝化槽12に流入する。なお、廃水中には、アンモニア性窒素の他に夾雑物やBOD成分等が含まれている。   Waste water containing ammonia nitrogen first flows into the sludge nitrification tank 12 through the raw water pipe 11. The wastewater contains impurities, BOD components and the like in addition to ammoniacal nitrogen.

汚泥用硝化槽12の槽内には硝化菌を含む活性汚泥18が浮遊していると共に、槽の底部には曝気管20が配置され、ブロア22から送られたエアが曝気管20から槽内に曝気される。これにより、廃水中のアンモニア性窒素を活性汚泥によって好気性条件下で汚泥硝化する。   Activated sludge 18 containing nitrifying bacteria floats in the tank of the sludge nitrification tank 12, and an aeration pipe 20 is disposed at the bottom of the tank, and the air sent from the blower 22 flows into the tank from the aeration pipe 20. Aerated. As a result, ammonia nitrogen in the wastewater is sludge nitrified with activated sludge under aerobic conditions.

なお、本発明の硝化装置10を組み込んでアンモニア性窒素廃水の硝化・脱窒を行う廃水処理装置を構築する場合には、後記するように、廃水は脱窒槽を介して汚泥用硝化槽12に流入するように構成することが好ましい。   In addition, when constructing a wastewater treatment apparatus that nitrifies and denitrifies ammonia nitrogen wastewater by incorporating the nitrification apparatus 10 of the present invention, the wastewater is passed to the sludge nitrification tank 12 via the denitrification tank, as will be described later. It is preferable to be configured to flow in.

次に、汚泥用硝化槽12において汚泥硝化された汚泥硝化水は、固液分離槽14に送られる。固液分離槽14では、汚泥硝化水中の固形分、特に汚泥用硝化槽12から汚泥硝化水に同伴した活性汚泥や夾雑物等の目詰まり物質を沈降させることにより固液分離して上澄み水を得る。固液分離槽14の底部に沈降した活性汚泥及び夾雑物は汚泥排出配管24を介して一部の汚泥が余剰汚泥として排出されると共に、汚泥返送配管26を介して後記する廃水処理装置の脱窒槽に返送される。   Next, the sludge nitrification water that has been nitrified in the sludge nitrification tank 12 is sent to the solid-liquid separation tank 14. In the solid-liquid separation tank 14, the solid content of the sludge nitrification water, in particular, activated sludge and contaminants accompanying the sludge nitrification water from the sludge nitrification tank 12 is settled to separate the solid liquid into the supernatant water. obtain. The activated sludge and contaminants that have settled at the bottom of the solid-liquid separation tank 14 are partly discharged as surplus sludge through the sludge discharge pipe 24 and removed from the wastewater treatment device described later via the sludge return pipe 26. Returned to the slick tank.

次に、固液分離槽14において得られた上澄み水は、担体用硝化槽16に送られる。担体用硝化槽16の槽内には硝化菌を包括固定した多数の包括固定化担体30が充填されていると共に、槽の底部には曝気管32が配置され、ブロア34から送られたエアが曝気管32から槽内に曝気される。また、担体用硝化槽16の硝化処理水の流出部には、包括固定化担体30が最終硝化処理水(以下、単に硝化処理水という)に同伴して流出するのを防止する担体分離スクリーン36が設けられる。これにより、上澄み水中に残存するアンモニア性窒素を好気性条件下で担体硝化すると共に、包括固定化担体30が硝化処理水に同伴して流出するのを防止する。   Next, the supernatant water obtained in the solid-liquid separation tank 14 is sent to the carrier nitrification tank 16. The tank of the carrier nitrification tank 16 is filled with a large number of entrapping immobilization carriers 30 entrapping and fixing nitrifying bacteria, and an aeration tube 32 is disposed at the bottom of the tank, so that the air sent from the blower 34 Aeration tube 32 aspirates the tank. Further, a carrier separation screen 36 for preventing the entrapping immobilization support 30 from flowing out along with the final nitrification water (hereinafter simply referred to as nitrification water) at the outflow portion of the nitrification water of the carrier nitrification tank 16. Is provided. As a result, the ammonia nitrogen remaining in the supernatant water is nitrified on the carrier under aerobic conditions, and the entrapping immobilization carrier 30 is prevented from flowing out along with the nitrification water.

担体用硝化槽16で担体硝化された硝化処理水は、処理水配管38を介して後記する廃水処理装置の脱窒槽に送られる。   The nitrification treated water nitrified in the carrier nitrification tank 16 is sent to a denitrification tank of a wastewater treatment apparatus to be described later via a treated water pipe 38.

図2に示すように、担体用硝化槽16において、包括固定化担体30は、該担体30が通過しない大きさの通水孔31が複数形成された容器33内に流動可能に収納された状態で、担体用硝化槽16に充填されていることが好ましい。容器33の大きさとしては、直径で50〜150mmの範囲が好ましい。容器33は、球体を2分割した2つの半球体33A,33Bで構成され、半球体33A,33B同士が分割部35で嵌合又はネジ溝によって螺合することにより一体化される。容器33の材質は、特に限定されないが、加工のし易さ、曝気管32からの曝気エアによって槽内で流動可能な比重であること等を考慮すると、プラスチック製であることが好ましい。そして、包括固定化担体30が収納された状態での容器33の比重は0.98〜1.02の範囲が好ましい。収納する担体30は流動性を考慮し、水に近い比重の0.98〜1.02としており、この範囲より小さいと液面に浮上し、大きいと槽底に沈降するため、流動させるための曝気動力が必要になる。このため、容器の比重についても同様とした。   As shown in FIG. 2, in the carrier nitrification tank 16, the entrapping immobilization carrier 30 is flowably accommodated in a container 33 in which a plurality of water passage holes 31 of a size that the carrier 30 does not pass are formed. Thus, the carrier nitrification tank 16 is preferably filled. The size of the container 33 is preferably in the range of 50 to 150 mm in diameter. The container 33 is composed of two hemispheres 33A and 33B obtained by dividing the sphere into two parts, and the hemispheres 33A and 33B are integrated by being fitted in the division part 35 or screwed together by a screw groove. The material of the container 33 is not particularly limited, but is preferably made of plastic in consideration of easiness of processing and specific gravity that allows the aeration air from the aeration pipe 32 to flow in the tank. And the specific gravity of the container 33 in the state in which the entrapping immobilization carrier 30 is accommodated is preferably in the range of 0.98 to 1.02. The carrier 30 to be stored has a specific gravity close to water of 0.98 to 1.02 in consideration of fluidity, and if it is smaller than this range, it floats on the liquid surface, and if larger, it sinks to the bottom of the tank. Aeration power is required. For this reason, the same applies to the specific gravity of the container.

また、容器33に収納する包括固定化担体30の収納率としては、容器33内容積の30%を上限とすることが好ましい。収納率が30%を超えると、容器33内での包括固定化担体30の活発な流動が阻害されるからである。   Further, it is preferable that the storage rate of the entrapping immobilization carrier 30 stored in the container 33 is 30% of the internal volume of the container 33. This is because when the storage rate exceeds 30%, the active flow of the entrapping immobilization carrier 30 in the container 33 is hindered.

これにより、担体用硝化槽16内では曝気管32から曝気されたエアによって、容器33が流動し、更に容器33内で包括固定化担体30が流動する。この2重の流動により、包括固定化担体30と廃水との接触効率が良くなり、担体用硝化槽16での硝化処理効率を向上させることができる。   Thereby, the container 33 flows by the air aerated from the aeration pipe 32 in the carrier nitrification tank 16, and the entrapping immobilization carrier 30 flows in the container 33. By this double flow, the contact efficiency between the entrapping immobilization carrier 30 and the waste water is improved, and the nitrification efficiency in the carrier nitrification tank 16 can be improved.

この場合、担体用硝化槽16の前段に固液分離槽14を設け、容器33の通水孔31を目詰まりさせる目詰まり物質を除去するようにしているので、通水孔31が目詰まりしない。これにより、包括固定化担体30の担体粒径が2〜5mmの小さいまま、容器33内に収納することができるので、容器33内での高い硝化性能を確保することができる。   In this case, the solid-liquid separation tank 14 is provided in front of the carrier nitrification tank 16 so as to remove clogging substances that clog the water passage holes 31 of the container 33, so that the water passage holes 31 are not clogged. . Thereby, since the carrier particle size of the entrapping immobilization carrier 30 can be accommodated in the container 33 while being as small as 2 to 5 mm, high nitrification performance in the container 33 can be ensured.

更には、担体分離スクリーン36の目幅を容器33がない場合に比べて大きくすることができるので、担体分離スクリーン36の簡略化、例えば市販の金網やパンチングメタル等を使用することが可能となる。例えば、容器33の大きさが直径100mmの場合は、この大きさの容器33が流出しなければよく、例えば50〜80mm角の孔を有する金網やパンチングメタルを使用できる。これにより、挟雑物が担体分離スクリーン36に付着し、閉塞することがないので、その運転管理性は図1の包括固定化担体30を担体用硝化槽16に直接充填する際の担体分離スクリーン36よりも格段に容易となる。   Furthermore, since the mesh width of the carrier separation screen 36 can be increased as compared with the case without the container 33, the carrier separation screen 36 can be simplified, for example, a commercially available wire mesh or punching metal can be used. . For example, when the size of the container 33 is 100 mm in diameter, it is sufficient that the container 33 of this size does not flow out. For example, a metal net or a punching metal having a 50 to 80 mm square hole can be used. As a result, the foreign matter does not adhere to the carrier separation screen 36 and is not clogged. Therefore, the operation controllability is the carrier separation screen when the entrapping immobilization carrier 30 of FIG. It becomes much easier than 36.

上記したように、本発明の硝化装置10では、廃水中のアンモニア性窒素の硝化を、汚泥用硝化槽12での汚泥硝化と担体用硝化槽16での担体硝化とで分担することにより、下記に示す多くのメリットを得ることができる。   As described above, in the nitrification apparatus 10 of the present invention, the nitrification of ammonia nitrogen in wastewater is shared by the sludge nitrification in the sludge nitrification tank 12 and the carrier nitrification in the support nitrification tank 16, as follows. Many benefits can be obtained.

(A)汚泥用硝化槽12の滞留時間を短くし且つ担体用硝化槽16の容量(キャパシティ)を小さくしても高い硝化処理効率を得ることができる。これにより、同じ処理水品質基準で比較した場合、廃水の全てを包括固定化担体の硝化槽で硝化する従来の硝化促進型循環変法に比べて滞留時間がやや長くなるものの、従来の活性汚泥循環変法に比べて滞留時間を約半分にすることができる。しかも、従来の硝化促進型循環変法に比べて包括固定化担体の使用量を大幅に低減できると共に曝気量も削減できる。これにより、ランニングコストを低減できると共に、担体用硝化槽の容量(キャパシティ)を小さくしてコンパクト化することができる。   (A) Even if the residence time of the sludge nitrification tank 12 is shortened and the capacity (capacity) of the carrier nitrification tank 16 is reduced, high nitrification treatment efficiency can be obtained. As a result, when compared with the same quality standard of treated water, the residence time is slightly longer compared to the conventional nitrification-promoted circulation modified method in which all wastewater is nitrified in the nitrification tank of the entrapping immobilization support, but the conventional activated sludge The residence time can be halved compared with the circulation method. In addition, the amount of the entrapping immobilization carrier used can be greatly reduced and the amount of aeration can be reduced as compared with the conventional nitrification promotion type circulation modification method. As a result, the running cost can be reduced, and the capacity (capacity) of the carrier nitrification tank can be reduced to make it compact.

ちなみに、活性汚泥18と包括固定化担体30とを1つの槽に共存させて硝化処理する場合は、包括固定化担体30と活性汚泥18との硝化性能の区分ができない。したがって、設計上、硝化槽に過剰の包括固定化担体を充填せざるを得ないため、多量の包括固定化担体を必要とした。   Incidentally, when the activated sludge 18 and the entrapping immobilization support 30 are coexisting in one tank and nitrification is performed, the nitrification performance of the entrapping immobilization support 30 and the activated sludge 18 cannot be classified. Therefore, a large amount of entrapping immobilization support is required because the nitrification tank must be filled with an excess of entrapping immobilization support by design.

(B)また、汚泥用硝化槽12と担体用硝化槽16との間に固液分離槽14を設けたことにより、担体用硝化槽16には活性汚泥が存在しないか、存在しても微々たる量である。したがって、上澄み水は清水に性状が近く、通常の活性汚泥に比べて酸素溶解効率が高いので、担体用硝化槽16でのエア曝気量を低減できる。   (B) Further, by providing the solid-liquid separation tank 14 between the sludge nitrification tank 12 and the carrier nitrification tank 16, there is no activated sludge in the carrier nitrification tank 16 or even if it exists. It is a dripping amount. Therefore, the supernatant water has properties close to those of fresh water and has higher oxygen dissolution efficiency than ordinary activated sludge, so that the amount of air aeration in the carrier nitrification tank 16 can be reduced.

(C)担体用硝化槽16の前段に固液分離槽14があるので、担体用硝化槽16の担体分離スクリーン36が廃水中の夾雑物等の目詰まり物質で目詰まりすることもない。この場合、図2のように包括固定化担体30を容器33に収納すれば、容器33に形成された通水孔31の目詰まりを防止でき且つ担体分離スクリーン36の目幅を大きくできる。   (C) Since the solid-liquid separation tank 14 is provided in front of the carrier nitrification tank 16, the carrier separation screen 36 of the carrier nitrification tank 16 is not clogged with clogging substances such as contaminants in the wastewater. In this case, if the entrapping immobilization carrier 30 is housed in the container 33 as shown in FIG. 2, clogging of the water passage holes 31 formed in the container 33 can be prevented and the mesh width of the carrier separation screen 36 can be increased.

(D)汚泥用硝化槽12と固液分離槽14(例えば最終沈殿池)は、従来技術で述べたように既設の廃水処理場に備わっているので、既設の汚泥用硝化槽12と固液分離槽14の後段に担体用硝化槽のみを新設すれば、本願発明の硝化装置を構成することができる。これにより、既設の廃水処理場に簡単に導入できると共に設備コストも安価になる。   (D) Since the sludge nitrification tank 12 and the solid-liquid separation tank 14 (for example, the final sedimentation basin) are provided in an existing wastewater treatment plant as described in the prior art, the existing sludge nitrification tank 12 and solid-liquid If only the nitrification tank for carrier is newly provided in the subsequent stage of the separation tank 14, the nitrification apparatus of the present invention can be configured. As a result, it can be easily introduced into an existing wastewater treatment plant and the equipment cost is reduced.

(E)担体用硝化槽16では、汚泥用硝化槽12で汚泥硝化した残りのアンモニア性窒素を硝化処理するために、従来の活性汚泥循環変法や硝化促進型循環変法に比べて低濃度のアンモニア性窒素を硝化処理することになる。包括固定化担体30は低濃度のアンモニア性窒素に対しても高速で硝化処理が可能であり、硝化処理水の品質を向上できる。   (E) The carrier nitrification tank 16 has a lower concentration than the conventional activated sludge circulation modification method or the nitrification promotion circulation modification method in order to nitrify the remaining ammonia nitrogen that has been nitrified in the sludge nitrification tank 12. Ammonia nitrogen is nitrified. The entrapping immobilization carrier 30 can be nitrified at a high speed even for low-concentration ammoniacal nitrogen, and the quality of nitrification water can be improved.

(F)本発明の硝化装置10は、活性汚泥循環変法のような既設の廃水処理場に改造をすることなく導入できるだけでなく、オキシデションディッチ法(OD法)やシーケンスバッチリアクター法(SBR法)を備えた既設の廃水処理場であっても改造することなく導入することができる。   (F) The nitrification apparatus 10 of the present invention can be introduced into an existing wastewater treatment plant such as an activated sludge circulation modified method without modification, as well as an oxidation ditch method (OD method) or a sequence batch reactor method (SBR). Even existing wastewater treatment plants equipped with the Act) can be introduced without modification.

ここで包括固定化担体30について説明する。   Here, the entrapping immobilization carrier 30 will be described.

本発明における包括固定化担体30は、硝化菌を含む微生物を混合した固定化材料を重合することにより、微生物を固定化材料内に包括固定化したものであり、粒径が1〜5mm程度(通常3mm)のものが使用される。固定化材料は、高分子モノマー、プレポリマー、オリゴマー等が挙げられるが、特に限定されるものではなく、例えば、ポリアクリルアミド、ポリビニルアルコール、ポリエチレングリコール、アルギン酸ナトリウム、カラギーナン、寒天、等を用いることができる。その他、固定化材料のプレポリマーは、以下のものを用いることができる。   The entrapping immobilization carrier 30 in the present invention is obtained by polymerizing an immobilization material mixed with microorganisms containing nitrifying bacteria, thereby immobilizing microorganisms in the immobilization material, and has a particle size of about 1 to 5 mm ( Usually 3 mm) is used. Examples of the immobilization material include polymer monomers, prepolymers, oligomers and the like, but are not particularly limited. For example, polyacrylamide, polyvinyl alcohol, polyethylene glycol, sodium alginate, carrageenan, agar, etc. may be used. it can. In addition, the following can be used for the prepolymer of the immobilization material.

(モノメタクリレート類)ポリエチレングリコールモノメタクリレート、ポリプレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メタクリロイルオキシエチルハイドロジェンフタレート、メタクリロイルオキシエチルハイドロジェンサクシネート、3クロロ2ヒドロキシプロピルメタクリレート、ステアリルメタクリレート、2ヒドロキシメタクリレート、エチルメタクリレート等。   (Monomethacrylates) Polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polypropylene glycol monomethacrylate, methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, methacryloyloxyethyl hydrogen phthalate, methacryloyloxyethyl hydrogen succinate, 3chloro-2hydroxypropyl Methacrylate, stearyl methacrylate, 2-hydroxy methacrylate, ethyl methacrylate, etc.

(モノアクリレート類)2ヒドロキシエチルアクリレート、2ヒドロキシプロピルアクリレート、イソブチルアクリレート、tブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロへキシルアクリレート、メトキシトリエチレングリコールアクリレート、2エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、フェノキシエチルアクリレート、ノニルフェノキシポリエチレングリコールアクリレート、ノニルフェノキシポリプロピレングリコールアクリレート、シリコン変性アクリレート、ポリプロピレングリコールモノアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、アクリロイルアキシエチルハイドロジェンサクシネート、ラウリルアクリレート等。   (Monoacrylates) 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobutyl acrylate, tbutyl acrylate, isooctyl acrylate, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, methoxytriethylene glycol acrylate, 2 ethoxy Ethyl acrylate, tetrahydrofurfuryl acrylate, phenoxy ethyl acrylate, nonyl phenoxy polyethylene glycol acrylate, nonyl phenoxy polypropylene glycol acrylate, silicon modified acrylate, polypropylene glycol monoacrylate, phenoxy ethyl acrylate, phenoxy diethylene glycol acrylate, phenoxy polyethylene Glycol acrylate, methoxy polyethylene glycol acrylate, acryloyl luer carboxyethyl hydrogen succinate, lauryl acrylate.

(ジメタクリレート類)1,3ブチレングリコールジメタクリレート、1,4ブタンジオールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ブチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリプレングリコールジメタクリレート、2ヒドロキシ1,3ジメタクリロキシプロパン、2,2ビス4メタクリロキシエトキシフェニルプロパン、3,2ビス4メタクリロキシジエトキシフェニルプロパン、2,2ビス4メタクリロキシポリエトキシフェニルプロパン等。   (Dimethacrylates) 1,3 butylene glycol dimethacrylate, 1,4 butanediol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, butylene glycol dimethacrylate, hexanediol dimethacrylate , Neopentyl glycol dimethacrylate, polyprene glycol dimethacrylate, 2hydroxy 1,3 dimethacryloxypropane, 2,2bis4methacryloxyethoxyphenylpropane, 3,2bis4methacryloxydiethoxyphenylpropane, 2,2bis 4-methacryloxypolyethoxyphenylpropane and the like.

(ジアクリレート類)エトキシ化ネオペンチルグリコールジアクリレート、ポリエチレングリコールジアクリレート、1,6ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2ビス4アクリロキシヒエトキシフェニルプロパン、2ヒドロキシ1アクリロキシ3メタクリロキシプロパン等。   (Diacrylates) Ethoxylated neopentyl glycol diacrylate, polyethylene glycol diacrylate, 1,6 hexanediol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, 2,2 bis 4-acryloxy Hiethoxyphenylpropane, 2-hydroxy 1-acryloxy 3-methacryloxy propane, and the like.

(トリメタクリレート類)トリメチロールプロパントリメタクリレート等。   (Trimethacrylates) Trimethylolpropane trimethacrylate and the like.

(トリアクリレート類)トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパンEO付加トリアクリレート、グリセリンPO付加トリアクリレート、エトキシ化トリメチロールプロパントリアクリレート等。   (Triacrylates) Trimethylolpropane triacrylate, pentaerythritol triacrylate, trimethylolpropane EO addition triacrylate, glycerin PO addition triacrylate, ethoxylated trimethylolpropane triacrylate, and the like.

(テトラアクリレート類)ペンタエリスリトールテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、プロポキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート等。   (Tetraacrylates) Pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetraacrylate, propoxylated pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate and the like.

(ウレタンアクリレート類)ウレタンアクリレート、ウレタンジメチルアクリレート、ウレタントリメチルアクリレート等。   (Urethane acrylates) Urethane acrylate, urethane dimethyl acrylate, urethane trimethyl acrylate, and the like.

(その他)アクリルアミド、アクリル酸、ジメチルアクリルアミド。   (Others) Acrylamide, acrylic acid, dimethylacrylamide.

また、本発明での重合は、過硫酸カリウムを用いたラジカル重合が最適であるが、紫外線や電子線を用いた重合やレドックス重合でもよい。過硫酸カリウムを用いた重合では、過硫酸カリウムの添加量を0.001〜0.25%がよく、アミン系の重合促進剤を0.001〜0.5%添加するとよい。アミン系の重合促進剤としてはβジメチルアミノプロピオニトリル、NNN’N’テトラメチルエチレンジアミン、亜硫酸ソーダなどがよい。   In addition, radical polymerization using potassium persulfate is optimal for the polymerization in the present invention, but polymerization using ultraviolet light or electron beam or redox polymerization may be used. In the polymerization using potassium persulfate, the amount of potassium persulfate added is preferably 0.001 to 0.25%, and an amine-based polymerization accelerator is preferably added to 0.001 to 0.5%. As the amine-based polymerization accelerator, β-dimethylaminopropionitrile, NNN′N ′ tetramethylethylenediamine, sodium sulfite and the like are preferable.

また、固定化材料内に包括固定化する硝化菌としては、純粋培養したものでもよいが、硝化菌を含有する活性汚泥を包括固定化することがより好ましい。この理由は、固定化材料に溶解している酸素は重合を阻害するが、活性汚泥を包括固定化することで、活性汚泥が酸素を消費し重合反応を順調に進行させるので、強度の強い包括固定化担体30を得ることができる。   The nitrifying bacteria to be entrapped and immobilized in the immobilization material may be purely cultured, but it is more preferable to entrap and immobilize activated sludge containing nitrifying bacteria. The reason for this is that oxygen dissolved in the immobilization material inhibits polymerization, but by entrapping and immobilizing activated sludge, activated sludge consumes oxygen and the polymerization reaction proceeds smoothly. The immobilization carrier 30 can be obtained.

かかる硝化装置10は、廃水のアンモニア性窒素濃度、水温、水量の少なくとも1つの因子の変動に伴う硝化処理水の水質変動を防止するために、汚泥用硝化槽12と担体用硝化槽16との負荷調整を行う負荷調整機構を具備することが好ましい。以下、負荷調整機構の各種態様を説明する。   The nitrification apparatus 10 includes a sludge nitrification tank 12 and a carrier nitrification tank 16 in order to prevent fluctuations in the quality of nitrification water due to fluctuations in at least one factor of ammonia nitrogen concentration, water temperature, and water volume of wastewater. It is preferable to provide a load adjustment mechanism that performs load adjustment. Hereinafter, various aspects of the load adjustment mechanism will be described.

(負荷調整機構を具備した硝化装置の第1の実施の形態)
図3は、負荷調整機構を担体用硝化槽16のみに設けた場合である。
(First embodiment of nitrification apparatus equipped with load adjustment mechanism)
FIG. 3 shows a case where the load adjusting mechanism is provided only in the carrier nitrification tank 16.

なお、基本構成は図1と同様なので、図1と異なる構成のみを説明する。   Since the basic configuration is the same as in FIG. 1, only the configuration different from that in FIG. 1 will be described.

図3に示すように、負荷調整機構は、担体用硝化槽16を迂回して上澄み水を処理水配管38にバイパスさせるバイパス配管40と、上澄み水を担体用硝化槽16とバイパス配管40とに分配する上澄み水分配器42と、上澄み水のアンモニア性窒素濃度を測定する第1濃度測定計44Aと、硝化処理水のアンモニア性窒素を測定する第2濃度測定計44Bと、第1及び第2濃度測定計44A,44Bの測定結果に基づいて上澄み水分配器42を駆動して担体用硝化槽16とバイパス配管40への分配比率を制御する制御手段46と、で構成される。   As shown in FIG. 3, the load adjusting mechanism bypasses the support nitrification tank 16 and bypasses the supernatant water to the treated water pipe 38, and the supernatant water is transferred to the support nitrification tank 16 and the bypass pipe 40. The supernatant water distributor 42 to be distributed, the first concentration meter 44A for measuring the ammonia nitrogen concentration of the supernatant water, the second concentration meter 44B for measuring ammonia nitrogen of the nitrification water, and the first and second concentrations The control unit 46 is configured to drive the supernatant water distributor 42 based on the measurement results of the measuring meters 44A and 44B to control the distribution ratio to the carrier nitrification tank 16 and the bypass pipe 40.

制御手段46は、第1濃度測定計44Aで測定される上澄み水のアンモニア性窒素濃度、及び第2濃度測定計44Bで測定される処理水のアンモニア性窒素濃度に基づいて、担体用硝化槽16とバイパス配管40とに分配する分配比率を調整して、硝化処理水が目標の品質基準で一定になるように制御する。分配比率は一方が100%で他方が0%の場合も含む。   Based on the ammonia nitrogen concentration of the supernatant water measured by the first concentration meter 44A and the ammonia nitrogen concentration of the treated water measured by the second concentration meter 44B, the control means 46 controls the nitrification tank 16 for the carrier. And the distribution ratio to be distributed to the bypass pipe 40 are controlled so that the nitrification water becomes constant at the target quality standard. The distribution ratio includes the case where one is 100% and the other is 0%.

例えば、冬期のように廃水の水温が低くなると、活性汚泥18の硝化活性が低下するので、汚泥用硝化槽12で汚泥硝化された上澄み水中には、アンモニア性窒素の残量が多くなり易い。したがって、第1濃度測定計44Aでの測定結果が高くなるので、制御手段46は、バイパス配管40に流す上澄み水の流量を減らして担体用硝化槽16に流す流量を多くする。逆に、夏期のように廃水の水温が高く活性汚泥18の硝化活性が高い場合には、制御手段46はバイパス配管40に流す上澄み水の流量を多くして担体用硝化槽16に流す流量を減らす。これにより、季節に関係なく硝化処理水の水質を一定に維持することができる。また、夏期には、担体用硝化槽16への処理水量を低減することにより、無駄な曝気量を低減できる。更には、バイパス配管40側の流量を100%とすることで、担体用硝化槽16の運転を停止し、ランニングコストを低減することもできる。   For example, when the temperature of the waste water is lowered as in the winter season, the nitrification activity of the activated sludge 18 is lowered, and therefore the remaining amount of ammonia nitrogen tends to increase in the supernatant water that has been nitrified in the sludge nitrification tank 12. Therefore, since the measurement result in the first concentration meter 44A becomes high, the control means 46 decreases the flow rate of the supernatant water flowing to the bypass pipe 40 and increases the flow rate to flow to the carrier nitrification tank 16. On the contrary, when the temperature of the wastewater is high and the nitrification activity of the activated sludge 18 is high as in the summer, the control means 46 increases the flow rate of the supernatant water flowing to the bypass pipe 40 and sets the flow rate to flow to the carrier nitrification tank 16. cut back. Thereby, the quality of the nitrification water can be kept constant regardless of the season. In summer, the amount of wasteful aeration can be reduced by reducing the amount of treated water to the carrier nitrification tank 16. Furthermore, by setting the flow rate on the bypass pipe 40 side to 100%, the operation of the carrier nitrification tank 16 can be stopped, and the running cost can be reduced.

なお、図3には、第1濃度測定計44Aと第2濃度測定計44Bとの両方を設けた図で示したが、第1濃度測定計44Aと第2濃度測定計44Bとの何れか一方を設けることもできる。   FIG. 3 is a diagram in which both the first concentration measuring meter 44A and the second concentration measuring meter 44B are provided, but either one of the first concentration measuring meter 44A or the second concentration measuring meter 44B is shown. Can also be provided.

(負荷調整機構を具備した硝化装置の第2の実施の形態)
図4は、負荷調整機構を、汚泥用硝化槽12と担体用硝化槽16との両方に設けた場合であり、担体用硝化槽16側の負荷調整機構は図3で説明したと同様であるので説明は省略する。
(Second embodiment of nitrification apparatus equipped with load adjustment mechanism)
FIG. 4 shows a case where the load adjustment mechanism is provided in both the sludge nitrification tank 12 and the carrier nitrification tank 16, and the load adjustment mechanism on the carrier nitrification tank 16 side is the same as described in FIG. Therefore, explanation is omitted.

図4に示すように、汚泥用硝化槽12側の負荷調整機構は、汚泥用硝化槽12、固液分離槽14、及び担体用硝化槽16から構成される汚泥・担体硝化ライン58に、汚泥用硝化槽12と固液分離槽14とから構成される汚泥硝化ライン60が並列に配置されることにより構成される。換言すると、汚泥用硝化槽12A,12B及び固液分離槽14A,14Bからなる汚泥硝化ライン60が2列並列に設けられ、その後段にバイパス配管40を備えた担体用硝化槽16が1槽設けられる。そして、廃水が廃水分配器50及び分岐配管52によって2列の汚泥硝化ライン60に分配される。分配比率は一方が100%の場合も含む。   As shown in FIG. 4, the load adjusting mechanism on the sludge nitrification tank 12 side is provided with a sludge / carrier nitrification line 58 including a sludge nitrification tank 12, a solid-liquid separation tank 14, and a carrier nitrification tank 16. The sludge nitrification line 60 composed of the nitrification tank 12 for use and the solid-liquid separation tank 14 is arranged in parallel. In other words, the sludge nitrification line 60 composed of the sludge nitrification tanks 12A and 12B and the solid-liquid separation tanks 14A and 14B is provided in parallel, and the support nitrification tank 16 provided with the bypass pipe 40 in the subsequent stage is provided. It is done. Then, the waste water is distributed to the two sludge nitrification lines 60 by the waste water distributor 50 and the branch pipe 52. The distribution ratio includes the case where one is 100%.

なお図4では、汚泥硝化ライン60を2列設けたが3列以上でもよい。   In FIG. 4, two rows of sludge nitrification lines 60 are provided, but three or more rows may be used.

原水配管11には、廃水のアンモニア性窒素濃度を測定する窒素濃度測定計、廃水の水温を計測する水温計、廃水の水量を計測する原水水量計の少なくとも1つが設けられ、測定された測定結果が制御手段56に入力される。なお、窒素濃度測定計、水温計、原水水量計は全て設けることは必須ではなく、変動の大きな廃水ファクターの測定計を設ければよい。ここでは、水温計54を設けた場合で説明する。そして、制御手段56は、水温計54で測定される廃水の水温が低い場合には、廃水分配器50を制御して、2列の汚泥硝化ライン60に廃水を2等分する。   The raw water pipe 11 is provided with at least one of a nitrogen concentration meter for measuring the ammonia nitrogen concentration of the waste water, a water temperature meter for measuring the temperature of the waste water, and a raw water meter for measuring the amount of the waste water, and the measured measurement results Is input to the control means 56. In addition, it is not essential to provide a nitrogen concentration meter, a water temperature meter, and a raw water meter, and a waste water factor meter having a large variation may be provided. Here, the case where the water temperature gauge 54 is provided will be described. Then, when the temperature of the waste water measured by the water temperature gauge 54 is low, the control means 56 controls the waste water distributor 50 to divide the waste water into two equal parts to the two rows of sludge nitrification lines 60.

これにより、冬期のように廃水の水温が低く活性汚泥18の硝化活性が顕著に低下する場合であっても、汚泥用硝化槽12の1槽当たりの負荷が軽減されるので、硝化処理効率が低下しないようにできる。逆に、夏期のように廃水の水温が高く活性汚泥18の硝化活性が高くなる場合には、1列の汚泥硝化ライン60のみに廃水を流す。   As a result, even if the temperature of the wastewater is low and the nitrification activity of the activated sludge 18 is significantly reduced as in winter, the load per tank of the sludge nitrification tank 12 is reduced. It can be prevented from dropping. On the other hand, when the temperature of the wastewater is high and the nitrification activity of the activated sludge 18 is high as in summer, the wastewater is allowed to flow through only one row of sludge nitrification lines 60.

そして、汚泥硝化ライン60からの上澄み水が負荷調整機構を具備した担体用硝化槽16で担体硝化される。   The supernatant water from the sludge nitrification line 60 is carrier nitrified in the carrier nitrification tank 16 equipped with a load adjusting mechanism.

このように、汚泥用硝化槽12と担体用硝化槽16との両方に負荷調整機構を設けることにより、廃水のアンモニア性窒素濃度、水温、水量の少なくとも1つの因子の変動に伴う硝化処理水の水質変動を防止することができる。この負荷調整機構は、換言すると、汚泥用硝化槽12と担体用硝化槽16とにおける廃水の滞留時間を適切に調整できることを意味し、廃水の水質に応じて汚泥硝化と担体硝化との滞留時間を適切に組み合わせることができる。   Thus, by providing a load adjustment mechanism in both the sludge nitrification tank 12 and the carrier nitrification tank 16, the nitrification water in accordance with a change in at least one factor of ammonia nitrogen concentration, water temperature, and amount of water in the wastewater. Water quality fluctuations can be prevented. In other words, this load adjusting mechanism means that the residence time of the waste water in the sludge nitrification tank 12 and the support nitrification tank 16 can be adjusted appropriately, and the residence time between the sludge nitrification and the carrier nitrification according to the quality of the waste water. Can be combined appropriately.

(負荷調整機構を具備した硝化装置の第3の実施の形態)
図5の負荷調整機構は、図4で説明したバイパス配管40の代わりに2列並列に担体用硝化槽16A,16B設け、上澄み水分配器42で2列の担体用硝化槽16A,16Bに上澄み水を分配できるように構成したものである。分配比率は一方が100%の場合も含む。
(Third embodiment of nitrification apparatus equipped with load adjustment mechanism)
The load adjusting mechanism of FIG. 5 is provided with nitrification tanks for carriers 16A and 16B in parallel in two rows instead of the bypass pipe 40 described in FIG. 4, and the supernatant water is supplied to the nitrification tanks for carriers 16A and 16B in two rows by the supernatant water distributor. It can be distributed. The distribution ratio includes the case where one is 100%.

これにより、上澄み水中のアンモニア窒素濃度の残量が多い場合には、上澄み水を2列の担体用硝化槽16A,16Bに分配して1槽当たりの負荷を軽減できるので、硝化処理水の水質を一定に維持することができる。   Thereby, when there is much residual amount of ammonia nitrogen concentration in the supernatant water, the supernatant water can be distributed to the two rows of nitrification tanks 16A and 16B for carriers to reduce the load per tank. Can be kept constant.

また、図5の場合にも、硝化処理水の水質変動を防止するのみならず、汚泥用硝化槽12と担体用硝化槽16とにおける廃水の滞留時間をも適切に調整することができる。   Also in the case of FIG. 5, not only the water quality fluctuation of the nitrification water is prevented, but also the residence time of the waste water in the sludge nitrification tank 12 and the carrier nitrification tank 16 can be adjusted appropriately.

(負荷調整機構を具備した硝化装置の第4の実施の形態)
図6の負荷調整機構は、図3〜図5で説明したように廃水分配器50や上澄み水分配器42によって、分配比率を変えることで負荷を調整する方式ではなく、担体用硝化槽16を有する汚泥・担体硝化ライン58と、担体用硝化槽16を有しない汚泥硝化ライン60とを並列に配置して、廃水の水質に応じて使用するラインを選択するようにしたものである。
(Fourth embodiment of nitrification apparatus equipped with load adjustment mechanism)
The load adjusting mechanism of FIG. 6 has the carrier nitrification tank 16 instead of the method of adjusting the load by changing the distribution ratio by the waste water distributor 50 and the supernatant water distributor 42 as described in FIGS. The sludge / carrier nitrification line 58 and the sludge nitrification line 60 without the carrier nitrification tank 16 are arranged in parallel so that the line to be used is selected according to the quality of the wastewater.

即ち、図6に示すように、負荷調整機構は、汚泥用硝化槽12、固液分離槽14、及び担体用硝化槽16から構成される汚泥・担体硝化ライン58と、汚泥用硝化槽12及び固液分離槽14から構成されて担体用硝化槽16を有しない汚泥硝化ライン60とが並列に配置される。   That is, as shown in FIG. 6, the load adjusting mechanism includes a sludge / carrier nitrification line 58 composed of a sludge nitrification tank 12, a solid-liquid separation tank 14, and a carrier nitrification tank 16, a sludge nitrification tank 12, and A sludge nitrification line 60 that is constituted by the solid-liquid separation tank 14 and does not have the carrier nitrification tank 16 is arranged in parallel.

図6(A)は3列の汚泥・担体硝化ライン58と1列の汚泥硝化ライン60との組み合わせ、図6(B)は2列の汚泥・担体硝化ライン58と2列の汚泥硝化ライン60との組み合わせ、図6(C)は1列の汚泥・担体硝化ライン58と3列の汚泥硝化ライン60との組み合わせた場合である。   6A shows a combination of three rows of sludge / carrier nitrification lines 58 and one row of sludge nitrification lines 60, and FIG. 6B shows two rows of sludge / carrier nitrification lines 58 and two rows of sludge nitrification lines 60. FIG. 6C shows a combination of one row of sludge / carrier nitrification lines 58 and three rows of sludge nitrification lines 60.

なお、図6では、汚泥・担体硝化ライン58と汚泥硝化ライン60との合計のライン列数を4列にしたが、これに限定されるものではない。   In FIG. 6, the total number of lines of the sludge / carrier nitrification line 58 and the sludge nitrification line 60 is four, but the present invention is not limited to this.

図6(A)の場合で詳しく説明すると、原水配管11から4本の分岐管62A,62B,62C,62Dに分岐され、3本の分岐管62A,62B,62Cにはそれぞれ汚泥・担体硝化ライン58が連結される。そして、残りの1本の分岐管62Dに汚泥硝化ライン60が連結される。また、3列の汚泥・担体硝化ライン58と1列の汚泥硝化ライン60とは合流配管64によって1本の処理水配管38に合流される。   6A, the raw water pipe 11 is branched into four branch pipes 62A, 62B, 62C, and 62D, and the three branch pipes 62A, 62B, and 62C are respectively provided with sludge and carrier nitrification lines. 58 are connected. The sludge nitrification line 60 is connected to the remaining one branch pipe 62D. Further, the three rows of sludge / carrier nitrification lines 58 and the one row of sludge nitrification lines 60 are joined to one treated water pipe 38 by a joining pipe 64.

また、原水配管11の分岐位置にライン選択手段66が設けられると共に、原水配管11には、廃水中のアンモニア性窒素濃度を測定する濃度測定手段、水温を測定する水温計、水量を測定する水量計の少なくとも1つが設けられる。図6では水温計54を設けた場合で示している。   In addition, line selection means 66 is provided at the branch position of the raw water pipe 11, and the raw water pipe 11 has a concentration measuring means for measuring the ammonia nitrogen concentration in the waste water, a water thermometer for measuring the water temperature, and a water amount for measuring the water amount. At least one of the totals is provided. FIG. 6 shows the case where a water temperature gauge 54 is provided.

そして、制御手段68は、水温計54で測定された廃水の水温に応じてライン選択手段66を制御して、4本の分岐管62A,62B,62C,62Dのうち使用する分岐管を選択する。   And the control means 68 controls the line selection means 66 according to the water temperature of the waste water measured with the water temperature gauge 54, and selects the branch pipe to be used among the four branch pipes 62A, 62B, 62C, 62D. .

これにより、廃水中のアンモニア性窒素濃度、水温、水量に応じて、汚泥用硝化槽12と担体用硝化槽16との負荷調整を行うことができるので、硝化処理水の水質を一定に維持することができる。   This makes it possible to adjust the load between the sludge nitrification tank 12 and the carrier nitrification tank 16 according to the concentration of ammoniacal nitrogen in the wastewater, the water temperature, and the amount of water, so that the quality of the nitrification water is maintained constant. be able to.

また、図6の場合にも、硝化処理水の水質変動を防止するのみならず、汚泥用硝化槽12と担体用硝化槽16とにおける廃水の滞留時間をも適切に調整することができる。   Also in the case of FIG. 6, not only the water quality fluctuation of the nitrification water is prevented, but also the residence time of the waste water in the sludge nitrification tank 12 and the carrier nitrification tank 16 can be adjusted appropriately.

次に、上記説明した各種態様の硝化装置10を組み込んだ廃水処理装置70について説明する。   Next, the waste water treatment apparatus 70 incorporating the above-described various aspects of the nitrification apparatus 10 will be described.

[廃水処理装置]
図7の廃水処理装置70は、図1に示した基本構成の硝化装置10を組み込んだ場合である。
[Waste water treatment equipment]
The waste water treatment apparatus 70 of FIG. 7 is a case where the nitrification apparatus 10 having the basic configuration shown in FIG. 1 is incorporated.

図7に示すように、汚泥用硝化槽12の前段に脱窒槽72が設けられると共に、担体用硝化槽16で処理された硝化処理水の一部が循環配管74を介して脱窒槽72に循環される。脱窒槽72内には、脱窒菌を含む活性汚泥76が嫌気性条件下で浮遊しており、硝化処理水と接触することによって、硝化処理水中の硝酸性窒素を窒素ガスに変換する。また、固液分離槽14で沈降した汚泥は、汚泥返送配管26を介して脱窒槽72に戻される。   As shown in FIG. 7, a denitrification tank 72 is provided in front of the sludge nitrification tank 12, and part of the nitrification water treated in the carrier nitrification tank 16 is circulated to the denitrification tank 72 via a circulation pipe 74. Is done. In the denitrification tank 72, activated sludge 76 containing denitrifying bacteria floats under anaerobic conditions, and nitrate nitrogen in the nitrification water is converted into nitrogen gas by contacting with the nitrification water. Further, the sludge settled in the solid-liquid separation tank 14 is returned to the denitrification tank 72 through the sludge return pipe 26.

図8の廃水処理装置70は、図3に示した第1の実施の形態の硝化装置10を組み込んだものであり、図9の廃水処理装置70は図4に示した第2の実施の形態の硝化装置10を組み込んだものである。また、図10の廃水処理装置70は図5に示した第3の実施の形態の硝化装置10を組み込んだものであり、図11の廃水処理装置70は図6(A)に示した第4の実施の形態の硝化装置10を組み込んだものである。   The waste water treatment apparatus 70 of FIG. 8 incorporates the nitrification apparatus 10 of the first embodiment shown in FIG. 3, and the waste water treatment apparatus 70 of FIG. 9 is the second embodiment shown in FIG. The nitrification apparatus 10 is incorporated. Further, the wastewater treatment apparatus 70 of FIG. 10 incorporates the nitrification apparatus 10 of the third embodiment shown in FIG. 5, and the wastewater treatment apparatus 70 of FIG. 11 is the fourth wastewater treatment apparatus 70 shown in FIG. The nitrification apparatus 10 of the embodiment is incorporated.

また、図12の廃水処理装置70は、図7の基本構成に加えて、担体用硝化槽16の後段に補助脱窒槽80を設け、補助脱窒槽80内には充填材として脱窒菌を包括固定化した包括固定化担体を充填した場合である。なお、充填材はプラスチック製や砂状などの一般的に使用されているものを使用できる。また、図示しないが、脱窒のための有機源は補助脱窒槽80内にメタノールなどを添加して補うことができる。   In addition to the basic configuration of FIG. 7, the wastewater treatment apparatus 70 of FIG. 12 is provided with an auxiliary denitrification tank 80 after the carrier nitrification tank 16, and denitrifying bacteria are comprehensively fixed in the auxiliary denitrification tank 80 as a filler. This is the case where the entrapped entrapping immobilization carrier is filled. The filler may be a commonly used material such as plastic or sand. Although not shown, the organic source for denitrification can be supplemented by adding methanol or the like into the auxiliary denitrification tank 80.

図12の廃水処理装置70の場合には、固液分離槽14によって活性汚泥18等のSS成分が担体用硝化槽16に同伴されることがないので、担体用硝化槽16の後段に担体処理方式の補助脱窒槽80を設けることが可能となる。ちなみに、SS成分が多い場合には、充填材が閉塞するため、逆洗を頻繁に行う必要があるだけでなく、SS成分が処理水にリークして水質を悪化させる原因になる。   In the case of the wastewater treatment apparatus 70 of FIG. 12, since the SS component such as the activated sludge 18 is not accompanied by the nitrification tank 16 for the carrier by the solid-liquid separation tank 14, the carrier treatment is performed in the subsequent stage of the nitrification tank 16 for the carrier. An auxiliary denitrification tank 80 of the type can be provided. Incidentally, when the SS component is large, the filler is clogged, so it is not only necessary to perform backwashing frequently, but the SS component leaks into the treated water and causes water quality to deteriorate.

これによって、担体用硝化槽16で処理された硝化処理水中に残存する微量の硝酸性窒素を窒素ガスに変換できるので、補助脱窒槽80後の最終処理水の水質向上を図ることができると共に、最終処理水に混ざって活性汚泥等のSS成分が排出されることもない。   Thereby, since a small amount of nitrate nitrogen remaining in the nitrification water treated in the carrier nitrification tank 16 can be converted into nitrogen gas, the quality of the final treated water after the auxiliary denitrification tank 80 can be improved, SS components such as activated sludge are not discharged in the final treated water.

また、図には示さなかったが、担体用硝化槽16の後段に担体処理方式の補助脱窒槽80を設ける構成であれば、アンモニア性窒素濃度が比較的低い廃水の場合、前段に配置した脱窒槽72や循環配管74を省略することも可能である。   Although not shown in the figure, if the support treatment type auxiliary denitrification tank 80 is provided at the subsequent stage of the support nitrification tank 16, in the case of wastewater having a relatively low ammonia nitrogen concentration, It is possible to omit the nitriding tank 72 and the circulation pipe 74.

[実施例]
(試験A)
本発明の硝化装置を備えた廃水処理装置(実施例)と、従来の活性汚泥循環変法の廃水処理装置(比較例1)と、従来の硝化促進型循環変法の廃水処理装置(比較例2)との3つの装置について、硝化ラインでの滞留時間(HRT)を比較した。
[Example]
(Test A)
Waste water treatment apparatus (Example) equipped with the nitrification apparatus of the present invention, waste water treatment apparatus of the conventional activated sludge circulation modified method (Comparative Example 1), and waste water treatment apparatus of the conventional nitrification promoting circulation modified method (Comparative Example) The residence time (HRT) in the nitrification line was compared for the three devices 2).

比較試験は、実施例、及び比較例1、2ともに、アンモニア性窒素を主とする総窒素濃度(TN)が40mg/Lの同じ水質の廃水について略TN10mg/L平均の処理水を得るために必要なHRTを比較した。   In the comparative test, in order to obtain a treated water having an average of about TN 10 mg / L for waste water of the same water quality in which the total nitrogen concentration (TN) mainly composed of ammonia nitrogen is 40 mg / L in both Examples and Comparative Examples 1 and 2. The required HRT was compared.

*実施例は、図7の廃水処理装置の構成を用いた。   * The example used the configuration of the wastewater treatment apparatus of FIG.

*比較例1は、固液分離槽(最初沈殿池)→脱窒槽(活性汚泥)→硝化槽(活性汚泥)→固液分離槽(最終沈殿池)であり、硝化槽で得られた硝化処理水の一部を脱窒槽に循環させた。   * Comparative Example 1 is a solid-liquid separation tank (first sedimentation basin) → denitrification tank (activated sludge) → nitrification tank (activated sludge) → solid-liquid separation tank (final sedimentation basin), and nitrification treatment obtained in the nitrification tank Part of the water was circulated through the denitrification tank.

*比較例2は、比較例1の硝化槽を活性汚泥から包括固定化担体に代えた以外は比較1と同様である。   * Comparative Example 2 is the same as Comparative Example 1 except that the nitrification tank of Comparative Example 1 is changed from activated sludge to a entrapping immobilization support.

なお、実施例、比較例1、2における脱窒槽における活性汚泥の汚泥濃度(MLSS)及び比較例1の硝化槽における汚泥濃度は2000mg/Lに設定した。また、本発明及び比較例2の硝化槽には、包括固定化担体を10%容積になるように充填した。また、硝化槽でのエア曝気による溶存酸素(DO)は、実施例、1、2とも同じ3mg/Lになるようにすると共に、硝化処理水を脱窒槽に循環させる循環比率は実施例、1、2ともに同じである。   In addition, the sludge density | concentration (MLSS) of the activated sludge in the denitrification tank in an Example and the comparative examples 1 and 2 and the sludge density | concentration in the nitrification tank of the comparative example 1 were set to 2000 mg / L. The nitrification tank of the present invention and Comparative Example 2 was filled with a entrapping immobilization support so as to have a volume of 10%. In addition, the dissolved oxygen (DO) by air aeration in the nitrification tank is set to 3 mg / L in the examples, 1 and 2, and the circulation ratio for circulating the nitrification water to the denitrification tank is as in the examples 1 and 2. Both are the same.

〈試験結果〉
*本発明の実施例は、汚泥用硝化槽のHRTが8時間+担体用硝化槽のHRTが1時間の合計9時間のHRTであった。
<Test results>
* In the examples of the present invention, the HRT of the sludge nitrification tank was HRT of 8 hours + the HRT of the support nitrification tank was 1 hour, for a total of 9 hours.

*従来の活性汚泥循環変法による比較例1は、硝化槽のHRTが12〜16時間であった。   * Comparative Example 1 by the conventional activated sludge circulation modified method had HRT of the nitrification tank of 12 to 16 hours.

*従来の硝化促進型循環変法による比較例2は、硝化槽のHRTが6〜8時間であった。また、廃水中の夾雑物が担体分離スクリーン(目幅1.5mm)につまる傾向が見られ、メンテナンスは本発明に比べて煩雑であった。   * In Comparative Example 2 using the conventional nitrification-promoting circulation modification method, the HRT of the nitrification tank was 6 to 8 hours. In addition, there was a tendency for impurities in the wastewater to be clogged with the carrier separation screen (mesh width 1.5 mm), and maintenance was complicated compared to the present invention.

上記結果から分かるように、本発明における硝化ラインのHRTは、廃水の全てを包括固定化担体のみで硝化処理する比較例2に比べて多少長くなるが、廃水の全てを活性汚泥のみで硝化処理する比較例1に比べてHRTを大幅に短縮することができる。   As can be seen from the above results, the HRT of the nitrification line in the present invention is slightly longer than Comparative Example 2 in which all of the wastewater is nitrified only with the entrapping immobilization support, but all of the wastewater is nitrified only with activated sludge. The HRT can be greatly shortened as compared with Comparative Example 1 to be performed.

また、本発明の実施例は、担体用硝化槽での滞留時間を1時間にすることができるので、硝化槽容量を比較例2に比べて顕著にコンパクト化することができ、その分、包括固定化担体の充填量も大幅に削減できる。また、汚泥用硝化槽と固液分離槽(最終沈殿池)は、既設の廃水処理場に備わっているので、固液分離槽の後段に担体用硝化槽のみを新設すれば、既設の廃水処理場を改造せずに対応できる。   Further, in the embodiment of the present invention, the residence time in the carrier nitrification tank can be set to 1 hour, so that the nitrification tank capacity can be remarkably compact as compared with Comparative Example 2, and accordingly, The filling amount of the immobilization carrier can be greatly reduced. The sludge nitrification tank and solid-liquid separation tank (final sedimentation basin) are provided in the existing wastewater treatment plant. Therefore, if only the support nitrification tank is installed after the solid-liquid separation tank, the existing wastewater treatment tank will be installed. It can respond without modifying the place.

(試験B)
活性汚泥は、廃水水温が高い夏期は硝化速度が落ちにくいが、廃水水温が低い冬期は硝化速度が落ち易い。そこで、活性汚泥と包括固定化担体とを用いて、冬期の廃水温度(11〜16℃)を想定した硝化処理効率を比較した。
(Test B)
In activated sludge, the nitrification rate is unlikely to decrease during the summer when the wastewater temperature is high, but the nitrification rate tends to decrease during the winter when the wastewater temperature is low. Therefore, using activated sludge and the entrapping immobilization support, the nitrification treatment efficiency assuming a winter wastewater temperature (11 to 16 ° C.) was compared.

その結果、活性汚泥の硝化速度は平均1mg/g-SS・hであるのに対して、包括固定化担体の硝化速度は平均80mg/L-担体・hであった。   As a result, the nitrification rate of activated sludge was 1 mg / g-SS · h on average, while the nitrification rate of the entrapping immobilization carrier was 80 mg / L-carrier · h on average.

そして、上記活性汚泥を硝化槽にMLSSで2000mg/Lになるように充填すると共に、上記包括固定化担体を同じ容量の硝化槽に10%容積になるように充填して、槽1日当たりの硝化速度を調べた。   Then, the activated sludge is filled in the nitrification tank so as to be 2000 mg / L in MLSS, and the entrapping immobilization carrier is filled in the nitrification tank of the same capacity so as to have a volume of 10%. The speed was examined.

その結果、活性汚泥充填の硝化槽は48mg/L−硝化槽・日であるのに対して、包括固定化担体の硝化槽は192mg/L−硝化槽・日であった。この結果から、廃水水温が低い冬期では包括固定化担体を充填した硝化槽の方が活性汚泥を充填した硝化槽よりも圧倒的に硝化速度が速くなる。   As a result, the nitrification tank filled with activated sludge was 48 mg / L-nitrification tank / day, whereas the nitrification tank of the entrapping immobilization support was 192 mg / L-nitrification tank / day. From this result, in the winter when the waste water temperature is low, the nitrification tank filled with the entrapping immobilization support is overwhelmingly faster than the nitrification tank filled with activated sludge.

このことから、汚泥用硝化槽の後段に硝化促進型循環変法よりも容量(キャパシティ)の小さな小型の担体用硝化槽を配置することで、包括固定化担体の使用量を大幅に削減し、且つ廃水水温が低く活性汚泥の活性が低下し易い冬期対策に特に有効となる。   For this reason, the amount of entrapped immobilization carrier used can be greatly reduced by placing a small carrier nitrification tank with a smaller capacity (capacity) than the nitrification-promoting circulation method after the sludge nitrification tank. In addition, this is particularly effective for winter measures where the temperature of the waste water is low and the activity of the activated sludge is likely to decrease.

(試験C)
試験Cは、汚泥硝化と担体硝化を組み合わせた本発明の硝化装置が廃水のアンモニア性窒素の変動に対してどの程度対応能力があるかを調べた。試験は、既存の下水処理場(活性汚泥循環変法を使用)の硝化処理水を、試験用ラインを介して担体用硝化槽の試験プラントに引き込み、廃水中のアンモニア性窒素濃度が変動した場合の対応能力を調べた。廃水の温度は11〜21℃であり、担体用硝化槽(包括固定化担体10%充填率)のHRTは1時間に設定した。その結果を図13に示す。
(Test C)
Test C examined the ability of the nitrification apparatus of the present invention, which combines sludge nitrification and carrier nitrification, to cope with fluctuations in ammoniacal nitrogen of wastewater. In the test, when nitrification water from an existing sewage treatment plant (using the activated sludge circulation modified method) is drawn into the test plant of the nitrification tank for the carrier via the test line, the ammonia nitrogen concentration in the wastewater fluctuates. Was investigated. The temperature of the waste water was 11 to 21 ° C., and the HRT of the nitrification tank for carrier (filling immobilization carrier 10% filling rate) was set to 1 hour. The result is shown in FIG.

図13から分かるように、下水処理場からの硝化処理水中のアンモニア性窒素は約0〜約19mg/Lまで変動した。しかし、図13(A)に示すように、汚泥用硝化槽→固液分離槽→担体用硝化槽の構成で処理した硝化処理水のアンモニア性窒素濃度は、処理水基準である5mg/L以下に略することができた。この結果は、廃水原水中のアンモニア性窒素濃度が0〜20mg/Lまで変動しても、硝化処理率は約70%と安定していることを示す。このことは、汚泥用硝化槽内の活性汚泥中の硝化菌の活性が低下する冬期であっても、汚泥用硝化槽の後段に容量の小さな担体用硝化槽を配置することで、処理水基準5mg/L以下を達成できることを示している。   As can be seen from FIG. 13, the ammoniacal nitrogen in the nitrification water from the sewage treatment plant varied from about 0 to about 19 mg / L. However, as shown in FIG. 13 (A), the concentration of ammoniacal nitrogen in the nitrification water treated in the configuration of sludge nitrification tank → solid-liquid separation tank → support nitrification tank is 5 mg / L or less, which is the treatment water standard. Could be abbreviated. This result shows that the nitrification rate is stable at about 70% even when the ammoniacal nitrogen concentration in the wastewater raw water varies from 0 to 20 mg / L. This means that even in winter when the activity of nitrifying bacteria in the activated sludge in the sludge nitrification tank is reduced, a small-capacity carrier nitrification tank is placed downstream of the sludge nitrification tank, so that It shows that 5 mg / L or less can be achieved.

一方、図13(B)は、原水のアンモニア濃度(NH−N濃度)に応じて担体用硝化槽への流入割合を変化させた場合の結果である。具体的には、原水中のNH−N濃度が10mg/L以下の場合において、バイパス配管への流入を開始し、原水中のNH−N濃度が低いほど担体用硝化槽への流入割合を少なくして処理した。図13(B)から分かるように、バイパス配管への流入を併用しても、処理水のNH−N濃度を5mg/L以下にすることができた。この場合は当然ながら、担体用硝化槽の処理量が少ないので、曝気動力等のエネルギーを節約できた。 On the other hand, FIG. 13B shows the result when the inflow rate into the carrier nitrification tank is changed according to the ammonia concentration (NH 4 -N concentration) of the raw water. Specifically, when the NH 4 -N concentration in the raw water is 10 mg / L or less, the flow into the bypass pipe is started, and the lower the NH 4 -N concentration in the raw water is, the lower the flow rate into the carrier nitrification tank is Reduced and processed. As can be seen from FIG. 13 (B), the NH 4 —N concentration of the treated water could be reduced to 5 mg / L or less even when the inflow to the bypass pipe was used together. In this case, as a matter of course, since the amount of treatment in the carrier nitrification tank is small, energy such as aeration power can be saved.

10…硝化装置、12…汚泥用硝化槽、14…固液分離槽、16…担体用硝化槽、18…活性汚泥、20…曝気管、22…ブロア、24…汚泥排出配管、26…汚泥返送配管、30…包括固定化担体、31…通水孔、32…曝気管、33…容器、34…ブロア、35…分割部、36…担体分離スクリーン、38…処理水配管、40…バイパス配管、42…上澄み水分配器、44A…第1濃度測定計、44B…第2濃度測定計、46…制御手段、50…廃水分配器、52…分岐配管、54…水温計、56…制御手段、58…汚泥・担体硝化ライン、60…汚泥硝化ライン、62A,62B,62C,62D…分岐管、64…合流管、66…ライン選択手段、68…制御手段、70…廃水処理装置、72…脱窒槽(活性汚泥)、74…循環配管、76…活性汚泥、80…脱窒槽(包括固定化担体)   DESCRIPTION OF SYMBOLS 10 ... Nitrification apparatus, 12 ... Sludge nitrification tank, 14 ... Solid-liquid separation tank, 16 ... Carrier nitrification tank, 18 ... Activated sludge, 20 ... Aeration pipe, 22 ... Blower, 24 ... Sludge discharge piping, 26 ... Sludge return Piping, 30 ... entrapping immobilization carrier, 31 ... water passage hole, 32 ... aeration pipe, 33 ... container, 34 ... blower, 35 ... dividing part, 36 ... carrier separation screen, 38 ... treated water piping, 40 ... bypass piping, 42 ... Supernatant water distributor, 44A ... first concentration meter, 44B ... second concentration meter, 46 ... control means, 50 ... waste water distributor, 52 ... branch pipe, 54 ... water thermometer, 56 ... control means, 58 ... Sludge / carrier nitrification line, 60 ... sludge nitrification line, 62A, 62B, 62C, 62D ... branch pipe, 64 ... confluence pipe, 66 ... line selection means, 68 ... control means, 70 ... waste water treatment device, 72 ... denitrification tank ( Activated sludge), 74 ... circulation piping, 6 ... activated sludge, 80 ... denitrification tank (the entrapping immobilization pellets)

Claims (10)

廃水中のアンモニア性窒素を硝化菌により好気性条件下で硝化処理して硝酸性窒素にする硝化装置において、
前記廃水が流入し、前記硝化菌を含む活性汚泥により前記アンモニア性窒素を硝化する汚泥用硝化槽と、
前記汚泥用硝化槽で硝化処理された活性汚泥による硝化処理水中の固形分を固液分離して上澄み水を得る固液分離槽と、
前記上澄み水が流入し、前記硝化菌を包括固定した包括固定化担体により前記上澄み水中に残存するアンモニア性窒素を硝化して最終硝化処理水を得ると共に、前記包括固定化担体の担体分離スクリーンが設けられた担体用硝化槽と、
を有する汚泥・担体硝化ラインを少なくとも1系列備えたことを特徴とする硝化装置。
In the nitrification device, ammonia nitrogen in wastewater is nitrified by nitrifying bacteria under aerobic conditions to make nitrate nitrogen,
The sludge nitrification tank into which the wastewater flows and nitrifies the ammoniacal nitrogen with the activated sludge containing the nitrifying bacteria,
A solid-liquid separation tank that obtains supernatant water by solid-liquid separation of the solid content in the nitrification water by the activated sludge that has been nitrified in the sludge nitrification tank;
The supernatant water flows in, the ammonia nitrogen remaining in the supernatant water is nitrified by the entrapping immobilization support in which the nitrifying bacteria are entrapped and the final nitrification treated water is obtained, and the entrapping immobilization support carrier separation screen A nitrification tank for the carrier provided;
A nitrification apparatus comprising at least one series of sludge / carrier nitrification lines having
前記担体用硝化槽を迂回して前記上澄み水を前記硝化処理水の処理水配管にバイパスさせるバイパス配管と、
前記上澄み水及び/又は前記硝化処理水のアンモニア性窒素濃度を測定する窒素濃度測定計と、
前記上澄み水を前記担体用硝化槽と前記バイパス配管とに分配する上澄み水分配器と、
前記濃度測定計の測定結果に基づいて前記上澄み水分配器を制御し、前記担体用硝化槽と前記バイパス配管とに分配する上澄み水分配量を調整する制御手段を備えたことを特徴とする請求項1に記載の硝化装置。
Bypass piping that bypasses the nitrification tank for the carrier and bypasses the supernatant water to the treated water piping of the nitrified water;
A nitrogen concentration meter for measuring the ammonia nitrogen concentration of the supernatant water and / or the nitrification water;
A supernatant water distributor for distributing the supernatant water to the carrier nitrification tank and the bypass pipe;
The control device for controlling the supernatant water distributor based on the measurement result of the concentration meter and adjusting the amount of supernatant water distributed to the nitrification tank for carrier and the bypass pipe. 2. The nitrification apparatus according to 1.
前記汚泥・担体硝化ラインに並列に設けられ、前記汚泥用硝化槽と前記固液分離槽とから構成される汚泥硝化ラインと、
前記汚泥・担体硝化ラインと前記汚泥硝化ラインとに前記廃水を分配する廃水分配器と、
前記廃水の水質を測定する廃水測定計と、
前記廃水測定計の測定結果に基づいて前記廃水分配器を制御し、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとに分配する廃水の分配量を調整する制御手段と、
前記汚泥・担体硝化ラインと前記汚泥硝化ラインとの上澄み水を合流させて前記汚泥・担体硝化ラインの担体用硝化槽に導入する合流配管と、を備えたことを特徴とする請求項2に記載の硝化装置。
A sludge nitrification line that is provided in parallel with the sludge / carrier nitrification line, and is constituted by the sludge nitrification tank and the solid-liquid separation tank;
A waste water distributor for distributing the waste water to the sludge / carrier nitrification line and the sludge nitrification line;
A wastewater meter for measuring the quality of the wastewater;
Control means for controlling the wastewater distributor based on the measurement result of the wastewater meter, and adjusting the amount of wastewater distributed to the sludge / carrier nitrification line and the sludge nitrification line;
3. A merging pipe that joins the supernatant water of the sludge / carrier nitrification line and the sludge nitrification line and introduces it into the nitrification tank for the carrier of the sludge / carrier nitrification line. Nitrification equipment.
前記バイパス配管に代えて、前記担体用硝化槽を設けたことを特徴とする請求項3に記載の硝化装置。   4. The nitrification apparatus according to claim 3, wherein the carrier nitrification tank is provided in place of the bypass pipe. 前記汚泥・担体硝化ラインに並列に設けられ、前記汚泥用硝化槽及び前記固液分離槽から構成された汚泥硝化ラインと、
前記廃水の水質を測定する廃水測定計と、
前記汚泥・担体硝化ラインと前記汚泥硝化ラインとのライン選択を行うライン選択手段と、
前記廃水測定計の測定結果に基づいて前記ライン選択手段を制御して、前記汚泥・担体硝化ラインと前記汚泥硝化ラインとのうち使用するラインを選択する制御手段と、を備えたことを特徴とする請求項1に記載の硝化装置。
The sludge nitrification line is provided in parallel with the sludge / carrier nitrification line, and is configured from the sludge nitrification tank and the solid-liquid separation tank;
A wastewater meter for measuring the quality of the wastewater;
Line selection means for performing line selection between the sludge / carrier nitrification line and the sludge nitrification line;
Control means for controlling the line selection means based on the measurement result of the wastewater meter, and selecting a line to be used from the sludge / carrier nitrification line and the sludge nitrification line, The nitrification apparatus according to claim 1.
前記廃水の水質は、アンモニア性窒素濃度、水温、水量の少なくとも1つであることを特徴とする請求項3〜5の何れか1に記載の硝化装置。   The nitrification apparatus according to any one of claims 3 to 5, wherein the quality of the wastewater is at least one of ammonia nitrogen concentration, water temperature, and amount of water. 前記担体用硝化槽において、
前記包括固定化担体は、該包括固定化担体が通過しない大きさの複数の通水孔が形成された容器内に流動可能に収納された状態で、前記担体用硝化槽に充填されていることを特徴とする請求項1〜6の何れか1に記載の硝化装置。
In the carrier nitrification tank,
The entrapping immobilization carrier is filled in the carrier nitrification tank in a state in which the entrapping immobilization carrier is flowably accommodated in a container formed with a plurality of water passage holes of a size that does not allow the inclusion immobilization carrier to pass through. The nitrification apparatus according to any one of claims 1 to 6, wherein:
請求項1〜7の何れか1に記載の硝化装置と、
前記硝化装置で硝化処理された硝化処理水中の硝酸性窒素を、脱窒菌により嫌気性条件下で脱窒処理して窒素ガスに変換する脱窒槽と、を備えたことを特徴とする廃水処理装置。
The nitrification apparatus according to any one of claims 1 to 7,
A waste water treatment apparatus comprising: a denitrification tank that converts nitrate nitrogen in nitrification water nitrified by the nitrification apparatus into nitrogen gas by denitrification treatment under anaerobic conditions by denitrifying bacteria. .
前記脱窒槽は、前記硝化装置の前段に設けられ、前記担体用硝化槽で処理された最終硝化処理水の一部が循環配管を介して前記脱窒槽に循環されることを特徴とする請求項8に記載の廃水処理装置。   The denitrification tank is provided in a stage preceding the nitrification apparatus, and a part of the final nitrification water treated in the nitrification tank for the carrier is circulated to the denitrification tank through a circulation pipe. The waste water treatment apparatus according to 8. 前記脱窒槽の他に、前記硝化装置の後段に前記脱窒菌を包括固定した包括固定化担体を含む補助脱窒槽が設けられ、前記担体用硝化槽で処理された最終硝化処理水の残部に残留する硝酸性窒素を前記補助脱窒槽で窒素ガスに変換することを特徴とする請求項9に記載の廃水処理装置。   In addition to the denitrification tank, an auxiliary denitrification tank including a entrapping immobilization support in which the denitrification bacteria are entrapped and fixed is provided at a subsequent stage of the nitrification apparatus, and remains in the remainder of the final nitrification water treated in the nitrification tank for the support. The wastewater treatment apparatus according to claim 9, wherein nitrate nitrogen to be converted is converted to nitrogen gas in the auxiliary denitrification tank.
JP2011148508A 2011-07-04 2011-07-04 Nitrification apparatus, and wastewater treating apparatus provided with the same Withdrawn JP2013013857A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011148508A JP2013013857A (en) 2011-07-04 2011-07-04 Nitrification apparatus, and wastewater treating apparatus provided with the same
KR20120066014A KR20130004877A (en) 2011-07-04 2012-06-20 Nitrification apparatus and waste water treatment apparatus having the same
CN2012102242330A CN102863083A (en) 2011-07-04 2012-06-28 Nitrating apparatus and waste water processing apparatus with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148508A JP2013013857A (en) 2011-07-04 2011-07-04 Nitrification apparatus, and wastewater treating apparatus provided with the same

Publications (1)

Publication Number Publication Date
JP2013013857A true JP2013013857A (en) 2013-01-24

Family

ID=47442259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148508A Withdrawn JP2013013857A (en) 2011-07-04 2011-07-04 Nitrification apparatus, and wastewater treating apparatus provided with the same

Country Status (3)

Country Link
JP (1) JP2013013857A (en)
KR (1) KR20130004877A (en)
CN (1) CN102863083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024202A1 (en) * 2022-07-27 2024-02-01 オルガノ株式会社 Water treatment device and water treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706233A (en) * 2013-12-17 2014-04-09 杨亮月 Zero-emission treatment system and method of epoxy ethane
CN110606565A (en) * 2019-09-12 2019-12-24 广西博世科环保科技股份有限公司 Inverted shortcut nitrification-anaerobic ammonia oxidation sewage treatment device and treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754081B2 (en) * 2004-07-16 2010-07-13 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP2006061879A (en) * 2004-08-30 2006-03-09 Hitachi Plant Eng & Constr Co Ltd Waste water treatment method and device
US20100038311A1 (en) * 2006-07-06 2010-02-18 Hitachi Plant Technologies, Ltd. Entrapping immobilization pellets, wastewater treatment system using the entrapping immobilization pellets and wastewater treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024202A1 (en) * 2022-07-27 2024-02-01 オルガノ株式会社 Water treatment device and water treatment method

Also Published As

Publication number Publication date
CN102863083A (en) 2013-01-09
KR20130004877A (en) 2013-01-14

Similar Documents

Publication Publication Date Title
KR101344801B1 (en) Entrapping immobilization pellets and process for producing the same, and wastewater treatment process and equipment using the same
JP2011147868A (en) Waste water treatment system and method
CN218025595U (en) Continuous flow aerobic granular sludge system for enhancing nitrogen and phosphorus removal
CN103991959A (en) Biological sewage reaction system and upgrading and expanding method
CN102964037B (en) Novel sewage treatment method by combined utilization of light filter material biological aerated filter and heavy filter material biological aerated filter
CN108862821B (en) Two-stage aeration-free backflow-free domestic sewage treatment system
JP2013039538A (en) Wastewater treatment apparatus
Kang et al. Effect of anaerobic COD utilization on characteristics and treatment performance of aerobic granular sludge in anaerobic/anoxic/oxic SBRs
CN115286104A (en) Continuous flow aerobic granular sludge system and process for enhancing nitrogen and phosphorus removal
CN104986854B (en) Sludge reflux control system, method and sewage disposal system
JP2013013857A (en) Nitrification apparatus, and wastewater treating apparatus provided with the same
Ab Halim et al. Development of aerobic granules in sequencing batch reactor system for treating high temperature domestic wastewater
Picot et al. Twenty years’ monitoring of Mèze stabilisation ponds: part I–removal of organic matter and nutrients
CN201990575U (en) Urban sewage treatment system
Rouse et al. A pilot-plant study of a moving-bed biofilm reactor system using PVA gel as a biocarrier for removals of organic carbon and nitrogen
JP4811702B2 (en) Anaerobic ammonia oxidation method and wastewater treatment method
JP2010207657A (en) Wastewater treatment apparatus and wastewater treatment method
JP2007237145A (en) Batch treatment process of nitrogen containing water
CN212894341U (en) HIT sewage treatment container module reactor
CN205856269U (en) Biological reaction tank for treating polluted water
JP2007268368A (en) Entrapping immobilization carrier and wastewater treatment system using it
CN115159798A (en) Continuous flow aerobic granular sludge reaction device and treatment process
JP2005319360A (en) Method and apparatus for anaerobic ammonia oxidation
CN113698051A (en) Sewage treatment station upgrading reconstruction treatment system and sewage treatment method
JP3858271B2 (en) Wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130530

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007