JP2013013248A - Charging controller - Google Patents

Charging controller Download PDF

Info

Publication number
JP2013013248A
JP2013013248A JP2011144406A JP2011144406A JP2013013248A JP 2013013248 A JP2013013248 A JP 2013013248A JP 2011144406 A JP2011144406 A JP 2011144406A JP 2011144406 A JP2011144406 A JP 2011144406A JP 2013013248 A JP2013013248 A JP 2013013248A
Authority
JP
Japan
Prior art keywords
charger
charging
reduction
cooling
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011144406A
Other languages
Japanese (ja)
Other versions
JP5605321B2 (en
Inventor
Sho Nagashima
翔 長嶋
Kenji Yamamoto
健児 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011144406A priority Critical patent/JP5605321B2/en
Publication of JP2013013248A publication Critical patent/JP2013013248A/en
Application granted granted Critical
Publication of JP5605321B2 publication Critical patent/JP5605321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To improve charging efficiency.SOLUTION: A charging controller is applied to a charging system for boosting incoming power Win supplied from a power source in a charger 12 and inputting it to a battery 11, and includes a cooler 15 (charger loss reduction means) for reducing heat loss (charger loss Wcl) generated in the charger 12 by blowing air to the charger 12 and lowering a charger temperature T, and an ECU 13 (loss reduction amount control means) for controlling a reduction amount of the charger loss Wcl by the cooler 15 corresponding to the charging efficiency which is a ratio of battery power storage energy Wb to the total amount of the incoming power Win until the end of charging. Thus, a failure that cooling consumption energy Wcc increases as a result of excessively accelerating reduction of the charger loss Wcl by cooling causing deterioration of the charging efficiency on the contrary is avoided, and the charging efficiency is effectively improved.

Description

本発明は、電源から供給される受電電力を充電器で昇圧してバッテリへ入力させる充電システムに適用された、充電制御装置に関する。   The present invention relates to a charging control apparatus applied to a charging system in which received power supplied from a power source is boosted by a charger and input to a battery.

例えば、100Vまたは200V等の外部電源により充電してバッテリ走行する電気自動車においては、外部電源から供給される受電電力を充電器で昇圧してバッテリへ入力させるのが一般的である。そして、このような充電器を構成する昇圧回路や整流回路等は、充電作動時に発熱する。そのため、特許文献1等に記載の充電制御装置では、充電器の温度上昇に伴い受電電力を制限して、充電器が熱損傷しないように保護している。   For example, in an electric vehicle that runs on a battery while being charged by an external power source such as 100V or 200V, it is common to boost received power supplied from the external power source with a charger and input it to the battery. And the booster circuit, the rectifier circuit, etc. which comprise such a charger generate | occur | produce heat at the time of charge operation. For this reason, in the charging control device described in Patent Document 1 and the like, the received power is limited as the temperature of the charger increases, and the charger is protected from thermal damage.

しかし近年では、このような保護機能をさらに進歩させて、充電効率を向上させることが充電制御装置に求められている。すなわち、充電終了までにおける受電電力の総量に対する、バッテリ蓄電エネルギの割合(充電効率)を高めることが求められている。   However, in recent years, there has been a demand for charge control devices to further improve such protection functions and improve charging efficiency. That is, it is required to increase the ratio (charging efficiency) of the battery stored energy with respect to the total amount of received power until the end of charging.

特開2004−208349号公報JP 2004-208349 A

本発明は、上記課題を解決するためになされたものであり、その目的は、充電効率の向上を図った充電制御装置を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a charging control device that improves charging efficiency.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、電源から供給される受電電力を充電器で昇圧してバッテリへ入力させる充電システムに適用され、前記充電器で生じる熱損失を低減させる充電器損失低減手段と、充電終了までにおける前記受電電力の総量に対するバッテリ蓄電エネルギの割合である充電効率に応じて、前記充電器損失低減手段による前記熱損失の低減量を制御する損失低減量制御手段と、を備えることを特徴とする。   According to the first aspect of the present invention, there is provided a charging system that is applied to a charging system that boosts received power supplied from a power source by a charger and inputs the boosted power to a battery, and a charger loss reducing unit that reduces heat loss generated in the charger; Loss reduction amount control means for controlling a reduction amount of the heat loss by the charger loss reduction means according to charging efficiency which is a ratio of battery stored energy to the total amount of received power until the end. And

充電器で生じる熱損失を低減させることで充電効率を向上させることを本発明者らが検討したところ、充電器で生じる熱損失(充電器損失)を低減させればさせるだけ充電効率が向上するものではなく、充電器損失の低減量には最適範囲が存在し、この最適範囲を超えて充電器損失低減を進めていくと、却って充電効率が悪化する場合のあることを見出した。   When the present inventors examined improving the charging efficiency by reducing the heat loss generated in the charger, the charging efficiency is improved only by reducing the heat loss (charger loss) generated in the charger. However, it has been found that there is an optimum range for the reduction amount of the charger loss, and that charging efficiency may deteriorate if the reduction of the charger loss is advanced beyond this optimum range.

例えば、充電器損失低減手段が、充電器を冷却することで充電器での熱損失を低減させる冷却手段である場合において、冷却手段の駆動により充電器損失を低減できるものの、冷却度合いを大きくするほど、冷却手段の駆動に要する電力の消費量が増大していく。したがって、冷却度合いを大きくすればするほど充電効率を向上できるものではない。   For example, when the charger loss reducing means is a cooling means for reducing the heat loss in the charger by cooling the charger, the charger loss can be reduced by driving the cooling means, but the degree of cooling is increased. The power consumption required for driving the cooling means increases. Therefore, the charging efficiency cannot be improved as the degree of cooling is increased.

また、例えば、充電器損失低減手段が、受電電力を低下させることで充電器での熱損失を低減させる手段である場合において、このような受電電力低下により充電器損失を低減できるものの、受電電力を低下させるほど充電時間が長くなる。そのため、充電システムの運転に要する電力の消費量が増大していく。したがって、受電電力を低下させればさせるほど充電効率を向上できるものではない。   Further, for example, when the charger loss reduction means is a means for reducing the heat loss in the charger by lowering the received power, although the charger loss can be reduced by such a reduction in the received power, the received power The longer the charging time, the longer the charging time. For this reason, the amount of power consumed for operating the charging system increases. Therefore, the charging efficiency cannot be improved as the received power is reduced.

以上による本発明者らの検討に基づき、上記発明では、充電終了までにおける受電電力の総量に対するバッテリ蓄電エネルギの割合(充電効率)に基づき、充電器での熱損失の低減量を制御するので、充電器損失の低減量が最適範囲となるように制御して、充電効率を効果的に向上させることができる。   Based on the study by the present inventors based on the above, in the above invention, the amount of heat loss in the charger is controlled based on the ratio (charge efficiency) of the battery stored energy to the total amount of received power until the end of charging. It is possible to effectively improve the charging efficiency by controlling the reduction amount of the charger loss to be within the optimum range.

請求項2記載の発明では、前記充電器損失低減手段は、前記充電器を冷却することで前記熱損失を低減させる冷却手段を有し、前記損失低減量制御手段は、前記冷却による前記熱損失の低減量が前記冷却手段の駆動で消費されるエネルギより多くなるように、前記冷却手段による冷却度合を制御する冷却制御手段を有することを特徴とする。   According to a second aspect of the present invention, the charger loss reduction means has a cooling means for reducing the heat loss by cooling the charger, and the loss reduction amount control means is the heat loss due to the cooling. It has a cooling control means for controlling the degree of cooling by the cooling means so that the amount of reduction becomes greater than the energy consumed by driving the cooling means.

上記発明によれば、冷却手段の冷却による充電器の熱損失の低減量が、冷却手段の駆動で消費されるエネルギより多くなるように、冷却手段による冷却度合を制御する。そのため、冷却による充電器の熱損失低減を過剰に促進させた結果、冷却手段の駆動で消費されるエネルギが増大して却って充電効率が悪くなる、といった不具合を回避して、充電効率を効果的に向上できる。   According to the above invention, the degree of cooling by the cooling means is controlled so that the amount of reduction in the heat loss of the charger due to the cooling of the cooling means is greater than the energy consumed by driving the cooling means. Therefore, as a result of excessively promoting the reduction of the heat loss of the charger due to cooling, it is possible to effectively avoid the inconvenience that the energy consumed by driving the cooling means is increased and the charging efficiency is worsened, and the charging efficiency is effectively improved. Can be improved.

請求項3記載の発明では、前記冷却制御手段は、前記冷却手段による冷却風と前記充電器との温度差に応じて、前記冷却消費エネルギを変化させることを特徴とする。   The invention according to claim 3 is characterized in that the cooling control means changes the cooling energy consumption according to a temperature difference between the cooling air by the cooling means and the charger.

ここで、冷却消費エネルギが同じであっても、冷却風と充電器との温度差が大きい場合であるほど、充電器の冷却量(温度低下量)は多くなる。そのため、前記温度差が大きい場合であるほど、充電効率が最大となる冷却消費エネルギは大きい値となる(図2(d)参照)。この点を鑑みた上記発明では、冷却風と充電器との温度差に応じて冷却消費エネルギを変化させるので、冷却消費エネルギを制御することで充電効率を目標値に制御することを、高精度で実現できる。   Here, even if the cooling energy consumption is the same, the cooling amount (temperature decrease amount) of the charger increases as the temperature difference between the cooling air and the charger increases. For this reason, the larger the temperature difference is, the larger the cooling consumption energy at which the charging efficiency is maximized (see FIG. 2D). In the above invention in view of this point, since the cooling energy consumption is changed according to the temperature difference between the cooling air and the charger, it is highly accurate to control the charging efficiency to the target value by controlling the cooling energy consumption. Can be realized.

請求項4記載の発明では、前記充電効率の向上を充電時間の短縮よりも優先させる効率優先モードと、前記充電時間の短縮を前記充電効率の向上よりも優先させる時間優先モードとが切り替え可能に構成され、前記冷却制御手段は、前記時間優先モードに設定されている場合には、前記効率優先モードに設定されている場合に比べて前記バッテリへ入力される充電電力が増大するよう、前記冷却消費エネルギを設定することを特徴とする。   According to a fourth aspect of the present invention, it is possible to switch between an efficiency priority mode that prioritizes the improvement of the charging efficiency over a reduction of the charging time and a time priority mode that prioritizes the shortening of the charging time over the improvement of the charging efficiency. The cooling control means is configured so that, when the time priority mode is set, the cooling power input to the battery is increased as compared with the case where the efficiency priority mode is set. It is characterized by setting energy consumption.

ここで、充電器損失の低減を促進させるべく冷却消費エネルギを過剰に大きくすると、その分バッテリへ入力される充電電力は少なくなり、充電時間は長くなる。一方、冷却消費エネルギを過剰に小さくすると、充電器損失の増大に伴い充電電力が少なくなり、ひいては充電時間が長くなる。したがって、充電時間を短くするには、充電電力が増大できるような適度な値に冷却消費エネルギを設定する必要がある。この点を鑑みた上記発明では、時間優先モードに設定されている場合には、効率優先モードに設定されている場合に比べて充電電力が増大するよう、冷却消費エネルギを設定するので、充電効率向上と充電時間短縮のバランスを、運転者の要求に合わせて調整することができる。   Here, if the cooling energy consumption is excessively increased to promote the reduction of the charger loss, the charging power input to the battery is reduced correspondingly, and the charging time is increased. On the other hand, if the cooling energy consumption is excessively reduced, the charging power is reduced as the charger loss is increased, and consequently the charging time is extended. Therefore, in order to shorten the charging time, it is necessary to set the cooling energy consumption to an appropriate value that can increase the charging power. In the above invention in view of this point, when the time priority mode is set, the cooling energy consumption is set so that the charging power is increased as compared with the case where the efficiency priority mode is set. The balance between improvement and shortening the charging time can be adjusted according to the driver's request.

請求項5記載の発明では、前記充電器損失低減手段は、前記受電電力を低下させることで前記熱損失を低減させる受電電力低下手段を有し、前記損失低減量制御手段は、前記受電電力の低下に伴い充電時間が長くなることによる前記充電システムの運転消費エネルギ増大分と、前記受電電力を低下させることによる前記熱損失の低減分とのバランスに基づき、前記充電効率が所定値以上となるように、前記受電電力低下手段による受電電力低下量を制御する低下量制御手段を有することを特徴とする。   According to a fifth aspect of the present invention, the charger loss reduction means includes received power reduction means for reducing the heat loss by reducing the received power, and the loss reduction amount control means is configured to reduce the received power. The charging efficiency becomes a predetermined value or more based on a balance between an increase in operating energy consumption of the charging system due to an increase in charging time due to a decrease and a decrease in heat loss due to a decrease in the received power. Thus, it has a reduction amount control means for controlling the amount of reduction in received power by the received power reduction means.

ここで、受電電力を低下させれば、充電器での熱損失を低減できるものの、充電時間が長くなる。すると、充電終了までにおける充電システムの運転消費エネルギ(例えば電子制御装置やインバータ回路、DC−DCコンバータ等の、充電器以外の補機で消費されるエネルギ)が多くなる。この点を鑑みた上記発明では、受電電力の低下に伴い充電時間が長くなることによる充電システムの運転消費エネルギ増大分と、受電電力を低下させることによる熱損失低減分とのバランスに基づき、充電効率が所定値以上となるように受電電力低下量を制御する。そのため、受電電力低下による充電器での熱損失低減を過剰に促進させた結果、充電システムの運転消費エネルギが増大して却って充電効率が悪くなる、といった不具合を回避して、充電効率を効果的に向上できる。   Here, if the received power is reduced, the heat loss in the charger can be reduced, but the charging time becomes longer. Then, the operating energy consumption of the charging system until the end of charging (for example, energy consumed by auxiliary devices other than the charger, such as an electronic control device, an inverter circuit, a DC-DC converter) increases. In the above invention in view of this point, charging is performed based on the balance between the increase in the operating energy consumption of the charging system due to the increase in the charging time as the received power decreases and the reduced heat loss due to the decrease in the received power. The amount of received power reduction is controlled so that the efficiency is not less than a predetermined value. As a result, excessive reduction of heat loss in the charger due to a decrease in received power results in an increase in operating energy consumption of the charging system, which avoids problems such as poor charging efficiency and effectively improves charging efficiency. Can be improved.

請求項6記載の発明では、前記低下量制御手段は、前記充電器の温度および雰囲気温度の少なくとも一方に応じて、前記受電電力低下量を変化させることを特徴とする。   The invention according to claim 6 is characterized in that the decrease amount control means changes the amount of decrease in received power according to at least one of a temperature of the charger and an ambient temperature.

ここで、上述したバランス、つまり充電システムの運転消費エネルギ増大分と熱損失低減分とのバランスは、充電器の温度や雰囲気温度で変化する(図5(d)参照)。この点を鑑みた上記発明では、充電器の温度および雰囲気温度の少なくとも一方に応じて受電電力低下量を変化させるので、受電電力低下量を制御することで充電効率を目標値に制御することを、高精度で実現できる。   Here, the balance described above, that is, the balance between the increase in operating energy consumption and the reduction in heat loss of the charging system varies depending on the temperature of the charger and the ambient temperature (see FIG. 5D). In the above invention in view of this point, since the amount of decrease in received power is changed according to at least one of the charger temperature and the ambient temperature, it is possible to control the charging efficiency to the target value by controlling the amount of decrease in received power. Can be realized with high accuracy.

請求項7記載の発明では、前記充電効率の向上を充電時間の短縮よりも優先させる効率優先モードと、前記充電時間の短縮を前記充電効率の向上よりも優先させる時間優先モードとが切り替え可能に構成され、前記低下量制御手段は、前記時間優先モードに設定されている場合には、前記効率優先モードに設定されている場合に比べて前記受電電力低下量を少なくすることを特徴とする。   In the invention according to claim 7, it is possible to switch between an efficiency priority mode that prioritizes the improvement of the charging efficiency over a reduction of the charging time and a time priority mode that prioritizes the shortening of the charging time over the improvement of the charging efficiency. The reduction amount control means is configured such that when the time priority mode is set, the received power reduction amount is reduced as compared with the case where the efficiency priority mode is set.

ここで、充電器損失の低減を促進させるべく受電電力低下量を多くするほど、その分バッテリへ入力される充電電力は少なくなり、充電時間は長くなる。したがって、受電電力低下量を少なくするほど充電時間を短くできると言える。この点を鑑みた上記発明では、時間優先モードに設定されている場合には、効率優先モードに設定されている場合に比べて受電電力低下量を少なくするので、充電効率向上と充電時間短縮のバランスを、運転者の要求に合わせて調整することができる。   Here, as the received power reduction amount is increased in order to promote the reduction of the charger loss, the charging power input to the battery is correspondingly reduced, and the charging time is lengthened. Therefore, it can be said that the charging time can be shortened as the received power reduction amount is reduced. In the above invention in view of this point, when the time priority mode is set, the amount of decrease in received power is reduced compared to the case where the efficiency priority mode is set, so that charging efficiency is improved and charging time is shortened. The balance can be adjusted to the driver's requirements.

請求項8記載の発明では、前記充電効率の向上を充電時間の短縮よりも優先させる効率優先モードと、前記バッテリの劣化抑制を前記充電効率の向上よりも優先させる寿命優先モードとが切り替え可能に構成され、前記低下量制御手段は、前記寿命優先モードに設定されている場合には、前記効率優先モードに設定されている場合に比べて前記受電電力低下量を多くすることを特徴とする。   In the invention according to claim 8, it is possible to switch between an efficiency priority mode that prioritizes improvement of the charging efficiency over shortening of charging time and a life priority mode that prioritizes suppression of deterioration of the battery over improvement of the charging efficiency. The reduction amount control means is configured to increase the received power reduction amount when set in the life priority mode compared to when set in the efficiency priority mode.

ここで、バッテリへ入力する充電電流の値が高いほど、バッテリの劣化が促進されてしまう。しかし、バッテリ劣化抑制を図るべく受電電力を少なくすると、充電時間が長くなることに起因して充電システム運転消費エネルギの増大を招き、ひいては充電効率が低下する場合がある。この点を鑑みた上記発明では、寿命優先モードに設定されている場合には、効率優先モードに設定されている場合に比べて受電電力低下量を多くするので、充電効率向上とバッテリ劣化抑制のバランスを、運転者の要求に合わせて調整することができる。   Here, as the value of the charging current input to the battery is higher, the deterioration of the battery is promoted. However, if the received power is reduced to suppress battery deterioration, the charging system operation energy consumption is increased due to the longer charging time, which in turn may lower the charging efficiency. In the above invention in view of this point, when the life priority mode is set, the amount of decrease in received power is increased compared to the case where the efficiency priority mode is set, so that charging efficiency is improved and battery deterioration is suppressed. The balance can be adjusted to the driver's requirements.

本発明の一実施形態を示す充電制御装置、およびその装置が適用される充電システムを示す図。The figure which shows the charge control apparatus which shows one Embodiment of this invention, and the charging system with which the apparatus is applied. 冷却消費エネルギWccの最適値を説明する図。The figure explaining the optimal value of cooling consumption energy Wcc. 図2に基づき設定されたWcc算出マップを示す図。The figure which shows the Wcc calculation map set based on FIG. 図3のマップに基づき冷却器を制御することによる効果を説明する図。The figure explaining the effect by controlling a cooler based on the map of Drawing 3. 受電電力Winの最適値を説明する図。The figure explaining the optimal value of the received power Win. 図5に基づき設定されたWin算出マップを示す図。The figure which shows the Win calculation map set based on FIG. 図6のマップに基づき受電電力Winを制御することによる効果を説明する図。The figure explaining the effect by controlling received electric power Win based on the map of FIG. バッテリ入力電流Ibとバッテリ劣化進行度合いとの関係を示す特性図。The characteristic view which shows the relationship between battery input current Ib and a battery degradation progress degree. 図3のマップおよび図6のマップに基づき、冷却消費エネルギWccおよび受電電力Winを制御しながら充電する処理の手順を示すフローチャート。The flowchart which shows the procedure of the process charged while controlling the cooling energy consumption Wcc and the received power Win based on the map of FIG. 3 and the map of FIG.

以下、本発明にかかる充電制御装置を、車両用の充電システムに適用した一実施形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment in which a charging control device according to the present invention is applied to a charging system for a vehicle will be described with reference to the drawings.

図1中の一点鎖線に示す車両10は、バッテリ11を走行駆動源としてモータ走行する電気自動車であり、外部電源20から供給される受電電力を充電器12によりバッテリ11へ充電させる。なお、上記車両10の他の例として、外部電源20からバッテリ充電するシステムと内燃機関の両方を有したハイブリッド自動車が挙げられる。   A vehicle 10 indicated by a one-dot chain line in FIG. 1 is an electric vehicle that travels by a motor using a battery 11 as a travel drive source. The battery 11 is charged by a charger 12 with received power supplied from an external power source 20. Another example of the vehicle 10 is a hybrid vehicle having both a system for charging a battery from an external power source 20 and an internal combustion engine.

外部電源20は、商用100Vまたは200Vの交流電力であり、充電器12は、交流電力を直流に変換する整流回路や、整流した電力を昇圧する昇圧回路等を備えて構成されている。バッテリ11は、車両10に搭載された走行用モータ(図示せず)へ電力供給する。   The external power source 20 is commercial AC power of 100 V or 200 V, and the charger 12 includes a rectifier circuit that converts AC power into DC, a booster circuit that boosts the rectified power, and the like. The battery 11 supplies power to a travel motor (not shown) mounted on the vehicle 10.

また、図1に示す充電システムは、電子制御装置(ECU13)やインバータ、DC−DCコンバータ等の補機14や、バッテリ11を冷却する冷却器15を備えている。補機は、充電器12から出力される電力の一部を電源として作動し、冷却器15は受電電力の一部を電源として作動する。したがって、補機14で消費されるエネルギ(補機消費エネルギ)および冷却器15で消費されるエネルギ(冷却消費エネルギ)が多くなれば、その分、バッテリ11へ蓄積される充電エネルギは少なくなる。   The charging system shown in FIG. 1 includes an electronic control unit (ECU 13), an auxiliary device 14 such as an inverter and a DC-DC converter, and a cooler 15 that cools the battery 11. The auxiliary machine operates using a part of the power output from the charger 12 as a power source, and the cooler 15 operates using a part of the received power as a power source. Therefore, if the energy consumed by the auxiliary machine 14 (auxiliary machine consumed energy) and the energy consumed by the cooler 15 (cooling consumed energy) are increased, the charging energy stored in the battery 11 is reduced accordingly.

図に示す冷却器15は、送風ファンにより空気をバッテリ11へ送風するものであるが、熱交換器により冷却した冷風をバッテリ11へ送風するように構成された冷却器15を採用してもよい。なお、以下の説明において、冷却器15による冷却風の温度をTxと記載するが、熱交換器を有していない本実施形態においては、冷却風温度Txは外気温度Taと同じである。   The cooler 15 shown in the figure blows air to the battery 11 by a blower fan, but a cooler 15 configured to blow cool air cooled by a heat exchanger to the battery 11 may be adopted. . In the following description, the temperature of the cooling air by the cooler 15 is described as Tx, but in the present embodiment that does not have a heat exchanger, the cooling air temperature Tx is the same as the outside air temperature Ta.

ECU13は、バッテリ11から走行用モータへ供給する電力量を制御する。また、充電制御装置としても機能するECU13(受電電力低下手段、充電器損失低減手段)は、外部電源20から充電器12へ供給される受電電力(具体的には受電電力の電流値である受電電流Iin(t))を制御するとともに、冷却器15の作動(具体的には送風ファンの回転速度)を制御する。   The ECU 13 controls the amount of power supplied from the battery 11 to the traveling motor. Further, the ECU 13 (received power reduction means, charger loss reduction means) that also functions as a charge control device receives received power (specifically, the received power that is the current value of the received power from the external power supply 20 to the charger 12). The current Iin (t)) is controlled, and the operation of the cooler 15 (specifically, the rotational speed of the blower fan) is controlled.

ここで、充電開始から充電終了までにおける受電電力Winの総量(受電エネルギ)に対する、バッテリ蓄電エネルギの割合を、充電効率と呼ぶ。また、バッテリ蓄電エネルギWbに、以下に例示する各種損失Wcc,Wcl,Wscを加算した値が、受電電力総量(受電エネルギ)に相当する。Wccは冷却器15で消費されるエネルギ(冷却消費エネルギWcc)に相当する損失である。Wclは充電器12の発熱による熱損失(充電器損失Wcl)である。Wscは補機14で消費されるエネルギ(補機消費エネルギWsc)に相当する損失である。   Here, the ratio of the battery stored energy to the total amount (received energy) of the received power Win from the start of charging to the end of charging is referred to as charging efficiency. A value obtained by adding various losses Wcc, Wcl, and Wsc exemplified below to the battery stored energy Wb corresponds to the total amount of received power (received energy). Wcc is a loss corresponding to the energy consumed by the cooler 15 (cooling consumption energy Wcc). Wcl is a heat loss (charger loss Wcl) due to heat generated by the charger 12. Wsc is a loss corresponding to the energy consumed by the auxiliary machine 14 (auxiliary machine energy consumption Wsc).

そして、上述した冷却器15の制御および受電電力Winの制御は、充電効率が所定値以上になるように制御しており、これらの制御手法については、以下に説明する。   And control of the cooler 15 mentioned above and control of received electric power Win are controlled so that charging efficiency becomes more than predetermined value, and these control methods are demonstrated below.

先ず、図1を用いて受電電力Win、各種損失Wcc,Wcl,Wscおよびバッテリ蓄電エネルギWbの収支関係を説明すると、Win=Wcc+Wcl+Wsc+Wbとなる。そして、Wb/Winが充電効率である。つまり、各種損失Wcc,Wcl,Wscの合算値を低減させることが充電効率の向上に繋がる。   First, the balance relationship of the received power Win, various losses Wcc, Wcl, Wsc, and battery stored energy Wb will be described using FIG. 1 as follows: Win = Wcc + Wcl + Wsc + Wb. Wb / Win is the charging efficiency. That is, reducing the total value of the various losses Wcc, Wcl, and Wsc leads to an improvement in charging efficiency.

なお、これらの収支関係を電圧一定と見なした電流値で説明すると、受電電流Iinの一部は冷却器15に流れるため、冷却器15で用いられる電流(冷却消費電流Ia1)を受電電流Iinから減算した値が、充電器12へ供給される受電電力Winの電流(充電器入力電流Ic)となる。そして、充電器損失Wclの電流換算値(充電器損失電流Icl)と、補機消費エネルギ補機14で消費される電流換算値(補機消費電流Ia2)を、充電器入力電流Icから減算した値が、バッテリ11へ入力される電流値(バッテリ入力電流Ib)となる。   Note that, when these balance relationships are described as current values assuming that the voltage is constant, a part of the received current Iin flows to the cooler 15, so that the current (cooling consumption current Ia1) used in the cooler 15 is converted into the received current Iin. The value obtained by subtracting from is the current of the received power Win supplied to the charger 12 (charger input current Ic). Then, the current conversion value (charger loss current Icl) of the charger loss Wcl and the current conversion value (auxiliary consumption current Ia2) consumed by the auxiliary machine energy consumption auxiliary machine 14 are subtracted from the charger input current Ic. The value is the current value (battery input current Ib) input to the battery 11.

上述した「冷却器15の制御」および「受電電流Iinの制御」のうち、先ずは、冷却器15の制御(送風ファン回転速度の制御)の内容と、その制御による効果について、図2〜図4を用いて以下に説明する。   Of the “control of the cooler 15” and “control of the received current Iin” described above, first, the contents of the control of the cooler 15 (control of the blower fan rotation speed) and the effects of the control will be described with reference to FIGS. 4 will be described below.

図2(a)に示すように、充電器12の温度(充電器温度T)が高くなるほど、充電器12で生じる発熱量が多くなり充電器損失Wclが大きくなる。したがって、冷却器15を作動させて充電器温度Tを低下させれば充電器損失Wclを少なくできる。また、冷却器15の送風ファンの回転速度を上昇させるほど、充電器温度Tの低下が促進される。但し、回転速度を上昇させれば、その分だけ冷却消費エネルギWccが大きくなる。   As shown in FIG. 2A, as the temperature of the charger 12 (charger temperature T) increases, the amount of heat generated in the charger 12 increases and the charger loss Wcl increases. Therefore, if the cooler 15 is operated to lower the charger temperature T, the charger loss Wcl can be reduced. Moreover, the fall of the charger temperature T is accelerated | stimulated, so that the rotational speed of the ventilation fan of the cooler 15 is raised. However, if the rotational speed is increased, the cooling energy consumption Wcc increases accordingly.

図2(b)は、充電器温度Tと外気温度Taとの差分(充電器の外気温度差ΔT)が大きいほど、充電器温度Tを目標温度低下量dTだけ低下させるのに必要な冷却消費エネルギWccが小さくなることを示す。また、目標温度低下量dTが大きいほど、必要な冷却消費エネルギWccも大きくなることを示す。   FIG. 2B shows the cooling consumption required to decrease the charger temperature T by the target temperature decrease amount dT as the difference between the charger temperature T and the outside air temperature Ta (the outside air temperature difference ΔT of the charger) increases. It shows that the energy Wcc becomes smaller. In addition, the larger the target temperature decrease amount dT, the greater the required cooling energy consumption Wcc.

図2(c)は、冷却器15のファン回転速度と、充電器損失Wclおよび冷却消費エネルギWccとの関係を示すグラフであり、初期の充電器温度Tが一定であるとの条件であれば、図2(a)(b)の内容から図2(c)の結果が得られることが分かる。すなわち、当該グラフは、ファン回転速度を高くするほど、充電器損失Wclの低減量ΔWclは大きくなり、しかも、充電器の外気温度差ΔTが大きいほど、その低減量ΔWclは大きくなることを表す。また、ファン回転速度を高くするほど、冷却消費エネルギWccの増加量ΔWccが大きくなることを表す。ちなみに、図中の横軸上に示す一点鎖線は、ファン回転速度の最大値(ファン能力の限界点)を示す。   FIG.2 (c) is a graph which shows the relationship between the fan rotational speed of the cooler 15, charger loss Wcl, and cooling consumption energy Wcc, if the condition is that the initial charger temperature T is constant. From the contents of FIGS. 2A and 2B, it can be seen that the result of FIG. 2C is obtained. That is, the graph shows that the higher the fan rotation speed, the larger the reduction amount ΔWcl of the charger loss Wcl, and the larger the reduction amount ΔWcl becomes, the larger the outside air temperature difference ΔT of the charger. Further, the higher the fan rotation speed, the larger the increase amount ΔWcc of the cooling energy consumption Wcc. Incidentally, the alternate long and short dash line on the horizontal axis in the figure indicates the maximum value of the fan rotation speed (the limit point of the fan capacity).

図2(d)は、図2(c)から導き出されるグラフであり、充電器損失Wclの低減量ΔWclから冷却消費エネルギWccの増加量ΔWccを減算した値(ΔWcl−ΔWcc)を縦軸とし、冷却消費エネルギWccの値を横軸とする。このグラフは、冷却消費エネルギWccを所定の値にした時に、ΔWcl−ΔWccがピーク値となり充電効率が最大となることを表す。また、充電器12の外気温度差ΔTが大きいほどΔWcl−ΔWccのピーク値は高くなり、充電効率が向上することを表す。図中の一点鎖線L1は、充電器の外気温度差ΔTに応じて変化する前記ピーク値を示す。   FIG. 2D is a graph derived from FIG. 2C, in which the vertical axis is a value (ΔWcl−ΔWcc) obtained by subtracting the increase amount ΔWcc of the cooling energy consumption Wcc from the reduction amount ΔWcl of the charger loss Wcl. The value of the cooling energy consumption Wcc is taken as the horizontal axis. This graph shows that when the cooling energy consumption Wcc is set to a predetermined value, ΔWcl−ΔWcc becomes a peak value and the charging efficiency is maximized. Further, the larger the outside air temperature difference ΔT of the charger 12, the higher the peak value of ΔWcl−ΔWcc, indicating that the charging efficiency is improved. A one-dot chain line L1 in the figure indicates the peak value that changes in accordance with the outside air temperature difference ΔT of the charger.

各種損失Wcc,Wcl,Wscの合算値を低減させることが充電効率の向上に繋がることは先述した通りであるが、図2(d)では要するに、冷却器15による送風量を多くすればWclを低減できるもののWccが増加するので、冷却風を多くするほど充電効率が向上するという訳ではなく、送風量の最適範囲(またはピーク値)が存在することを表している。そしてその最適範囲は、充電器12の外気温度差ΔTに応じて変化することを表している。   As described above, reducing the combined value of the various losses Wcc, Wcl, and Wsc leads to improvement in charging efficiency. However, in FIG. 2 (d), if the amount of air blown by the cooler 15 is increased, Wcl is reduced. Although it can be reduced, the Wcc increases, so that the charging efficiency does not improve as the cooling air is increased, but it indicates that there is an optimum range (or peak value) of the air flow rate. And the optimal range represents changing according to the outside temperature difference (DELTA) T of the charger 12. FIG.

なお、図2(e)は、単位時間当たりの充電器温度上昇量dT/dtを示す式であり、式中の符号Cは充電器12の熱容量、Rは充電器12の内部抵抗、Tは充電器温度、Txは冷却風温度、Taは外気温度(本実施形態ではTx=Ta)、Icは充電器入力電流、αは冷却風と充電器12との熱伝達率、Sは充電器12の冷却面積を示す。そして、式中のA項は充電器12の発熱量を示し、B項は送風ファンにより送風された冷却風による放熱量を示し、C項は外気による放熱量を示す。   FIG. 2 (e) is an equation showing the charger temperature rise amount dT / dt per unit time, in which C is the heat capacity of the charger 12, R is the internal resistance of the charger 12, and T is Charger temperature, Tx is cooling air temperature, Ta is outside air temperature (Tx = Ta in this embodiment), Ic is charger input current, α is heat transfer coefficient between cooling air and charger 12, and S is charger 12. The cooling area is shown. The term A in the formula indicates the amount of heat generated by the charger 12, the term B indicates the amount of heat released by the cooling air blown by the blower fan, and the term C indicates the amount of heat released by the outside air.

図3は、冷却消費エネルギWcc(冷却器15への供給エネルギ)の最適値が記憶されたマップであり、図2を用いて説明した上記知見を鑑みて、充電器の外気温度差ΔTおよび外気温度Taと関連付けて記憶されている。すなわち、前記最適値は、図2(d)中の一点鎖線L1上の値であり、充電効率を最大にする冷却消費エネルギWccの値に設定されている。具体的には、充電器の外気温度差ΔTが大きいほど、ピーク値となるWccは大きくなっていくので(図3(d)参照)、図3のマップにおいてΔTが大きいほどWccの値を大きく設定している。   FIG. 3 is a map in which the optimum value of the cooling consumption energy Wcc (supply energy to the cooler 15) is stored. In view of the above-described knowledge explained with reference to FIG. 2, the outside air temperature difference ΔT and the outside air of the charger It is stored in association with the temperature Ta. That is, the optimum value is a value on the alternate long and short dash line L1 in FIG. 2D, and is set to the value of the cooling energy consumption Wcc that maximizes the charging efficiency. Specifically, the larger the outside air temperature difference ΔT of the charger, the larger the peak value Wcc (see FIG. 3D). Therefore, the larger the ΔT in the map of FIG. It is set.

なお、図2(d)中の網点は、充電器損失低減量が冷却消費エネルギWccよりも多くなる領域を表しており、この領域の範囲内で冷却消費エネルギWccの最適値を設定している。したがって、図3のマップのうち、充電器の外気温度差ΔTが所定値よりも小さい領域、つまり点線L2より左側の領域では、冷却消費エネルギWccをゼロに設定しており、冷却器15の作動を停止させる。   The halftone dot in FIG. 2 (d) represents a region where the charger loss reduction amount is larger than the cooling energy consumption Wcc, and an optimum value of the cooling energy consumption Wcc is set within this region. Yes. Therefore, in the map of FIG. 3, the cooling energy consumption Wcc is set to zero in the region where the outside temperature difference ΔT of the charger is smaller than the predetermined value, that is, the region on the left side of the dotted line L2, and the operation of the cooler 15 is performed. Stop.

ちなみに、図3中の網点を付した領域においては、充電器12が熱損傷することから保護するように冷却器15が機能する領域である。一方、図3中の斜線を付した領域においては、充電効率を向上させるように冷却器15が機能する領域である。そして、熱損傷保護の領域において、外気温度Taが高いほどWccの値を大きくして熱損傷から確実に保護させるようにしている。   Incidentally, the region indicated by the halftone dots in FIG. 3 is a region in which the cooler 15 functions to protect the charger 12 from thermal damage. On the other hand, the hatched area in FIG. 3 is an area where the cooler 15 functions to improve the charging efficiency. In the area of thermal damage protection, the higher the outside air temperature Ta is, the larger the value of Wcc is to ensure protection from thermal damage.

図4は、図3のマップに基づき設定した冷却消費エネルギWccとなるよう冷却器15の作動を制御した場合における、損失合計低減および充電時間短縮の効果を表す図である。   FIG. 4 is a diagram showing the effect of reducing the total loss and shortening the charging time when the operation of the cooler 15 is controlled so that the cooling energy consumption Wcc set based on the map of FIG. 3 is obtained.

図3のマップにしたがって冷却器15の作動を制御することにより、図4(a)の縦軸上の矢印に示すように充電にかかる損失合計を低減することができる。ここで言う「損失」とは、単位時間当たりにおける冷却消費エネルギWcc、充電器損失Wclおよび補機消費エネルギWscの各々のことである。また、「損失合計」とは、単位時間当たりの各損失Wcc,Wcl,Wscを合算した値のことであり、図4(a)に示す三角形の高さに相当する。   By controlling the operation of the cooler 15 in accordance with the map of FIG. 3, the total loss for charging can be reduced as shown by the arrow on the vertical axis of FIG. Here, “loss” refers to each of cooling energy consumption Wcc, charger loss Wcl and auxiliary machine energy consumption Wsc per unit time. The “total loss” is a value obtained by adding up the losses Wcc, Wcl, and Wsc per unit time, and corresponds to the height of the triangle shown in FIG.

つまり、図3のマップにしたがって、充電効率が最大となるように冷却消費エネルギWccを設定して冷却器15を制御すれば、図4(a)の縦軸に示すように、冷却消費エネルギWccが増大するものの充電器損失Wclが低減する。そして、Wccの増大分よりもWclの低減分の方が多いので、結果的に損失合計(三角形の高さ)が低減され、ひいては充電効率が向上する。   That is, according to the map of FIG. 3, if the cooling energy consumption Wcc is set so as to maximize the charging efficiency and the cooler 15 is controlled, the cooling energy consumption Wcc as shown on the vertical axis of FIG. However, the charger loss Wcl is reduced. Since there is more reduction in Wcl than in the increase in Wcc, as a result, the total loss (the height of the triangle) is reduced, and as a result, the charging efficiency is improved.

また、このように充電効率が向上した結果、図4の横軸上の矢印に示すように充電時間の短縮を図ることもできる。なお、損失量は、単位時間当たりの損失を充電時間で積分して算出される(図4(b)参照)。よって、充電時間が長くなるほど、損失量(図4(a)に示す三角形の高さ)は大きくなる。   Further, as a result of improving the charging efficiency in this way, the charging time can be shortened as shown by the arrow on the horizontal axis of FIG. The loss amount is calculated by integrating the loss per unit time with the charging time (see FIG. 4B). Therefore, the amount of loss (the height of the triangle shown in FIG. 4A) increases as the charging time increases.

次に、上述した「冷却器15の制御」および「受電電流Iinの制御」のうち、受電電流Iinの制御の内容と、その制御による効果について、図5〜図7を用いて以下に説明する。   Next, of the above-described “control of the cooler 15” and “control of the received current Iin”, the contents of the control of the received current Iin and the effects of the control will be described below with reference to FIGS. .

図5(a)に示すように、受電電力Winが一定であるとの条件下において、充電時間を短くするほど補機消費エネルギWscを少なくできる。そして、受電電流Iinを増加させて受電電力Winを増加させれば、充電時間を短くできる(図5(b)参照)。要するに、受電電力Winを増加させれば、充電時間を短くでき、ひいては補機消費エネルギWscを少なくできると言える。しかしながら、このように受電電力Winを増加させれば、充電器損失Wclが増大する(図5(c)参照)。   As shown in FIG. 5A, under the condition that the received power Win is constant, the auxiliary machine energy consumption Wsc can be reduced as the charging time is shortened. Then, the charging time can be shortened by increasing the received current Iin to increase the received power Win (see FIG. 5B). In short, it can be said that if the received power Win is increased, the charging time can be shortened, and consequently the auxiliary machine energy consumption Wsc can be reduced. However, if the received power Win is increased in this way, the charger loss Wcl increases (see FIG. 5C).

図5(d)は、受電電力Winと充電効率との関係を示すグラフであり、図5(a)〜(c)の内容から図5(d)の結果が得られることが分かる。すなわち、当該グラフは、受電電力Winを所定の値にした時に、充電効率がピーク値(最大)となることを表す。また、充電器温度Tが低いほど充電効率のピーク値は高くなり、充電効率が向上することを表す。図中の一点鎖線L3は、充電器温度Tに応じて変化する前記ピーク値を示す。   FIG.5 (d) is a graph which shows the relationship between the received electric power Win and charging efficiency, and it turns out that the result of FIG.5 (d) is obtained from the content of Fig.5 (a)-(c). That is, the graph represents that the charging efficiency becomes a peak value (maximum) when the received power Win is set to a predetermined value. Moreover, the lower the charger temperature T, the higher the peak value of the charging efficiency, indicating that the charging efficiency is improved. An alternate long and short dash line L3 in the figure indicates the peak value that changes according to the charger temperature T.

各種損失Wcc,Wcl,Wscの合算値を低減させることが充電効率の向上に繋がることは先述した通りであるが、図5(d)では要するに、前記ピーク値L3よりも受電電力Winが少ない領域においては、受電電力Winの増加による補機消費エネルギWscの低減量が、受電電力Winの増加による充電器損失Wclの増大量よりも多い。そのため、受電電力Winの増加に伴い充電効率も上昇していく。一方、前記ピーク値L3よりも受電電力Winが多い領域においては、受電電力Winの増加による補機消費エネルギWscの低減量が、受電電力Winの増加による充電器損失Wclの増大量よりも少ない。そのため、受電電力Winの増加に伴い充電効率は低下していく。   As described above, reducing the combined value of the various losses Wcc, Wcl, and Wsc leads to improvement of the charging efficiency. However, in FIG. 5D, in short, the region where the received power Win is less than the peak value L3. , The reduction amount of the auxiliary machine energy consumption Wsc due to the increase in the received power Win is larger than the increase amount of the charger loss Wcl due to the increase in the received power Win. For this reason, the charging efficiency increases as the received power Win increases. On the other hand, in the region where the received power Win is larger than the peak value L3, the reduction amount of the auxiliary machine energy consumption Wsc due to the increase in the received power Win is smaller than the increase amount of the charger loss Wcl due to the increase in the received power Win. Therefore, the charging efficiency decreases as the received power Win increases.

図6は、受電電力冷却消費エネルギWccの最適値が記憶されたマップであり、図2を用いて説明した上記知見を鑑みて、充電器の外気温度差ΔTおよび外気温度Taと関連付けて記憶されている。すなわち、前記最適値は、図5(d)中の一点鎖線L3上の値であり、充電効率を最大にする受電電力のことである。   FIG. 6 is a map in which the optimum value of the received power cooling consumption energy Wcc is stored, and is stored in association with the outside temperature difference ΔT and the outside temperature Ta of the charger in view of the above-described knowledge described with reference to FIG. ing. That is, the optimum value is a value on the alternate long and short dash line L3 in FIG. 5D, and is the received power that maximizes the charging efficiency.

具体的には、充電器温度Tが低いほど、ピーク値となる受電電力は高くなっていくので(図5(d)参照)、図6のマップにおいて充電器温度Tが低いほど受電電力の値を高く設定している。また、外気温度Taが低いほど充電器12からの放熱量が多くなることを鑑みて、外気温度Taが低いほど受電電力の値を高く設定している。   Specifically, the lower the charger temperature T, the higher the received power at the peak value (see FIG. 5 (d)). Therefore, the lower the charger temperature T in the map of FIG. Is set high. In view of the fact that the amount of heat released from the charger 12 increases as the outside air temperature Ta decreases, the value of the received power is set higher as the outside air temperature Ta decreases.

図7は、図6のマップに基づき設定した受電電力(受電電流Iin)となるよう充電器12の作動を制御した場合における、損失合計低減の効果を表す図である。   FIG. 7 is a diagram illustrating the effect of reducing the total loss when the operation of the charger 12 is controlled so that the received power (received current Iin) set based on the map of FIG. 6 is obtained.

図6のマップにしたがって冷却器15の作動を制御することにより、図7(a)の縦軸上の矢印に示すように充電にかかる損失合計を低減することができる。なお、前記「損失合計」の定義は図4と同じである。つまり、図6のマップにしたがって、充電効率が最大となるように受電電力(受電電流Iin)を制御すれば、図7(a)の縦軸に示すように、冷却消費エネルギWccおよび充電器損失Wclが低減する。そのため、損失合計(三角形の高さ)が低減して充電効率が向上する。   By controlling the operation of the cooler 15 according to the map of FIG. 6, the total loss for charging can be reduced as shown by the arrow on the vertical axis of FIG. The definition of “total loss” is the same as in FIG. That is, if the received power (received current Iin) is controlled so as to maximize the charging efficiency according to the map of FIG. 6, as shown on the vertical axis of FIG. Wcl is reduced. Therefore, the total loss (the height of the triangle) is reduced and the charging efficiency is improved.

但し、このように充電効率が向上することの背反として、図7の横軸上の矢印に示すように充電時間が増加する。そのため、図7(b)に示す損失量、つまり、単位時間当たりの損失を充電期間で積算した値であって、図7(a)に示す三角形の高さは、充電時間の増加分に比例して大きくなる。但し、充電時間増加に伴い生じた損失量の増量分(図7(a)中の符号ΔW参照)は、損失合計低減に伴い生じた損失量の減少分よりも少ない。よって、単位時間当たりの損失合計を充電期間で積算した値であって、図7(a)に示す三角形の高さに相当する値は低減する。   However, as a contradiction to the improvement of the charging efficiency in this way, the charging time increases as shown by the arrow on the horizontal axis in FIG. Therefore, the loss amount shown in FIG. 7B, that is, a value obtained by integrating the loss per unit time in the charging period, the height of the triangle shown in FIG. 7A is proportional to the increase in the charging time. And get bigger. However, the amount of increase in loss caused by the increase in charging time (see symbol ΔW in FIG. 7A) is smaller than the amount of loss loss caused by the total loss reduction. Therefore, a value obtained by integrating the total loss per unit time in the charging period, and a value corresponding to the height of the triangle shown in FIG.

次に、損失合計を低減させる2つの手法、すなわち「冷却器15の制御」および「受電電流Iinの制御」の作用原理の違いについて、図4(c)および図7(c)を用いて説明する。これらの図面は、受電電流Iinと充電器損失Wclとの関係を示しており、受電電流Iinの増加に伴い充電器損失Wclが増大し、また、充電器温度Tが高いほど充電器損失Wclが増大することを表している。   Next, the difference in operation principle between two methods for reducing the total loss, that is, “control of the cooler 15” and “control of the received current Iin” will be described with reference to FIGS. 4C and 7C. To do. These drawings show the relationship between the received current Iin and the charger loss Wcl. The charger loss Wcl increases as the received current Iin increases, and the charger loss Wcl increases as the charger temperature T increases. It represents an increase.

そして、「冷却器15の制御」によれば、図4(c)中の一点鎖線に示すように、冷却器15で充電器温度Tを低下させることにより充電器損失Wclを低下させて、充電効率を向上させている。一方、「受電電流Iinの制御」によれば、図7(c)中の一点鎖線に示すように、受電電流Iinを低下させることにより充電器損失Wclを低下させて、充電効率を向上させている。   Then, according to “control of the cooler 15”, as shown by the one-dot chain line in FIG. 4C, the charger temperature T is lowered by the cooler 15, thereby reducing the charger loss Wcl. Improves efficiency. On the other hand, according to the “control of the power receiving current Iin”, as shown by a one-dot chain line in FIG. 7C, the power receiving current Iin is decreased to reduce the charger loss Wcl, thereby improving the charging efficiency. Yes.

ところで、バッテリ入力電流Ibが大きいほど、バッテリ11の劣化進行は促進される(図8参照)。また、バッテリ入力電流Ibが所定の閾値Ibthを超えると急激に劣化進行が促進されるようになる。そのため、バッテリ入力電流Ibが閾値Ibthを超えないように制限することはバッテリ11の劣化抑制を図る上で有効である。よって、例えば図6のマップに基づき設定した受電電力が所定値を超えないように制限することで、バッテリ劣化抑制を図るようにしてもよい。   By the way, as the battery input current Ib increases, the deterioration of the battery 11 is promoted (see FIG. 8). Further, when the battery input current Ib exceeds a predetermined threshold value Ibth, the progress of deterioration is rapidly promoted. Therefore, restricting the battery input current Ib so as not to exceed the threshold value Ibth is effective in suppressing deterioration of the battery 11. Therefore, for example, the battery deterioration may be suppressed by limiting the received power set based on the map of FIG. 6 so as not to exceed a predetermined value.

また、車両ユーザによっては、充電効率の向上よりも短時間で充電を完了させることを優先させたい場合がある。このように、充電時間短縮を図りたい場合には、図6のマップに基づき設定した受電電力を増大するように補正して、バッテリ入力電流Ibを増大させてもよい。或いは、図3のマップに基づき設定した冷却消費エネルギ(冷却器15への供給エネルギ)を減少するように補正して、バッテリ入力電流Ibを増大させてもよい。   In addition, some vehicle users may want to give priority to completing charging in a shorter time than improving charging efficiency. Thus, when it is desired to shorten the charging time, the battery input current Ib may be increased by correcting the received power set based on the map of FIG. Alternatively, the battery input current Ib may be increased by correcting the cooling consumption energy (energy supplied to the cooler 15) set based on the map of FIG.

要するに、充電効率向上、充電時間短縮およびバッテリ劣化抑制のいずれを優先させるかに応じて、冷却器15への供給エネルギと受電電力を変更することが望ましい。但し、充電効率を所定以上に維持させつつ、充電時間短縮およびバッテリ劣化抑制を図ることが望ましい。具体的には、例えば図2(d)中の点線L1a,L1bの範囲内に制限しつつ、ピーク値L1を補正した値に冷却消費エネルギWccを設定すればよい。また、図5(d)中の点線L3a,L3bの範囲内に制限しつつ、ピーク値L3を補正した値に受電電力を設定すればよい。   In short, it is desirable to change the energy supplied to the cooler 15 and the received power depending on whether priority is given to improving charging efficiency, shortening charging time, or suppressing battery deterioration. However, it is desirable to shorten the charging time and suppress battery deterioration while maintaining the charging efficiency at a predetermined level or higher. Specifically, for example, the cooling energy consumption Wcc may be set to a value obtained by correcting the peak value L1 while limiting within the range of the dotted lines L1a and L1b in FIG. Moreover, what is necessary is just to set received power to the value which correct | amended the peak value L3, restrict | limiting within the range of the dotted lines L3a and L3b in FIG.5 (d).

なお、前記補正を実施するにあたり、図3及び図6のマップから設定したWcc及び受電電力を補正してもよいし、補正済みの値が記憶された複数のマップを予め準備しておき、補正内容に応じて使用するマップを切り替えるようにしてもよい。   In carrying out the correction, the Wcc and the received power set from the maps of FIGS. 3 and 6 may be corrected, or a plurality of maps in which corrected values are stored are prepared in advance. You may make it switch the map to be used according to the content.

本実施形態に係る車両10には、車両運転者により操作されるモード切替スイッチ16(図1参照)が備えられている。このモード切替スイッチ16は、充電効率向上を優先させる効率優先モードと、充電時間短縮を優先させる時間優先モードと、バッテリ劣化抑制を優先させる寿命優先モードとを選択するスイッチである。   The vehicle 10 according to the present embodiment is provided with a mode switch 16 (see FIG. 1) that is operated by a vehicle driver. The mode changeover switch 16 is a switch that selects an efficiency priority mode that prioritizes improvement of charging efficiency, a time priority mode that prioritizes shortening of charging time, and a life priority mode that prioritizes suppression of battery deterioration.

図9は、ECU13が有するマイクロコンピュータによる、モード選択に応じた冷却器15および受電電流Iinの制御の手順を示すフローチャートであり、当該処理は、所定周期(例えば先述のCPUが行う演算周期)で繰り返し実行される。   FIG. 9 is a flowchart showing a procedure for controlling the cooler 15 and the received current Iin according to the mode selection by the microcomputer of the ECU 13, and this processing is performed at a predetermined cycle (for example, the calculation cycle performed by the CPU described above). It is executed repeatedly.

先ず、図9に示すステップS10において、モード切替スイッチ16により選択されたモードを取得し、そのモードに応じた図3のマップ(Wcc算出マップ)および図6のマップ(Iin算出マップ)を選択する。すなわち、効率優先モードの場合にはピーク値L1,L3(図2および図5参照)となるWcc算出マップおよびIin算出マップを選択する。時間優先モードの場合には、ピーク値L1よりも冷却消費エネルギWccを低下させたWcc算出マップ、およびピーク値L3よりも受電電力を増加させたIin算出マップを選択する。寿命優先モードの場合には、ピーク値L1となるWcc算出マップ、およびピーク値L3よりも受電電力を減少させたIin算出マップを選択する。   First, in step S10 shown in FIG. 9, the mode selected by the mode switch 16 is acquired, and the map of FIG. 3 (Wcc calculation map) and the map of FIG. 6 (Iin calculation map) corresponding to the mode are selected. . That is, in the efficiency priority mode, the Wcc calculation map and the Iin calculation map that have the peak values L1 and L3 (see FIGS. 2 and 5) are selected. In the time priority mode, a Wcc calculation map in which the cooling energy consumption Wcc is lower than the peak value L1 and an Iin calculation map in which the received power is increased from the peak value L3 are selected. In the life priority mode, the Wcc calculation map that is the peak value L1 and the Iin calculation map in which the received power is reduced from the peak value L3 are selected.

続くステップS20(低下量制御手段(損失低減量制御手段))では、ステップS10で選択したIin算出マップを参照して、充電器温度Tおよび外気温度Taに基づき受電電力(受電電流Iin)を決定する。なお、受電電力の電圧は100Vまたは200V等、特定の値に決められているので、実質的には受電電流Iinを決定することとなる。また、冷却器15が熱交換器を有する場合には、熱交換器により温度低下した冷却風の温度Txにも基づいて受電電力を決定する。   In subsequent step S20 (decrease amount control means (loss reduction amount control means)), the received power (received current Iin) is determined based on the charger temperature T and the outside air temperature Ta with reference to the Iin calculation map selected in step S10. To do. Since the voltage of the received power is determined to be a specific value such as 100V or 200V, the received current Iin is substantially determined. Moreover, when the cooler 15 has a heat exchanger, the received power is determined based on the temperature Tx of the cooling air whose temperature is lowered by the heat exchanger.

続くステップS30(冷却制御手段(損失低減量制御手段))では、ステップS10で選択したWcc算出マップを参照して、充電器温度Tおよび外気温度Taに基づき冷却消費エネルギWcc(冷却器供給エネルギ)を決定する。なお、冷却器15が熱交換器を有する場合には、熱交換器により温度低下した冷却風の温度Txにも基づいて冷却消費エネルギWccを決定する。   In subsequent step S30 (cooling control means (loss reduction amount control means)), referring to the Wcc calculation map selected in step S10, cooling energy consumption Wcc (cooler supply energy) based on charger temperature T and outside air temperature Ta. To decide. When the cooler 15 has a heat exchanger, the cooling energy consumption Wcc is determined based also on the temperature Tx of the cooling air whose temperature is lowered by the heat exchanger.

続くステップS40では、受電電流Iin、冷却消費電流Ia1、外気温度Ta、充電器温度の前回値T(t)に基づき、充電器温度Tを算出する。具体的には、先ず、受電電流Iinから冷却消費電流Ia1を減算して、充電器入力電流Icを算出する。次に、このように算出したIcおよびTa,T(t)を、図2(e)の算出式に代入して、充電器温度上昇量dT/dtを算出する。そして、このように算出したdT/dtを充電器温度の前回値T(t)に加算して、充電器温度Tを算出する。   In the subsequent step S40, the charger temperature T is calculated based on the power reception current Iin, the cooling current consumption Ia1, the outside air temperature Ta, and the previous value T (t) of the charger temperature. Specifically, first, the charger input current Ic is calculated by subtracting the cooling consumption current Ia1 from the power reception current Iin. Next, Ic and Ta, T (t) calculated in this way are substituted into the calculation formula of FIG. 2 (e) to calculate the charger temperature increase dT / dt. Then, dT / dt calculated in this way is added to the previous value T (t) of the charger temperature to calculate the charger temperature T.

続くステップS50では、ステップS40で算出した充電器温度T、および充電器入力電流Icに基づき、充電器損失Wclを算出する。具体的には、充電器温度Tに基づき充電器12の内部抵抗Rを算出し、その内部抵抗RにIcの2乗を乗算してWclを算出する。   In the subsequent step S50, the charger loss Wcl is calculated based on the charger temperature T calculated in step S40 and the charger input current Ic. Specifically, the internal resistance R of the charger 12 is calculated based on the charger temperature T, and the internal resistance R is multiplied by the square of Ic to calculate Wcl.

続くステップS60では、ステップS50で算出した充電器損失Wclに相当する充電器損失電流Icl、充電器入力電流Icおよび補機消費電流Ia2に基づき、バッテリ入力電流Ibを算出する。具体的には、IclおよびIa2をIcから減算してWclを算出する。   In the following step S60, the battery input current Ib is calculated based on the charger loss current Icl, the charger input current Ic, and the auxiliary machine consumption current Ia2 corresponding to the charger loss Wcl calculated in step S50. Specifically, Icl and Ia2 are subtracted from Ic to calculate Wcl.

続くステップS70では、ステップS60で算出したバッテリ入力電流Ibに基づき、現時点でのバッテリ蓄電エネルギが目標値Wbに達したか否かを判定する。目標値Wbに達していなければ、ステップS20〜S60の処理を繰り返して充電を継続し、目標値Wbに達したと判定されれば、図9の処理を終了して充電を終了する。   In subsequent step S70, based on the battery input current Ib calculated in step S60, it is determined whether or not the current battery storage energy has reached the target value Wb. If the target value Wb has not been reached, the processing of steps S20 to S60 is repeated to continue charging. If it is determined that the target value Wb has been reached, the processing of FIG.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)冷却器15により充電器12を冷却することで充電器損失Wclを低減させるにあたり、充電器損失Wclの低減量ΔWclが、冷却消費エネルギWccの増加量ΔWccより多くなるように、冷却消費エネルギWcc(冷却器供給エネルギ)を制御する。そのため、冷却器15を過剰運転させた結果、冷却消費エネルギWccの増大により充電効率が却って悪くなる、といった不具合を回避して、充電効率を効果的に向上できる。   (1) When the charger 12 is cooled by the cooler 15 to reduce the charger loss Wcl, the cooling consumption is reduced so that the reduction amount ΔWcl of the charger loss Wcl is larger than the increase amount ΔWcc of the cooling energy consumption Wcc. The energy Wcc (cooler supply energy) is controlled. Therefore, it is possible to effectively improve the charging efficiency by avoiding the problem that the charging efficiency is worsened due to the increase of the cooling energy consumption Wcc as a result of the excessive operation of the cooler 15.

(2)受電電力の低下に伴い充電時間が長くなることによる補機消費エネルギWsc(充電システムの運転消費エネルギ)の総量(積分値)増大分が、受電電力を低下させることによる冷却消費エネルギWccおよび充電器損失Wclの総量(積分値)減少分よりも少なくなるように、受電電力を制御する。そのため、受電電力を過剰に減少させた(受電電力低下量を過大にした)結果、補機消費エネルギWscの総量増大により充電効率が却って悪くなる、といった不具合を回避して、充電効率を効果的に向上できる。   (2) The increase in the total amount (integrated value) of the auxiliary machine energy consumption Wsc (operational energy consumption of the charging system) due to the increase in the charging time accompanying the decrease in the received power reduces the cooling energy consumption Wcc due to the decrease in the received power. The received power is controlled so that the total amount (integrated value) of the charger loss Wcl is reduced. As a result, the charging efficiency is effectively avoided by avoiding the problem that the charging efficiency becomes worse due to an increase in the total amount of auxiliary machine power consumption Wsc as a result of excessively reducing the receiving power (the amount of decrease in the receiving power is excessive). Can be improved.

(3)充電器温度Tと外気温度Taとの差分ΔTに応じて、冷却消費エネルギWccを変化させるよう制御するので、所望する充電効率となるよう高精度で制御できる。また、充電器温度Tおよび外気温度Taに応じて、受電電力を変化させるよう制御するので、所望する充電効率となるよう高精度で制御できる。   (3) Since the cooling consumption energy Wcc is controlled to be changed according to the difference ΔT between the charger temperature T and the outside air temperature Ta, it can be controlled with high accuracy so as to achieve a desired charging efficiency. Moreover, since it controls to change received electric power according to charger temperature T and outside temperature Ta, it can control with high precision so that it may become desired charging efficiency.

(4)効率優先モード、時間優先モードおよび寿命優先モードに応じて、冷却消費エネルギWccおよび受電電力の設定を変更するので、充電効率向上、充電時間短縮、バッテリ劣化抑制のバランスを、車両ユーザの要求に応じて調整できる。   (4) Since the settings of the cooling energy consumption Wcc and the received power are changed according to the efficiency priority mode, the time priority mode, and the life priority mode, the balance between the charging efficiency improvement, the charging time reduction, and the battery deterioration suppression is Can be adjusted on demand.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、「冷却器15の制御」および「受電電流Iinの制御」の両制御を実施しているが、いずれか一方のみを実施するようにしてもよい。   In the above embodiment, both control of “control of cooler 15” and “control of power receiving current Iin” are performed, but only one of them may be performed.

・上記実施形態にかかる冷却器15では、送風ファンにより外気温度の空気を充電器12へ送風させているが、熱交換器を有した冷却器15を採用し、外気温度を冷却した冷気を送風させるようにしてもよい。   In the cooler 15 according to the above-described embodiment, air at an outside temperature is blown to the charger 12 by the blower fan. You may make it make it.

・上記実施形態では、効率優先モード、時間優先モードおよび寿命優先モードの3つのモードに応じて、冷却消費エネルギWccおよび受電電力の設定を変更しているが、寿命優先モードを廃止して、効率優先モードおよび時間優先モードに応じて冷却消費エネルギWccおよび受電電力の設定を変更するようにしてもよい。   In the above embodiment, the settings of the cooling energy consumption Wcc and the received power are changed according to the three modes of the efficiency priority mode, the time priority mode, and the life priority mode. The settings of the cooling energy consumption Wcc and the received power may be changed according to the priority mode and the time priority mode.

・上記実施形態では、冷却消費エネルギWccおよび受電電力の両方を各モードに応じて変更させているが、いずれか一方のみを各モードに応じて変更させるようにしてもよい。   In the above embodiment, both the cooling energy consumption Wcc and the received power are changed according to each mode, but only one of them may be changed according to each mode.

・上記実施形態では、冷却器15への電力供給を外部電源20からの受電電力としているが、例えば、充電器12から電力供給してもよいし、バッテリ11から電力供給してもよい。また、上記実施形態では、補機14への電力供給を充電器12から行っているが、例えば、バッテリ11から補機14への電力供給を実施してもよい。   In the above-described embodiment, power supply to the cooler 15 is received power from the external power supply 20, but power may be supplied from the charger 12 or may be supplied from the battery 11, for example. Moreover, in the said embodiment, although the electric power supply to the auxiliary machine 14 is performed from the charger 12, you may implement the electric power supply from the battery 11 to the auxiliary machine 14, for example.

・上記実施形態では、商用100Vまたは200Vの交流電力を外部電源20として採用しているが、本発明にかかる電源は、このような商用の電圧に限定されるものではない。   In the above embodiment, commercial AC power of 100 V or 200 V is adopted as the external power source 20, but the power source according to the present invention is not limited to such commercial voltage.

11…バッテリ、12…充電器、13…ECU(受電電力低下手段、充電器損失低減手段)、15…冷却器(冷却手段(充電器損失低減手段))、20…外部電源(電源)、S20…低下量制御手段(損失低減量制御手段)、S30…冷却制御手段(損失低減量制御手段)、Wb…バッテリ蓄電エネルギ、Win…受電電力。   DESCRIPTION OF SYMBOLS 11 ... Battery, 12 ... Charger, 13 ... ECU (Received electric power reduction means, Charger loss reduction means), 15 ... Cooler (cooling means (charger loss reduction means)), 20 ... External power supply (power supply), S20 ... reduction amount control means (loss reduction amount control means), S30 ... cooling control means (loss reduction amount control means), Wb ... battery stored energy, Win ... received power.

Claims (8)

電源から供給される受電電力を充電器で昇圧してバッテリへ入力させる充電システムに適用され、
前記充電器で生じる熱損失を低減させる充電器損失低減手段と、
充電終了までにおける前記受電電力の総量に対するバッテリ蓄電エネルギの割合である充電効率に応じて、前記充電器損失低減手段による前記熱損失の低減量を制御する損失低減量制御手段と、
を備えることを特徴とする充電制御装置。
Applied to a charging system that boosts received power supplied from a power source with a charger and inputs it to a battery,
Charger loss reduction means for reducing heat loss generated in the charger;
Loss reduction amount control means for controlling the reduction amount of the heat loss by the charger loss reduction means according to the charging efficiency, which is the ratio of the battery stored energy to the total amount of the received power until the end of charging,
A charge control device comprising:
前記充電器損失低減手段は、前記充電器を冷却することで前記熱損失を低減させる冷却手段を有し、
前記損失低減量制御手段は、前記冷却による前記熱損失の低減量が前記冷却手段の駆動で消費されるエネルギより多くなるように、前記冷却手段での冷却消費エネルギを制御する冷却制御手段を有することを特徴とする請求項1に記載の充電制御装置。
The charger loss reduction means has a cooling means for reducing the heat loss by cooling the charger,
The loss reduction amount control means has cooling control means for controlling the cooling energy consumption in the cooling means so that the reduction amount of the heat loss due to the cooling is larger than the energy consumed by driving the cooling means. The charge control device according to claim 1, wherein
前記冷却制御手段は、前記冷却手段による冷却風と前記充電器との温度差に応じて、前記冷却消費エネルギを変化させることを特徴とする請求項2に記載の充電制御装置。   The charging control device according to claim 2, wherein the cooling control unit changes the cooling energy consumption according to a temperature difference between cooling air by the cooling unit and the charger. 前記充電効率の向上を充電時間の短縮よりも優先させる効率優先モードと、前記充電時間の短縮を前記充電効率の向上よりも優先させる時間優先モードとが切り替え可能に構成され、
前記冷却制御手段は、前記時間優先モードに設定されている場合には、前記効率優先モードに設定されている場合に比べて前記バッテリへ入力される充電電力が増大するよう、前記冷却消費エネルギを設定することを特徴とする請求項2または3に記載の充電制御装置。
An efficiency priority mode that prioritizes improvement of the charging efficiency over reduction of charging time and a time priority mode that prioritizes reduction of the charging time over improvement of the charging efficiency are configured to be switchable,
When the time priority mode is set, the cooling control means reduces the cooling energy consumption so that the charging power input to the battery is increased as compared with the case where the efficiency priority mode is set. The charge control device according to claim 2, wherein the charge control device is set.
前記充電器損失低減手段は、前記受電電力を低下させることで前記熱損失を低減させる受電電力低下手段を有し、
前記損失低減量制御手段は、前記受電電力の低下に伴い充電時間が長くなることによる前記充電システムの運転消費エネルギ増大分と、前記受電電力を低下させることによる前記熱損失の低減分とのバランスに基づき、前記充電効率が所定値以上となるように、前記受電電力低下手段による受電電力低下量を制御する低下量制御手段を有することを特徴とする請求項1〜4のいずれか1つに記載の充電制御装置。
The charger loss reduction means has a received power reduction means for reducing the heat loss by reducing the received power,
The loss reduction amount control means balances an increase in operating energy consumption of the charging system due to a longer charging time with a decrease in the received power and a decrease in the heat loss due to a decrease in the received power. 5. The apparatus according to claim 1, further comprising a reduction amount control unit configured to control a reduction amount of received power by the received power reduction unit so that the charging efficiency is equal to or higher than a predetermined value. The charging control device described.
前記低下量制御手段は、前記充電器の温度および雰囲気温度の少なくとも一方に応じて、前記受電電力低下量を変化させることを特徴とする請求項5に記載の充電制御装置。   6. The charging control apparatus according to claim 5, wherein the reduction amount control means changes the amount of reduction in received power according to at least one of a temperature of the charger and an ambient temperature. 前記充電効率の向上を充電時間の短縮よりも優先させる効率優先モードと、前記充電時間の短縮を前記充電効率の向上よりも優先させる時間優先モードとが切り替え可能に構成され、
前記低下量制御手段は、前記時間優先モードに設定されている場合には、前記効率優先モードに設定されている場合に比べて前記受電電力低下量を少なくすることを特徴とする請求項5または6に記載の充電制御装置。
An efficiency priority mode that prioritizes improvement of the charging efficiency over reduction of charging time and a time priority mode that prioritizes reduction of the charging time over improvement of the charging efficiency are configured to be switchable,
6. The reduction amount control means, when set in the time priority mode, reduces the received power reduction amount as compared with the case where the efficiency priority mode is set. 6. The charge control device according to 6.
前記充電効率の向上を充電時間の短縮よりも優先させる効率優先モードと、前記バッテリの劣化抑制を前記充電効率の向上よりも優先させる寿命優先モードとが切り替え可能に構成され、
前記低下量制御手段は、前記寿命優先モードに設定されている場合には、前記効率優先モードに設定されている場合に比べて前記受電電力低下量を多くすることを特徴とする請求項5〜7のいずれか1つに記載の充電制御装置。
An efficiency priority mode that prioritizes the improvement of the charging efficiency over a reduction in charging time and a life priority mode that prioritizes the suppression of deterioration of the battery over the improvement of the charging efficiency are configured to be switchable,
6. The reduction amount control means increases the amount of received power reduction when set in the life priority mode compared to when set in the efficiency priority mode. 8. The charge control device according to claim 1.
JP2011144406A 2011-06-29 2011-06-29 Charge control device Active JP5605321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144406A JP5605321B2 (en) 2011-06-29 2011-06-29 Charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144406A JP5605321B2 (en) 2011-06-29 2011-06-29 Charge control device

Publications (2)

Publication Number Publication Date
JP2013013248A true JP2013013248A (en) 2013-01-17
JP5605321B2 JP5605321B2 (en) 2014-10-15

Family

ID=47686611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144406A Active JP5605321B2 (en) 2011-06-29 2011-06-29 Charge control device

Country Status (1)

Country Link
JP (1) JP5605321B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003203A1 (en) * 2016-07-01 2018-01-04 三菱電機株式会社 Storage cell cooling control device and storage cell cooling control method
WO2018079679A1 (en) * 2016-10-27 2018-05-03 株式会社東芝 Charging system
WO2019078288A1 (en) * 2017-10-19 2019-04-25 大日本印刷株式会社 Color calibration viewer, and color calibration set in which same is used
JP2019092373A (en) * 2017-11-15 2019-06-13 ダンフォス・モバイル・エレクトリフィケーション・オーワイ Machine tool
US10374517B2 (en) 2017-11-10 2019-08-06 Soken, Inc. Apparatus for controlling power converter
JP2019140721A (en) * 2018-02-06 2019-08-22 トヨタ自動車株式会社 Electric vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254097A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Charging system and charging control method
JP2010081704A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Charge controller
JP2010124652A (en) * 2008-11-21 2010-06-03 Honda Motor Co Ltd Charge controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254097A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Charging system and charging control method
JP2010081704A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Charge controller
JP2010124652A (en) * 2008-11-21 2010-06-03 Honda Motor Co Ltd Charge controller

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003203A1 (en) * 2016-07-01 2018-01-04 三菱電機株式会社 Storage cell cooling control device and storage cell cooling control method
JPWO2018003203A1 (en) * 2016-07-01 2018-10-11 三菱電機株式会社 Storage battery cooling control device and storage battery cooling control method
WO2018079679A1 (en) * 2016-10-27 2018-05-03 株式会社東芝 Charging system
JP2018074711A (en) * 2016-10-27 2018-05-10 株式会社東芝 Charging system
WO2019078288A1 (en) * 2017-10-19 2019-04-25 大日本印刷株式会社 Color calibration viewer, and color calibration set in which same is used
US10374517B2 (en) 2017-11-10 2019-08-06 Soken, Inc. Apparatus for controlling power converter
JP2019092373A (en) * 2017-11-15 2019-06-13 ダンフォス・モバイル・エレクトリフィケーション・オーワイ Machine tool
JP7393859B2 (en) 2017-11-15 2023-12-07 ダンフォス・モバイル・エレクトリフィケーション・オーワイ Machine Tools
JP2019140721A (en) * 2018-02-06 2019-08-22 トヨタ自動車株式会社 Electric vehicle
JP7010035B2 (en) 2018-02-06 2022-01-26 トヨタ自動車株式会社 Electric vehicle

Also Published As

Publication number Publication date
JP5605321B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5605321B2 (en) Charge control device
JP5649918B2 (en) Battery cooling system and cooling method
US10522853B2 (en) Fuel cell system, fuel cell vehicle and control method of fuel cell system
US20120101675A1 (en) Motor control apparatus for electric vehicle
JP5634327B2 (en) DC / DC converter device
US9994109B2 (en) Power supply system applied to electrically powered vehicle
US8880259B2 (en) Electric power dissipation control
US10189369B2 (en) Method and system for controlling motors
JP2015199470A (en) vehicle control system
JP5042816B2 (en) Internal combustion engine control device
KR101628603B1 (en) Charger Cooling System Control Method and Controller for Green Car
JP6174557B2 (en) Battery cooling system
JP6492430B2 (en) Control device for plug-in hybrid vehicle
JP6734165B2 (en) Control device for battery temperature control unit
JP6421622B2 (en) Control device
JP6705341B2 (en) Hybrid car
KR20130025119A (en) Apparatus for cooling power module of green car and method thereof
JP2006197691A (en) Drive unit power device, automobile mounted with the same, and control method of power device
KR101360421B1 (en) Method and system for controlling generation for hybrid vehicle
KR101125005B1 (en) Method for controlling electric water pump of hybrid vehicle
JP6464804B2 (en) Vehicle control device
JP5831346B2 (en) Vehicle control device
JP2012209109A5 (en)
JP2016028547A (en) Vehicle control unit
JP2016164037A (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R151 Written notification of patent or utility model registration

Ref document number: 5605321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250