JP2013012637A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2013012637A
JP2013012637A JP2011145295A JP2011145295A JP2013012637A JP 2013012637 A JP2013012637 A JP 2013012637A JP 2011145295 A JP2011145295 A JP 2011145295A JP 2011145295 A JP2011145295 A JP 2011145295A JP 2013012637 A JP2013012637 A JP 2013012637A
Authority
JP
Japan
Prior art keywords
power
side coil
conducting wire
power supply
loop antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011145295A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kagami
和義 加々美
Shingo Tanaka
信吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011145295A priority Critical patent/JP2013012637A/en
Publication of JP2013012637A publication Critical patent/JP2013012637A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply system implementing weight saving without reducing transmission efficiency.SOLUTION: A power supply system comprises: a power supply side coil to which power is supplied; and a power reception side coil to which the power is transmitted from the power supply side coil by electromagnetic resonance when facing the power supply side coil. The power supply side coil and the power reception side coil are arranged to be bound by pipe-like conducting wire 11 whose thickness D is set to be equal to or more than 1/sqrt(π×f×μ×σ), where f is a frequency of power, μ is permeability of the conducting wire 11, and σ is a dielectric constant of the conducting wire.

Description

本発明は、給電システムに係り、特に、電力が供給される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、を備えた給電システムに関するものである。   The present invention relates to a power supply system, and in particular, includes a power supply side coil to which power is supplied, and a power reception side coil that receives power from the power supply side coil by electromagnetic resonance when facing the power supply side coil. The present invention relates to a power supply system.

上述した給電システムとして、例えば図1及び図2に示すものが知られている(例えば非特許文献1、2)。同図に示すように、給電システム1は、給電部3と、受電部5と、を備えている。上記給電部3は、電力が供給される給電側ループアンテナ6と、給電側ループアンテナ6に対してその中心軸方向に対向するように離間して配置され、当該給電側ループアンテナ6に電磁結合された給電側コイル7(=給電側コイル)と、が設けられている。上記給電側ループアンテナ6に電力が供給されると、その電力が電磁誘導により給電側コイル7に送られる。   As the power feeding system described above, for example, those shown in FIGS. 1 and 2 are known (for example, Non-Patent Documents 1 and 2). As shown in FIG. 1, the power supply system 1 includes a power supply unit 3 and a power reception unit 5. The power feeding unit 3 is arranged to be separated from the power feeding side loop antenna 6 to which power is supplied so as to be opposed to the power feeding side loop antenna 6 in the central axis direction, and is electromagnetically coupled to the power feeding side loop antenna 6. The power feeding side coil 7 (= power feeding side coil) is provided. When power is supplied to the power feeding side loop antenna 6, the power is sent to the power feeding side coil 7 by electromagnetic induction.

上記受電部5は、給電側コイル7に対してその中心軸方向に対向するように離間して配置されると電磁共鳴する受電側コイル8と、この受電側コイル8に対してその中心軸方向に対向するように離間して配置され当該受電側コイル8に電磁結合された受電側ループアンテナ9と、が設けられている。給電側コイル7に電力が送られると、その電力が磁界の共鳴によって受電側コイル8にワイヤレスで送られる。   The power receiving unit 5 is electromagnetically resonated with the power receiving side coil 7 so as to be opposed to the power feeding side coil 7 in the direction of the central axis thereof. The power receiving side loop antenna 9 is provided so as to be opposed to the power receiving side coil 8 and electromagnetically coupled to the power receiving side coil 8. When power is sent to the power supply side coil 7, the power is wirelessly sent to the power receiving side coil 8 due to magnetic field resonance.

さらに、受電側コイル8に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ9に送られ、この受電側ループアンテナ9に接続された負荷に供給される。上述した給電システム1によれば、給電側コイル7と受電側コイル8との電磁共鳴により非接触で給電側から受電側に電力を供給することができる。   Further, when power is sent to the power receiving side coil 8, the power is sent to the power receiving side loop antenna 9 by electromagnetic induction and supplied to a load connected to the power receiving side loop antenna 9. According to the power feeding system 1 described above, electric power can be supplied from the power feeding side to the power receiving side in a non-contact manner by electromagnetic resonance between the power feeding side coil 7 and the power receiving side coil 8.

そして、上述した受電部5を自動車4に設け、給電部3を道路2などに設けることにより、上述した給電システム1を利用してワイヤレスで自動車4に搭載された負荷に電力を供給することが考えられている。ところで、上述した給電側コイル7、受電側コイル8、給電側ループアンテナ6及び受電側ループアンテナ9は、図8の断面図に示すように、例えば直径φ=5mmの断面円形状の銅から構成された導線11を巻いて設けていた。   Then, by providing the power receiving unit 5 described above in the automobile 4 and providing the power feeding unit 3 in the road 2 or the like, it is possible to supply power to the load mounted on the automobile 4 wirelessly using the power feeding system 1 described above. It is considered. By the way, the power feeding side coil 7, the power receiving side coil 8, the power feeding side loop antenna 6 and the power receiving side loop antenna 9 described above are made of, for example, copper having a circular cross section having a diameter φ = 5 mm as shown in the cross sectional view of FIG. The conductive wire 11 was wound and provided.

ところで、近年、この給電システム1の軽量化が望まれている。特に、自動車4に搭載される受電部5は、車両の燃費向上を図るためにもさらなる計量化が求められている。   By the way, in recent years, weight reduction of the power feeding system 1 is desired. In particular, the power receiving unit 5 mounted on the automobile 4 is required to be further quantified in order to improve the fuel consumption of the vehicle.

そこで、従来より例えば、銅よりも比重の軽いアルミニウムから構成された導線11を用いて給電側、受電側コイル7、8や給電側、受電側ループアンテナ6、9を設けることが考えられる。なお、銅の比重は8.96[g/cm3]、アルミニウムの比重は2.71[g/cm3]となり銅の1/3程度である。しかしながら、銅の伝導率が5.8e-7[S/m]であるのに対してアルミニウムは伝導率が3.54e-7[S/m]と6割程度となる。このため、アルミニウムから構成された導線11を用いる重量は1/3程度に軽くなるものの、伝送効率が低下してしまう、という問題があった。 Therefore, conventionally, for example, it is conceivable to provide the power feeding side, the power receiving side coils 7 and 8 and the power feeding side and the power receiving side loop antennas 6 and 9 by using a conductive wire 11 made of aluminum having a specific gravity lighter than copper. The specific gravity of copper is 8.96 [g / cm 3 ] and the specific gravity of aluminum is 2.71 [g / cm 3 ], which is about 1/3 of copper. However, the conductivity of copper is 5.8e -7 [S / m], whereas the conductivity of aluminum is 3.54e -7 [S / m], which is about 60%. For this reason, although the weight using the conducting wire 11 comprised from aluminum becomes light about 1/3, there existed a problem that transmission efficiency fell.

次に、本発明者らは、銅導線11を巻いて給電側、受電側コイル7、8を設けた給電システム1である従来品Aと、アルミニウム導線11を巻いて給電側、受電側コイル7、8を設けた給電システム1である従来品Bと、について周波数f0付近における伝送効率S212をシミュレーションして、導線11の伝導率が下がると伝送効率が低下してしまうことを確認した。結果を図4及び図5に示す。図4に示すように伝導率が高い銅導線11を用いた場合、周波数f0での伝送効率は約95%である。これに対して、伝導率が低いアルミニウム導線11を用いた場合、重量は1/3程度に軽くなるものの、周波数f0での伝送効率は、確かに93%に低下してしまうことが分かった。 Next, the inventors of the present invention are a conventional product A which is a power feeding system 1 in which a copper conducting wire 11 is wound and a feeding side and receiving side coils 7 and 8 are provided, and an aluminum conducting wire 11 is wound around a feeding side and a receiving side coil 7. The transmission efficiency S21 2 in the vicinity of the frequency f0 was simulated for the conventional product B, which is the power supply system 1 provided with 8 and 8, and it was confirmed that the transmission efficiency was lowered when the conductivity of the conducting wire 11 was lowered. The results are shown in FIGS. As shown in FIG. 4, when the copper conductor 11 having high conductivity is used, the transmission efficiency at the frequency f0 is about 95%. On the other hand, when the aluminum conducting wire 11 having low conductivity is used, the weight is reduced to about 1/3, but the transmission efficiency at the frequency f0 is surely lowered to 93%.

A.Kurs,A.Karalis,R.Moffatt,J.D.Joannopoulos,P.Fisher,M.Soljacic"Wireless power transfer via strongly coupled magnetic resonances",science,Vol.317,pp.83-86,July6,2007A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, M. Soljacic "Wireless power transfer via strongly coupled magnetic resonances", science, Vol. 317, pp. 83-86, July 6, 2007 M.Soljacic,A.Karalis,J.Joannopoulos,A.Kurs,R.Moffatt,P.FisheR,"電力を無線伝送する技術を開発 実験で60Wの電球を点灯"、日経エレクトロニクス,3Dec.2007M.Soljacic, A.Karalis, J.Joannopoulos, A.Kurs, R.Moffatt, P.FisheR, "Development of technology to transmit power wirelessly, lighting 60W bulb in experiment", Nikkei Electronics, 3Dec.2007

そこで、本発明は、伝送効率を低下させることなく、軽量化を図った給電システムを提供することを課題とする。   Therefore, an object of the present invention is to provide a power feeding system that is reduced in weight without reducing transmission efficiency.

上述した課題を解決するための請求項1記載の発明は、電力が供給される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、を備えた給電システムにおいて、前記給電側コイル及び前記受電側コイルの少なくとも一方が、内部が空洞となるパイプ状の導線を巻いて設けられ、前記パイプ状の導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられていることを特徴とする給電システムに存する。   The invention according to claim 1 for solving the above-described problem includes a power supply side coil to which power is supplied, and a power reception side coil that receives electromagnetic power from the power supply side coil by electromagnetic resonance when facing the power supply side coil. And at least one of the power feeding side coil and the power receiving side coil is provided by winding a pipe-shaped conducting wire having a hollow inside, and the thickness of the pipe-shaped conducting wire is 1 / It exists in the electric power feeding system characterized by being provided more than sqrt (pix frequency of the electric power x magnetic permeability of the conducting wire x dielectric constant of the conducting wire).

請求項2記載の発明は、電力が供給される給電側ループアンテナと、前記給電側ループアンテナに電磁結合される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、前記受電側コイルに電磁結合され、前記受電側コイルからの電力を受電する受電側ループアンテナと、を備えた給電システムにおいて、前記給電側ループアンテナ、前記給電側コイル、前記受電側ループアンテナ及び前記受電側コイルの少なくとも一つが、内部が空洞となるパイプ状の導線を巻いて設けられ、前記パイプ状の導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられていることを特徴とする給電システムに存する。   According to a second aspect of the present invention, there is provided a feeding-side loop antenna to which power is supplied, a feeding-side coil that is electromagnetically coupled to the feeding-side loop antenna, and electromagnetic resonance that occurs when the feeding-side coil is opposed to the feeding-side coil. A power receiving system comprising: a power receiving side coil that receives power from the power receiving side coil; and a power receiving side loop antenna that is electromagnetically coupled to the power receiving side coil and that receives power from the power receiving side coil. At least one of the side coil, the power receiving side loop antenna, and the power receiving side coil is provided by winding a pipe-shaped lead wire having a hollow inside, and the thickness of the pipe-shaped lead wire is 1 / sqrt (π × It exists in the electric power feeding system characterized by being provided more than the frequency of electric power x the magnetic permeability of the conducting wire x the dielectric constant of the conducting wire.

請求項3記載の発明は、前記パイプ状の導線の内部に気体又は液体を循環させて前記導線を冷却する冷却手段をさらに備えたことを特徴とする請求項1又は2に記載の給電システムに存する。   According to a third aspect of the present invention, in the power feeding system according to the first or second aspect, the cooling system further includes a cooling means for circulating the gas or liquid inside the pipe-shaped conductive wire to cool the conductive wire. Exist.

請求項4記載の発明は、電力が供給される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、を備えた給電システムにおいて、前記給電側コイル及び前記受電側コイルの少なくとも一方が、中心線と、前記中心線の表面にメッキして形成されたパイプ状の導線と、から成る金属線を巻いて設けられ、前記中心線が、前記パイプ状の導線よりも比重の軽い材料からなり、前記導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられていることを特徴とする給電システムに存する。   According to a fourth aspect of the present invention, there is provided a power feeding system comprising: a power feeding side coil to which power is supplied; and a power receiving side coil that electromagnetically resonates to receive power from the power feeding side coil when facing the power feeding side coil. And at least one of the power supply side coil and the power reception side coil is provided by winding a metal wire composed of a center line and a pipe-like conductor formed by plating the surface of the center line, and the center line Is made of a material having a lighter specific gravity than the pipe-shaped conductor, and the thickness of the conductor is not less than 1 / sqrt (π × frequency of the power × magnetic permeability of the conductor × dielectric constant of the conductor). The power supply system is characterized by that.

請求項5記載の発明は、電力が供給される給電側ループアンテナと、前記給電側ループアンテナに電磁結合される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、前記受電側コイルに電磁結合され、前記受電側コイルからの電力を受電する受電側ループアンテナと、を備えた給電システムにおいて、前記給電側ループアンテナ、前記給電側コイル、前記受電側ループアンテナ及び前記受電側コイルの少なくとも一つが、中心線と、前記中心線の表面にメッキして形成されたパイプ状の導線と、から成る金属線を巻いて設けられ、前記中心線が、前記パイプ状の導線よりも比重の軽い材料からなり、前記導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられていることを特徴とする給電システムに存する。   According to a fifth aspect of the present invention, there is provided a power feeding side loop antenna to which power is supplied, a power feeding side coil that is electromagnetically coupled to the power feeding side loop antenna, and electromagnetic resonance that occurs when the power feeding side coil is opposed to the power feeding side coil. A power receiving system comprising: a power receiving side coil that receives power from the power receiving side coil; and a power receiving side loop antenna that is electromagnetically coupled to the power receiving side coil and that receives power from the power receiving side coil. At least one of the side coil, the power receiving side loop antenna, and the power receiving side coil is provided by winding a metal wire composed of a center line and a pipe-shaped conductor formed by plating the surface of the center line, The center line is made of a material having a lighter specific gravity than the pipe-shaped conductor, and the thickness of the conductor is 1 / sqrt (π × frequency of the power × permeability of the conductor) × consists in power supply system, characterized in that provided on the dielectric constant of the conductor) or more.

以上説明したように請求項1記載の発明によれば、給電側コイル及び受電側コイルの少なくとも一方が、内部が空洞となるパイプ状の導線を巻いて設けられ、導線の厚さが、1/sqrt(π×電力の周波数×導線の透磁率×導線の誘電率)以上に設けられている。電力の周波数が高周波になると表皮効果が発生し、導線の表面にしか電流が流れず、内部には流れなくなる。この電流が流れる表面の厚さは、1/sqrt(π×電力の周波数×導線の透磁率×導線の誘電率)で表すことができる。従って、コイルを構成する導線をパイプ状に設けて、導線の厚さを1/sqrt(π×電力の周波数×導線の透磁率×導線の誘電率)以上にすれば、断面円形状の導線と同じ伝送効率を保ちつつ内部を空洞にした分、軽量化を図ることができる。   As described above, according to the first aspect of the present invention, at least one of the power feeding side coil and the power receiving side coil is provided by winding a pipe-shaped conducting wire having a hollow inside, and the conducting wire has a thickness of 1 / More than sqrt (π × frequency of power × magnetic permeability of conductive wire × dielectric constant of conductive wire). When the frequency of power becomes high, a skin effect occurs, and current flows only on the surface of the conductive wire and does not flow inside. The thickness of the surface through which this current flows can be expressed by 1 / sqrt (π × frequency of power × magnetic permeability of conductive wire × dielectric constant of conductive wire). Therefore, if the conducting wire constituting the coil is provided in a pipe shape and the thickness of the conducting wire is set to 1 / sqrt (π × frequency of power × magnetic permeability of conducting wire × dielectric constant of conducting wire) or more, The weight can be reduced by making the inside hollow while maintaining the same transmission efficiency.

請求項2記載の発明によれば、給電側ループアンテナ、給電側コイル、受電側コイル及び受電側ループアンテナの少なくとも一方が、内部が空洞となるパイプ状の導線を巻いて設けられ、導線の厚さが、1/sqrt(π×電力の周波数×導線の透磁率×導線の誘電率)以上に設けられている。従って、断面円形状の導線と同じ伝送効率を保ちつつ内部を空洞にした分、軽量化を図ることができる。   According to the invention of claim 2, at least one of the feeding side loop antenna, the feeding side coil, the power receiving side coil, and the power receiving side loop antenna is provided by winding a pipe-shaped conducting wire having a hollow inside, and the thickness of the conducting wire is Is more than 1 / sqrt (π × frequency of power × magnetic permeability of conductive wire × dielectric constant of conductive wire). Accordingly, it is possible to reduce the weight by keeping the same transmission efficiency as that of the conducting wire having a circular cross section while hollowing the inside.

請求項3記載の発明によれば、冷却手段によりパイプ状の導線の内部に気体又は液体を循環させて導線を冷却できる。   According to invention of Claim 3, a conducting wire can be cooled by circulating a gas or a liquid inside a pipe-shaped conducting wire with a cooling means.

請求項4記載の発明によれば、給電側コイル及び受電側コイルの少なくとも一方が、中心線と、中心線の表面にメッキして形成されたパイプ状の導線と、から成る金属線を巻いて設けられ、中心線が、パイプ状の導線よりも比重の軽い材料からなり、導線の厚さが、1/sqrt(π×電力の周波数×導線の透磁率×導線の誘電率)以上に設けられている。従って、断面円形状の導線と同じ伝送効率を保ちつつパイプ状の導線の内部を比重の軽い中心線にした分、軽量化を図ることができる。   According to the invention described in claim 4, at least one of the power supply side coil and the power reception side coil winds a metal wire comprising a center line and a pipe-like conductor formed by plating the surface of the center line. The center line is made of a material having a lighter specific gravity than the pipe-shaped conductor, and the thickness of the conductor is greater than 1 / sqrt (π × frequency of power × magnetic permeability of the conductor × dielectric constant of the conductor) ing. Therefore, it is possible to reduce the weight by maintaining the same transmission efficiency as that of the conducting wire having a circular cross section while making the inside of the pipe-like conducting wire a center line having a low specific gravity.

請求項5記載の発明によれば、給電側ループアンテナ、給電側コイル、受電側コイル及び受電側ループアンテナの少なくとも一方が、中心線と、中心線の表面にメッキして形成したパイプ状の導線と、から成る金属線を巻いて設けられ、中心線が、パイプ状の銅線よりも重量の軽い材料からなり、導線の厚さが、1/sqrt(π×電力の周波数×導線の透磁率×導線の誘電率)以上に設けられている。従って、断面円形状の導線と同じ伝送効率を保ちつつパイプ状の導線の内部を比重の軽い中心線にした分、軽量化を図ることができる。   According to the fifth aspect of the present invention, at least one of the power supply side loop antenna, the power supply side coil, the power reception side coil, and the power reception side loop antenna is formed by plating the center line and the surface of the center line. The center line is made of a material that is lighter in weight than the pipe-shaped copper wire, and the thickness of the conductor is 1 / sqrt (π × frequency of power × magnetic permeability of the conductor) X dielectric constant of conducting wire) or more. Therefore, it is possible to reduce the weight by maintaining the same transmission efficiency as that of the conducting wire having a circular cross section while making the inside of the pipe-like conducting wire a center line having a low specific gravity.

本発明の給電システムを示す図である。It is a figure which shows the electric power feeding system of this invention. 図1に示す給電システムを構成する給電部及び受電部の斜視図である。It is a perspective view of the electric power feeding part and electric power receiving part which comprise the electric power feeding system shown in FIG. 第1実施形態における図2に示す給電側、受電側コイルを構成する導線の断面図である。It is sectional drawing of the conducting wire which comprises the electric power feeding side and electric power receiving side coil shown in FIG. 2 in 1st Embodiment. 図3に示すパイプ状の銅導線を巻いて給電側、受電側コイルを設けた給電システムである本発明品Aと、図8に示す断面円形状の銅導線を巻いて給電側、受電側コイルを設けた給電システムである従来品Bとについて、周波数f0付近の伝送効率S212を示すグラフである。The product A of the present invention, which is a power feeding system provided with a power feeding side and power receiving side coil by winding a pipe-shaped copper conducting wire shown in FIG. 3, and a power feeding side and a power receiving side coil by winding a circular copper conducting wire shown in FIG. Is a graph showing the transmission efficiency S21 2 near the frequency f0 with respect to the conventional product B, which is a power supply system provided with. 図3に示すパイプ状のアルミニウム導線を巻いて給電側、受電側コイルを設けた給電システムである本発明品Bと、図8に示す断面円形状のアルミニウム導線を巻いて給電側、受電側コイルを設けた従来品Bとについて、周波数f0付近の伝送効率S212を示すグラフである。The product B of the present invention, which is a power feeding system provided with a feeding side and receiving side coil by winding a pipe-shaped aluminum conducting wire shown in FIG. 3, and a feeding side and a receiving side coil by winding an aluminum conducting wire having a circular cross section shown in FIG. Is a graph showing the transmission efficiency S21 2 near the frequency f0. 第2実施形態における図2に示す給電側、受電側コイルを構成する導線の断面図である。It is sectional drawing of the conducting wire which comprises the electric power feeding side and electric power receiving side coil shown in FIG. 2 in 2nd Embodiment. 厚さD=72μm、36μm、20μmの図6に示す銅導線から構成された金属線を巻いて給電側、受電側コイルを設けた給電システムである本発明品C1〜C3と、図8に示す断面円形状のアルミニウム導線を巻いて給電側、受電側コイルを設けた給電システムである従来品Bとについて、周波数f0付近の伝送効率S212を示すグラフである。The present invention products C1 to C3, which are power supply systems provided with a power supply side and a power reception side coil by winding a metal wire composed of the copper conductor shown in FIG. 6 having a thickness D = 72 μm, 36 μm, and 20 μm, and FIG. feeding side by winding a circular cross section of the aluminum wire, for the conventional product B is a power supply system provided with the power receiving coil is a graph showing the transmission efficiency S21 2 near the frequency f0. 従来の給電側、受電側コイルを構成する導線の断面図である。It is sectional drawing of the conducting wire which comprises the conventional electric power feeding side and the receiving side coil.

第1実施形態
以下、本発明の第1実施形態における給電システムを図1〜図3に基づいて説明する。図1は、本発明の給電システムを示す図である。図2は、図1に示す給電システムを構成する給電部及び受電部の斜視図である。図3は、第1実施形態における図2に示す給電側、受電側コイルを構成する導線の断面図である。同図に示すように、給電システム1は、道路2上などに設けられた給電部3と、自動車4の腹部分などに設けられた受電部5と、を備えている。
1st Embodiment Hereinafter, the electric power feeding system in 1st Embodiment of this invention is demonstrated based on FIGS. 1-3. FIG. 1 is a diagram showing a power supply system of the present invention. FIG. 2 is a perspective view of a power feeding unit and a power receiving unit that configure the power feeding system illustrated in FIG. 1. FIG. 3 is a cross-sectional view of a conductive wire constituting the power supply side and power reception side coils shown in FIG. 2 in the first embodiment. As shown in the figure, the power feeding system 1 includes a power feeding unit 3 provided on a road 2 and the like, and a power receiving unit 5 provided on an abdomen of an automobile 4 or the like.

給電部3は、図1及び図2に示すように、電力が供給される給電側ループアンテナ6と、この給電側ループアンテナ6に対してその中心軸方向に対向するように離間して配置され、給電側ループアンテナ6に電磁結合された給電側コイル7と、が設けられている。   As shown in FIGS. 1 and 2, the power feeding unit 3 is arranged to be separated from the power feeding side loop antenna 6 to which power is supplied so as to face the power feeding side loop antenna 6 in the central axis direction. A power feeding side coil 7 electromagnetically coupled to the power feeding side loop antenna 6 is provided.

上記給電側ループアンテナ6は、導線を円形のループ状に巻いて構成されていて、その中心軸Z1が道路2から自動車4の腹部分に向かう方向、即ち鉛直方向に沿うように配置されている。この給電側ループアンテナ6の両端には、交流電源Vが接続されていて、この交流電源Vからの交流電力が供給されている。   The feeding-side loop antenna 6 is configured by winding a conducting wire in a circular loop shape, and the central axis Z1 is arranged along the direction from the road 2 toward the abdomen of the automobile 4, that is, along the vertical direction. . An AC power supply V is connected to both ends of the feeding-side loop antenna 6, and AC power from the AC power supply V is supplied.

上記給電側コイル7は、例えば導線を円形のヘリカル状に巻いて構成されている。本実施形態においては、給電側コイル7は、その巻数が1巻に設けられている。この給電側コイル7の両端には、共鳴周波数調整用のキャパシタC1が接続されている。   The power supply side coil 7 is configured by winding a conducting wire in a circular helical shape, for example. In the present embodiment, the power supply side coil 7 is provided in one turn. A capacitor C1 for adjusting resonance frequency is connected to both ends of the power supply side coil 7.

また、この給電側コイル7は、上記給電側ループアンテナ6よりも自動車4側に給電側ループアンテナ6と同軸上に配置されている。上記給電側ループアンテナ6と給電側コイル7とは、互いに電磁結合できる範囲内、即ち、給電側ループアンテナ6に交流電力が供給され、交流電流が流れると給電側コイル7に電磁誘導が発生するような範囲内で、互いに離間して設けられている。   Further, the power supply side coil 7 is arranged coaxially with the power supply side loop antenna 6 on the side of the automobile 4 than the power supply side loop antenna 6. The power feeding side loop antenna 6 and the power feeding side coil 7 are within a range where they can be electromagnetically coupled to each other, that is, when AC power is supplied to the power feeding side loop antenna 6 and an AC current flows, electromagnetic induction occurs in the power feeding side coil 7. Within such a range, they are separated from each other.

上記受電部5は、給電側コイル7に対してその中心軸方向に対向するように離間して配置されると電磁共鳴する受電側コイル8と、この受電側コイル8に対してその中心軸方向に対向するように配置され、受電側コイル8に電磁結合された受電側ループアンテナ9と、が設けられている。   The power receiving unit 5 is electromagnetically resonated with the power receiving side coil 7 so as to be opposed to the power feeding side coil 7 in the direction of the central axis thereof. And a power reception side loop antenna 9 electromagnetically coupled to the power reception side coil 8.

上記受電側ループアンテナ9は、導線を円形のループ状に設けられていて、その中心軸Z2が自動車4の腹部分から道路2に向かう方向、即ち鉛直方向に沿うように配置されている。この受電側ループアンテナ9の両端には、車載バッテリなどの負荷10が接続されている。また、本実施形態においては、上記受電側ループアンテナ9は、上述した給電側ループアンテナ6と同じ径に設けられているが、本発明はこれに限ったものではなく、例えば、受電側ループアンテナ9の径が、上述した給電側ループアンテナ6の径よりも小さく設けられていてもよい。   The power receiving side loop antenna 9 is provided with a conducting wire in a circular loop shape, and its central axis Z2 is arranged in a direction from the belly portion of the automobile 4 toward the road 2, that is, along the vertical direction. A load 10 such as an in-vehicle battery is connected to both ends of the power receiving side loop antenna 9. Further, in the present embodiment, the power receiving side loop antenna 9 is provided with the same diameter as that of the power feeding side loop antenna 6 described above, but the present invention is not limited to this. For example, the power receiving side loop antenna 9 The diameter of 9 may be provided smaller than the diameter of the feeding-side loop antenna 6 described above.

上記受電側コイル8は、例えば導線を円形のヘリカル状に巻いて構成されている。本実施形態においては、受電側コイル8は、給電側コイル7と同様に、その巻数が1巻に設けられている。この受電側コイル8の両端にも、共鳴周波数調整用のキャパシタC2が接続されている。本実施形態においては、上記受電側コイル8は、上述した給電側コイル7と同じ径に設けられているが、本発明はこれに限ったものではなく、例えば、受電側コイル8の径が、上述した給電側コイル7の径よりも小さく設けられていてもよい。   The power receiving side coil 8 is configured by winding a conducting wire in a circular helical shape, for example. In the present embodiment, the power receiving side coil 8 is provided with one turn as in the case of the power feeding side coil 7. A resonance frequency adjusting capacitor C2 is also connected to both ends of the power receiving side coil 8. In the present embodiment, the power receiving side coil 8 is provided with the same diameter as that of the power feeding side coil 7 described above, but the present invention is not limited to this. For example, the diameter of the power receiving side coil 8 is You may provide smaller than the diameter of the electric power feeding side coil 7 mentioned above.

また、受電側コイル8は、上述した受電側ループアンテナ9の道路2側に、受電側ループアンテナ9と同軸上に配置されている。これにより、受電側ループアンテナ9と受電側コイル8とは、互いに電磁結合する範囲内、即ち、受電側コイル8に交流電流が流れると受電側ループアンテナ9に誘導電流が発生する範囲内に、互いに離間して設けられている。   The power receiving side coil 8 is disposed coaxially with the power receiving side loop antenna 9 on the road 2 side of the power receiving side loop antenna 9 described above. Thereby, the power receiving side loop antenna 9 and the power receiving side coil 8 are within a range where they are electromagnetically coupled to each other, that is, within a range where an induction current is generated in the power receiving side loop antenna 9 when an alternating current flows through the power receiving side coil 8. They are separated from each other.

上述した給電システム1によれば、自動車4の受電部5が道路2に設けた給電部3に近づいて給電側コイル7と受電側コイル8とが中心軸方向に互いに間隔を空けて対向したときに、給電側コイル7と受電側コイル8とが電磁共鳴して給電部3から受電部5に非接触で電力を供給できる。   According to the power supply system 1 described above, when the power reception unit 5 of the automobile 4 approaches the power supply unit 3 provided on the road 2, the power supply side coil 7 and the power reception side coil 8 face each other with a space therebetween in the central axis direction. In addition, the power feeding side coil 7 and the power receiving side coil 8 can be electromagnetically resonated to supply power from the power feeding unit 3 to the power receiving unit 5 in a non-contact manner.

詳しく説明すると、上記給電側ループアンテナ6に交流電流が供給されると、その電力が電磁誘導により給電側コイル7に送られる。即ち、給電側コイル7には、給電側ループアンテナ6を介して電力が供給される。給電側コイル7に電力が送られると、その電力が磁界の共鳴によって受電側コイル8にワイヤレスで送られる。さらに、受電側コイル8に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ9に送られ、この受電側ループアンテナ9に接続された負荷10に供給される。   More specifically, when an alternating current is supplied to the feeding-side loop antenna 6, the power is sent to the feeding-side coil 7 by electromagnetic induction. That is, power is supplied to the power supply side coil 7 via the power supply side loop antenna 6. When power is sent to the power supply side coil 7, the power is wirelessly sent to the power receiving side coil 8 due to magnetic field resonance. Further, when power is sent to the power receiving side coil 8, the power is sent to the power receiving side loop antenna 9 by electromagnetic induction and supplied to the load 10 connected to the power receiving side loop antenna 9.

また、上述した給電側ループアンテナ6及び受電側ループアンテナ9は、図3に示すような内部が空洞となるパイプ状の導線11を巻いて設けられている。この導線11は銅から構成されている。この導線11の厚さDは下記の式(1)で表される範囲内に設けられている。
D≧δ=1/sprt(π×f×μ×σ) …(1)
δ:表皮厚、f:交流電源Vが供給する交流電力の周波数[Hz]、μ:導線11の透磁率、σ:導線の導電率[1/Ωm]
Further, the power feeding side loop antenna 6 and the power receiving side loop antenna 9 described above are provided by winding a pipe-shaped conducting wire 11 having a hollow inside as shown in FIG. The conducting wire 11 is made of copper. The thickness D of the conducting wire 11 is provided within a range represented by the following formula (1).
D ≧ δ = 1 / sprt (π × f × μ × σ) (1)
δ: skin thickness, f: frequency of AC power supplied by AC power supply V [Hz], μ: permeability of conducting wire 11, σ: conductivity of conducting wire [1 / Ωm]

ところで、電力の周波数が高周波になると表皮効果が発生し、導線11の表面にしか電流が流れず、内部には流れなくなる。この電流が流れる表面の厚さ(=表皮厚δ)は、1/sqrt(π×f×μ×σ)で表すことができる。従って、給電側、受電側コイル7、8コイルを構成する導線11をパイプ状に設けて、導線11の厚さDを表皮厚δ=1/sqrt(π×f×μ×σ)以上にすれば、図8に示すような断面円形状の銅導線11と同じ伝送効率を保ちつつ内部を空洞にした分、軽量化を図ることができる。   By the way, when the frequency of electric power becomes high, a skin effect occurs, current flows only on the surface of the conductive wire 11, and does not flow inside. The thickness (= skin thickness δ) of the surface through which this current flows can be expressed by 1 / sqrt (π × f × μ × σ). Therefore, the conducting wire 11 constituting the feeding side and receiving side coils 7 and 8 is provided in a pipe shape, and the thickness D of the conducting wire 11 is set to a skin thickness δ = 1 / sqrt (π × f × μ × σ) or more. For example, the weight can be reduced by keeping the same transmission efficiency as that of the copper conducting wire 11 having a circular cross section as shown in FIG.

次に、本発明者らは、図3に示すパイプ状の銅導線11を巻いて給電側、受電側コイル7、8を設けた給電システム1である本発明品Aと、図8に示す断面円形状の銅導線11を巻いて給電、受電側コイル7、8を設けた給電システム1である従来品Aと、について、周波数f0付近での伝送効率S212をシミュレーションした。結果を図4に示す。なお、本発明品A、従来品Aともに直径φ=5mmの銅導線11を用いている。また、本発明品Aにおいては導線11の厚さD=1mmとしている。銅の場合、表皮厚δ=約20μmなので、導線11の厚さDはこれよりも大きくなっている。 Next, the inventors of the present invention A, which is the power feeding system 1 in which the pipe-shaped copper conductor 11 shown in FIG. 3 is wound and the power feeding side and power receiving side coils 7 and 8 are provided, and the cross section shown in FIG. The transmission efficiency S21 2 near the frequency f0 was simulated for the conventional product A, which is a power feeding system 1 in which a circular copper conducting wire 11 is wound to supply power and receive-side coils 7 and 8 are provided. The results are shown in FIG. The inventive product A and the conventional product A both use a copper conductor 11 having a diameter φ = 5 mm. In the product A of the present invention, the thickness D of the conducting wire 11 is set to 1 mm. In the case of copper, since the skin thickness δ = about 20 μm, the thickness D of the conductive wire 11 is larger than this.

図4からも明らかなように周波数f0での伝送効率S212は、本発明品A、従来品Aとも95%程で両者差がない。即ち、本発明品Aは、従来品Aと同じ伝送効率を保ちつつ内部を空洞にした分、軽量化できることが分かった。 As is apparent from FIG. 4, the transmission efficiency S21 2 at the frequency f0 is about 95% for both the product A of the present invention and the conventional product A, and there is no difference between them. That is, it was found that the product A of the present invention can be reduced in weight by the amount of the hollow inside while maintaining the same transmission efficiency as the conventional product A.

また、本発明者らは、図3に示すようなパイプ状のアルミニウム導線11を用いて給電側、受電側コイル7、8を設けた本発明品Bと、図8に示す断面円形状のアルミニウム導線11を巻いて給電側、受電側コイル7、8を設けた従来品Bと、について、周波数f0付近での伝送効率S212をシミュレーションした。なお、本発明品B、従来品Bともに直径φ=5mmの導線11を用いている。また、本発明品Bにおいては導線11の厚さD=1mmとしている。アルミニウムの場合、表皮厚δ=約20μmなので、導線11の厚さDはこれよりも大きくなっている。 In addition, the inventors of the present invention B provided the feeding side and receiving side coils 7 and 8 using the pipe-shaped aluminum conducting wire 11 as shown in FIG. 3, and the aluminum having the circular cross section shown in FIG. The transmission efficiency S21 2 near the frequency f0 was simulated for the conventional product B in which the conducting wire 11 is wound and the power supply side and power reception side coils 7 and 8 are provided. The inventive product B and the conventional product B both use the conductive wire 11 having a diameter φ = 5 mm. In the product B of the present invention, the thickness D of the conducting wire 11 is set to 1 mm. In the case of aluminum, since the skin thickness δ = about 20 μm, the thickness D of the conductive wire 11 is larger than this.

図4からも明らかなように周波数f0での伝送効率S212は、本発明品B、従来品Bとも93%程で両者差がない。即ち、本発明品Bは、従来品Bと同じ伝送効率を保ちつつ内部を空洞にした分、軽量化できることが分かった。 As is apparent from FIG. 4, the transmission efficiency S21 2 at the frequency f0 is about 93% for both the product B of the present invention and the conventional product B, and there is no difference between them. That is, it was found that the product B of the present invention can be reduced in weight by the amount of the hollow inside while maintaining the same transmission efficiency as the conventional product B.

一般に、導線11の抵抗は、その長さに比例し、断面積に反比例する。にもかかわらず、図4及び図5に示すように、導線11をパイプ状にしても伝送効率が低下しない(抵抗が増加しない)のは、上述した表皮効果が発揮されたためである。   In general, the resistance of the conducting wire 11 is proportional to its length and inversely proportional to its cross-sectional area. Nevertheless, as shown in FIGS. 4 and 5, the transmission efficiency does not decrease (the resistance does not increase) even if the conductor 11 is formed into a pipe shape because the skin effect described above is exhibited.

また、上述した導線11はパイプ状になっているため、この導線11の内部に気体や液体を循環させて給電側、受電側コイル7、8を冷却するポンプなどの冷却手段を設けることも考えられる。高電力を伝送する際には、給電側、受電側コイル7、8の抵抗により温度上昇が避けられないが、上述したように気体や液体を循環させることにより、これら給電側、受電側コイル7、8を冷却できる。   In addition, since the above-described conducting wire 11 has a pipe shape, it is considered to provide cooling means such as a pump for circulating gas or liquid inside the conducting wire 11 to cool the power feeding side and receiving side coils 7 and 8. It is done. When transmitting high power, the temperature rise is unavoidable due to the resistance of the power supply side and power reception side coils 7, 8, but by circulating gas or liquid as described above, these power supply side, power reception side coil 7. , 8 can be cooled.

なお、上述した第1実施形態のシミュレーションでは、導線11の厚さDを表皮厚δよりもだいぶ大きくしていたが、強度上問題なければ導線11の厚さDは表皮厚δまで薄くしても伝送効率は低下しない。   In the simulation of the first embodiment described above, the thickness D of the conducting wire 11 is much larger than the skin thickness δ. However, if there is no problem in strength, the thickness D of the conducting wire 11 is reduced to the skin thickness δ. However, the transmission efficiency does not decrease.

また、上述した第1実施形態のシミュレーションでは、導線11の直径φ=5mmとしたが、本発明はこれに限ったものではない、上述したとおり表皮厚δに対して導線11の厚さDがそれ以上あれば直径φに関わらず第1実施形態と同様の効果を得ることができる。   In the simulation of the first embodiment described above, the diameter φ of the conducting wire 11 is set to 5 mm. However, the present invention is not limited to this. As described above, the thickness D of the conducting wire 11 is equal to the skin thickness δ. If it is more, the same effect as the first embodiment can be obtained regardless of the diameter φ.

また、上述した第1実施形態では、導線11は円形のパイプを用いていたが、本発明はこれに限ったものではない。導線11としては内部が空洞となるパイプ状であれば良く、例えば三角あるいは四角形のパイプであってもよい。   In the first embodiment described above, the conducting wire 11 is a circular pipe, but the present invention is not limited to this. The conducting wire 11 may be a pipe having a hollow inside, and may be, for example, a triangular or quadrangular pipe.

また、上述した第1実施形態では、給電側、受電側コイル7、8のみパイプ状の導線11で構成していたが、本発明はこれに限ったものではない。給電側ループアンテナ6や受電側ループアンテナ9についても図3に示すようなパイプ状の導線11で構成してもよい。このように、給電側、受電側ループアンテナ6、9を構成する導線11をパイプ状に設けて、導線11の厚さDを表皮厚δ以上にすれば、さらなる軽量化を図ることができる。   Further, in the first embodiment described above, only the power feeding side and power receiving side coils 7 and 8 are configured by the pipe-shaped conducting wire 11, but the present invention is not limited to this. The power feeding side loop antenna 6 and the power receiving side loop antenna 9 may also be configured by a pipe-shaped conducting wire 11 as shown in FIG. Thus, if the conducting wire 11 which comprises the electric power feeding side and the receiving side loop antennas 6 and 9 is provided in a pipe shape, and thickness D of the conducting wire 11 is made more than skin thickness (delta), further weight reduction can be achieved.

第2実施形態
次に、本発明の第2実施形態における給電システムを図6に基づいて説明する。図6は、第2実施形態における図2に示す給電側、受電側コイル7、8を構成する導線の断面図である。第1実施形態と第2実施形態とで大きく異なる点は、給電側、受電側コイル7、8の構成である。第1実施形態においては、給電側、受電側コイル7、8は、図3に示すように内部が空洞となるパイプ状の導線11から構成されていたが、第2実施形態では、図6に示すような金属線12から構成されている。
Second Embodiment Next, a power feeding system according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of a conductor constituting the power supply side and power reception side coils 7 and 8 shown in FIG. 2 in the second embodiment. A significant difference between the first embodiment and the second embodiment is the configuration of the power feeding side and power receiving side coils 7 and 8. In the first embodiment, the power supply side and power reception side coils 7 and 8 are composed of the pipe-shaped conducting wire 11 having a hollow inside as shown in FIG. 3, but in the second embodiment, in FIG. It consists of a metal wire 12 as shown.

図6に示すように、金属線12は、断面円形状のアルミから成る中心線13と、この中心線13にメッキして形成されたパイプ状の銅から成る導線11と、から構成されている。この導線11の厚さDは第1実施形態と同様に下記の式(1)で表される範囲内に設けられている。
D≧δ=1/sprt(π×f×μ×σ) …(1)
δ:表皮厚、f:交流電源Vが供給する交流電力の周波数[Hz]、μ:導線11の透磁率、σ:導線の導電率[1/Ωm]
As shown in FIG. 6, the metal wire 12 includes a center line 13 made of aluminum having a circular cross section, and a lead wire 11 made of pipe-like copper formed by plating on the center line 13. . The thickness D of this conducting wire 11 is provided within the range represented by the following formula (1), as in the first embodiment.
D ≧ δ = 1 / sprt (π × f × μ × σ) (1)
δ: skin thickness, f: frequency of AC power supplied by AC power supply V [Hz], μ: permeability of conducting wire 11, σ: conductivity of conducting wire [1 / Ωm]

上述した第2実施形態によれば、給電側、受電側コイル7、8が、中心線13と、中心線13の表面にメッキして形成されたパイプ状の導線11と、から成る金属線12を巻いて設けられ、中心線13が、パイプ状の導線11よりも比重の軽い材料からなり(中心線13を構成するアルミの比重は2.71[g/cm3]、導線11を構成する銅の比重は8.96[g/cm3])、パイプ状の導線11が、中心線13よりも導電率の高い材料からなり(中心線13を構成するアルミの導電率は3.54e−7[S/m]、導線11を構成する銅の導電率は5.8e−7[S/m])、導線11の厚さDが、表皮厚δ=1/sqrt(π×f×μ×σ)以上に設けられている。従って、断面円形状の導線11と同じ伝送効率を保ちつつパイプ状の導線11の内部を比重の軽い中心線13にした分、軽量化を図ることができる。 According to the second embodiment described above, the power supply side and the power reception side coils 7 and 8 have the metal wire 12 including the center line 13 and the pipe-like lead wire 11 formed by plating the surface of the center line 13. The center line 13 is made of a material having a lighter specific gravity than the pipe-shaped conductor 11 (the specific gravity of aluminum constituting the center line 13 is 2.71 [g / cm 3 ], and the conductor 11 is formed. The specific gravity of copper is 8.96 [g / cm 3 ]), and the pipe-like lead wire 11 is made of a material having a higher conductivity than the center line 13 (the conductivity of aluminum constituting the center line 13 is 3.54e− 7 [S / m], the conductivity of copper constituting the conductive wire 11 is 5.8e-7 [S / m]), and the thickness D of the conductive wire 11 is the skin thickness δ = 1 / sqrt (π × f × μ × σ) or more. Therefore, it is possible to reduce the weight by maintaining the same transmission efficiency as that of the conducting wire 11 having a circular cross section while the inside of the pipe-like conducting wire 11 is changed to the center line 13 having a light specific gravity.

しかも、メッキによりパイプ状の導線11を設けているので、その厚さDを表皮厚δぎりぎりまで薄く形成することができるため、より一層、軽量化を図ることができ、強度も増す。   In addition, since the pipe-like lead wire 11 is provided by plating, the thickness D can be formed as thin as the skin thickness δ, so that the weight can be further reduced and the strength can be increased.

次に、本発明者らは、厚さDが約20μm、36μm、72μmの図6に示す銅導線11から構成された金属線12を巻いて給電側、受電側コイル7、8を設けた給電システム1である本発明品C1〜C3と、図8に示す断面円形状のアルミニウム導線11を巻いて給電、受電側コイル7、8を設けた従来品Bと、について、周波数f0付近での伝送効率S212をシミュレーションした。結果を図7に示す。 Next, the present inventors wound a metal wire 12 composed of the copper conducting wire 11 shown in FIG. 6 having a thickness D of about 20 μm, 36 μm, and 72 μm, and provided a power feeding side and power receiving side coils 7 and 8. Transmission of the present invention products C1 to C3 as the system 1 and the conventional product B provided with the power receiving and receiving side coils 7 and 8 by winding the aluminum conductor wire 11 having a circular cross section shown in FIG. Efficiency S21 2 was simulated. The results are shown in FIG.

なお、本発明品C1〜C3においては、直径φ=5mmのアルミニウム中心線13を用いている。従来品Bにおいては、直径φ=5mmのアルミニウム導線11を用いている。即ち、本発明品C1〜C3と従来品Bとの違いはアルミニウム導線11(=アルミニウム中心線13)に銅メッキを施しているかいなかの違いだけであって、質量は両者とも同等である。   In the products C1 to C3 of the present invention, the aluminum center line 13 having a diameter φ = 5 mm is used. In the conventional product B, an aluminum conductor 11 having a diameter φ = 5 mm is used. That is, the difference between the products C1 to C3 of the present invention and the conventional product B is only whether or not the aluminum conductor 11 (= aluminum center line 13) is plated with copper, and the mass is the same for both.

図7からも明らかなように、従来品Bにおいては、周波数f0での伝送効率S212が93%程度であるのに対して、本発明品C1〜C3においては、周波数f0での伝送効率S212が95%程度得られることが分かった。従って、アルミニウム導線11を構成した従来品Bに比べて同程度軽量化が図れているにも関わらず伝送効率が向上していることが分かった。また、本発明品C1〜C3は、第1実施形態で説明した銅導体11を用いた従来品Aと同じ程度の伝送効率が得られている。即ち、本発明品C1〜C3は、従来品Aと同じ伝送効率を保ちつつ内部を空洞にした分、軽量化できることが分かった。 As apparent from FIG. 7, the transmission efficiency S21 2 at the frequency f0 is about 93% in the conventional product B, whereas the transmission efficiency S21 at the frequency f0 is obtained in the products C1 to C3 of the present invention. 2 was found to be about 95%. Therefore, it was found that the transmission efficiency was improved in spite of the same weight reduction as that of the conventional product B constituting the aluminum conducting wire 11. In addition, the products C1 to C3 of the present invention have the same transmission efficiency as the conventional product A using the copper conductor 11 described in the first embodiment. That is, it was found that the products C1 to C3 of the present invention can be reduced in weight by the amount that the inside is hollow while maintaining the same transmission efficiency as the conventional product A.

なお、上述した第2実施形態のシミュレーションでは、中心線13の直径φ=5mmとしたが、本発明はこれに限ったものではない、上述した通り表皮厚δに対して導線11の厚さDがそれ以上あれば直径φに関わらず第2実施形態と同様の効果を得ることができる。   In the simulation of the second embodiment described above, the diameter φ of the center line 13 is set to 5 mm. However, the present invention is not limited to this, and as described above, the thickness D of the conductor 11 with respect to the skin thickness δ. If it is more than that, the same effect as in the second embodiment can be obtained regardless of the diameter φ.

また、上述した第2実施形態によれば、中心線13は円形を用いていたが、本発明はこれに限ったものではない。中心線13としては、例えば三角あるいは四角形であってもよい。   Moreover, according to 2nd Embodiment mentioned above, although the centerline 13 used circular, this invention is not limited to this. The center line 13 may be, for example, a triangle or a rectangle.

また、上述した第2実施形態では、中心線13をアルミ、導線11を銅としていたが、本発明はこれに限ったものではない。下記の式(2)の関係にあればよく、中心線13としては樹脂などを用いてもよい。
中心線13の比重<導線11の比重 …(2)
In the second embodiment described above, the center line 13 is aluminum and the conductive wire 11 is copper. However, the present invention is not limited to this. It suffices if the relationship of the following formula (2) is satisfied, and resin or the like may be used as the center line 13.
Specific gravity of center line 13 <specific gravity of conducting wire 11 (2)

また、上述した第2実施形態では、給電側、受電側コイル7、8のみ図6に示す金属線12で構成していたが、本発明はこれに限ったものではない。給電側ループアンテナ6や受電側ループアンテナ9についても図6に示すような金属線12で構成してもよい。このように、給電側、受電側ループアンテナ6、9を構成する金属線12の導線11をパイプ状に設けて、導線11の厚さDを表皮厚δ以上にすれば、断面円形状の導線11と同じ伝送効率を保ちつつ内部を空洞にした分、さらなる軽量化を図ることができる。   Moreover, in 2nd Embodiment mentioned above, although only the electric power feeding side and the receiving side coils 7 and 8 were comprised with the metal wire 12 shown in FIG. 6, this invention is not limited to this. The power feeding side loop antenna 6 and the power receiving side loop antenna 9 may also be configured by a metal wire 12 as shown in FIG. Thus, if the conducting wire 11 of the metal wire 12 constituting the feeding side and the receiving side loop antennas 6 and 9 is provided in a pipe shape, and the thickness D of the conducting wire 11 is set to the skin thickness δ or more, the conducting wire having a circular cross section. Further weight reduction can be achieved by keeping the same transmission efficiency as 11 while hollowing the inside.

また、上述した第1、第2実施形態では、給電側、受電側ループアンテナ6、9を設けていたが、本発明はこれに限ったものではない。本発明は、給電側、受電側ループアンテナ6、9を必須とするものではなく、給電側、受電側ループアンテナ6、9についてはなくてもよい。   In the first and second embodiments described above, the power supply side and power reception side loop antennas 6 and 9 are provided, but the present invention is not limited to this. The present invention does not require the power feeding side and power receiving side loop antennas 6 and 9, and the power feeding side and power receiving side loop antennas 6 and 9 may be omitted.

また、上述した第1、第2実施形態では、給電側、受電側コイル7、8両方や給電側ループアンテナ6、9の両方をパイプ状の導線11で構成していたが、本発明はこれに限ったものではない。例えば車両の軽量化を図るために、受電側コイル8や受電側ループアンテナ9のみパイプ状の導線11から構成しても良い。   In the first and second embodiments described above, both of the power supply side, power reception side coils 7 and 8 and both of the power supply side loop antennas 6 and 9 are configured by the pipe-shaped conductors 11. It is not limited to. For example, in order to reduce the weight of the vehicle, only the power receiving side coil 8 or the power receiving side loop antenna 9 may be constituted by the pipe-shaped conducting wire 11.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

1 給電システム
6 給電側ループアンテナ
7 給電側コイル
8 受電側コイル
9 受電側ループアンテナ
11 導線
12 金属線
13 中心線
DESCRIPTION OF SYMBOLS 1 Feeding system 6 Feeding side loop antenna 7 Feeding side coil 8 Receiving side coil 9 Receiving side loop antenna 11 Conductor 12 Metal wire 13 Center line

Claims (5)

電力が供給される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、を備えた給電システムにおいて、
前記給電側コイル及び前記受電側コイルの少なくとも一方が、内部が空洞となるパイプ状の導線を巻いて設けられ、
前記パイプ状の導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられている
ことを特徴とする給電システム。
In a power feeding system including a power feeding side coil to which power is supplied and a power receiving side coil that receives power from the power feeding side coil by electromagnetic resonance when facing the power feeding side coil,
At least one of the power feeding side coil and the power receiving side coil is provided by winding a pipe-shaped lead wire having a hollow inside,
The thickness of the said pipe-shaped conducting wire is provided more than 1 / sqrt ((pi) x the frequency of the said electric power x the magnetic permeability of the said conducting wire x the dielectric constant of the said conducting wire) The electric power feeding system characterized by the above-mentioned.
電力が供給される給電側ループアンテナと、前記給電側ループアンテナに電磁結合される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、前記受電側コイルに電磁結合され、前記受電側コイルからの電力を受電する受電側ループアンテナと、を備えた給電システムにおいて、
前記給電側ループアンテナ、前記給電側コイル、前記受電側ループアンテナ及び前記受電側コイルの少なくとも一つが、内部が空洞となるパイプ状の導線を巻いて設けられ、
前記パイプ状の導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられている
ことを特徴とする給電システム。
A power supply side loop antenna to which power is supplied, a power supply side coil that is electromagnetically coupled to the power supply side loop antenna, and a power reception side coil that receives power from the power supply side coil by electromagnetic resonance when facing the power supply side coil And a power receiving side loop antenna that is electromagnetically coupled to the power receiving side coil and that receives power from the power receiving side coil.
At least one of the feeding-side loop antenna, the feeding-side coil, the power-receiving-side loop antenna, and the power-receiving-side coil is provided by winding a pipe-shaped lead wire having a hollow inside,
The thickness of the said pipe-shaped conducting wire is provided more than 1 / sqrt ((pi) x the frequency of the said electric power x the magnetic permeability of the said conducting wire x the dielectric constant of the said conducting wire) The electric power feeding system characterized by the above-mentioned.
前記パイプ状の導線の内部に気体又は液体を循環させて前記導線を冷却する冷却手段をさらに備えたことを特徴とする請求項1又は2に記載の給電システム。   The power supply system according to claim 1, further comprising a cooling unit that circulates a gas or a liquid inside the pipe-shaped conductive wire to cool the conductive wire. 電力が供給される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、を備えた給電システムにおいて、
前記給電側コイル及び前記受電側コイルの少なくとも一方が、中心線と、前記中心線の表面にメッキして形成されたパイプ状の導線と、から成る金属線を巻いて設けられ、
前記中心線が、前記パイプ状の導線よりも比重の軽い材料からなり、
前記導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられている
ことを特徴とする給電システム。
In a power feeding system including a power feeding side coil to which power is supplied and a power receiving side coil that receives power from the power feeding side coil by electromagnetic resonance when facing the power feeding side coil,
At least one of the power feeding side coil and the power receiving side coil is provided by winding a metal wire composed of a center line and a pipe-shaped conductor formed by plating the surface of the center line,
The center line is made of a material having a lighter specific gravity than the pipe-shaped lead wire,
The thickness of the said conducting wire is provided more than 1 / sqrt ((pi) x the frequency of the said electric power x the magnetic permeability of the said conducting wire x the dielectric constant of the said conducting wire) The electric power feeding system characterized by the above-mentioned.
電力が供給される給電側ループアンテナと、前記給電側ループアンテナに電磁結合される給電側コイルと、前記給電側コイルに対向すると電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルと、前記受電側コイルに電磁結合され、前記受電側コイルからの電力を受電する受電側ループアンテナと、を備えた給電システムにおいて、
前記給電側ループアンテナ、前記給電側コイル、前記受電側ループアンテナ及び前記受電側コイルの少なくとも一つが、中心線と、前記中心線の表面にメッキして形成されたパイプ状の導線と、から成る金属線を巻いて設けられ、
前記中心線が、前記パイプ状の導線よりも比重の軽い材料からなり、
前記導線の厚さが、1/sqrt(π×前記電力の周波数×前記導線の透磁率×前記導線の誘電率)以上に設けられている
ことを特徴とする記載の給電システム。
A power supply side loop antenna to which power is supplied, a power supply side coil that is electromagnetically coupled to the power supply side loop antenna, and a power reception side coil that receives power from the power supply side coil by electromagnetic resonance when facing the power supply side coil And a power receiving side loop antenna that is electromagnetically coupled to the power receiving side coil and that receives power from the power receiving side coil.
At least one of the power feeding side loop antenna, the power feeding side coil, the power receiving side loop antenna, and the power receiving side coil includes a center line and a pipe-like conductor formed by plating on the surface of the center line. Provided by winding a metal wire,
The center line is made of a material having a lighter specific gravity than the pipe-shaped lead wire,
The thickness of the said conducting wire is provided more than 1 / sqrt ((pi) x the frequency of the said electric power x the magnetic permeability of the said conducting wire x the dielectric constant of the said conducting wire) The electric power feeding system characterized by the above-mentioned.
JP2011145295A 2011-06-30 2011-06-30 Power supply system Abandoned JP2013012637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145295A JP2013012637A (en) 2011-06-30 2011-06-30 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145295A JP2013012637A (en) 2011-06-30 2011-06-30 Power supply system

Publications (1)

Publication Number Publication Date
JP2013012637A true JP2013012637A (en) 2013-01-17

Family

ID=47686268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145295A Abandoned JP2013012637A (en) 2011-06-30 2011-06-30 Power supply system

Country Status (1)

Country Link
JP (1) JP2013012637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083456A1 (en) * 2013-12-02 2015-06-11 株式会社フジクラ High-frequency electrical wire and coil
JP7547935B2 (en) 2020-10-30 2024-09-10 大日本印刷株式会社 Coil and manufacturing method thereof, power transmission device, power receiving device, and power transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864442A (en) * 1994-04-29 1996-03-08 Hughes Aircraft Co High-frequency transformer with built-in liquid cooling coil
JP3125436U (en) * 2006-07-07 2006-09-21 岡谷電機産業株式会社 Inductance element
JP2009049082A (en) * 2007-08-15 2009-03-05 Toyota Motor Corp Reactor cooling system
JP2010267917A (en) * 2009-05-18 2010-11-25 Toyota Motor Corp Coil unit, noncontact power transmitter, noncontact power supply system, and motor-driven vehicle
JP2011124129A (en) * 2009-12-11 2011-06-23 Showa Aircraft Ind Co Ltd High-frequency electric wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864442A (en) * 1994-04-29 1996-03-08 Hughes Aircraft Co High-frequency transformer with built-in liquid cooling coil
JP3125436U (en) * 2006-07-07 2006-09-21 岡谷電機産業株式会社 Inductance element
JP2009049082A (en) * 2007-08-15 2009-03-05 Toyota Motor Corp Reactor cooling system
JP2010267917A (en) * 2009-05-18 2010-11-25 Toyota Motor Corp Coil unit, noncontact power transmitter, noncontact power supply system, and motor-driven vehicle
JP2011124129A (en) * 2009-12-11 2011-06-23 Showa Aircraft Ind Co Ltd High-frequency electric wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083456A1 (en) * 2013-12-02 2015-06-11 株式会社フジクラ High-frequency electrical wire and coil
CN105793932A (en) * 2013-12-02 2016-07-20 株式会社藤仓 High-frequency electrical wire and coil
JPWO2015083456A1 (en) * 2013-12-02 2017-03-16 株式会社フジクラ High frequency wires and coils
JP7547935B2 (en) 2020-10-30 2024-09-10 大日本印刷株式会社 Coil and manufacturing method thereof, power transmission device, power receiving device, and power transmission system

Similar Documents

Publication Publication Date Title
JP6091262B2 (en) Power feeding unit, power receiving unit, and power feeding system
WO2011122249A1 (en) Contactless power feeding apparatus and contactless power feeding method
CN209591776U (en) Coil mould group and radio energy transmit circuit for wireless charging
WO2012108432A1 (en) Contactless electrical-power-supplying device
CN104335303A (en) Contactless feeding transformer
US20140111023A1 (en) Method of designing power feeding system and power feeding system
JP2013219210A (en) Non-contact power transmission device
US9672973B2 (en) Wireless power transmission device
JP2010073885A (en) Resonance coil and non-contact feeding system
JP2012200031A (en) Feeding system
JP2013012637A (en) Power supply system
WO2014136737A1 (en) Power supplying unit, power receiving unit, and power supplying system
US9893566B2 (en) Power supply system
JP2016076645A (en) Planar coil
JP6301675B2 (en) Coil unit and power supply system having the same
CN209738831U (en) Wireless charging module and wireless charging device of vehicle
JP5556149B2 (en) Wireless power feeding system and method for designing wireless power feeding system
CN114407689A (en) Wireless charging anti-rolling uniform magnetic field magnetic coupling mechanism of unmanned underwater vehicle
WO2013002241A1 (en) Electrical supply system
CN213661277U (en) Coil module and electric energy transmitting circuit
CN109910645B (en) Wireless charging module, processing method thereof and wireless charging device of vehicle
JP2013089872A (en) Power feeding system
US20180286576A1 (en) Pancake coils for wireless energy transmission to electric vehicles
JP5847468B2 (en) Power supply system design method
KR20190033113A (en) Wireless power transmission apparatus using railroad train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20150428