JP2013012328A - Method of manufacturing contact point for vacuum valve - Google Patents

Method of manufacturing contact point for vacuum valve Download PDF

Info

Publication number
JP2013012328A
JP2013012328A JP2011143055A JP2011143055A JP2013012328A JP 2013012328 A JP2013012328 A JP 2013012328A JP 2011143055 A JP2011143055 A JP 2011143055A JP 2011143055 A JP2011143055 A JP 2011143055A JP 2013012328 A JP2013012328 A JP 2013012328A
Authority
JP
Japan
Prior art keywords
skeleton
contact
vacuum valve
manufacturing
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011143055A
Other languages
Japanese (ja)
Other versions
JP5539270B2 (en
Inventor
Takeshi Araki
健 荒木
Takayuki Kenmochi
貴之 見持
Satoshi Ochi
聡 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011143055A priority Critical patent/JP5539270B2/en
Publication of JP2013012328A publication Critical patent/JP2013012328A/en
Application granted granted Critical
Publication of JP5539270B2 publication Critical patent/JP5539270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a contact point for a vacuum valve, by which the contact point for a vacuum valve having less pores inside and high in density is obtained.SOLUTION: A method of manufacturing a contact point for a vacuum valve comprises: a green compact molding step of molding a green compact; a skeleton forming step of forming a plate-like Cr skeleton 1 by sintering the green compact; a cutting step of forming a sheared surface by cutting the Cr skeleton 1 into two parts along the center of its thickness; a placing step of placing a Cu plate 2 at the center of the sheared surface; and an infiltrating step of infiltrating fused Cu, which is acquired by heating the Cu plate 2, into the Cr skeleton 1.

Description

この発明は、特に高耐圧性能を要求される真空バルブ用接点の製造方法に関するものである。   The present invention relates to a method for manufacturing a contact for a vacuum valve that is particularly required to have a high pressure resistance.

高耐圧向けの真空バルブ用接点では、高耐圧の性質を有するCrを高導電体のCuに分散させたCu−Cr系や、Crを高導電体のAgに分散させたAg−Cr系の材料がよく用いられている。
その製造方法としてはCr粉末をCu粉末またはAg粉末と混合して焼結する方法や、Cr粉末を主体して構成されるスケルトンを予め焼結しておいてこれにCuまたはAgを溶浸させる方法等が知られている。
高い耐圧性能を得るには接点内部のポアを少なくして接点の密度を高める必要があり、焼結法よりも溶浸法の方が高密度化しやすい傾向にあるため、高耐圧接点の製造法としてよく利用されている(例えば、特許文献1、2参照)。
For vacuum valve contacts for high pressure resistance, Cu-Cr materials in which Cr having high pressure resistance properties are dispersed in Cu, which is a high conductor, and Ag-Cr materials, in which Cr is dispersed in Ag, which is a high conductor. Is often used.
As the manufacturing method, Cr powder is mixed with Cu powder or Ag powder and sintered, or a skeleton mainly composed of Cr powder is sintered in advance and Cu or Ag is infiltrated into the skeleton. Methods are known.
In order to obtain high pressure resistance performance, it is necessary to increase the contact density by reducing the pores inside the contact, and the infiltration method tends to be more dense than the sintering method. (See, for example, Patent Documents 1 and 2).

特開昭60−114502号公報JP-A-60-114502 特開平5−101752号公報JP-A-5-101752

従来の溶浸法によるCu−Cr系の真空バルブ用接点の製造では、Cr粉末を主体として構成されるスケルトンにCuを溶浸させる工程において、内部にCrの酸化膜に対する還元作用として機能する還元性ガスとして例えば水素ガスがある場合の方が、真空中よりも接点内部のポアが多くなる傾向にある。
これは、真空中での溶浸の場合、溶融CuがCrのスケルトンに浸透していく過程で仮にクローズドポアが局所的に形成されたとしても、該ポアの内部が真空であるためにある程度の時間が経れば溶融Cuがその部分に入り込んでポアの内部を塞いでしまう。
これに対して、水素ガス中での溶浸の場合はいったんクローズドポアが形成されると、ポアの内部が水素ガスであるために気圧が障害となって時間が経っても溶融Cuがその中に入り込むことができず、ポアが多く残留してしまうためと考えられる。
In the manufacture of a Cu-Cr-based vacuum valve contact by the conventional infiltration method, in the process of infiltrating Cu into a skeleton composed mainly of Cr powder, a reduction functioning as a reducing action on the Cr oxide film inside. For example, when there is hydrogen gas as the sex gas, the number of pores inside the contact tends to be larger than in vacuum.
In the case of infiltration in a vacuum, even if a closed pore is locally formed in the process of molten Cu penetrating into the skeleton of Cr, a certain amount of the internal pore is vacuum. As time passes, molten Cu enters the portion and closes the inside of the pore.
On the other hand, in the case of infiltration in hydrogen gas, once the closed pore is formed, the inside of the pore is hydrogen gas, so the molten Cu remains in it even if the atmospheric pressure becomes an obstacle and time passes. This is thought to be because the pores could not be penetrated and many pores remained.

この問題を解決するため、上記特許文献2に記載の真空バルブ用接点の製造方法では、Crのスケルトンを上下に2つ積み重ねた状態とすることにより、Cu溶浸時の最終凝固部分が積み重ねの境界部に来るようにし、その部分に欠陥を濃縮させてその境界部を切断してその部分を使用しないことで、相対的に接点表面側のポアの濃度を減らす試みがなされている。
図4(a)は、上記特許文献2に記載の真空バルブ用接点の製造方法の一工程を示す図であり、台座7上にCrスケルトン1、Cu板2及びCrスケルトン1が積層され、Cuが溶浸する前の図である。
In order to solve this problem, in the method for manufacturing a contact for a vacuum valve described in Patent Document 2, the final solidified portion at the time of Cu infiltration is stacked by setting two skeletons of Cr vertically. Attempts have been made to relatively reduce the concentration of pores on the contact surface side by coming to the boundary portion, concentrating defects in the portion, cutting the boundary portion, and not using the portion.
FIG. 4A is a diagram showing one step of the manufacturing method of the contact for a vacuum valve described in Patent Document 2, in which a Cr skeleton 1, a Cu plate 2 and a Cr skeleton 1 are laminated on a pedestal 7, and Cu It is a figure before is infiltrated.

この製造方法によれば、溶浸に供するCuの量が過剰でないことが肝要であり、もしCuが過剰であるとCrスケルトン1の内部を満たすよりも早くスケルトンの外周周囲を濡らす傾向にあり、その結果Crスケルトン1内部にランダムにポアが形成されてしまう問題があると、上記特許文献2の発明者は指摘している(特許文献2の段落0043参照)。   According to this manufacturing method, it is important that the amount of Cu to be infiltrated is not excessive, and if the Cu is excessive, it tends to wet the periphery of the skeleton faster than filling the inside of the Cr skeleton 1, As a result, the inventors of Patent Document 2 point out that pores are randomly formed inside the Cr skeleton 1 (see paragraph 0043 of Patent Document 2).

しかしながら、これは、溶浸に供するCu板2の外径がCrスケルトン1よりも大きい場合に生じる現象であり、もしCu板2の外径がCrスケルトン1よりも小さい場合には、溶融したCuは毛細管現象の作用で速やかにCrスケルトン1上の設置面から吸収されていくためにこのような問題点は生じない。
むしろ、図4(b)に示すように、Cuの溶浸後では、Crスケルトン1にCuが溶浸された溶浸スケルトン4間の境界部であるCu凝固層5に、Cuが欠乏してしまう引け巣6が発生してしまい、健全な接合状態を得ることができなくなる問題点がある
However, this is a phenomenon that occurs when the outer diameter of the Cu plate 2 to be infiltrated is larger than the Cr skeleton 1. If the outer diameter of the Cu plate 2 is smaller than the Cr skeleton 1, the molten Cu Since this is quickly absorbed from the installation surface on the Cr skeleton 1 by the action of capillary action, such a problem does not occur.
Rather, as shown in FIG. 4B, after Cu infiltration, the Cu solidified layer 5 which is the boundary between the infiltration skeletons 4 in which Cu is infiltrated into the Cr skeleton 1 is deficient in Cu. The shrinkage nest 6 is generated, and there is a problem that a sound joined state cannot be obtained.

この発明は、上記のような問題点を解決することを課題とするものであって、内部のポアが少なく密度の高い真空バルブ用接点を得ることができる真空バルブ用接点の製造方法を提供することを目的とする。   An object of the present invention is to provide a vacuum valve contact manufacturing method capable of obtaining a high-density vacuum valve contact with few internal pores and to solve the above problems. For the purpose.

この発明に係る真空バルブ用接点の製造方法は、
高耐圧性材料を主体とする粉末を金型で加圧して圧粉体を成形する圧粉体成形工程と、
この圧粉体を焼結して板状のスケルトンを形成するスケルトン形成工程と、
このスケルトンを板厚中央部で二分割に切断して切断面を形成する分割切断工程と、
前記切断面の中央部に高導電材料で構成された溶浸体を載置する載置工程と、
前記溶浸体を加熱して溶融した溶浸体を前記スケルトンの内部に浸透させる溶浸工程と
を備えたものである。
A method for manufacturing a vacuum valve contact according to the present invention is as follows.
A green compact molding process in which a powder mainly composed of a high pressure resistant material is pressed with a mold to form a green compact;
A skeleton forming step of sintering the green compact to form a plate-shaped skeleton;
A split cutting process in which this skeleton is cut into two at the thickness center to form a cut surface;
A placing step of placing an infiltrant made of a highly conductive material at the center of the cut surface;
And an infiltration process for infiltrating the melted infiltrate into the inside of the skeleton.

この発明による真空バルブ用接点の製造方法によれば、スケルトンの切断面に露出した低密度領域の直上に溶浸体を載置し、加熱により溶融した溶浸体を低密度領域からスケルトンの内部に浸透させることで、局所的に溶浸から取り残される領域が発生せず、内部にポアが少ない健全な接点を得ることができる。   According to the method for manufacturing a contact for a vacuum valve according to the present invention, an infiltrant is placed immediately above a low-density region exposed on the cut surface of the skeleton, and the infiltrant melted by heating is removed from the low-density region to the inside of the skeleton. By permeating into the surface, a region left locally from infiltration does not occur, and a healthy contact with few pores can be obtained.

溶融したCuがCrスケルトンの内部に浸透する挙動を示す図である。It is a figure which shows the behavior which fuse | melted Cu osmose | permeates the inside of Cr skeleton. この発明の実施の形態1の真空バルブ用接点の製造方法における、Crスケルトンの分割切断工程を示す断面図である。It is sectional drawing which shows the division | segmentation cutting process of Cr skeleton in the manufacturing method of the contact for vacuum valves of Embodiment 1 of this invention. この発明の実施の形態1の真空バルブ用接点の製造方法における、Cu溶浸工程を示す断面図である。It is sectional drawing which shows Cu infiltration process in the manufacturing method of the contact for vacuum valves of Embodiment 1 of this invention. 図4(a)は従来の真空バルブ用接点の製造方法における、Cu溶浸前の工程を示す断面図、図4(b)はCu溶浸後の工程を示す断面図である。FIG. 4A is a cross-sectional view showing a process before Cu infiltration in a conventional vacuum valve contact manufacturing method, and FIG. 4B is a cross-sectional view showing a process after Cu infiltration.

実施の形態1.
本願発明者は、Cuの溶浸でポアが残留する原因を明らかにするために溶融Cuの浸透メカニズムを詳細に調べた。
即ち、図1に示すように、Crスケルトン1にCu板2を載せ、水素ガス雰囲気中で加熱してCu板2を溶かし、溶融CuがCrスケルトン1の内部に浸透する挙動を調べた。
そして、Cu板2からの溶融Cuは、上部から矢印Aの方向に浸透していく場合に、最初に上面部の表層に溶融Cuが染みこんだ後、内部中央に浸透するよりも早く、矢印Bで示すように、Crスケルトン1の側面部表層へ浸透し、次いで底面部表層へ先行して回り込む現象のあることがわかった。
この現象により、Crスケルトン1の内部の中央部のポアが閉じ込められ、Crスケルトン1の内部の中央部にクローズドポアの多発領域である低密度領域3が発生し、このことが低密度の接点が製造される原因といえる。
Embodiment 1 FIG.
The inventor of the present application investigated in detail the penetration mechanism of molten Cu in order to clarify the cause of pores remaining due to infiltration of Cu.
That is, as shown in FIG. 1, the Cu plate 2 was placed on the Cr skeleton 1 and heated in a hydrogen gas atmosphere to melt the Cu plate 2, and the behavior of molten Cu penetrating into the Cr skeleton 1 was examined.
Then, when the molten Cu from the Cu plate 2 penetrates in the direction of arrow A from the top, the molten Cu soaks into the surface layer of the upper surface first, and then penetrates into the center of the interior earlier than the arrow. As shown by B, it was found that there was a phenomenon that the Cr skeleton 1 penetrated into the surface of the side surface and then wrapped around the surface of the bottom surface.
Due to this phenomenon, the pores in the central part of the Cr skeleton 1 are confined, and a low density region 3 that is a frequent region of closed pores is generated in the central part of the Cr skeleton 1, and this causes a low density contact point. It can be said that it is a cause of manufacturing.

なお、Crスケルトン1の内部中央の溶融Cuの溶浸が周囲に比べて遅いのは、Crスケルトン1の内部中央の部位は、周囲と比較して密度が低く、毛細管現象の作用力が相対的に小さくなっているためと考えられる。
このCrスケルトン1の内部中央の部位に低密度領域3が発生するのは、Crスケルトン1の製造過程でCr粉末を圧縮して圧粉体を成形する際、金型に充填された粉末は上下面と側面から加圧力を受けて圧縮されるが、粉末の流動性の具合で加圧力が内部中央まで十分に伝わらない状況が生じたためと考えられる。
In addition, the infiltration of molten Cu at the inner center of the Cr skeleton 1 is slower than the surroundings because the density at the inner central part of the Cr skeleton 1 is lower than that of the surroundings, and the action force of capillary action is relative. This is thought to be due to the small size.
The low density region 3 is generated in the central portion of the inside of the Cr skeleton 1 when the green compact is formed by compressing the Cr powder in the manufacturing process of the Cr skeleton 1. This is considered to be due to the fact that the pressure was not sufficiently transmitted to the center of the interior due to the fluidity of the powder, although it was compressed by receiving pressure from the bottom and side surfaces.

本願発明者は、こうして溶融Cuの浸透メカニズムを詳細に調べた結果、Crスケルトン1の内部中央の部位に低密度領域3が発生することを見出した。
そして、この点に着目して、次に述べる、この発明の実施の形態1による真空バルブ用接点の製造方法を発明した。
先ず、高耐圧性材料であるCrを主体とする粉末を金型で加圧して圧粉体を成形する。
この圧粉体成形工程の後に、還元性ガスである水素ガス雰囲気中で圧粉体を焼結して板状のCrスケルトン1を形成する。
このスケルトン形成工程の後に、図2に示すように、このCrスケルトン1を板厚中央部に形成された低密度領域3を横断するように二分割に切断して切断面を形成する。
この分割切断工程の後に、高導電材料で構成された溶浸体であるCu板2を低密度領域3に対面するように切断面に載置する。
この載置工程の後に、水素ガスの雰囲気中でCu板2を加熱し、図3に示すようにCu板2を溶かしてCrスケルトン1の内部に浸透させる。
この溶浸工程の後、Crスケルトン1を冷却することでCu-Cr系の接点を得る。
As a result of examining the penetration mechanism of the molten Cu in detail in this way, the inventor of the present application has found that the low density region 3 is generated at the central portion inside the Cr skeleton 1.
Then, paying attention to this point, the following manufacturing method of the vacuum valve contact according to the first embodiment of the present invention was invented.
First, a powder mainly composed of Cr, which is a high pressure resistant material, is pressed with a mold to form a green compact.
After the green compact forming step, the green compact is sintered in a hydrogen gas atmosphere as a reducing gas to form a plate-like Cr skeleton 1.
After this skeleton forming step, as shown in FIG. 2, the Cr skeleton 1 is cut into two parts so as to cross the low density region 3 formed in the central portion of the plate thickness to form a cut surface.
After this divided cutting step, the Cu plate 2 that is an infiltrated body made of a highly conductive material is placed on the cut surface so as to face the low density region 3.
After this placing step, the Cu plate 2 is heated in an atmosphere of hydrogen gas, and the Cu plate 2 is melted and penetrated into the Cr skeleton 1 as shown in FIG.
After this infiltration step, the Cr skeleton 1 is cooled to obtain a Cu—Cr based contact.

この発明の実施の形態1による真空バルブ用接点の製造方法によれば、Crスケルトン1の切断面に低密度領域3を露出させ、この低密度領域3の直上に溶浸用のCu板2を配置しているため、加熱時に溶融したCuが低密度領域3から浸入し、Crスケルトン1の外周部に向かって浸透していく。
このため、図1に示した現象、つまりCrスケルトン1の外周部から優先的に溶融Cuの浸透が進行することがないので、局所にCuの溶浸から取り残される領域が発生しない。このため、内部もポアの少ない健全な接点を得ることができる。
According to the method for manufacturing a vacuum valve contact according to the first embodiment of the present invention, the low density region 3 is exposed on the cut surface of the Cr skeleton 1, and the infiltration Cu plate 2 is placed immediately above the low density region 3. Therefore, Cu melted during heating enters from the low density region 3 and penetrates toward the outer peripheral portion of the Cr skeleton 1.
For this reason, since the phenomenon shown in FIG. 1, that is, the penetration of molten Cu does not proceed preferentially from the outer peripheral portion of the Cr skeleton 1, there is no region left locally from the infiltration of Cu. For this reason, a healthy contact with few pores can be obtained.

以下、この発明の実施の形態1による真空バルブ用接点の製造方法の実施例を具体的に説明する。
実施例1.
Cr粉末を目空き径45μmと20μmのふるいに通して、20μm以上45μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、内径90mmの金型内に充填して100MPaで加圧し、外径90mmの圧粉体を形成した。
圧粉体の板厚は充填量を変えることにより調整し、15〜19mmの厚みの圧粉体を得た。
得られた圧粉体を水素ガス雰囲気中、1100℃で2時間の焼結を行って所定の気孔率を有するCrを主体とするCrスケルトンを作製した。
得られたCrスケルトンを板厚中央部から水平に切断して分割した。
その後、切断面を上にして外径75mmのCu板を乗せ、水素ガス雰囲気中、1150℃で1時間の加熱を行い、該Cu板を溶かしてCrスケルトン内部に浸透させ、外径90mm×板厚7〜9mmの60wt%Cu−40wt%Crの溶浸サンプルを得た。
Hereinafter, an example of the manufacturing method of the vacuum valve contact according to the first embodiment of the present invention will be described in detail.
Example 1.
The Cr powder is passed through sieves having a pore size of 45 μm and 20 μm to obtain a particle size of 20 μm or more and 45 μm or less. After adding a small amount of Cu powder having a particle size of several μm as a binder, the mixture is stirred and mixed. The mold was filled and pressed at 100 MPa to form a green compact with an outer diameter of 90 mm.
The thickness of the green compact was adjusted by changing the filling amount to obtain a green compact with a thickness of 15 to 19 mm.
The obtained green compact was sintered at 1100 ° C. for 2 hours in a hydrogen gas atmosphere to produce a Cr skeleton mainly composed of Cr having a predetermined porosity.
The obtained Cr skeleton was horizontally cut from the center of the plate thickness and divided.
Thereafter, a Cu plate having an outer diameter of 75 mm is placed with the cut surface facing upward, heated in a hydrogen gas atmosphere at 1150 ° C. for 1 hour, the Cu plate is melted and penetrated into the Cr skeleton, and an outer diameter of 90 mm × plate An infiltration sample of 60 wt% Cu-40 wt% Cr having a thickness of 7 to 9 mm was obtained.

また、比較のため、Crスケルトンを分割せずにそのままの状態で上部に外径75mmの溶浸用Cu板を乗せ、水素ガス雰囲気中、1150℃で1時間の加熱を行い、該Cu板を溶かして該スケルトン内部に溶融Cuを浸透させ、外径90mm×板厚15〜19mmの60wt%Cu−40wt%Cr溶浸サンプルを得た。   Further, for comparison, an infiltration Cu plate having an outer diameter of 75 mm is placed on the upper portion without dividing the Cr skeleton, and heated at 1150 ° C. for 1 hour in a hydrogen gas atmosphere. It melt | dissolved and the molten Cu was osmose | permeated inside this skeleton, and the 60 wt% Cu-40 wt% Cr infiltration sample of 90 mm of outer diameter x 15-19 mm in plate thickness was obtained.

なお、サンプルは板厚の種類ごとに、内部組織(ポアの状態)観察用、密度測定用、耐圧性能評価用(破壊電圧測定用)の3個をそれぞれ作製した。
内部組織の観察では、サンプルを直径方向に切断して光学顕微鏡により観察を行い、撮影した写真から断面中央部2mm×2mmの領域に見られるポアの総面積を計測した。
また、密度測定では、板厚方向の中央部から外径80×板厚5.5mmの円板を切り出してアルキメデス法を用いて密度を評価し、真密度と比較して密度比を求めた。
また、耐圧性能試験では、板厚方向の中央部から外径20mm×板厚5.5mmの円板を切り出して真空バルブに組み付けて接点間距離2mmの条件でインパルス電圧を徐々に上げながら破壊電圧を計測し、電圧印加回数の増加に伴う破壊電圧の増大プロファイルを計測してその飽和値から耐圧性能を評価した。なお、破壊電圧の計測の前にはAC100kVの電圧コンディショニングを行った。
Three samples were prepared for each type of plate thickness: for observation of internal structure (pore state), for density measurement, and for pressure resistance performance evaluation (for breakdown voltage measurement).
In observing the internal structure, the sample was cut in the diameter direction and observed with an optical microscope, and the total area of pores seen in the area of the cross section central portion 2 mm × 2 mm was measured from the photographed photo.
In the density measurement, a disc having an outer diameter of 80 × 5.5 mm in thickness was cut out from the central portion in the plate thickness direction, the density was evaluated using the Archimedes method, and the density ratio was determined in comparison with the true density.
In the pressure resistance test, a disk with an outer diameter of 20 mm x a plate thickness of 5.5 mm was cut out from the center in the plate thickness direction, assembled into a vacuum valve, and the breakdown voltage was increased while gradually increasing the impulse voltage under the condition of a contact distance of 2 mm. Was measured, the increase profile of the breakdown voltage with the increase in the number of applied voltages was measured, and the withstand voltage performance was evaluated from the saturation value. In addition, AC100 kV voltage conditioning was performed before measurement of the breakdown voltage.

表1に評価結果を示す。
表1の実施例1−(1〜3)に示すようにこの発明のCrスケルトンを分割してCuを溶浸した接点では、内部のポアの総面積が小さく、密度比99%以上の高値が得られた。
一方、比較例1−(1〜3)に見られるように、Crスケルトンを分割せずにCuを溶浸させた接点では、内部に存在するポアの総面積が大きく、99%以上の高い密度が得られなかった。
Table 1 shows the evaluation results.
As shown in Examples 1- (1 to 3) of Table 1, in the contact obtained by dividing the Cr skeleton of the present invention and infiltrating Cu, the total area of the internal pores is small, and the high value of the density ratio of 99% or more is high. Obtained.
On the other hand, as seen in Comparative Example 1- (1 to 3), the contact area in which Cu is infiltrated without dividing the Cr skeleton has a large total area of pores present therein, and has a high density of 99% or more. Was not obtained.

耐圧性能については、表1の破壊電圧の飽和値に示すように、実施例1−(1〜3)で150〜153kV程度の値を示し、他の比較例に比べて非常に高い値であった。   As shown in the saturation value of breakdown voltage in Table 1, the withstand voltage performance is about 150 to 153 kV in Examples 1- (1 to 3), which is very high compared to other comparative examples. It was.

以上からこの実施例1では、Crスケルトンを板厚中央部から水平に切断して分割し、切断面に露出した低密度領域の直上に溶浸用のCu板を配置しているため、溶浸時に溶融したCuが低密度領域から浸入し、外側に浸透していく。
このため、従来のように外周部から優先的に溶融Cuが浸透することがないので局所的に溶浸から取り残される領域が発生しない。
従って、内部にポアの少ない健全な接点を得ることができ、真空バルブでは高い耐圧性能を得ることができる。
As described above, in this Example 1, the Cr skeleton is horizontally cut from the central portion of the plate thickness and divided, and the Cu plate for infiltration is disposed immediately above the low density region exposed on the cut surface. Sometimes the molten Cu enters from the low density region and penetrates outward.
For this reason, since the molten Cu does not permeate preferentially from the outer peripheral portion as in the prior art, a region left locally from infiltration does not occur.
Therefore, a sound contact with few pores can be obtained inside, and a high pressure resistance performance can be obtained with the vacuum valve.

Figure 2013012328
Figure 2013012328

実施例2.
Cr粉末を目空き径45μmと20μmのふるいに通して、20μm以上45μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、内径75mmの金型内に充填して所定の圧力で加圧し、外径75mm×板厚15mmの圧粉体を形成した。圧粉体の内部の気孔率を、加圧力を80〜250MPaの範囲で変えることにより調整し、種々の気孔率を有する圧粉体を得た。
得られた圧粉体を水素ガス雰囲気中、1100℃で2時間の焼結を行って種々の気孔率を有するCrを主体とするCrスケルトンを作製した。
得られたCrスケルトンを板厚中央部から水平に切断して7mm厚に分割した。
その後、切断面を上にして外径70mmの溶浸用Cu板を乗せ、水素ガス雰囲気中、1150℃で1時間の加熱を行い、該Cu板を溶かしてCrスケルトン内部に浸透させ、Cr量が異なる種々の組成のCu−Cr溶浸サンプルを得た。
Example 2
The Cr powder is passed through sieves with a pore size of 45 μm and 20 μm to obtain a particle size of 20 μm or more and 45 μm or less. The mold was filled and pressed at a predetermined pressure to form a green compact having an outer diameter of 75 mm and a plate thickness of 15 mm. The porosity inside the green compact was adjusted by changing the applied pressure in the range of 80 to 250 MPa to obtain green compacts having various porosity.
The obtained green compact was sintered at 1100 ° C. for 2 hours in a hydrogen gas atmosphere to prepare Cr skeletons mainly composed of Cr having various porosity.
The obtained Cr skeleton was cut horizontally from the center of the plate thickness and divided into 7 mm thicknesses.
Thereafter, an infiltration Cu plate having an outer diameter of 70 mm is placed with the cut surface facing upward, heated in a hydrogen gas atmosphere at 1150 ° C. for 1 hour, and the Cu plate is melted and penetrated into the Cr skeleton. Cu-Cr infiltrated samples having different compositions were obtained.

また、比較のため、加圧力を60MPaで圧粉体を成形し、その後は上記と同様の工程を経て70wt%Cu−30wt%Crの溶浸サンプルを得た。   For comparison, a green compact was formed at a pressure of 60 MPa, and then an infiltration sample of 70 wt% Cu-30 wt% Cr was obtained through the same process as described above.

なお、サンプルは組成の種類ごとに、内部組織(ポアの状態)観察用、密度測定用、耐圧性能評価用(破壊電圧測定用)の3個をそれぞれ作製した。
内部組織の観察では、サンプルを直径方向に切断して光学顕微鏡により観察を行い、撮影した写真から断面中央部2mm×2mmの領域に見られるポアの総面積を計測した。
また、密度測定では、板厚方向の中央部から外径70mm×板厚5.5mmの円板を切り出してアルキメデス法を用いて密度を評価し、真密度と比較して密度比を求めた。
また、耐圧性能試験では、板厚方向の中央部から外径20mm×板厚5.5mmの円板を切り出して真空バルブに組み付けて接点間距離2mmの条件でインパルス電圧を徐々に上げながら破壊電圧を計測し、電圧印加回数の増加に伴う破壊電圧の増大プロファイルを計測してその飽和値から耐圧性能を評価した。なお、破壊電圧の計測の前にはAC100kVの電圧コンディショニングを行った。
Three samples were prepared for each type of composition, one for observing the internal structure (pore state), one for measuring density, and one for evaluating withstand voltage performance (for measuring breakdown voltage).
In observing the internal structure, the sample was cut in the diameter direction and observed with an optical microscope, and the total area of pores seen in the area of the cross section central portion 2 mm × 2 mm was measured from the photographed photo.
In the density measurement, a disc having an outer diameter of 70 mm × a thickness of 5.5 mm was cut out from the center in the thickness direction, the density was evaluated using the Archimedes method, and the density ratio was determined by comparing with the true density.
In the pressure resistance test, a disk with an outer diameter of 20 mm x a plate thickness of 5.5 mm was cut out from the center in the plate thickness direction, assembled into a vacuum valve, and the breakdown voltage was increased while gradually increasing the impulse voltage under the condition of a contact distance of 2 mm. Was measured, the increase profile of the breakdown voltage with the increase in the number of applied voltages was measured, and the withstand voltage performance was evaluated from the saturation value. In addition, AC100 kV voltage conditioning was performed before measurement of the breakdown voltage.

表2に評価結果を示す。
表2の実施例2−(1〜7)に示すようにサンプルのCr組成が35〜65wt%では、内部のポアの総面積が小さく、密度比99%以上の高値が得られた。
一方、比較例2−1に見られるように、Cr組成が30wt%になると、急激に内部に存在するポアの総面積が大きくなり、99%以上の高い密度が得られなくなった。
耐圧性能については、表2の破壊電圧の飽和値に示すように、実施例2−(1〜7)で147〜161kV程度の値を示し、比較例2−1に比べて非常に高いことがわかった。
Table 2 shows the evaluation results.
As shown in Example 2- (1-7) in Table 2, when the Cr composition of the sample was 35 to 65 wt%, the total area of the internal pores was small, and a high value with a density ratio of 99% or more was obtained.
On the other hand, as seen in Comparative Example 2-1, when the Cr composition was 30 wt%, the total area of pores present inside suddenly increased, and a high density of 99% or more could not be obtained.
As shown in the saturation value of the breakdown voltage in Table 2, the withstand voltage performance shows a value of about 147 to 161 kV in Example 2- (1-7), which is very high compared to Comparative Example 2-1. all right.

以上から、この実施例2では、Crスケルトンを板厚中央部から水平に切断して分割し、切断面に露出した低密度領域の直上に溶浸用のCu板を配置しているため、溶浸時に溶融Cuが低密度領域から浸入し、外側に浸透していく。
このため、従来のように外周部から優先的に溶融Cuが浸透することがないので局所的に溶浸から取り残される領域が発生しない。
従って、Cr組成が35〜65wt%の範囲においても内部にポアのほとんどない高密度のCu−Cr接点を得ることができ、この結果、真空バルブでは高い耐圧性能を得ることができる。
なお、Cr組成が30wt%の場合にポアが多くなって密度が低下するのは、Cr組成が低すぎるのでCrのスケルトン構造の維持が困難になり、内部に局所的に構造が不均一になる部分が発生し、溶融Cuの溶浸性が不均一になるためと考えられる。
From the above, in this Example 2, the Cr skeleton was horizontally cut from the central part of the plate thickness and divided, and the Cu plate for infiltration was disposed immediately above the low density region exposed on the cut surface. At the time of immersion, molten Cu enters from the low density region and penetrates outward.
For this reason, since the molten Cu does not permeate preferentially from the outer peripheral portion as in the prior art, a region left locally from infiltration does not occur.
Therefore, even when the Cr composition is in the range of 35 to 65 wt%, it is possible to obtain a high-density Cu—Cr contact having almost no pore inside, and as a result, the vacuum valve can obtain high pressure resistance.
Note that when the Cr composition is 30 wt%, the pores increase and the density decreases. This is because the Cr composition is too low to make it difficult to maintain the skeleton structure of Cr, and the structure is locally uneven inside. It is considered that a portion is generated and the infiltrating property of the molten Cu becomes non-uniform.

Figure 2013012328
Figure 2013012328

実施例3.
Cr粉末を目空き径45μmと20μmのふるいに通して、20μm以上45μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、種々の内径を有する金型内に充填して100MPaで加圧し、外径30〜105mm×板厚15mmの圧粉体を形成した。
得られた圧粉体を水素ガス雰囲気中、1100℃で2時間の焼結を行って所定の気孔率を有するCrを主体とするCrスケルトンを作製した。
得られたCrスケルトンを板厚中央部から水平に切断して7mm厚に分割した。
その後、切断面を上にして溶浸用Cu板を乗せ、水素ガス雰囲気中、1150℃で1時間の加熱を行い、該Cu板を溶かして該スケルトン内部に溶融Cuを浸透させ、外径が異なる板厚7mmの60wt%Cu−40wt%Cr溶浸サンプルを得た。
なお、Cu板は該スケルトンのサイズに応じて外径を変えて使用し、具体的には該スケルトンの外径に応じてそれよりも5〜15mm小さい外径のものを用いた。
また、サンプルは外径の種類ごとに、内部組織(ポアの状態)観察用、密度測定用、耐圧性能評価用(破壊電圧測定用)の3個をそれぞれ作製した。
内部組織の観察では、サンプルを直径方向に切断して光学顕微鏡により観察を行い、撮影した写真から断面中央部2mm×2mmの領域に見られるポアの総面積を計測した。
また、密度測定では、板厚方向の中央部から外径25mm×板厚5.5mmの円板を切り出してアルキメデス法を用いて密度を評価し、真密度と比較して密度比を求めた。
また、耐圧性能試験では、板厚方向の中央部から外径20mm×板厚5.5mmの円板を切り出しての真空バルブに組み付けて接点間距離2mmの条件でインパルス電圧を徐々に上げながら破壊電圧を計測し、電圧印加回数の増加に伴う破壊電圧の増大プロファイルを計測してその飽和値から耐圧性能を評価した。なお、破壊電圧の計測の前にはAC100kVの電圧コンディショニングを行った。
Example 3
The Cr powder is passed through sieves with a pore size of 45 μm and 20 μm to give a particle size of 20 μm or more and 45 μm or less. And was pressed at 100 MPa to form a green compact with an outer diameter of 30 to 105 mm and a plate thickness of 15 mm.
The obtained green compact was sintered at 1100 ° C. for 2 hours in a hydrogen gas atmosphere to produce a Cr skeleton mainly composed of Cr having a predetermined porosity.
The obtained Cr skeleton was cut horizontally from the center of the plate thickness and divided into 7 mm thicknesses.
Then, the Cu plate for infiltration is placed with the cut surface facing upward, heated in a hydrogen gas atmosphere at 1150 ° C. for 1 hour, the Cu plate is melted, and the molten Cu is infiltrated into the skeleton. 60 wt% Cu-40 wt% Cr infiltration samples having different thicknesses of 7 mm were obtained.
The Cu plate was used by changing the outer diameter according to the size of the skeleton, and specifically, the Cu plate having an outer diameter smaller than that by 5 to 15 mm depending on the outer diameter of the skeleton.
Three samples were prepared for each type of outer diameter: for observation of internal structure (pore state), for density measurement, and for pressure resistance performance evaluation (for breakdown voltage measurement).
In observing the internal structure, the sample was cut in the diameter direction and observed with an optical microscope, and the total area of pores seen in the area of the cross section central portion 2 mm × 2 mm was measured from the photographed photo.
Further, in the density measurement, a disk having an outer diameter of 25 mm and a plate thickness of 5.5 mm was cut out from the central portion in the plate thickness direction, the density was evaluated using the Archimedes method, and the density ratio was obtained by comparison with the true density.
Also, in the pressure resistance performance test, a disk with an outer diameter of 20 mm x a thickness of 5.5 mm was cut out from the center in the thickness direction, assembled into a vacuum valve, and destroyed while gradually increasing the impulse voltage under the condition of a distance of 2 mm between the contacts. The voltage was measured, the increase profile of the breakdown voltage with the increase in the number of applied voltages was measured, and the withstand voltage performance was evaluated from the saturation value. In addition, AC100 kV voltage conditioning was performed before measurement of the breakdown voltage.

表3に評価結果を示す。
表3の実施例3−(1〜6)に示すようにいずれの外径のサンプルにおいても、内部のポアの総面積が小さく、密度比99%以上の高値が得られることがわかった。
耐圧性能については、表3の破壊電圧の飽和値に示すように、147〜154kV程度の高い値を示した。
Table 3 shows the evaluation results.
As shown in Examples 3- (1 to 6) of Table 3, it was found that, in any outer diameter sample, the total area of the internal pores was small, and a high value with a density ratio of 99% or more was obtained.
As shown in the saturation value of the breakdown voltage in Table 3, the breakdown voltage performance showed a high value of about 147 to 154 kV.

以上から、この実施例3では、Crスケルトンを板厚中央部から水平に切断して分割し、切断面に露出した低密度領域の直上に溶浸用のCu板を配置しているため、溶浸時に溶融したCuが低密度領域から浸入し、外側に浸透していく。
このため、従来のように外周部から優先的に溶融Cuが浸透することがないので局所的に溶浸から取り残される領域が発生しない。
従って、接点の外径が30〜105mmの範囲においても内部にポアのほとんどない高密度のCu−Cr接点を得ることができ、この結果、真空バルブでは高い耐圧性能を得ることができる。
As described above, in this Example 3, the Cr skeleton is horizontally cut from the central portion of the plate thickness and divided, and the Cu plate for infiltration is disposed immediately above the low density region exposed on the cut surface. Cu melted at the time of immersion penetrates from the low density region and penetrates outside.
For this reason, since the molten Cu does not permeate preferentially from the outer peripheral portion as in the prior art, a region left locally from infiltration does not occur.
Therefore, even when the outer diameter of the contact is in the range of 30 to 105 mm, it is possible to obtain a high-density Cu—Cr contact having almost no pore inside. As a result, the vacuum valve can obtain high pressure resistance.

Figure 2013012328
Figure 2013012328

実施例4.
Cr粉末を目空き径45μmと20μmのふるいに通して、20μm以上45μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、内径90の金型内に充填して100MPaで加圧し、外径90mm×板厚17mmの圧粉体を形成した。
また、Cr粉末を目空き径75μmと45μmのふるいに通して、45μm以上75μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、内径90の金型内に充填して90MPaで加圧し、外径90mm×板厚17mmの圧粉体を形成した。
また、Cr粉末を目空き径125μmと75μmのふるいに通して、75μm以上125μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、内径90の金型内に充填して80MPaで加圧し、外径90mm×板厚17mmの圧粉体を形成した。
得られた圧粉体を水素ガス雰囲気中、1100℃で2時間の焼結を行って所定の気孔率を有するCrを主体とするスケルトンを作製した。
得られたCrスケルトンを板厚中央部から水平に切断して8mm厚に分割した。
その後、切断面を上にして溶浸用Cu板を乗せ、水素ガス雰囲気中、1150℃で1時間の加熱を行い、該Cu板を溶かして該スケルトン内部に溶浸させ、Cr粉末粒径の異なる60wt%Cu−40wt%Cr溶浸サンプルを得た。
なお、サンプルはCr粉末粒径の種類ごとに、内部組織(ポアの状態)観察用、密度測定用、耐圧性能評価用(破壊電圧測定用)の3個をそれぞれ作製した。
内部組織の観察では、サンプルを直径方向に切断して光学顕微鏡により観察を行い、撮影した写真から断面中央部2mm×2mmの領域に見られるポアの総面積を計測した。
また、密度測定では、板厚方向の中央部から外径80mm×板厚5.5mmの円板を切り出してアルキメデス法を用いて密度を評価し、真密度と比較して密度比を求めた。
また、耐圧性能試験では、板厚方向の中央部から外径20mm×板厚5.5mmの円板を切り出して真空バルブに組み付けて接点間距離2mmの条件でインパルス電圧を徐々に上げながら破壊電圧を計測し、電圧印加回数の増加に伴う破壊電圧の増大プロファイルを計測してその飽和値から耐圧性能を評価した。なお、破壊電圧の計測の前にAC100kVの電圧コンディショニングを行った。
Example 4
The Cr powder is passed through sieves with a pore size of 45 μm and 20 μm to obtain a particle size of 20 μm or more and 45 μm or less. The mold was filled and pressed at 100 MPa to form a green compact having an outer diameter of 90 mm and a plate thickness of 17 mm.
Further, the Cr powder is passed through sieves having a pore size of 75 μm and 45 μm to obtain a particle size of 45 μm or more and 75 μm or less. 90 molds were filled and pressed at 90 MPa to form a green compact with an outer diameter of 90 mm and a plate thickness of 17 mm.
Further, the Cr powder is passed through sieves having a pore size of 125 μm and 75 μm to obtain a particle size of 75 μm or more and 125 μm or less. A 90 mold was filled and pressed at 80 MPa to form a green compact having an outer diameter of 90 mm and a plate thickness of 17 mm.
The obtained green compact was sintered in a hydrogen gas atmosphere at 1100 ° C. for 2 hours to produce a skeleton mainly composed of Cr having a predetermined porosity.
The obtained Cr skeleton was cut horizontally from the center of the plate thickness and divided into 8 mm thicknesses.
Then, the Cu plate for infiltration is placed with the cut surface facing up, heated in a hydrogen gas atmosphere at 1150 ° C. for 1 hour, and the Cu plate is melted and infiltrated into the skeleton. Different 60 wt% Cu-40 wt% Cr infiltration samples were obtained.
Three samples were prepared for each type of Cr powder particle size: for observation of internal structure (pore state), for density measurement, and for pressure resistance performance evaluation (for breakdown voltage measurement).
In observing the internal structure, the sample was cut in the diameter direction and observed with an optical microscope, and the total area of pores seen in the area of the cross section central portion 2 mm × 2 mm was measured from the photographed photo.
Further, in the density measurement, a disk having an outer diameter of 80 mm and a plate thickness of 5.5 mm was cut out from the central portion in the plate thickness direction, the density was evaluated using the Archimedes method, and the density ratio was obtained by comparison with the true density.
In the pressure resistance test, a disk with an outer diameter of 20 mm x a plate thickness of 5.5 mm was cut out from the center in the plate thickness direction, assembled into a vacuum valve, and the breakdown voltage was increased while gradually increasing the impulse voltage under the condition of a contact distance of 2 mm. Was measured, the increase profile of the breakdown voltage with the increase in the number of applied voltages was measured, and the withstand voltage performance was evaluated from the saturation value. In addition, AC100 kV voltage conditioning was performed before measurement of the breakdown voltage.

表4に評価結果を示す。表4の実施例4−(1〜3)に示すようにいずれのサンプルにおいても、内部のポアの総面積が小さく、密度比99%以上の高値が得られることがわかった。耐圧性能については、表4の破壊電圧の飽和値に示すように、151〜155kV程度の高い値を示した。   Table 4 shows the evaluation results. As shown in Example 4- (1 to 3) in Table 4, it was found that in all samples, the total area of the internal pores was small, and a high value with a density ratio of 99% or more was obtained. As shown in the saturation value of the breakdown voltage in Table 4, the breakdown voltage performance showed a high value of about 151 to 155 kV.

以上からこの実施例4では、Crスケルトンを板厚中央部から水平に切断して分割し、切断面に露出した低密度領域の直上に溶浸用のCu板を配置しているため、溶浸時に溶融したCuが低密度領域から浸入し、外側に溶浸していく。
このため、従来のように外周部から優先的に溶融Cuが浸透することがないので局所的に溶浸から取り残される領域が発生しない。
従って、Crの粉末粒径が、ふるい分級による20μm以上45μm以下の場合、45μm以上75μm以下の場合、75μm以上125μm以下の場合、のいずれについても、内部にポアのほとんどない高密度のCu−Cr接点を得ることができ、この結果、真空バルブでは高い耐圧性能を得ることができる。
As described above, in this Example 4, the Cr skeleton is horizontally cut from the central portion of the plate thickness and divided, and the Cu plate for infiltration is disposed immediately above the low density region exposed on the cut surface. Sometimes the molten Cu infiltrates from the low density region and infiltrates outward.
For this reason, since the molten Cu does not permeate preferentially from the outer peripheral portion as in the prior art, a region left locally from infiltration does not occur.
Therefore, in the case where the powder particle size of Cr is 20 μm or more and 45 μm or less by sieve classification, 45 μm or more and 75 μm or less, or 75 μm or more and 125 μm or less, high-density Cu—Cr having almost no pores inside. A contact can be obtained, and as a result, a high pressure resistance can be obtained in the vacuum valve.

Figure 2013012328
Figure 2013012328

実施例5.   Embodiment 5 FIG.

Cr粉末を目空き径45μmと20μmのふるいに通して、20μm以上45μm以下の粒径とし、これにつなぎ材として数μmの粒径のCu粉末を少量添加して撹拌混合した後、内径100mmの金型内に充填して100MPaで加圧し、外径100mm×板厚17mmの圧粉体を形成した。得られた圧粉体を水素ガス雰囲気中、1100℃で2時間の焼結を行って所定の気孔率を有するCrを主体とするスケルトンを作製した。
得られたCrスケルトンを板厚中央部から水平に切断して8mm厚に分割した。
その後、切断面を上にして溶浸用Cu板を乗せ、水素ガス雰囲気中、1150℃で1時間の加熱を行い、該Cu板を溶かして該スケルトン内部に溶浸させた。このとき、溶浸用Cu板の外径サイズを変えることで溶融CuのCrスケルトンへの浸入面積を変え、溶浸過程の異なる板厚8mmの60wt%Cu−40wt%Cr溶浸サンプルを得た。
サンプルは種類ごとに、内部組織(ポアの状態)観察用、密度測定用、耐圧性能評価用(破壊電圧測定用)の3個をそれぞれ作製した。
内部組織の観察では、サンプルを直径方向に切断して光学顕微鏡により観察を行い、撮影した写真から断面中央部2mm×2mmの領域に見られるポアの総面積を計測した。
また、密度測定では、板厚方向の中央部から外径90mm×板厚5.5mmの円板を切り出してアルキメデス法を用いて密度を評価し、真密度と比較して密度比を求めた。
また、耐圧性能試験では、板厚方向の中央部から外径20mm×板厚5.5mmの円板を切り出しての真空バルブに組み付けて接点間距離2mmの条件でインパルス電圧を徐々に上げながら破壊電圧を計測し、電圧印加回数の増加に伴う破壊電圧の増大プロファイルを計測してその飽和値から耐圧性能を評価した。
なお、破壊電圧の計測の前にはAC100kVの電圧コンディショニングを行った。
The Cr powder is passed through sieves with a pore size of 45 μm and 20 μm to obtain a particle size of 20 μm or more and 45 μm or less. The mold was filled and pressed at 100 MPa to form a green compact having an outer diameter of 100 mm and a plate thickness of 17 mm. The obtained green compact was sintered in a hydrogen gas atmosphere at 1100 ° C. for 2 hours to produce a skeleton mainly composed of Cr having a predetermined porosity.
The obtained Cr skeleton was cut horizontally from the center of the plate thickness and divided into 8 mm thicknesses.
Thereafter, a Cu plate for infiltration was placed with the cut surface facing upward, and heated in a hydrogen gas atmosphere at 1150 ° C. for 1 hour to melt the Cu plate and infiltrate the skeleton. At this time, the infiltration area of the molten Cu into the Cr skeleton was changed by changing the outer diameter size of the Cu plate for infiltration, and a 60 wt% Cu-40 wt% Cr infiltration sample having a thickness of 8 mm with different infiltration processes was obtained. .
For each type, three samples were prepared for observation of the internal structure (pore state), density measurement, and pressure resistance performance evaluation (breakdown voltage measurement).
In observing the internal structure, the sample was cut in the diameter direction and observed with an optical microscope, and the total area of pores seen in the area of the cross section central portion 2 mm × 2 mm was measured from the photographed photo.
Further, in the density measurement, a disk having an outer diameter of 90 mm × a plate thickness of 5.5 mm was cut out from the central portion in the plate thickness direction, the density was evaluated using the Archimedes method, and the density ratio was obtained by comparing with the true density.
Also, in the pressure resistance performance test, a disk with an outer diameter of 20 mm x a thickness of 5.5 mm was cut out from the center in the thickness direction, assembled into a vacuum valve, and destroyed while gradually increasing the impulse voltage under the condition of a distance of 2 mm between the contacts. The voltage was measured, the increase profile of the breakdown voltage with the increase in the number of applied voltages was measured, and the withstand voltage performance was evaluated from the saturation value.
In addition, AC100 kV voltage conditioning was performed before measurement of the breakdown voltage.

表5に評価結果を示す。
表5の実施例5−(1〜4)示すように溶浸用Cu板の外径が50〜100mmの範囲では、内部のポアの総面積が小さく、密度比99%以上の高値が得られることがわかった。
圧性能については、表5の破壊電圧の飽和値に示すように、150〜154kV程度の高い値を示した。
一方、溶浸用Cu板の外径が40mmの場合は接点内部に溶浸むらが発生し、比較例5−1に示すように接点全体の密度が低くなってしまった。
また、溶浸用Cu板の外径が接点の外径よりも大きくなると、比較例5−2に示すように接点外周部への溶融Cuのはみ出しが生じ、アルミナ台座と接点が溶着する不具合が発生した。
Table 5 shows the evaluation results.
As shown in Example 5- (1 to 4) of Table 5, when the outer diameter of the infiltration Cu plate is in the range of 50 to 100 mm, the total area of the internal pores is small, and a high value with a density ratio of 99% or more is obtained. I understood it.
As for the pressure performance, as shown in the saturation value of the breakdown voltage in Table 5, a high value of about 150 to 154 kV was shown.
On the other hand, when the outer diameter of the infiltration Cu plate was 40 mm, infiltration unevenness occurred inside the contact, and the density of the entire contact was lowered as shown in Comparative Example 5-1.
Further, when the outer diameter of the infiltration Cu plate is larger than the outer diameter of the contact, as shown in Comparative Example 5-2, the molten Cu protrudes to the outer periphery of the contact, and there is a problem that the alumina pedestal and the contact are welded. Occurred.

以上からこの実施例5では、Crスケルトンを板厚中央部から水平に切断して分割し、切断面に露出した低密度領域の直上に溶浸用のCu板を配置しているため、溶浸時に溶融したCuが低密度領域から浸入し、外側に浸透していく。
このため、従来のように外周部から優先的に溶融Cuが浸透することがないので局所的に溶浸から取り残される領域が発生しない。
従って、溶浸用Cu板の外径が50〜100mmの範囲(溶浸用Cu板外径/接点外径=0.5〜1.0の範囲)において、内部にポアのほとんどない高密度のCu−Cr接点を得ることができ、この結果、真空バルブでは高い耐圧性能を得ることができる。
As described above, in this Example 5, since the Cr skeleton is horizontally cut from the central portion of the plate thickness and divided, and the Cu plate for infiltration is disposed immediately above the low density region exposed on the cut surface, Sometimes the molten Cu enters from the low density region and penetrates outward.
For this reason, since the molten Cu does not permeate preferentially from the outer peripheral portion as in the prior art, a region left locally from infiltration does not occur.
Therefore, in the range where the outer diameter of the infiltration Cu plate is 50 to 100 mm (outer diameter of the infiltration Cu plate / contact outer diameter = 0.5 to 1.0), the inner diameter has a high density with almost no pores. A Cu—Cr contact can be obtained, and as a result, a high pressure resistance can be obtained in the vacuum valve.

Figure 2013012328
Figure 2013012328

なお、上記の実施の形態、実施例では、スケルトンとして高耐圧性材料であるCrを用いたCrスケルトン1を使用し、また溶浸体として高導電材料であるCu板2を使用したが、勿論このものに限定されない。Crの代わりに例えばW、Moを用い、またCuの代わりに例えばAgであってもよい。
また、還元性ガスとして水素ガスを用いたが、例えばアンモニアガスでもよい。
また、この発明は、還元性ガスがない真空下で、スケルトンを形成し、またスケルトン内部に溶けた溶浸体を浸透させる真空バルブ用接点の製造方法にも適用することができる。
In the above embodiments and examples, the Cr skeleton 1 using Cr, which is a high pressure resistant material, is used as the skeleton, and the Cu plate 2, which is a highly conductive material, is used as the infiltrate. It is not limited to this. For example, W or Mo may be used instead of Cr, and Ag may be used instead of Cu.
Further, although hydrogen gas is used as the reducing gas, ammonia gas, for example, may be used.
The present invention can also be applied to a method for manufacturing a contact for a vacuum valve in which a skeleton is formed under a vacuum without a reducing gas, and an infiltrated dissolved in the skeleton is infiltrated.

1 Crスケルトン(スケルトン)、2 Cu板(溶浸体)、3 低密度領域、4 溶浸スケルトン、5 Cu凝固層、6 引け巣、7 台座。   1 Cr skeleton (skeleton), 2 Cu plate (infiltrated), 3 low density region, 4 infiltration skeleton, 5 Cu solidified layer, 6 shrinkage nest, 7 pedestal.

Claims (8)

高耐圧性材料を主体とする粉末を金型で加圧して圧粉体を成形する圧粉体成形工程と、
この圧粉体を焼結して板状のスケルトンを形成するスケルトン形成工程と、
このスケルトンを板厚中央部で二分割に切断して切断面を形成する分割切断工程と、
前記切断面の中央部に高導電材料で構成された溶浸体を載置する載置工程と、
前記溶浸体を加熱して溶融した溶浸体を前記スケルトンの内部に浸透させる溶浸工程と
を備えたことを特徴とする真空バルブ用接点の製造方法。
A green compact molding process in which a powder mainly composed of a high pressure resistant material is pressed with a mold to form a green compact;
A skeleton forming step of sintering the green compact to form a plate-shaped skeleton;
A split cutting process in which this skeleton is cut into two at the thickness center to form a cut surface;
A placing step of placing an infiltrant made of a highly conductive material at the center of the cut surface;
A method for manufacturing a contact for a vacuum valve, comprising: an infiltration step in which the infiltrant melted by heating the infiltrant is infiltrated into the skeleton.
前記圧粉体は、還元性ガスの雰囲気中で焼結されることを特徴とする請求項1に記載の真空バルブ用接点の製造方法。   The method for manufacturing a contact for a vacuum valve according to claim 1, wherein the green compact is sintered in an atmosphere of a reducing gas. 前記還元性ガスは、水素ガスであることを特徴とする請求項2に記載の真空バルブ用接点の製造方法。   The method for manufacturing a contact for a vacuum valve according to claim 2, wherein the reducing gas is hydrogen gas. 前記高耐圧性材料はCrであり、前記高導電材料はCuであることを特徴とする請求項1〜3の何れか1項に記載の真空バルブ用接点の製造方法。   The method for manufacturing a contact for a vacuum valve according to any one of claims 1 to 3, wherein the high pressure resistant material is Cr and the high conductive material is Cu. 前記圧粉体は、成形圧が80〜250MPaであり、前記Crは、組成が35〜65wt%、前記Cuは、組成が65〜35wt%であることを特徴とする請求項4に記載の真空バルブ用接点の製造方法。   5. The vacuum according to claim 4, wherein the green compact has a molding pressure of 80 to 250 MPa, the Cr has a composition of 35 to 65 wt%, and the Cu has a composition of 65 to 35 wt%. Manufacturing method of contact for valve. 前記スケルトンは、外径が30〜105mmであり、前記溶浸体は、外径がスケルトンの外径よりも5〜15mm小さいことを特徴とする請求項4または5に記載の真空バルブ用接点の製造方法。   The vacuum valve contact according to claim 4 or 5, wherein the skeleton has an outer diameter of 30 to 105 mm, and the infiltrant has an outer diameter of 5 to 15 mm smaller than the outer diameter of the skeleton. Production method. 前記圧粉体は、粉末粒径が20〜125μmであることを特徴とする請求項4〜6の何れか1項に記載の真空バルブ用接点の製造方法。   The method for manufacturing a contact for a vacuum valve according to any one of claims 4 to 6, wherein the green compact has a powder particle size of 20 to 125 µm. 前記溶浸体の外径R1と前記スケルトンの外径R2との比である(R1/R2)は、0.5〜1.0であることを特徴とする請求項4〜7の何れか1項に記載の真空バルブ用接点の製造方法。   The ratio (R1 / R2) between the outer diameter R1 of the infiltrated body and the outer diameter R2 of the skeleton is 0.5 to 1.0. The manufacturing method of the contact for vacuum valves as described in a term.
JP2011143055A 2011-06-28 2011-06-28 Manufacturing method of contact for vacuum valve Active JP5539270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143055A JP5539270B2 (en) 2011-06-28 2011-06-28 Manufacturing method of contact for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143055A JP5539270B2 (en) 2011-06-28 2011-06-28 Manufacturing method of contact for vacuum valve

Publications (2)

Publication Number Publication Date
JP2013012328A true JP2013012328A (en) 2013-01-17
JP5539270B2 JP5539270B2 (en) 2014-07-02

Family

ID=47686057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143055A Active JP5539270B2 (en) 2011-06-28 2011-06-28 Manufacturing method of contact for vacuum valve

Country Status (1)

Country Link
JP (1) JP5539270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060773A (en) * 2013-09-20 2015-03-30 三菱電機株式会社 Contact material for vacuum valve, method of producing the same, and vacuum valve
CN110744002A (en) * 2019-10-09 2020-02-04 洪方正 Vacuum breaker valve and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101752A (en) * 1991-10-07 1993-04-23 Toshiba Corp Manufacture of contact for vacuum valve
JP2002075100A (en) * 2000-08-29 2002-03-15 Hitachi Ltd Electrode for vacuum valve and its manufacturing method
JP2011096497A (en) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp Method of manufacturing contact for vacuum valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101752A (en) * 1991-10-07 1993-04-23 Toshiba Corp Manufacture of contact for vacuum valve
JP2002075100A (en) * 2000-08-29 2002-03-15 Hitachi Ltd Electrode for vacuum valve and its manufacturing method
JP2011096497A (en) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp Method of manufacturing contact for vacuum valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060773A (en) * 2013-09-20 2015-03-30 三菱電機株式会社 Contact material for vacuum valve, method of producing the same, and vacuum valve
CN110744002A (en) * 2019-10-09 2020-02-04 洪方正 Vacuum breaker valve and preparation method thereof

Also Published As

Publication number Publication date
JP5539270B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
Seuba et al. Mechanical properties and failure behavior of unidirectional porous ceramics
US9970083B2 (en) Method for producing a shaped body and shaped body that can be produced thereby
JP5539270B2 (en) Manufacturing method of contact for vacuum valve
Jin et al. Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials
JPH0449642A (en) Substrate material for semiconductor device and its manufacturing method
FR3008644A1 (en) METHOD FOR SINKING MANUFACTURING A MULTILAYER PIECE
US20180215668A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
Gurauskis et al. Joining green ceramic tapes made from water-based slurries by applying low pressures at ambient temperature
WO2008032598A1 (en) Metal composite material and process for production of metal composite material
Rauscher et al. Influence of Low‐Temperature Co‐Fired Ceramics Green Tape Characteristics on Shrinkage Behavior
JP2011096497A (en) Method of manufacturing contact for vacuum valve
KR101806309B1 (en) Ceramic-metal composites and manufacturing method for the same
Nishiyabu et al. Micro metal injection molding using hybrid micro/nano powders
Liu et al. Fabrication of 93W–Ni–Fe alloy large-diameter rods by powder extrusion molding
Park et al. The Characterization of Porous Sintered Reaction‐Bonded Silicon Nitride Ceramics Fabricated by Si‐Additive Mixture Granules
Choi et al. Pore–Boundary Separation Behavior during Sintering of Pure and Bi2O3‐Doped ZnO Ceramics
JP6048966B2 (en) Contact material for vacuum valve and manufacturing method thereof
Rauscher et al. Effect of Particle Shape on Anisotropic Packing and Shrinkage Behavior of Tape‐Cast Glass–Ceramic Composites
Synkiewicz Reduction of dielectric constant of LTCC substrates by introduction of controlled porosity
JP3600350B2 (en) Functionally graded material and method for producing the same
JP7182323B2 (en) Method for manufacturing hard alloy composite member and method for manufacturing vacuum suction device
WO2019030025A1 (en) Leachable ceramic materials for use in casting
CN109843831A (en) Intermediate member
Nishiyabu et al. Fabrication and mechanical properties of functionally graded micro porous metals by MIM-base powder space holder method
Walcher et al. Influence of Process Parameter on the Quality of MIM Parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5539270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250