JP2013010392A - Energy absorption member - Google Patents

Energy absorption member Download PDF

Info

Publication number
JP2013010392A
JP2013010392A JP2011143353A JP2011143353A JP2013010392A JP 2013010392 A JP2013010392 A JP 2013010392A JP 2011143353 A JP2011143353 A JP 2011143353A JP 2011143353 A JP2011143353 A JP 2011143353A JP 2013010392 A JP2013010392 A JP 2013010392A
Authority
JP
Japan
Prior art keywords
circular tube
emboss
embosses
circumferential
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011143353A
Other languages
Japanese (ja)
Inventor
Toru Hashimura
徹 橋村
Kikuo Kishimoto
喜久雄 岸本
Kazuaki Inaba
和晃 因幡
Toshihiro Goda
峻広 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Tokyo Institute of Technology NUC
Original Assignee
Kobe Steel Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Tokyo Institute of Technology NUC filed Critical Kobe Steel Ltd
Priority to JP2011143353A priority Critical patent/JP2013010392A/en
Publication of JP2013010392A publication Critical patent/JP2013010392A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energy absorption member comprising a circular tube having a large number of embosses formed on the peripheral wall, in which specific geometrical shaped embosses are provided in a specific distribution form on the sidewall to uniformalize the load characteristic in collision and to improve energy absorption efficiency.SOLUTION: Each emboss has the same shape and a nearly rectangular outline. All embosses belong to any of m-lines of emboss lines 4 in a peripheral direction, which are arrayed at a fixed space d along the axial direction of the circular tube, and each emboss line 4 in the peripheral direction is constituted of n-pieces of the embosses arranged at an equiangular space δ along the peripheral direction. At the same time, all embosses belong to 2×n-lines of emboss lines in an axial direction, which are arranged at an equiangular space δ/2 along the peripheral direction of the circular tube 1 and each emboss line in the axial direction is constituted of a plurality of pieces of the embosses arranged at an equal space along the axial direction of the circular tube 1.

Description

本発明は、自動車の衝突時に衝突エネルギーを吸収するバンパーステイとして用いられる円管状のエネルギー吸収部材に関する。   The present invention relates to a cylindrical energy absorbing member used as a bumper stay that absorbs collision energy at the time of automobile collision.

近年、自動車などの車両の分野で、さらなる衝突安全性への要求が高まっている。例えば乗用車の安全基準を例にとれば、これまで主流のバリア(壁)衝突試験などでは、車体全部が均等に圧縮されるのに対し、IIHS(Insurance Institute of Highway Safety(米国高速道路安全保険機構))やECから近年提唱されているオフセットバリア試験では、車両の幅方向の片側に偏して(オフセットして)衝突を受け、荷重が加わるような試験方法となっている。これは、衝突事故の実態を考慮したためであるが、このオフセットバリア試験に対応するためには、衝突部のバンパーを支持する後方部材であるバンパーステイに高性能なエネルギー吸収機構を設け、より車両の安全性を高める必要がある。すなわち、バンパーステイが圧縮力を受けて変形を生じる際に、反力荷重を安定して発生させ、かつ軽量なものにする必要がある。   In recent years, there has been a growing demand for further collision safety in the field of vehicles such as automobiles. For example, taking the safety standards of passenger cars as an example, in the mainstream barrier (wall) collision tests and so on, the entire vehicle body is compressed evenly, whereas the IIHS (Insurance Institute of Highway Safety) )) And the offset barrier test recently proposed by the EC is a test method in which a load is applied to the vehicle by receiving a collision biased (offset) on one side in the width direction of the vehicle. This is because the actual situation of the collision accident was taken into consideration, but in order to cope with this offset barrier test, a high-performance energy absorption mechanism was provided on the bumper stay, which is a rear member that supports the bumper of the collision portion, and the vehicle It is necessary to increase the safety of That is, when the bumper stay is deformed by receiving a compressive force, it is necessary to stably generate a reaction force load and to reduce the weight.

この要求に対し、円管又は多角形断面の中空部材の軸方向圧壊特性を利用したバンパーステイ(特許文献1〜6)が提案されている。これらのバンパーステイは、断面に対する垂線と車両の進行方向が一致するように配置されているため、中空断面の端部に端板やフランジを設け、該端板やフランジを介してバンパー及び車体と締結されている。
軸方向圧壊特性を利用したバンパーステイにおいて、多角形断面の中空部材を用いる場合、断面形状を工夫し、あるいは側壁に圧壊の起点となるクラッシュビード(エンボス)を設けるなどにより、圧壊特性が調整されている。円管を用いる場合も、例えば特許文献2に記載されているように、側壁に圧壊の起点となるエンボスを設けている。
In response to this requirement, bumper stays (Patent Documents 1 to 6) using the axial crushing characteristics of a circular tube or a hollow member having a polygonal cross section have been proposed. Since these bumper stays are arranged so that the perpendicular to the cross section coincides with the traveling direction of the vehicle, an end plate and a flange are provided at the end of the hollow cross section, and the bumper and the vehicle body are connected via the end plate and the flange. It is concluded.
When using a hollow member with a polygonal cross section in a bumper stay that uses axial crushing characteristics, the crushing characteristics are adjusted by devising the cross-sectional shape or by providing a crush bead (emboss) as a starting point of crushing on the side wall. ing. Even when a circular tube is used, as described in Patent Document 2, for example, an emboss serving as a starting point of crushing is provided on the side wall.

特許第3217060号公報Japanese Patent No. 3217060 特開2004−189063号公報JP 2004-189063 A 特開2008−308170号公報JP 2008-308170 A 特開2008−132988号公報JP 2008-132988 A 特許第4036234号公報Japanese Patent No. 4036234 特開2008−296716号公報JP 2008-296716 A

軸方向圧壊特性を利用したバンパーステイの素材として円管を用いる場合、素管に近い形状のままでは多角形断面のものに比べて軸方向圧壊時の荷重変動が大きい。このため、衝突時の荷重特性を平坦にし、かつエネルギー吸収効率を向上させるには、多角形断面のものと同じではなく、特に円管に適する幾何形状及び分布形態のエンボスを設ける必要があると考えられるが、そのための指針が明確ではなかった。
従って、本発明は、周壁に多数のエンボスが形成された円管からなるエネルギー吸収部材において、側壁に特定の幾何形状のエンボスを特定の分布形態で設けることにより、衝突時の荷重特性を平坦とし、かつエネルギー吸収効率を向上させることを目的とする。
When a circular pipe is used as a material for a bumper stay using the axial crushing characteristic, the load fluctuation at the time of axial crushing is larger than that of a polygonal cross section if the shape is close to the raw pipe. For this reason, in order to flatten the load characteristics at the time of collision and improve the energy absorption efficiency, it is not the same as that of the polygonal cross section, and it is necessary to provide embosses with a geometric shape and a distribution form particularly suitable for a circular pipe Though possible, the guidelines for doing so were not clear.
Therefore, in the present invention, in an energy absorbing member composed of a circular tube having a large number of embossed parts on the peripheral wall, embosses having a specific geometric shape are provided on the side wall in a specific distribution form, thereby flattening the load characteristics at the time of collision. And it aims at improving energy absorption efficiency.

本発明は、自動車の衝突時に衝突エネルギーを吸収するバンパーステイとして用いられ、周壁に衝突時に圧壊の起点となる多数の凹状のエンボスが形成された円管からなるエネルギー吸収部材において、各エンボスは全て同形状で前記円管の周方向に長い略長方形の輪郭を有し、全てのエンボスは前記円管の軸方向に沿って一定間隔で配列したm列の周方向エンボス列のいずれかに属し、各周方向エンボス列は前記円管の周方向に沿って等間隔で配置されたn個のエンボスにより構成され、同時に全てのエンボスは前記円管の周方向に沿って等間隔で配列した2×n列の軸方向エンボス列のいずれかに属し、各軸方向エンボス列は前記円管の軸方向に沿って等間隔で配置された複数個のエンボスにより構成され、隣接する周方向エンボス列に属するエンボスは同じ軸方向エンボス列に属さないことを特徴とする。なお、mは4以上の整数、nは2以上の整数である。
前記エンボスは、電磁成形(特許文献2参照)又はプレス成形により成形することができる。
The present invention is used as a bumper stay that absorbs collision energy at the time of a car collision, and is an energy absorbing member that is a circular pipe in which a large number of concave embosses that are the starting points of crushing are formed on a peripheral wall. It has the same shape and has a substantially rectangular outline that is long in the circumferential direction of the circular tube, and all the embossments belong to one of m circumferential embossed rows arranged at regular intervals along the axial direction of the circular tube, Each circumferential emboss row is composed of n embosses arranged at equal intervals along the circumferential direction of the circular tube, and all the embosses are arranged at equal intervals along the circumferential direction of the circular tube. It belongs to one of the n axial embossing rows, and each axial embossing row is composed of a plurality of embosses arranged at equal intervals along the axial direction of the circular tube, and is adjacent to the circumferential embossing row. Embossing which is characterized by not belonging to the same axial embossed column. Note that m is an integer of 4 or more, and n is an integer of 2 or more.
The emboss can be formed by electromagnetic forming (see Patent Document 2) or press forming.

上記エネルギー吸収部材において、円管の外直径をgとし、各エンボスの幾何形状について、エンボスの深さをh、エンボスの軸方向に沿った高さをt、1つのエンボスの円周方向両端と円管の中心がなす角度をθとしたとき、前記g,h,t,θがそれぞれ次式のいずれかを満たす円管からなるか、又は前記g,h,t,θがこれと相似形状を有する円管からなることが望ましい。
(g,h,t,θ)=(55mm,1mm,6mm,15°)
(g,h,t,θ)=(55mm,1mm,8mm,20°)
In the above energy absorbing member, the outer diameter of the circular tube is g, and for each embossed geometric shape, the emboss depth is h, the height along the axial direction of the emboss is t, and both circumferential ends of one emboss are When the angle formed by the center of the circular tube is θ, the g, h, t, θ are each formed of a circular tube satisfying one of the following formulas, or the g, h, t, θ are similar to this: It is desirable to consist of a circular tube having
(G, h, t, θ) = (55 mm, 1 mm, 6 mm, 15 °)
(G, h, t, θ) = (55 mm, 1 mm, 8 mm, 20 °)

本発明によれば、円管の周壁に多数の凹状エンボスを特定の幾何形状で、かつ特定の分布形態で形成することにより、前記円管を用いたエネルギー吸収部材の座屈圧壊時の座屈モードを変化させ、衝突時の荷重変動を抑えつつ、エネルギー吸収効率を向上させることができる。また、バンパーステイ単体のエネルギー吸収特性を改善することで、このバンパーステイを含むバンパーシステム全体の特性を向上させ、近年の衝突安全基準の強化に対応した高性能、かつ軽量なバンパーシステムを提供することができる。
なお、本発明に係るエネルギー吸収部材は、乗用車やトラック等、自動車のバンパーステイへの適用を考慮したものであるが、列車や航空宇宙等の移動体の安全部材として応用が可能である。
According to the present invention, a large number of concave embosses are formed in a specific geometric shape and a specific distribution form on the peripheral wall of the circular tube, thereby buckling the energy absorbing member using the circular tube at the time of buckling collapse. Energy absorption efficiency can be improved while changing the mode and suppressing load fluctuation at the time of collision. In addition, by improving the energy absorption characteristics of the bumper stay alone, the characteristics of the entire bumper system including this bumper stay are improved, and a high-performance and lightweight bumper system that responds to the recent enhancement of collision safety standards is provided. be able to.
The energy absorbing member according to the present invention is applied to a bumper stay of an automobile such as a passenger car or a truck, but can be applied as a safety member of a moving body such as a train or aerospace.

本発明に係る円管の平面図(a)及び正面図(b)である。It is the top view (a) and front view (b) of the circular pipe which concern on this invention. 本発明に係る円管の軸方向に垂直な面でのエンボスの断面図である。It is sectional drawing of embossing in the surface perpendicular | vertical to the axial direction of the circular pipe which concerns on this invention. 本発明に係る円管を電磁成形する際に用いる金型の内周面の平面視形状(a)及び正面視形状(b)を示す図である。It is a figure which shows the planar view shape (a) and front view shape (b) of the internal peripheral surface of a metal mold | die used when electromagnetically forming the circular tube which concerns on this invention. FEM解析で電磁成形を模した成形解析を行って得た円管を、さらにFEM解析で圧壊変形を模した成形解析を行って得た荷重−変位曲線である。It is the load-displacement curve obtained by performing the shaping | molding analysis which simulated the crushing deformation | transformation further by the FEM analysis for the circular pipe obtained by performing the shaping | molding analysis imitating electromagnetic shaping | molding by FEM analysis. FEM解析で電磁成形を模した成形解析を行って得た円管を、さらにFEM解析で圧壊変形を模した成形解析を行って得た荷重−変位曲線である。It is the load-displacement curve obtained by performing the shaping | molding analysis which simulated the crushing deformation | transformation further by the FEM analysis for the circular pipe obtained by performing the shaping | molding analysis imitating electromagnetic shaping | molding by FEM analysis. FEM解析で電磁成形を模した成形解析を行って得た円管を、さらにFEM解析で圧壊変形を模した成形解析を行って得た荷重−変位曲線である。It is the load-displacement curve obtained by performing the shaping | molding analysis which simulated the crushing deformation | transformation further by the FEM analysis for the circular pipe obtained by performing the shaping | molding analysis imitating electromagnetic shaping | molding by FEM analysis. FEM解析で電磁成形を模した成形解析を行って得た円管を、さらにFEM解析で圧壊変形を模した成形解析を行って得た荷重−変位曲線である。It is the load-displacement curve obtained by performing the shaping | molding analysis which simulated the crushing deformation | transformation further by the FEM analysis for the circular pipe obtained by performing the shaping | molding analysis imitating electromagnetic shaping | molding by FEM analysis. FEM解析で電磁成形を模した成形解析を行って得た円管を、さらにFEM解析で圧壊変形を模した成形解析を行って得た荷重−変位曲線である。It is the load-displacement curve obtained by performing the shaping | molding analysis which simulated the crushing deformation | transformation further by the FEM analysis for the circular pipe obtained by performing the shaping | molding analysis imitating electromagnetic shaping | molding by FEM analysis. FEM解析で電磁成形を模した成形解析を行って得た円管を、さらにFEM解析で圧壊変形を模した成形解析を行って得た荷重−変位曲線である。It is the load-displacement curve obtained by performing the shaping | molding analysis which simulated the crushing deformation | transformation further by the FEM analysis for the circular pipe obtained by performing the shaping | molding analysis imitating electromagnetic shaping | molding by FEM analysis. 実際に電磁成形で得た円管を圧壊変形させたときの荷重−変位曲線である。It is a load-displacement curve when the circular pipe actually obtained by electromagnetic forming is crushed and deformed.

以下、図1〜図10を参照し、本発明に係るエネルギー吸収部材についてより具体的に説明する。
図1,2に示すエネルギー吸収部材は、適当な長さ、外直径g、肉厚を有する円管1からなり、円管1の周壁2に多数の凹状のエンボス3が形成されている。エンボス3は全て同形状で、円管1の周方向に沿って湾曲した長辺3aと、円管1の軸方向に沿った短辺3bからなる略長方形の輪郭を有する。そのほか、エンボス3の幾何形状は、エンボスの深さh(図2参照)、エンボスの軸方向高さt(図1(b)参照)、1つのエンボスの周方向両端と円管の中心Oがなす角度(周方向角度)θ(図2参照)で表される。
Hereinafter, with reference to FIGS. 1-10, the energy absorption member which concerns on this invention is demonstrated more concretely.
The energy absorbing member shown in FIGS. 1 and 2 includes a circular tube 1 having an appropriate length, an outer diameter g, and a wall thickness, and a plurality of concave embosses 3 are formed on a peripheral wall 2 of the circular tube 1. All the embosses 3 have the same shape, and have a substantially rectangular outline composed of a long side 3 a curved along the circumferential direction of the circular tube 1 and a short side 3 b along the axial direction of the circular tube 1. In addition, the geometric shape of the emboss 3 includes an emboss depth h (see FIG. 2), an emboss axial height t (see FIG. 1 (b)), one circumferential end of one emboss and the center O of the circular tube. It is expressed by an angle (circumferential angle) θ (see FIG. 2).

多数のエンボス3は、円管1の周壁2上において次のような分布形態をとる。
全てのエンボスは、円管1の軸方向に沿って一定間隔dで配列したm(この例ではm=6)列の周方向エンボス列4,4,・・のいずれかに属する。各周方向エンボス列4は円管1の周方向に沿って等角度間隔δ(この例ではδ=60°)で配置されたn(この例ではn=6)個のエンボス3により構成され、各周方向エンボス列4に属するn個のエンボス3は、いずれも円管1の軸方向に垂直な面に沿って、円管1の周壁2の周方向に一列に揃って配置されている。なお、周方向エンボス列4同士の間隔dは、軸方向圧壊時の円管1の折り畳み幅となる。
A large number of embosses 3 take the following distribution form on the peripheral wall 2 of the circular tube 1.
All the embosses belong to one of m circumferential emboss rows 4, 4,... Arranged in a constant interval d along the axial direction of the circular tube 1 (m = 6 in this example). Each circumferential emboss row 4 is composed of n (in this example, n = 6) embosses 3 arranged at equiangular intervals δ (in this example, δ = 60 °) along the circumferential direction of the circular tube 1, The n embosses 3 belonging to each circumferential emboss row 4 are all arranged in a line in the circumferential direction of the peripheral wall 2 of the circular tube 1 along a plane perpendicular to the axial direction of the circular tube 1. In addition, the space | interval d of the circumferential direction emboss row | line | columns 4 becomes the folding width | variety of the circular tube 1 at the time of axial direction collapse.

また、全てのエンボスは、円管1の周方向に沿って等角度間隔(δ/2)で配列した2×n列の軸方向エンボス列5,5,・・のいずれかに属する。各軸方向エンボス列5は円管1の軸方向に沿って等間隔(2×d)で配置された複数個(この例では3個)のエンボス3により構成され、各軸方向エンボス列5に属するエンボスは、円管1の軸方向に一列に揃って配置されている。隣接する周方向エンボス列4,4に属するエンボスは同じ軸方向エンボス列に属さない。また、隣接する軸方向エンボス列5,5に属するエンボスを見ると、軸方向にいわゆる千鳥足状の配置となっている。
エンボス3の上記分布形態において、mは4以上の整数、nは2以上の整数であり、これらの数値は円管の長さや外直径、エンボスの幾何形状、あるいは圧壊時の変形挙動を調整するために適宜設定される。
All the embosses belong to any of 2 × n rows of axial emboss rows 5, 5,... Arranged at equiangular intervals (δ / 2) along the circumferential direction of the circular tube 1. Each axial emboss row 5 is composed of a plurality of (three in this example) embosses 3 arranged at equal intervals (2 × d) along the axial direction of the circular tube 1. The embosses to which they belong are arranged in a line in the axial direction of the circular tube 1. The embosses belonging to the adjacent circumferential emboss rows 4 and 4 do not belong to the same axial emboss row. When the embosses belonging to the adjacent axial emboss rows 5 and 5 are viewed, the so-called staggered arrangement is provided in the axial direction.
In the distribution form of the emboss 3, m is an integer of 4 or more, and n is an integer of 2 or more. These values adjust the length and outer diameter of the circular tube, the geometric shape of the emboss, or the deformation behavior at the time of crushing. Therefore, it is set appropriately.

図1(a),(b)に示す円管1は、例えば電磁成形により形成することができる。円管1を電磁成形するための金型6の内周面6aの形状が図3(a),(b)に示されている。金型6は組み合わせたとき中心部に内直径Gの円筒形の内周面6aが構成される複数の分割金型からなり、前記内周面6aには多数の突起7が形成されている。
円管1の外周形状は、電磁成形により金型6の内周面6aの形状が転写されて形成されるものであるから、内周面6aの内直径Gは円管1の外直径gと実質的に一致し、また、内周面6aにおける突起7の幾何形状及び分布形態は、円管1の凹状のエンボス3の幾何形状及び分布形態と実質的に一致する。
The circular tube 1 shown in FIGS. 1A and 1B can be formed, for example, by electromagnetic forming. The shape of the inner peripheral surface 6a of the mold 6 for electromagnetically forming the circular tube 1 is shown in FIGS. 3 (a) and 3 (b). The mold 6 is composed of a plurality of divided molds having a cylindrical inner peripheral surface 6a having an inner diameter G at the center when combined, and a plurality of protrusions 7 are formed on the inner peripheral surface 6a.
Since the outer peripheral shape of the circular tube 1 is formed by transferring the shape of the inner peripheral surface 6a of the mold 6 by electromagnetic forming, the inner diameter G of the inner peripheral surface 6a is equal to the outer diameter g of the circular tube 1. The geometric shape and distribution form of the protrusions 7 on the inner peripheral surface 6a substantially match the geometric shape and distribution form of the concave emboss 3 of the circular tube 1.

より具体的にいえば、突起7は全て同形状で略長方形の輪郭を有し、内周面6aからの突出高さH、軸方向高さT、及び1つの突起の周方向両端と前記内周面6aの中心Oがなす角度(周方向角度)Θで表され(図3(a)参照)、突起7のH,T,Θは、それぞれ実質的にエンボス3のh,t,θに等しい。
また、多数の突起7は、金型6の内周面6aにおいて次のような分布形態をとる。
全ての突起は、前記内周面6aの軸方向に沿って一定間隔Dで配列したM(この例ではM=6)列の周方向突起列8のいずれかに属する。各周方向突起列8は金型6の内周面6aに等角度間隔Δ(この例ではΔ=60°)で配置されたN(この例ではN=6)個の突起7により構成されている。M,N,D,Δはそれぞれ円管1におけるm,n,d,δに等しい。
さらに、全ての突起は、金型6の内周面6aに等角度間隔(Δ/2)で配列した2×N列の軸方向突起列9のいずれかに属する。各軸方向突起列9は内周面6aの軸方向に沿って等間隔(2×D)で配置された複数個(この例では3個)の突起7により構成されている。隣接する周方向突起列8に属する突起7は同じ軸方向突起列9に属さない。
More specifically, the protrusions 7 are all the same shape and have a substantially rectangular outline, the protrusion height H from the inner peripheral surface 6a, the axial height T, the both ends in the circumferential direction of one protrusion and the inner It is represented by an angle (circumferential angle) Θ formed by the center O of the peripheral surface 6a (see FIG. 3A), and H, T, and Θ of the protrusion 7 are substantially equal to h, t, and θ of the emboss 3, respectively. equal.
The many protrusions 7 have the following distribution form on the inner peripheral surface 6 a of the mold 6.
All the protrusions belong to one of M (M = 6 in this example) rows of circumferential protrusions 8 arranged at a constant interval D along the axial direction of the inner peripheral surface 6a. Each circumferential protrusion row 8 is composed of N (N = 6 in this example) protrusions 7 arranged on the inner peripheral surface 6a of the mold 6 at an equal angular interval Δ (Δ = 60 ° in this example). Yes. M, N, D, and Δ are equal to m, n, d, and δ in the circular tube 1, respectively.
Further, all the protrusions belong to any of 2 × N rows of axial protrusion rows 9 arranged on the inner peripheral surface 6a of the mold 6 at equal angular intervals (Δ / 2). Each axial projection row 9 is composed of a plurality (three in this example) of projections 7 arranged at equal intervals (2 × D) along the axial direction of the inner peripheral surface 6a. The protrusions 7 belonging to the adjacent circumferential protrusion rows 8 do not belong to the same axial protrusion row 9.

電磁成形に際しては、好ましくはアルミニウム合金押出材製の円形断面の素管を用い、この素管を金型6の内周面に挿入し、素管の内側に電磁成形用コイルを挿入し、前記コイルに通電する。その通電により前記素管が極めて短時間で拡管して金型6の内周面6aに打ち当たり、該内周面6aに沿った外周形状の円管1が成形され、その際、円管1に突起7の形状に対応して凹状のエンボス3が転写される。
なお、アルミニウム合金としては、JIS6000系又は7000系が好適である。
At the time of electromagnetic forming, an elemental tube having a circular cross section preferably made of an aluminum alloy extruded material is used, and this elemental tube is inserted into the inner peripheral surface of the mold 6, and an electromagnetic forming coil is inserted inside the elemental tube. Energize the coil. The energization expands the raw tube in a very short time and hits the inner peripheral surface 6a of the mold 6 to form the outer peripheral circular tube 1 along the inner peripheral surface 6a. The concave emboss 3 is transferred to the shape corresponding to the shape of the protrusion 7.
In addition, as an aluminum alloy, JIS6000 type | system | group or 7000 type | system | group is suitable.

(FEM解析)
FEM解析の第1ステップとして、電磁成形を模した成形解析を実施し、円形断面の素管をエンボス付円管(一部はエンボスなしの円管)に成形した。次いで、第2ステップとして、第1ステップの解析で得られたエンボス付き円管(一部はエンボスなしの円管)を、軸方向に圧縮して圧壊変形させる解析を実施し、荷重−変位曲線を得た。なお、FEM解析で得たエンボス付き円管は、先に説明した本発明に係る円管に対応する。
素管の材料モデルとしてアルミニウム合金押出形材(JIS6063−T5)を想定し、その0.2%耐力を150MPa、弾性率68.5GPa、密度2700Kg/m、ポアソン比0.3に設定した。
(FEM analysis)
As a first step of the FEM analysis, a forming analysis simulating electromagnetic forming was performed, and a circular cross-section element tube was formed into an embossed circular tube (a part of the tube without embossing). Next, as a second step, an analysis is performed in which the embossed circular tube (partially a non-embossed circular tube) obtained by the first step analysis is compressed in the axial direction to be crushed and deformed, and a load-displacement curve. Got. The embossed circular tube obtained by FEM analysis corresponds to the circular tube according to the present invention described above.
An aluminum alloy extruded shape (JIS6063-T5) was assumed as a material model of the raw tube, and its 0.2% proof stress was set to 150 MPa, elastic modulus 68.5 GPa, density 2700 Kg / m 3 , and Poisson's ratio 0.3.

第1ステップにおいて、素管の形状を外直径51mm、長さ100mm、肉厚2mmに設定した。また、電磁成形に使用する金型モデルとして、基本的に図3(a),(b)に示すものを用いた。金型モデルについて図3(a),(b)を参照して説明すると、金型モデルの基本構造として、周方向突起列の数を6、各周方向突起列に含まれる突起の数を6、金型の長さLを100mm、内周面の直径Gを55mm、周方向突起列同士の間隔Dを10mmに設定し、さらに金型の下端から最も近い周方向突起列までの距離E(図3(b)参照)を20mmに設定した。この基本構造の下、突起の突出高さH、突起の軸方向高さT、及び突起の周方向角度Θをパラメーター(変数)とした。解析に用いたパラメーターH,T,Θの組み合わせを表1に示す。   In the first step, the shape of the raw tube was set to an outer diameter of 51 mm, a length of 100 mm, and a wall thickness of 2 mm. In addition, as a mold model used for electromagnetic forming, basically the one shown in FIGS. 3A and 3B was used. The mold model will be described with reference to FIGS. 3A and 3B. As the basic structure of the mold model, the number of circumferential projection rows is 6, and the number of projections included in each circumferential projection row is 6. The length L of the mold is set to 100 mm, the diameter G of the inner peripheral surface is set to 55 mm, the distance D between the circumferential projections is set to 10 mm, and the distance E (from the lower end of the mold to the nearest circumferential projection is 3 (b)) was set to 20 mm. Under this basic structure, the protrusion height H of the protrusion, the axial height T of the protrusion, and the circumferential angle Θ of the protrusion were used as parameters (variables). Table 1 shows combinations of parameters H, T, and Θ used in the analysis.

Figure 2013010392
Figure 2013010392

第1ステップのFEM解析では、前記金型モデルの内側に前記素管を配置し、前記素管の上面と下面の上下方向の変位を拘束し、電磁成形を模して素管の内側に3GPaの圧力を掛ける態様とした。FEM解析の結果、素管は拡管して金型モデルの内周面に沿った形状に変形し、金型の突起の幾何形状及びその分布形態がそのまま円管に転写され、多数の凹状のエンボスを有するエンボス付き円管(No.1はエンボスなしの円管)が形成された。エンボス付円管は、外直径(g)が金型モデルの内周面の内直径(D)と等しく55mm、周方向エンボス列の軸方向間隔(d)が金型モデルの周方向突起列同士の間隔(D)と等しく10mmで、エンボスの深さ(h)、エンボスの軸方向高さ(t)、及びエンボスの周方向角度(θ)が、金型モデルのパラメータ(H,T,Θ)の数値と一致している。一方、エンボス付円管の内周側では、エンボスの輪郭付近(図2の矢印a参照)が滑らかな曲面となっていた。FEM解析で得たエンボス付円管の以上の形状は、実際に電磁成形で成形される形状に極めて近い。   In the FEM analysis of the first step, the raw tube is arranged inside the mold model, the vertical displacement of the upper and lower surfaces of the raw tube is constrained, and 3 GPa is placed inside the raw tube to simulate electromagnetic forming. The pressure was applied. As a result of the FEM analysis, the base tube is expanded and deformed into a shape along the inner peripheral surface of the mold model, and the shape and distribution of the protrusions of the mold are transferred to the circular tube as they are, and a large number of concave embosses are obtained. An embossed circular tube (No. 1 is a non-embossed circular tube) was formed. The embossed circular tube has an outer diameter (g) equal to the inner diameter (D) of the inner peripheral surface of the mold model and 55 mm, and the axial distance (d) between the circumferential embossed rows is between the circumferential projection rows of the mold model. The emboss depth (h), the emboss axial height (t), and the emboss circumferential angle (θ) are the parameters of the mold model (H, T, Θ). ). On the other hand, on the inner peripheral side of the embossed circular tube, the vicinity of the embossed contour (see arrow a in FIG. 2) was a smooth curved surface. The above shape of the embossed circular tube obtained by FEM analysis is very close to the shape actually formed by electromagnetic forming.

第2ステップのFEM解析では、エンボス付き円管の下端を剛体壁の上に乗せ、上方から別の剛体壁を下降させエンボス付き円管を準静的な速度で圧縮する態様とした。解析の結果得られた荷重−変位曲線を図4〜9に示す。
続いて、図4〜9の荷重−変位曲線を基に、No.1〜6の円管のエネルギー吸収特性の評価を行った。評価の対象は全長の7割までの圧壊(変位:70mm)とし、評価指標は、荷重変動を表す荷重変動係数φα、平均荷重と最大荷重の比を表すφβ、エネルギー吸収効率を表すφχ、及びこれらを総合したφとした。
φα,φβ,φχ,φは次式で表される。
In the FEM analysis in the second step, the lower end of the embossed circular tube is placed on the rigid wall, and another rigid wall is lowered from above to compress the embossed circular tube at a quasi-static speed. The load-displacement curves obtained as a result of the analysis are shown in FIGS.
Subsequently, based on the load-displacement curves of FIGS. The energy absorption characteristics of 1 to 6 circular tubes were evaluated. The evaluation target is crushing up to 70% of the total length (displacement: 70 mm), and the evaluation index is a load variation coefficient φα representing load variation, φβ representing the ratio of average load to maximum load, φχ representing energy absorption efficiency, and These were combined into φ.
φα, φβ, φχ, and φ are expressed by the following equations.

Figure 2013010392
Figure 2013010392

No.1〜6について、評価指標φα,φβ,φχ,φの値を表2に示す。評価指標φα,φβ,φχ,φの値が大きいほど、エネルギー吸収特性が優れている。   No. Table 2 shows the values of the evaluation indices φα, φβ, φχ, φ for 1-6. The larger the values of the evaluation indexes φα, φβ, φχ, φ, the better the energy absorption characteristics.

Figure 2013010392
Figure 2013010392

図4〜9及び表2から、No.2〜6の全てのエンボス付き円管において、エンボスなしの円管であるNo.1に比べて明らかに荷重変動が抑制され、かつ全ての評価指標においてNo.1より優れていることが分かる。
このうちNo.3は、No.1に比べて評価指標が大幅に改善されている。No.4はNo.3と同様の変形挙動を示し、同じくNo.1に比べて評価指標が大幅に改善されているが、No.3に比べるとやや改善の度合いが小さい。No.2は、評価指標の改善の度合いがNo.4に次ぐ。また、No.5,6はNo.2と同様の変形挙動を示すが、No.2に比べて評価指標の改善の度合いが小さい。
これらの結果から、エネルギー吸収特性の評価指標φα,φβ,φχ,φを改善するには、前記基本構造において、エンボスの幾何形状(エンボスの深さ(h)、エンボスの軸方向高さ(t),エンボスの周方向角度(θ))を、(1mm,6mm,15°)、又は(1mm,8mm,20°)に調整することが望ましいことが分かる。
From FIGS. In all the embossed circular pipes 2 to 6, No. 2 which is an unembossed circular pipe. The load fluctuation is clearly suppressed as compared with No. 1, and all evaluation indices are No.1. It can be seen that it is better than 1.
Of these, No. 3 is No.3. Compared to 1, the evaluation index is greatly improved. No. 4 is No.4. 3 shows the same deformation behavior as that of No. 3. Although the evaluation index is greatly improved compared to 1. Compared to 3, the degree of improvement is slightly smaller. No. No. 2 shows that the degree of improvement of the evaluation index is No. 2. Next to 4. No. Nos. 5 and 6 are No. 2 shows the same deformation behavior as No. 2, but no. Compared to 2, the degree of improvement of the evaluation index is small.
From these results, in order to improve the evaluation index φα, φβ, φχ, φ of the energy absorption characteristics, the emboss geometry (emboss depth (h), emboss axial height (t ), The circumferential angle (θ) of the embossing is preferably adjusted to (1 mm, 6 mm, 15 °) or (1 mm, 8 mm, 20 °).

(実施例)
外直径が91mm、肉厚3.5mmのアルミニウム合金押出材(JIS6063−T5)を切断して、長さ145mmの素管を得た。この素管を実際に電磁成形して、エンボス付き円管(No.7)を成形した。No.7は、外直径(g)が98mm、エンボスの深さ(h)が1.78mm、軸方向高さ(t)が10.7mm、周方向角度(θ)が15°、及び周方向エンボス列の軸方向間隔(d)が17.8mmであり、前記No.3(H1T6−15)とは外直径、エンボスの幾何形状及び分布形態が相似形(相似比:約1.78倍)となっている。
また、同じアルミニウム合金押出形材からなる素管を実際に電磁成形して、外直径が98mmのエンボスなしの円管(No.8)を成形した。No.8は、外直径(g)が98mmである。
(Example)
An aluminum alloy extruded material (JIS6063-T5) having an outer diameter of 91 mm and a wall thickness of 3.5 mm was cut to obtain a raw tube having a length of 145 mm. This base tube was actually electromagnetically molded to form an embossed circular tube (No. 7). No. 7 is an outer diameter (g) of 98 mm, an emboss depth (h) of 1.78 mm, an axial height (t) of 10.7 mm, a circumferential angle (θ) of 15 °, and a circumferential embossed row The axial interval (d) is 17.8 mm. 3 (H1T6-15) is similar in outer diameter, geometric shape and distribution of embossing (similarity ratio: about 1.78 times).
In addition, an element tube made of the same aluminum alloy extruded shape was actually electromagnetically formed to form an unembossed circular tube (No. 8) having an outer diameter of 98 mm. No. 8 has an outer diameter (g) of 98 mm.

続いてNo.7,8の円管に対し、軸方向に準静的な圧縮荷重を掛けて圧壊変形し、荷重−変位曲線を求めた。その結果を図10に示す。
図10に示すように、No.8では変位に伴う荷重変動の大きい荷重−変位曲線が得られ、一方、No.7では吸収エネルギーの低下を生じることなく荷重変動が抑制された荷重−変位曲線が得られた。No.7の荷重−変位曲線は、FEM解析で得られたNo.3の荷重−変位曲線と近似し、No.8の荷重−変位曲線は、FEM解析で得られたNo.1の荷重−変位曲線と近似していた。このように、No.3と外直径及びエンボスの幾何形状(h,t,θ)が相似形のエンボス付円管でも、エネルギー吸収特性が大幅に改善されることが分かる。
Subsequently, no. 7 and 8 were subjected to a crushing deformation by applying a quasi-static compressive load in the axial direction to obtain a load-displacement curve. The result is shown in FIG.
As shown in FIG. In No. 8, a load-displacement curve having a large load variation with displacement is obtained. In No. 7, a load-displacement curve in which load fluctuation was suppressed without causing a decrease in absorbed energy was obtained. No. The load-displacement curve of No. 7 was obtained by FEM analysis. 3 and the load-displacement curve. The load-displacement curve of No. 8 was obtained as No. 8 obtained by FEM analysis. 1 and a load-displacement curve. Thus, no. It can be seen that the energy absorption characteristics are greatly improved even with an embossed circular tube having an outer diameter 3 and an embossed geometric shape (h, t, θ) similar to each other.

1 円管(エンボス付き)
2 円管の周壁
3 凹状のエンボス
4 周方向エンボス列
5 軸方向エンボス列
6 電磁成形用の金型
6a 金型の内周面
7 突起
8 周方向突起列
9 軸方向突起列
g 円管の外直径
h エンボスの深さ
t エンボスの軸方向高さ
θ エンボスの周方向角度
d 周方向エンボス列の軸方向間隔
δ 軸方向エンボス列の周方向角度間隔
1 Round pipe (with emboss)
2 A circumferential wall of a circular tube 3 A concave emboss 4 A circumferential emboss row 5 An axial emboss row 6 A mold 6a for electromagnetic forming An inner peripheral surface 7 of a die 8 A projection 8 A circumferential projection row 9 Axial projection row g Diameter h Emboss depth t Emboss axial height θ Emboss circumferential angle d Circumferential emboss row axial spacing δ Axial emboss train circumferential angle spacing

Claims (3)

自動車の衝突時に衝突エネルギーを吸収するバンパーステイとして用いられ、周壁に衝突時に圧壊の起点となる多数の凹状のエンボスが形成された円管からなるエネルギー吸収部材において、各エンボスは全て同形状で前記円管の周方向に長い略長方形の輪郭を有し、全てのエンボスは前記円管の軸方向に沿って一定間隔で配列したm列の周方向エンボス列のいずれかに属し、各周方向エンボス列は前記円管の周方向に沿って等間隔で配置されたn個のエンボスにより構成され、同時に全てのエンボスは前記円管の周方向に沿って等間隔で配列した2×n列の軸方向エンボス列のいずれかに属し、各軸方向エンボス列は前記円管の軸方向に沿って等間隔で配置された複数個のエンボスにより構成され、隣接する周方向エンボス列に属するエンボスは同じ軸方向エンボス列に属さないことを特徴とするエネルギー吸収部材。 In an energy absorbing member consisting of a circular tube, which is used as a bumper stay that absorbs collision energy at the time of a car collision and has a plurality of concave embosses formed on the peripheral wall as a starting point of crushing at the time of the collision, each emboss is the same shape and Each of the circumferential embosses has a substantially rectangular outline that is long in the circumferential direction of the circular tube, and all the embossments belong to one of m circumferential embossed rows arranged at regular intervals along the axial direction of the circular tube. The row is composed of n embosses arranged at equal intervals along the circumferential direction of the circular tube, and all the embossments are arranged at 2 × n columns arranged at equal intervals along the circumferential direction of the circular tube. Belonging to any one of the direction embossing rows, and each of the axial embossing rows is composed of a plurality of embosses arranged at equal intervals along the axial direction of the circular tube, and belongs to the adjacent circumferential embossing row. Scan the energy absorbing member characterized by not belonging to the same axial embossed column. 前記円管の外直径をg、前記エンボスの深さをh、前記エンボスの軸方向に沿った高さをt、1つのエンボスの円周方向両端と前記円管の中心がなす角度をθとしたとき、前記g,h,t,θがそれぞれ次式のいずれかを満たす円管からなるか、又は前記g,h,t,θがこれと相似形状を有する円管からなることを特徴とする請求項1に記載されたエネルギー吸収部材。
(g,h,t,θ)=(55mm,1mm,6mm,15°)
(g,h,t,θ)=(55mm,1mm,8mm,20°)
The outer diameter of the circular tube is g, the depth of the emboss is h, the height along the axial direction of the emboss is t, and the angle between the circumferential ends of one emboss and the center of the circular tube is θ. The g, h, t, and θ are each formed of a circular tube that satisfies one of the following formulas, or the g, h, t, and θ are formed of a circular tube having a similar shape thereto. The energy absorbing member according to claim 1.
(G, h, t, θ) = (55 mm, 1 mm, 6 mm, 15 °)
(G, h, t, θ) = (55 mm, 1 mm, 8 mm, 20 °)
前記エンボスが電磁成形又はプレス成形により成形されたことを特徴とする請求項1又は2に記載されたエネルギー吸収部材。 The energy absorbing member according to claim 1 or 2, wherein the emboss is formed by electromagnetic forming or press forming.
JP2011143353A 2011-06-28 2011-06-28 Energy absorption member Pending JP2013010392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143353A JP2013010392A (en) 2011-06-28 2011-06-28 Energy absorption member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143353A JP2013010392A (en) 2011-06-28 2011-06-28 Energy absorption member

Publications (1)

Publication Number Publication Date
JP2013010392A true JP2013010392A (en) 2013-01-17

Family

ID=47684693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143353A Pending JP2013010392A (en) 2011-06-28 2011-06-28 Energy absorption member

Country Status (1)

Country Link
JP (1) JP2013010392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105857221A (en) * 2016-03-30 2016-08-17 西华大学 Sleeving type energy-absorption auxiliary component for thin-wall pipe
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158377A (en) * 1999-11-30 2001-06-12 Toyota Motor Corp Skeletal member structure
US6474709B2 (en) * 1999-12-10 2002-11-05 Daimlerchrysler Ag Device for the absorption of impact energy in motor vehicles and method of making same
EP1384536A2 (en) * 2002-07-27 2004-01-28 Hydro Aluminium Deutschland GmbH Crashbox for motor vehicles
JP2006160260A (en) * 2006-01-13 2006-06-22 Kobe Steel Ltd Energy absorbing member for vehicle body
JP2009508759A (en) * 2005-09-23 2009-03-05 イェスタムプ・ハードテック・アクチエボラーグ How to fasten crash box and bumper beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158377A (en) * 1999-11-30 2001-06-12 Toyota Motor Corp Skeletal member structure
US6474709B2 (en) * 1999-12-10 2002-11-05 Daimlerchrysler Ag Device for the absorption of impact energy in motor vehicles and method of making same
EP1384536A2 (en) * 2002-07-27 2004-01-28 Hydro Aluminium Deutschland GmbH Crashbox for motor vehicles
JP2009508759A (en) * 2005-09-23 2009-03-05 イェスタムプ・ハードテック・アクチエボラーグ How to fasten crash box and bumper beam
JP2006160260A (en) * 2006-01-13 2006-06-22 Kobe Steel Ltd Energy absorbing member for vehicle body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105857221A (en) * 2016-03-30 2016-08-17 西华大学 Sleeving type energy-absorption auxiliary component for thin-wall pipe
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall

Similar Documents

Publication Publication Date Title
TWI510306B (en) Compression molding method and body parts
JP6032374B2 (en) Method for producing press-molded body and press-molding apparatus
KR101863469B1 (en) Steel plate material, method for producing same and device for producing same, and method for producing press molded article using said steel plate material
CN102632854B (en) Crash can made of aluminum-alloy casting
WO2014042067A1 (en) Method for producing curved article and skeleton structure member for automobile body shell
KR101476237B1 (en) Apparatus for forming torsion beam of vehicle using hot cam core type
US20140353990A1 (en) Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
KR102036062B1 (en) Press processing apparatus and press processing method
JP5728334B2 (en) Press-formed product for vehicle body having excellent collision performance and method for producing the same
JP6488487B2 (en) Structural member
KR101867744B1 (en) Press forming method and method for manufacturing pressed product as well as press forming apparatus
WO2018012603A1 (en) Hot-stamp molded product, structural member using same, and method for producing hot-stamp molded product
JP2009255117A (en) Press-forming method excellent in shape fixability and apparatus therefor
KR101854194B1 (en) Press forming method and method of manufacturing press formed product
JP4198445B2 (en) Method and apparatus for manufacturing load receiving article for vehicle
WO2015053035A1 (en) Method for manufacturing structural member for automobile body, and press molding device
WO2018190320A1 (en) Press-molded article, structural member for automobiles that uses same, and production method for press-molded article
JP6285217B2 (en) Car bumper beam
JP2013010392A (en) Energy absorption member
CN210652995U (en) Energy absorption box for electric vehicle
JP5440318B2 (en) Body front structure
JP2008189311A (en) Load receiving article for vehicle
CN102847761A (en) Molding method of aluminum alloy front and back fender-guard beam
JPH08230712A (en) Energy absorbing beam and thin metal raw material
JP3754310B2 (en) Manufacturing method of reinforcing member for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909