JP2013010097A - Strong basic anion exchange resin, condensate demineralization method, and condensate demineralizer - Google Patents

Strong basic anion exchange resin, condensate demineralization method, and condensate demineralizer Download PDF

Info

Publication number
JP2013010097A
JP2013010097A JP2012123381A JP2012123381A JP2013010097A JP 2013010097 A JP2013010097 A JP 2013010097A JP 2012123381 A JP2012123381 A JP 2012123381A JP 2012123381 A JP2012123381 A JP 2012123381A JP 2013010097 A JP2013010097 A JP 2013010097A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
basic anion
strongly basic
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012123381A
Other languages
Japanese (ja)
Other versions
JP6164803B2 (en
Inventor
Aki Yamazaki
亜希 山▲崎▼
Katsuhiko Yano
勝彦 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012123381A priority Critical patent/JP6164803B2/en
Publication of JP2013010097A publication Critical patent/JP2013010097A/en
Application granted granted Critical
Publication of JP6164803B2 publication Critical patent/JP6164803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anion exchange resin which is excellent in an eluate adsorption performance from a cation exchange resin suitably used for a condensate demineralizer, etc., in a power plant requiring a water quality of higher purity, and has a strength that can sufficiently endure the actual use in a plant.SOLUTION: The strong basic anion exchange resin is a gel-type resin, and has an absorption amount of polystyrenesulfonic acid, measured by a specific method, of 0.25 mmol/L-resin or more and an average particle diameter of 300 μm or larger. A BET specific surface area is preferably less than 1 m/g and an absorbance measured by a specific method is 0.10 or more and 0.44 or less.

Description

本発明は新規な強塩基性陰イオン交換樹脂と、この強塩基性陰イオン交換樹脂の使用方法、この強塩基性陰イオン交換樹脂を含む混床イオン交換樹脂と、この強塩基性陰イオン交換樹脂を用いた復水脱塩方法および復水脱塩装置に関するものである。詳しくは本発明は、発電所の復水脱塩装置等において、陽イオン交換樹脂との混床形態で使用する用途に好適な強塩基性陰イオン交換樹脂と、この強塩基性陰イオン交換樹脂の使用方法、この強塩基性陰イオン交換樹脂を含む混床イオン交換樹脂と、この強塩基性陰イオン交換樹脂を用いた復水脱塩方法および復水脱塩装置に関するものである。   The present invention relates to a novel strongly basic anion exchange resin, a method of using this strongly basic anion exchange resin, a mixed bed ion exchange resin containing this strongly basic anion exchange resin, and this strongly basic anion exchange resin. The present invention relates to a condensate demineralization method and a condensate demineralization apparatus using a resin. More specifically, the present invention relates to a strongly basic anion exchange resin suitable for use in a mixed bed form with a cation exchange resin in a condensate desalination apparatus of a power plant, and the strongly basic anion exchange resin. , A mixed bed ion exchange resin containing this strongly basic anion exchange resin, a condensate demineralization method and a condensate demineralization apparatus using this strongly basic anion exchange resin.

本発明の強塩基性陰イオン交換樹脂を高純度の水質が要求される発電所における復水脱塩装置等に使用することで、プラントの操業安定性を高めることができる。   By using the strongly basic anion exchange resin of the present invention for a condensate demineralizer in a power plant that requires high-purity water quality, the operational stability of the plant can be enhanced.

ボイラーや発電設備においては、各種の熱水および常温水の脱塩処理や水質浄化処理が必要とされる。
例えば、原子力発電所には、PWR型(加圧水型)、BWR型(沸騰水型)の2種類の形式があるが、いずれにおいても冷却水の循環系にはイオン交換樹脂を充填した復水脱塩装置が設置されており、この復水脱塩装置による脱塩処理で配管等の金属製材料から溶出してくる懸濁性金属腐食生成物や、冷却水として使用される海水のリークにより混入する塩類を除去し、系統水の水質を高純度なものに維持している。
火力発電所においても、発電タービンを駆動させた後の蒸気を冷却して復水とし、この復水をリサイクルして使用するが、系内を循環する復水はイオン性不純物や懸濁性金属腐食生成物で汚染されるため、これらを除去するために復水脱塩装置が設置されている。
In boilers and power generation facilities, various types of hot water and room temperature water are required to be desalted and purified.
For example, there are two types of nuclear power plants, PWR type (pressurized water type) and BWR type (boiling water type). In either case, the cooling water circulation system is filled with ion exchange resin. A salt device is installed, and this is caused by suspended metal corrosion products that elute from metal materials such as pipes in the desalination treatment by this condensate demineralizer and leakage of seawater used as cooling water. Salt is removed, and the quality of the system water is maintained at high purity.
Even in a thermal power plant, the steam after driving the power generation turbine is cooled to condensate, and this condensate is recycled and used, but the condensate circulating in the system is ionic impurities and suspended metals. Condensate demineralizers are installed to remove these because they are contaminated with corrosion products.

ところで、イオン交換樹脂は、その構造的性質で大別すると、「ゲル型」「ポーラス(多孔性)型」に分けられ、それぞれに陽イオン交換樹脂、陰イオン交換樹脂がある。   By the way, ion exchange resins are roughly classified into “gel type” and “porous (porous) type” according to their structural properties, and each includes a cation exchange resin and an anion exchange resin.

発電所の復水脱塩装置では、通常、陽イオン交換樹脂と陰イオン交換樹脂が混床形態で使用されており、従来、それぞれの発電所の復水脱塩装置の形態に応じて様々な組み合わせの樹脂が提案されてきた。例えば、PWR型(加圧水型)原子力発電所においてはポーラス型陽イオン交換樹脂とポーラス型陰イオン交換樹脂の組み合わせ、BWR型(沸騰水型)原子力発電所においては、ゲル型陽イオン交換樹脂とゲル型陰イオン交換樹脂の組み合わせが主として使用されてきた。   In condensate demineralizers at power plants, cation exchange resins and anion exchange resins are usually used in a mixed bed form. Conventionally, there are various types of condensate demineralizers at each power plant. Combination resins have been proposed. For example, in a PWR (pressurized water) nuclear power plant, a combination of a porous cation exchange resin and a porous anion exchange resin, and in a BWR (boiling water) nuclear power plant, a gel cation exchange resin and a gel. A combination of type anion exchange resins has been mainly used.

しかし、近年、プラントの設備・安全上の観点から、系統水の水質をより高純度に維持することが求められ、特に炉水中のイオン濃度、そのなかでも特に硫酸イオン濃度を管理することが重要になってきている。
この硫酸イオンの由来の多くは、発電所の復水脱塩装置に用いられる陽イオン交換樹脂である。すなわち、陽イオン交換樹脂からは母体構造の酸化劣化等により、分子量数百〜数万のポリスチレンスルホン酸が溶出し、このポリスチレンスルホン酸が処理水の硫酸イオン濃度を高める要因となる。
However, in recent years, from the viewpoint of plant equipment and safety, it has been required to maintain the quality of the system water with a higher purity. In particular, it is important to manage the ion concentration in the reactor water, especially the sulfate ion concentration. It is becoming.
Much of the origin of this sulfate ion is a cation exchange resin used in condensate demineralizers in power plants. That is, polystyrene sulfonic acid having a molecular weight of several hundred to several tens of thousands elutes from the cation exchange resin due to oxidative deterioration of the base structure, and this polystyrene sulfonic acid becomes a factor for increasing the sulfate ion concentration of the treated water.

このため、陽イオン交換樹脂を高架橋度として耐酸化性を高め、溶出する硫酸イオン量を低減する方法(例えば特許文献1、2)、また、イオン交換樹脂の配置法を工夫して陽イオン交換樹脂からの溶出物を陰イオン交換樹脂に吸着させる方法(例えば特許文献3、4)等が知られている。
また、陽イオン交換樹脂からの溶出物を吸着する能力を改善した陰イオン交換樹脂も提案されている(例えば特許文献5)。
For this reason, cation exchange resins have a high degree of crosslinking to increase oxidation resistance and reduce the amount of eluted sulfate ions (for example, Patent Documents 1 and 2). A method of adsorbing an eluate from a resin on an anion exchange resin (for example, Patent Documents 3 and 4) is known.
An anion exchange resin with improved ability to adsorb effluent from the cation exchange resin has also been proposed (for example, Patent Document 5).

特開平11−352283号公報Japanese Patent Laid-Open No. 11-352283 特開2007−64646号公報JP 2007-64646 A 特開2009−281873号公報JP 2009-281873 A 特開2009−279519号公報JP 2009-279519 A 特開2007−216094号公報Japanese Patent Laid-Open No. 2007-216094

特許文献5等にみられるように、従来において種々開発・提供されてきた、陽イオン交換樹脂からの溶出物の吸着能を改善した陰イオン交換樹脂は、ポーラス型であるため、実用上強度に問題があった。即ち、ポーラス型イオン交換樹脂は、ゲル型イオン交換樹脂に比べて物理強度(樹脂の押し潰し強度)が低く、またイオン交換容量も小さいものである。   As seen in Patent Document 5 and the like, the anion exchange resins with improved adsorption ability of the eluate from the cation exchange resin, which have been developed and provided in the past, are porous and practically strong. There was a problem. That is, the porous ion exchange resin has a lower physical strength (resin crushing strength) and a smaller ion exchange capacity than the gel ion exchange resin.

このため、陽イオン交換樹脂からの溶出物の吸着性能に優れ、かつプラントでの実使用に十分耐え得る強度を持つ新規陰イオン交換樹脂の開発が望まれてきた。さらに、年々増大する水質の高純度化の要求に応えるためにも、陰イオン交換樹脂自体の更なる改善が求められているのが現状である。   For this reason, it has been desired to develop a novel anion exchange resin that is excellent in the adsorption performance of the effluent from the cation exchange resin and that has sufficient strength to withstand actual use in a plant. Furthermore, in order to meet the demand for higher water quality, which is increasing year by year, further improvement of the anion exchange resin itself is required.

本発明は、上記の実情を鑑みて考案されたものであって、高純度の水質が要求される発電所における復水脱塩装置等における使用に好適な、陽イオン交換樹脂からの溶出物の吸着性能に優れ、かつプラントでの実使用に十分耐え得る強度を持つ新規陰イオン交換樹脂を提供するものである。本発明はまた、このような強塩基性陰イオン交換樹脂の使用方法、この強塩基性陰イオン交換樹脂を含む混床イオン交換樹脂と、この強塩基性陰イオン交換樹脂を用いた復水脱塩方法および復水脱塩装置を提供するものである。   The present invention has been devised in view of the above circumstances, and is suitable for use in a condensate demineralizer and the like in a power plant where high-purity water quality is required. It is an object of the present invention to provide a novel anion exchange resin having excellent adsorption performance and strength sufficient to withstand actual use in a plant. The present invention also provides a method of using such a strongly basic anion exchange resin, a mixed bed ion exchange resin containing this strongly basic anion exchange resin, and condensate dewatering using this strongly basic anion exchange resin. A salt method and a condensate demineralizer are provided.

本発明者は、上記課題を解決するために鋭意検討を重ねた結果、特定のゲル型強塩基性陰イオン交換樹脂が上記課題を解決することができることを見出した。
即ち、本発明は以下の[1]〜[10]を要旨とする。
As a result of intensive studies to solve the above problems, the present inventor has found that a specific gel-type strongly basic anion exchange resin can solve the above problems.
That is, the gist of the present invention is the following [1] to [10].

[1] ゲル型樹脂であり、かつ、以下の方法で測定されるポリスチレンスルホン酸吸着量が0.25mmol/L−樹脂以上であって、平均粒径が300μm以上である、強塩基性陰イオン交換樹脂。
<ポリスチレンスルホン酸吸着量の測定方法>
東ソー有機化学(株)製ポリスチレンスルホン酸ナトリウム「ポリナスPS−1」を強酸性陽イオン交換樹脂に通液してH形とした後、H濃度として0.01mmol/Lに濃度調整したポリスチレンスルホン酸水溶液を調整する。
水酸化ナトリウム水溶液で処理してOH形に調整した強塩基性陰イオン交換樹脂をカラムに充填して水洗した後、濃度調整したポリスチレンスルホン酸水溶液を通液し、50%破過相当時のポリスチレンスルホン酸吸着量を求め、当該強塩基性陰イオン交換樹脂のポリスチレンスルホン酸の吸着量とする。
[1] Strongly basic anion which is a gel-type resin and has an adsorption amount of polystyrenesulfonic acid measured by the following method of 0.25 mmol / L-resin or more and an average particle diameter of 300 μm or more Exchange resin.
<Measurement method of polystyrene sulfonic acid adsorption amount>
Polystyrene sulfonic acid “Polynas PS-1” manufactured by Tosoh Organic Chemical Co., Ltd. was passed through a strongly acidic cation exchange resin to form H, and then the polystyrene sulfonic acid was adjusted to a concentration of 0.01 mmol / L as the H concentration. Adjust the aqueous solution.
The column is filled with a strongly basic anion exchange resin that has been adjusted to OH form by treatment with an aqueous sodium hydroxide solution, washed with water, and then passed through a polystyrenesulfonic acid aqueous solution with a concentration adjusted to give polystyrene equivalent to 50% breakthrough. The amount of sulfonic acid adsorbed is determined and taken as the amount of polystyrene sulfonic acid adsorbed by the strongly basic anion exchange resin.

[2] 以下の方法で測定される比表面積が1m/g未満である、[1]に記載の強塩基性陰イオン交換樹脂。
<比表面積の測定方法>
強塩基性陰イオン交換樹脂を50℃の真空下で減圧加熱乾燥後、液体窒素下で吸着等温線(吸着ガス:クリプトン)を測定し、BETプロットを実施することで比表面積を算出する。
[2] The strongly basic anion exchange resin according to [1], wherein a specific surface area measured by the following method is less than 1 m 2 / g.
<Method for measuring specific surface area>
The strongly basic anion exchange resin is dried by heating under reduced pressure under a vacuum of 50 ° C., an adsorption isotherm (adsorbed gas: krypton) is measured under liquid nitrogen, and a specific surface area is calculated by performing a BET plot.

[3] 以下の方法で測定される吸光度が0.10以上0.44以下である、[1]又は[2]に記載の強塩基性陰イオン交換樹脂。
<吸光度の測定方法>
検出器として積分球を使用した紫外・可視スペクトル測定装置において、スクリューキャップ付円筒セルに、強塩基性陰イオン交換樹脂を密に充填して、波長800nmの光の反射率を測定し、クベルカ−ムンク変換により吸光度を求める。別途、同セルに硫酸バリウムを充填して同様の測定、変換を実施し、算出した吸光度をセルの吸光度とする。セルに強塩基性陰イオン交換樹脂を充填したときの吸光度からセルの吸光度を差し引いた値を、強塩基性陰イオン交換樹脂の吸光度として求める。
[3] The strongly basic anion exchange resin according to [1] or [2], wherein the absorbance measured by the following method is 0.10 or more and 0.44 or less.
<Measurement method of absorbance>
In an ultraviolet / visible spectrum measuring apparatus using an integrating sphere as a detector, a cylindrical cell with a screw cap is densely filled with a strongly basic anion exchange resin, and the reflectance of light having a wavelength of 800 nm is measured. Absorbance is determined by Munch conversion. Separately, the same cell is filled with barium sulfate, the same measurement and conversion are performed, and the calculated absorbance is taken as the absorbance of the cell. A value obtained by subtracting the absorbance of the cell from the absorbance when the cell is filled with the strongly basic anion exchange resin is determined as the absorbance of the strongly basic anion exchange resin.

[4] [1]ないし[3]のいずれかに記載の強塩基性陰イオン交換樹脂を陽イオン交換樹脂との混床形態で使用する、強塩基性陰イオン交換樹脂の使用方法。 [4] A method for using a strongly basic anion exchange resin, wherein the strongly basic anion exchange resin according to any one of [1] to [3] is used in a mixed bed form with a cation exchange resin.

[5] [1]ないし[3]のいずれかに記載の強塩基性陰イオン交換樹脂と陽イオン交換樹脂とを含む、混床イオン交換樹脂。 [5] A mixed bed ion exchange resin comprising the strongly basic anion exchange resin according to any one of [1] to [3] and a cation exchange resin.

[6] 前記陽イオン交換樹脂の架橋度が8〜20重量%である、[5]に記載の混床イオン交換樹脂。 [6] The mixed bed ion exchange resin according to [5], wherein the degree of crosslinking of the cation exchange resin is 8 to 20% by weight.

[7] 発電所の復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、該イオン交換樹脂として[1]ないし[3]のいずれかに記載の強塩基性陰イオン交換樹脂を使用する、復水脱塩方法。 [7] In a condensate desalination method for desalinating condensate of a power plant with an ion exchange resin, the strongly basic anion exchange resin according to any one of [1] to [3] is used as the ion exchange resin. Condensate desalination method to be used.

[8] 発電所の復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、該イオン交換樹脂として[5]又は[6]に記載の混床イオン交換樹脂を使用する、復水脱塩方法。 [8] In a condensate demineralization method in which the condensate of the power plant is demineralized with an ion exchange resin, the mixed bed ion exchange resin according to [5] or [6] is used as the ion exchange resin. Desalination method.

[9] 発電所の復水を脱塩処理するイオン交換樹脂塔を備える復水脱塩装置において、該イオン交換樹脂塔が[1]ないし[3]のいずれかに記載の強塩基性陰イオン交換樹脂を含む、復水脱塩装置。 [9] In a condensate demineralizer comprising an ion exchange resin tower for desalting the condensate of a power plant, the ion exchange resin tower is a strongly basic anion according to any one of [1] to [3] Condensate demineralizer containing exchange resin.

[10] 発電所の復水を脱塩処理するイオン交換樹脂塔を備える復水脱塩装置において、該イオン交換樹脂塔が[5]又は[6]に記載の混床イオン交換樹脂を含む、復水脱塩装置。 [10] In a condensate demineralization apparatus including an ion exchange resin tower for desalinating condensate in a power plant, the ion exchange resin tower includes the mixed bed ion exchange resin according to [5] or [6]. Condensate demineralizer.

本発明の強塩基性陰イオン交換樹脂は、ポーラス型と比べて体積当たりのイオン交換容量が大きく、物理強度(樹脂の押し潰し強度)も高いというゲル型樹脂の利点を持ちつつ、ポリスチレンスルホン酸等の陽イオン交換樹脂からの溶出物の吸着量が高いというポーラス型樹脂の利点も兼ね備えている。このため、本発明の強塩基性陰イオン交換樹脂は、各種プラントでの使用において十分な強度を有し、また、これを陽イオン交換樹脂と併用することにより、陽イオン交換樹脂からのポリスチレンスルホン酸等の溶出物を効率的に吸着除去して処理水の水質を高めることができる。
従って、本発明の強塩基性陰イオン交換樹脂を、高純度の水質が要求される発電所における復水脱塩装置等に使用することで、プラントの操業効率及びその安定性を十分に高めることができる。
The strongly basic anion exchange resin of the present invention has the advantages of a gel-type resin that has a large ion exchange capacity per volume and a high physical strength (crushing strength of the resin) as compared with the porous type. It also has the advantage of a porous resin that the amount of adsorbate adsorbed from a cation exchange resin such as the above is high. For this reason, the strongly basic anion exchange resin of the present invention has sufficient strength for use in various plants. By using this together with the cation exchange resin, polystyrene sulfone from the cation exchange resin can be obtained. The eluate such as acid can be efficiently adsorbed and removed to improve the quality of the treated water.
Therefore, the use of the strongly basic anion exchange resin of the present invention in a condensate demineralizer in a power plant that requires high-purity water quality can sufficiently enhance the operation efficiency of the plant and its stability. Can do.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[強塩基性陰イオン交換樹脂]
本発明の強塩基性陰イオン交換樹脂は、ゲル型樹脂であり、かつ、特定の方法で測定されるポリスチレンスルホン酸吸着量が0.25mmol/L−樹脂以上であって、平均粒径が300μm以上であることを特徴とする。
[Strongly basic anion exchange resin]
The strongly basic anion exchange resin of the present invention is a gel-type resin, and the polystyrenesulfonic acid adsorption amount measured by a specific method is 0.25 mmol / L-resin or more, and the average particle size is 300 μm. It is the above.

前述の如く、イオン交換樹脂は、その構造的性質で大別すると、「ゲル型」「ポーラス(多孔性)型」の種類に分けられる。それらの判別方法としては、特開2009−279519号公報に記載されているように、目視において透明球はゲル型樹脂、不透明球はポーラス型樹脂として判別する方法がある。   As described above, ion exchange resins are roughly classified into “gel type” and “porous (porous) type” types according to their structural properties. As a method for discriminating them, there is a method of visually discriminating transparent spheres as gel type resins and opaque spheres as porous type resins as described in JP-A-2009-279519.

ゲル型樹脂は、ポーラス型と比べ、体積当たりのイオン交換容量が大きく、物理強度(樹脂の押し潰し強度)も高いという利点を有する。
一方で、ゲル型樹脂は一般に比表面積がポーラス型樹脂と比べて小さいので、通常の無機イオン(塩化物イオン等)を吸着するのには何ら問題がないが、高分子量の物質を吸着するには不利である。すなわち、前述の如く、陽イオン交換樹脂からは母体構造の酸化劣化等により、分子量数百〜数万のポリスチレンスルホン酸が溶出するが、これを吸着除去する能力は、ゲル型樹脂はポーラス型樹脂に比べて低い。
The gel type resin has the advantages that the ion exchange capacity per volume is large and the physical strength (crushing strength of the resin) is high as compared with the porous type.
On the other hand, since the gel type resin generally has a specific surface area smaller than that of the porous type resin, there is no problem in adsorbing ordinary inorganic ions (such as chloride ions). Is disadvantageous. That is, as described above, polystyrene sulfonic acid having a molecular weight of several hundred to several tens of thousands elutes from the cation exchange resin due to oxidative degradation of the base structure, etc., but the ability to adsorb and remove this is a gel type resin. Low compared to

本発明者は、鋭意検討の結果、ゲル型樹脂のイオン交換容量が大きく物理強度(樹脂の押し潰し強度)も高いという利点と、ポーラス型樹脂のポリスチレンスルホン酸の吸着能力が高いという利点をあわせもった樹脂を開発し、本発明に至った。
すなわち、一般的なゲル型樹脂は、スチレン等のモノビニル芳香族モノマーとジビニルベンゼン等の架橋性芳香族モノマーを懸濁重合等により共重合させて架橋共重合体を合成し、ここへ官能基を導入して製造される。一方で、ポーラス型樹脂の合成方法は各メーカーによって異なるものの、一般に、懸濁重合の際に不活性な物質(以下「多孔化剤」と称す場合がある。)を添加しておき、重合後にこれを除去する方法が採用されている。この多孔化剤とはすなわち、トルエン、ペンタノール、s−ブタノール、ヘプタン、イソオクタン等の有機溶媒、あるいは線状重合体の希釈物、具体的にはポリスチレンを溶解したトルエン等が挙げられる。この際、架橋度(モノビニル芳香族モノマーと架橋性芳香族モノマーとの合計重量に対する架橋性芳香族モノマーの重量%)と、多孔化剤の種類とその添加量のバランスでポーラス部分の存在量が決定される。
本発明者は、スチレン等のモノビニル芳香族モノマーとジビニルベンゼン等の架橋性芳香族モノマーを重合させて架橋共重合体を合成する際に、一般的なポーラス型樹脂を合成する際に添加される上記のような多孔化剤を用い、その添加量を調整することで、ゲル型樹脂であって、かつポーラス型樹脂のポリスチレンスルホン酸の吸着能力が高いという利点をあわせもった強塩基性陰イオン交換樹脂の開発に至った。
As a result of intensive studies, the present inventor has combined the advantage that the gel type resin has a large ion exchange capacity and a high physical strength (resin crushing strength) and the advantage that the porous type polystyrene sulfonic acid has a high adsorption capacity. We have developed a resin that has led to the present invention.
That is, a general gel type resin synthesizes a cross-linked copolymer by copolymerizing a monovinyl aromatic monomer such as styrene and a cross-linkable aromatic monomer such as divinylbenzene by suspension polymerization or the like. Introduced and manufactured. On the other hand, although the method for synthesizing the porous resin differs depending on each manufacturer, in general, an inert substance (hereinafter sometimes referred to as “porous agent”) is added during suspension polymerization, and after the polymerization, A method of removing this is adopted. Examples of the porosifying agent include organic solvents such as toluene, pentanol, s-butanol, heptane, and isooctane, or dilutions of linear polymers, specifically, toluene in which polystyrene is dissolved. At this time, the abundance of the porous portion is determined by the balance between the degree of crosslinking (% by weight of the crosslinkable aromatic monomer with respect to the total weight of the monovinyl aromatic monomer and the crosslinkable aromatic monomer), the kind of the porous agent, and the amount added. It is determined.
The present inventor adds a general porous resin when synthesizing a crosslinked copolymer by polymerizing a monovinyl aromatic monomer such as styrene and a crosslinkable aromatic monomer such as divinylbenzene. A strongly basic anion that combines the advantages of using a porosifying agent as described above and adjusting the amount of addition, which is a gel-type resin and has a high ability to adsorb polystyrene sulfonic acid in a porous resin. It led to the development of exchange resin.

<ゲル型>
本発明の強塩基性陰イオン交換樹脂は、ゲル型であることを特徴とする。
<Gel type>
The strongly basic anion exchange resin of the present invention is characterized by being a gel type.

前述の通り、イオン交換樹脂はその構造的性質で大別すると、「ゲル型」「ポーラス型」の種類に分けられる。
本発明の強塩基性陰イオン交換樹脂は、ゲル型であることにより、ポーラス型樹脂に比べて、体積当たりのイオン交換容量が大きく、物理強度(押し潰し強度)が高いという特長を有する。
As described above, ion exchange resins are roughly classified into “gel type” and “porous type” types according to their structural properties.
Since the strongly basic anion exchange resin of the present invention is a gel type, the ion exchange capacity per volume is larger and the physical strength (crushing strength) is higher than that of the porous resin.

<平均粒径>
本発明の強塩基性陰イオン交換樹脂は、平均粒径が300μm以上であることを特徴とする。
<Average particle size>
The strongly basic anion exchange resin of the present invention is characterized by having an average particle size of 300 μm or more.

強塩基性陰イオン交換樹脂の平均粒径が300μmより小さいと、樹脂充填層における通水時の圧力損失が大きくなり、送液に大容量のポンプが必要となったり、耐圧容器を使用することとなったりして、実用上不利となるため、平均粒径が300μm以上である必要がある。ただし、強塩基性陰イオン交換樹脂の平均粒径が大き過ぎると、体積あたりの表面積が小さくなりイオン交換の反応速度が低下する、あるいは樹脂の強度を維持することが難しくなるという問題がある。このため、強塩基性陰イオン交換樹脂の平均粒径は300〜1000μm、特に400〜800μmであることが好ましい。
なお、強塩基性陰イオン交換樹脂の平均粒径とは、後述の実施例の項に記載される方法で測定された値である。
If the average particle size of the strongly basic anion exchange resin is smaller than 300 μm, the pressure loss during water flow in the resin packed bed will increase, and a large-capacity pump will be required for liquid feeding, or a pressure vessel should be used. The average particle size needs to be 300 μm or more. However, if the average particle size of the strongly basic anion exchange resin is too large, there is a problem that the surface area per volume is reduced and the reaction rate of ion exchange is reduced, or it is difficult to maintain the strength of the resin. For this reason, the average particle size of the strongly basic anion exchange resin is preferably 300 to 1000 μm, particularly preferably 400 to 800 μm.
In addition, the average particle diameter of the strongly basic anion exchange resin is a value measured by the method described in the section of Examples described later.

<ポリスチレンスルホン酸吸着量>
本発明の強塩基性陰イオン交換樹脂は、特定の方法で測定されるポリスチレンスルホン酸吸着量が0.25mmol/L−樹脂以上であることを特徴とする。
<Polystyrenesulfonic acid adsorption amount>
The strongly basic anion exchange resin of the present invention is characterized in that the polystyrenesulfonic acid adsorption amount measured by a specific method is 0.25 mmol / L-resin or more.

強塩基性陰イオン交換樹脂のポリスチレンスルホン酸吸着量が0.25mmol/L−樹脂未満では、陽イオン交換樹脂からの溶出物の吸着除去性能が不十分である。ポリスチレンスルホン酸吸着量が0.25mmol/L−樹脂以上であることにより、陽イオン交換樹脂からのポリスチレンスルホン酸等の溶出物を効率的に吸着除去して、処理水質を高めることができる。   When the polystyrenesulfonic acid adsorption amount of the strongly basic anion exchange resin is less than 0.25 mmol / L-resin, the adsorption removal performance of the effluent from the cation exchange resin is insufficient. When the polystyrene sulfonic acid adsorption amount is 0.25 mmol / L-resin or more, the effluent such as polystyrene sulfonic acid from the cation exchange resin can be efficiently adsorbed and removed to improve the quality of the treated water.

強塩基性陰イオン交換樹脂のポリスチレンスルホン酸吸着量は、高い程好ましく、特に0.27mmol/L−樹脂以上、とりわけ0.29mmol/L−樹脂以上であることが好ましいが、ゲル型樹脂の物性上、このポリスチレンスルホン酸吸着量は通常0.5mmol/L−樹脂以下である。   The polystyrene sulfonic acid adsorption amount of the strongly basic anion exchange resin is preferably as high as possible, and more preferably 0.27 mmol / L-resin or more, and particularly preferably 0.29 mmol / L-resin or more. Furthermore, this polystyrene sulfonic acid adsorption amount is usually 0.5 mmol / L-resin or less.

なお、強塩基性陰イオン交換樹脂のポリスチレンスルホン酸吸着量は、より具体的には、後述の実施例の項に記載される方法で測定される。   In addition, the polystyrene sulfonic acid adsorption amount of the strongly basic anion exchange resin is more specifically measured by the method described in the section of Examples described later.

<比表面積>
本発明の強塩基性陰イオン交換樹脂は、比表面積が1m/g未満であることが好ましい。
<Specific surface area>
The strongly basic anion exchange resin of the present invention preferably has a specific surface area of less than 1 m 2 / g.

強塩基性陰イオン交換樹脂の比表面積が1m/g以上であるとその多孔性のために、樹脂の物理的強度(押し潰し強度)が低下する。強塩基性陰イオン交換樹脂の比表面積が1m/g未満であることにより、樹脂の物理的強度が確保され好ましい。また、強塩基性陰イオン交換樹脂の比表面積の下限については特に制限はないが、測定限界(通常0.01m/g)である。 When the specific surface area of the strongly basic anion exchange resin is 1 m 2 / g or more, the physical strength (crushing strength) of the resin is lowered due to its porosity. When the specific surface area of the strongly basic anion exchange resin is less than 1 m 2 / g, the physical strength of the resin is secured, which is preferable. Further, the lower limit of the specific surface area of the strongly basic anion exchange resin is not particularly limited, but is the measurement limit (usually 0.01 m 2 / g).

なお、強塩基性陰イオン交換樹脂の比表面積は、後述の実施例の項に記載される方法で測定された値である。   The specific surface area of the strongly basic anion exchange resin is a value measured by the method described in the Examples section described later.

<吸光度>
本発明の強塩基性陰イオン交換樹脂は、特定の方法で測定される吸光度(以下「特定吸光度」と称す場合がある。)が0.10〜0.44であることが好ましい。
<Absorbance>
The strongly basic anion exchange resin of the present invention preferably has an absorbance (hereinafter sometimes referred to as “specific absorbance”) measured by a specific method of 0.10 to 0.44.

強塩基性陰イオン交換樹脂の特定吸光度が小さすぎるものは、透明性が低く、これは即ち、ゲル型というよりもポーラス型であることを示すことになる。一方、特定吸光度が大きいものは、ゲル型樹脂の透明性を有するが、特定吸光度が大き過ぎるとポリスチレンスルホン酸吸着量が低くなる。強塩基性陰イオン交換樹脂の特定吸光度が上記範囲であることにより、ポリスチレンスルホン酸吸着量と物理強度(樹脂の押し潰し強度)を十分なものとすることができ、好ましい。強塩基性陰イオン交換樹脂の特定吸光度は、より好ましくは0.20〜0.42、特に好ましくは0.30〜0.40である。   If the specific absorbance of the strongly basic anion exchange resin is too small, the transparency is low, which means that it is a porous type rather than a gel type. On the other hand, the one having a large specific absorbance has the transparency of the gel type resin, but if the specific absorbance is too large, the polystyrene sulfonic acid adsorption amount decreases. When the specific absorbance of the strongly basic anion exchange resin is in the above range, the polystyrenesulfonic acid adsorption amount and physical strength (resin crushing strength) can be made sufficient, which is preferable. The specific absorbance of the strongly basic anion exchange resin is more preferably 0.20 to 0.42, and particularly preferably 0.30 to 0.40.

なお、強塩基性陰イオン交換樹脂の特定吸光度は、より具体的には、後述の実施例の項に記載される方法で測定される。   The specific absorbance of the strongly basic anion exchange resin is more specifically measured by the method described in the Examples section described later.

後述の実施例では、粒径を約600μmに調整したものを、特定吸光度測定の試料としているが、600μm以外の粒径(但し、均一粒径であること)の試料の場合は、当該試料の粒径Rμmと実測吸光度から下記式で求められる換算吸光度の値を特定吸光度とすればよい。
また、例えば、平均粒径(R)が450μm以下で均一性の高い粒径分布の陰イオン交換樹脂等、約600μmに粒度調整が困難な陰イオン交換樹脂は、以下の計算式を用いて、実測吸光度から、約600μmの整粒品の特定吸光度に補正することができる。
換算吸光度=実測吸光度×(600/R)
In the examples described later, the sample having a particle size adjusted to about 600 μm is used as a sample for specific absorbance measurement. However, in the case of a sample having a particle size other than 600 μm (however, it must be a uniform particle size) The value of the converted absorbance obtained from the particle size Rμm and the actually measured absorbance by the following formula may be used as the specific absorbance.
For example, an anion exchange resin having an average particle size (R) of 450 μm or less and a highly uniform particle size distribution, such as an anion exchange resin that is difficult to adjust the particle size to about 600 μm, can be calculated using the following formula: The measured absorbance can be corrected to the specific absorbance of the sized product of about 600 μm.
Equivalent absorbance = actual absorbance × (600 / R)

<物理強度(樹脂の押し潰し強度)>
本発明の強塩基性陰イオン交換樹脂は、後述の実施例の項に記載される方法で測定される物理強度(樹脂の押し潰し強度)が350g/粒以上であることが、実用上の要求強度を満たす上で好ましい。この押し潰し強度は大きい程好ましく、より好ましくは400g/粒以上である。
<Physical strength (resin crushing strength)>
The strong basic anion exchange resin of the present invention has a practical requirement that the physical strength (crushing strength of the resin) measured by the method described in the section of Examples below is 350 g / grain or more. It is preferable for satisfying the strength. The crushing strength is preferably as large as possible, and more preferably 400 g / grain or more.

<その他の物性>
本発明の強塩基性陰イオン交換樹脂は、後述の実施例の項に記載される方法で測定される水分量が40〜60%であることが、イオン交換樹脂の脱塩性能を確保する点で好ましい。水分量が少な過ぎるとイオン交換樹脂内の物質拡散が抑制されるため、脱塩性が阻害され、多過ぎるとイオン交換樹脂の体積あたりの交換容量が低くなり脱塩能力が低下する。強塩基性陰イオン交換樹脂のより好ましい水分量は45〜55%である。
<Other physical properties>
The strong basic anion exchange resin of the present invention has a water content of 40 to 60% measured by the method described in the Examples section described later, and ensures the desalting performance of the ion exchange resin. Is preferable. If the water content is too small, the substance diffusion in the ion exchange resin is suppressed, so that the desalting property is inhibited. If it is too much, the exchange capacity per volume of the ion exchange resin is lowered and the desalting ability is lowered. A more preferable water content of the strongly basic anion exchange resin is 45 to 55%.

本発明の強塩基性陰イオン交換樹脂は、後述の実施例の項に記載される方法で測定される中性塩分解能力が1.1meq/mL以上の陰イオン交換性能を有することが好ましい。この中性塩分解能力は大きいほど好ましく、より好ましくは1.2meq/mL以上である。   The strongly basic anion exchange resin of the present invention preferably has an anion exchange performance with a neutral salt decomposition ability of 1.1 meq / mL or more as measured by the method described in the Examples section below. The neutral salt decomposition ability is preferably as large as possible, more preferably 1.2 meq / mL or more.

<製造方法>
本発明の強塩基性陰イオン交換樹脂の製造方法は、本発明で規定されるポリスチレンスルホン酸吸着量と平均粒径を満たすゲル型強塩基性陰イオン交換樹脂を製造することができる方法であればよく、特に制限はないが、その具体的な一例を挙げると以下の通りである。
<Manufacturing method>
The method for producing a strongly basic anion exchange resin of the present invention is a method capable of producing a gel-type strongly basic anion exchange resin satisfying the polystyrene sulfonic acid adsorption amount and the average particle size defined in the present invention. There is no particular limitation, but a specific example is as follows.

本発明の強塩基性陰イオン交換樹脂の製造工程は、大きく分けて(a)重合工程、(b)ハロアルキル化工程、(c)アミノ化工程に分けられる。   The production process of the strongly basic anion exchange resin of the present invention is roughly divided into (a) a polymerization process, (b) a haloalkylation process, and (c) an amination process.

(a)重合工程においては、モノビニル芳香族モノマーと架橋性芳香族モノマーとの混合物(以下「モノマー混合物」と称す場合がある。)を共重合させて架橋共重合体を製造する際に、多孔化剤を添加して共重合を行う。   (A) In the polymerization step, when a cross-linked copolymer is produced by copolymerizing a mixture of a monovinyl aromatic monomer and a cross-linkable aromatic monomer (hereinafter sometimes referred to as “monomer mixture”), Copolymerization is performed by adding an agent.

モノビニル芳香族モノマーとしては、スチレン、メチルスチレン、エチルスチレン等のアルキル置換スチレン類、ブロモスチレン等のハロゲン置換スチレン類が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。モノビニル芳香族モノマーとしては、中でも、スチレンまたはスチレンを主体とするモノマーが好ましい。   Examples of the monovinyl aromatic monomer include alkyl-substituted styrenes such as styrene, methylstyrene, and ethylstyrene, and halogen-substituted styrenes such as bromostyrene. These may be used alone or in combination of two or more. Among the monovinyl aromatic monomers, styrene or a monomer mainly composed of styrene is preferable.

また、架橋性芳香族モノマーとしては、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、ジビニルキシレン、ジビニルビフェニル、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。架橋性芳香族モノマーとしては、中でも、ジビニルベンゼンが好ましい。なお、工業的に製造されるジビニルベンゼンは、通常、副生物であるエチルビニルベンゼン(エチルスチレン)を多量に含有しているが、本発明においてはこのようなジビニルベンゼンも使用できる。   Moreover, as a crosslinkable aromatic monomer, divinylbenzene, trivinylbenzene, divinyltoluene, divinylnaphthalene, divinylxylene, divinylbiphenyl, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, And bis (vinylphenyl) butane. These may be used alone or in combination of two or more. Among them, divinylbenzene is preferable as the crosslinkable aromatic monomer. In addition, although industrially produced divinylbenzene usually contains a large amount of ethyl vinylbenzene (ethylstyrene) as a by-product, such divinylbenzene can also be used in the present invention.

架橋性芳香族モノマーの使用量としては、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物の重量に対して通常0.5〜30重量%、好ましくは2.5〜12重量%、更に好ましくは4〜10重量%である。架橋性芳香族モノマーの使用量が多く、架橋度が高くなるほど、得られる陰イオン交換樹脂のイオン交換基の導入量が低下する問題があり、一方、架橋度が低すぎると多孔化剤の効果がでにくくなり、また陰イオン交換樹脂粒子の押し潰し強度も低くなる傾向にある。
なお、架橋度の調整に後段の(b)ハロアルキル化工程において、ハロアルキル化の副反応としての後架橋反応を利用する方法もある。
The use amount of the crosslinkable aromatic monomer is usually 0.5 to 30% by weight, preferably 2.5 to 12% by weight, more preferably based on the weight of the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer. 4 to 10% by weight. As the amount of the crosslinkable aromatic monomer used increases and the degree of crosslinking increases, there is a problem that the amount of ion exchange groups introduced into the resulting anion exchange resin decreases. In addition, the crushing strength of the anion exchange resin particles tends to be low.
In order to adjust the degree of crosslinking, there is also a method of using a post-crosslinking reaction as a side reaction of haloalkylation in the latter (b) haloalkylation step.

モノビニル芳香族モノマーと架橋性芳香族モノマーとの共重合反応は、ラジカル重合開始剤を用いて公知の技術に基づいて行うことができる。   The copolymerization reaction of the monovinyl aromatic monomer and the crosslinkable aromatic monomer can be performed based on a known technique using a radical polymerization initiator.

ラジカル重合開始剤としては、過酸化ジベンゾイル、過酸化ラウロイル、t−ブチルハイドロパーオキサイド、アゾビスイソブチロニトリル等の1種又は2種以上が用いられ、その使用量は、通常、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物の重量に対して0.05重量%以上、5重量%以下である。   As the radical polymerization initiator, one or more of dibenzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile and the like are used, and the amount used is usually monovinyl aromatic. It is 0.05 weight% or more and 5 weight% or less with respect to the weight of the mixture of a monomer and a crosslinkable aromatic monomer.

多孔化剤としては、前記モノマー混合物には溶解するが、得られる架橋共重合体は膨潤しない物質(以下、「貧溶媒」と称する場合がある。)、あるいは、前記モノマー混合物に溶解し、得られる架橋共重合体を膨潤させる物質(以下、「良溶媒」と称する場合がある。)を用いることができる。   As the porosifying agent, it dissolves in the monomer mixture, but the obtained cross-linked copolymer does not swell (hereinafter sometimes referred to as “poor solvent”), or is dissolved in the monomer mixture. A substance that swells the resulting crosslinked copolymer (hereinafter sometimes referred to as “good solvent”) can be used.

前記モノマー混合物には溶解するが得られる架橋共重合体は膨潤しない物質(貧溶媒)としては、具体的には、非水溶性の有機化合物を用いることができる。非水溶性の有機化合物としては、直鎖または分岐の炭化水素類、直鎖または分岐の非水溶性のアルコール類、ポリマー、コポリマーなどが挙げられる。直鎖または分岐の炭化水素類としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、イソオクタン、ガソリン、ミネラルオイルなどを挙げることができる。また、非水溶性のアルコール類としては、炭素数4以上でアルキル鎖が直鎖または分岐のアルコールを挙げることができ、例えばn−ブタノール、s−ブタノール、t−ブタノール、ペンタノール、ヘキサノール、オクタノール、メチルイソブチルカルビノールなどが挙げられる。ポリマーとしては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタンなどが挙げられる。また、ブロックコポリマーも使用することができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。   Specifically, a water-insoluble organic compound can be used as the substance (poor solvent) that dissolves in the monomer mixture but does not swell the resulting crosslinked copolymer. Examples of the water-insoluble organic compound include linear or branched hydrocarbons, linear or branched water-insoluble alcohols, polymers and copolymers. Examples of linear or branched hydrocarbons include pentane, hexane, heptane, octane, nonane, decane, dodecane, isooctane, gasoline, mineral oil, and the like. Examples of water-insoluble alcohols include alcohols having 4 or more carbon atoms and linear or branched alkyl chains, such as n-butanol, s-butanol, t-butanol, pentanol, hexanol, and octanol. And methyl isobutyl carbinol. Examples of the polymer include polystyrene, polyethylene, polypropylene, polyester, polyurethane and the like. Block copolymers can also be used. These may be used alone or in combination of two or more.

また、前記モノマー混合物に溶解し、かつ得られる架橋共重合体を膨潤させる物質(良溶媒)としては、具体的には、芳香族炭化水素類、例えば、トルエン、キシレン(オルト、メタ、パラ)、ベンゼン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、ブロモベンゼン、アニリン、エチルベンゼン、ジエチルベンゼンなどの、芳香環が置換されていてもよい芳香族炭化水素類を用いることができる。また、ジクロロメタン、クロロホルム、ジクロロエタンなどのハロゲン化炭化水素類などを用いることができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。   Further, as a substance (good solvent) that dissolves in the monomer mixture and swells the resulting crosslinked copolymer, specifically, aromatic hydrocarbons such as toluene, xylene (ortho, meta, para) Aromatic hydrocarbons, such as benzene, chlorobenzene, dichlorobenzene, nitrobenzene, bromobenzene, aniline, ethylbenzene, and diethylbenzene, in which the aromatic ring may be substituted can be used. In addition, halogenated hydrocarbons such as dichloromethane, chloroform, dichloroethane, and the like can be used. These may be used alone or in combination of two or more.

本発明の強塩基性陰イオン交換樹脂の製造においては、上記多孔化剤としては、前記モノマー混合物には溶解するが得られる架橋共重合体は膨潤しない物質(貧溶媒)を用いることが、反応時の操作性、反応後の多孔化剤と架橋共重合体との分離性等において好ましい。貧溶媒の中でも、特に直鎖または分岐の炭化水素類が好ましく、中でも、ヘキサン、ヘプタン、オクタン類が好ましい。   In the production of the strongly basic anion exchange resin of the present invention, as the porous agent, a substance (poor solvent) that dissolves in the monomer mixture but does not swell the obtained cross-linked copolymer may be used. It is preferable in terms of operability at the time, separability between the porous agent after the reaction and the crosslinked copolymer, and the like. Among the poor solvents, linear or branched hydrocarbons are particularly preferable, and hexane, heptane, and octanes are particularly preferable.

多孔化剤は、前記モノビニル芳香族モノマーと架橋性芳香族モノマーとの混合物に対して、通常1重量%以上100重量%以下、好ましくは5重量%以上80重量%以下、より好ましくは10重量%以上60重量%以下の量で用いられる。多孔化剤の量が多いと、過度に多孔性のポリマーが生成して物理強度の低下を引き起こすので適当でなく、また、多孔化剤の量が少な過ぎるとポリスチレンスルホン酸吸着量が増加しない。即ち、本発明の強塩基性陰イオン交換樹脂の製造においては、ゲル型の陰イオン交換樹脂の製造においては使用されていない多孔化剤を、通常のポーラス型の陰イオン交換樹脂の製造時の多孔化剤使用量よりも少なく用い、ポリスチレンスルホン酸吸着量を高めたゲル型陰イオン交換樹脂を製造する。   The porosifying agent is usually 1% by weight or more and 100% by weight or less, preferably 5% by weight or more and 80% by weight or less, more preferably 10% by weight, based on the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer. It is used in an amount of 60% by weight or less. If the amount of the porous agent is too large, an excessively porous polymer is formed to cause a decrease in physical strength, which is not suitable. If the amount of the porous agent is too small, the polystyrene sulfonic acid adsorption amount does not increase. That is, in the production of the strongly basic anion exchange resin of the present invention, a porosifying agent that is not used in the production of the gel type anion exchange resin is used in the production of a normal porous type anion exchange resin. A gel-type anion exchange resin is produced in which the amount of polystyrene sulfonic acid adsorbed is increased by using less than the amount of the porous agent used.

一般に、ポーラス型陰イオン交換樹脂の製造においては、特公昭37−13792号公報中の実施例1及び実施例2に記載されているように、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対する架橋性芳香族モノマーの使用量が12重量%以上の場合、多孔化剤は、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対して50重量%以上使用される。   In general, in the production of a porous anion exchange resin, as described in Example 1 and Example 2 of Japanese Patent Publication No. 37-13792, a mixture of a monovinyl aromatic monomer and a crosslinkable aromatic monomer is used. When the use amount of the crosslinkable aromatic monomer is 12% by weight or more, the porosifying agent is used by 50% by weight or more based on the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer.

本発明の強塩基性陰イオン交換樹脂の製造にあたっては、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対する架橋性芳香族モノマーの使用量を12重量%以下にした場合、多孔化剤の使用量をモノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対して50重量%以下とするのが好ましい。また、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対する架橋性芳香族モノマーの使用量を10重量%以下にした場合、多孔化剤の使用量をモノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対して60重量%以下とするのが好ましい。また、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対する架橋性芳香族モノマーの使用量を8重量%以下にした場合、多孔化剤の使用量をモノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対して70重量%以下とするのが好ましい。なお、モノビニル芳香族モノマーと架橋性芳香族モノマーの混合物に対する架橋性芳香族モノマーの使用量や多孔化剤の使用量は、ポリスチレンスルホン酸吸着量が増加したゲル型陰イオン交換樹脂が得られる範囲において、後工程での取り扱いに必要な強度を満足する陰イオン交換樹脂が得られるように、最適な範囲を設定する必要がある。   In the production of the strongly basic anion exchange resin of the present invention, when the use amount of the crosslinkable aromatic monomer to the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer is 12% by weight or less, the use of the porosifying agent is used. The amount is preferably 50% by weight or less based on the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer. Further, when the use amount of the crosslinkable aromatic monomer to the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer is 10% by weight or less, the use amount of the porosifying agent is changed between the monovinyl aromatic monomer and the crosslinkable aromatic monomer. The amount is preferably 60% by weight or less based on the mixture. In addition, when the amount of the crosslinkable aromatic monomer used in the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer is 8% by weight or less, the amount of the porous agent used is that of the monovinyl aromatic monomer and the crosslinkable aromatic monomer. It is preferable that it is 70 weight% or less with respect to a mixture. The amount of the crosslinkable aromatic monomer and the amount of the porous agent used for the mixture of the monovinyl aromatic monomer and the crosslinkable aromatic monomer are within a range where a gel-type anion exchange resin having an increased polystyrenesulfonic acid adsorption amount can be obtained. Therefore, it is necessary to set an optimum range so that an anion exchange resin satisfying the strength required for handling in the subsequent process can be obtained.

重合様式は、特に限定されるものではなく、溶液重合、乳化重合、懸濁重合等の種々の様式で重合を行うことができるが、このうち均一なビーズ状の共重合体が得られる懸濁重合法が好ましく採用される。懸濁重合法は、一般にこの種の共重合体の製造に使用される溶媒、分散安定剤等を用い、公知の反応条件を選択して行うことができる。   The polymerization mode is not particularly limited, and the polymerization can be carried out in various modes such as solution polymerization, emulsion polymerization, suspension polymerization, etc. Among them, suspension in which a uniform bead-shaped copolymer is obtained. A polymerization method is preferably employed. The suspension polymerization method can be carried out by selecting a known reaction condition using a solvent, a dispersion stabilizer or the like generally used for the production of this type of copolymer.

なお、共重合反応における重合温度は、通常、室温(約18℃〜25℃)以上、好ましくは40℃以上、さらに好ましくは70℃以上であり、通常250℃以下、好ましくは150℃以下、更に好ましくは140℃以下である。重合温度が高すぎると解重合が併発し重合完結度がかえって低下する。重合温度が低すぎると重合完結度が不十分となる。   The polymerization temperature in the copolymerization reaction is usually room temperature (about 18 ° C. to 25 ° C.) or more, preferably 40 ° C. or more, more preferably 70 ° C. or more, and usually 250 ° C. or less, preferably 150 ° C. or less. Preferably it is 140 degrees C or less. If the polymerization temperature is too high, depolymerization occurs at the same time, and the degree of polymerization completion is lowered. If the polymerization temperature is too low, the degree of polymerization completion will be insufficient.

また、重合雰囲気は、空気下もしくは不活性ガス下で実施可能であり、不活性ガスとしては窒素、二酸化炭素、アルゴン等が使用できる。また、特開2006−328290号公報に記載の重合法も好適に使用できる。また、均一粒径の架橋共重合体を得る公知の方法も好適に使用できる。例えば特開2002−35560号公報、特開2001−294602号公報、特開昭57−102905号公報、特開平3−249931号公報の方法が好適に使用できる。
前述の多孔化剤は、重合反応終了後、溶媒による洗浄あるいは加熱留去により反応系から除去して、架橋共重合体を得る。
The polymerization atmosphere can be carried out under air or under an inert gas, and nitrogen, carbon dioxide, argon or the like can be used as the inert gas. Moreover, the polymerization method described in JP-A-2006-328290 can also be suitably used. Moreover, the well-known method of obtaining the crosslinked copolymer of a uniform particle size can also be used conveniently. For example, methods disclosed in JP 2002-35560 A, JP 2001-294602 A, JP 57-102905 A, and JP 3-249931 A can be suitably used.
The aforementioned porosifying agent is removed from the reaction system by washing with a solvent or heating distillation after completion of the polymerization reaction to obtain a crosslinked copolymer.

(b)ハロアルキル化工程は、(a)重合工程にて得られた架橋共重合体を膨潤状態で、フリーデル・クラフツ反応触媒の存在下、ハロアルキル化剤を反応させてハロアルキル化する工程である。   (B) The haloalkylation step is a step in which (a) the crosslinked copolymer obtained in the polymerization step is swelled and reacted with a haloalkylating agent in the presence of a Friedel-Crafts reaction catalyst to haloalkylate. .

架橋共重合体を膨潤させるためには、膨潤溶媒、例えばジクロロエタンを使用することができる。またハロアルキル化剤の種類によっては、ハロアルキル化剤のみで膨潤させることもできる。   In order to swell the crosslinked copolymer, a swelling solvent such as dichloroethane can be used. Moreover, depending on the kind of haloalkylating agent, it can be swollen only with the haloalkylating agent.

ハロアルキル化剤としては、クロロメチルメチルエーテル、塩化メチレン、ビス(クロロメチル)エーテル、塩化ビニル、ビス(クロロメチル)ベンゼン等のハロゲン化合物が挙げられ、これらは1種を単独で用いてもよく、2種以上を混合して用いてもよいが、より好ましいのはクロロメチルメチルエーテルである。   Examples of the haloalkylating agent include halogen compounds such as chloromethyl methyl ether, methylene chloride, bis (chloromethyl) ether, vinyl chloride, bis (chloromethyl) benzene, and these may be used alone. Two or more kinds may be mixed and used, but chloromethyl methyl ether is more preferable.

ハロアルキル化剤の使用量は、架橋共重合体の架橋度、その他の条件により広い範囲から選ばれるが、少なくとも架橋共重合体を十分に膨潤させる量が好ましく、架橋共重合体に対して、通常1重量倍以上、好ましくは2重量倍以上であり、通常20重量倍以下、好ましくは10重量倍以下である。   The amount of the haloalkylating agent used is selected from a wide range depending on the degree of crosslinking of the crosslinked copolymer and other conditions, but is preferably an amount that at least sufficiently swells the crosslinked copolymer. It is 1 weight times or more, preferably 2 weight times or more, usually 20 weight times or less, preferably 10 weight times or less.

フリーデル・クラフツ反応触媒としては、塩化亜鉛、塩化鉄(III)、塩化スズ(IV)、塩化アルミニウム等のルイス酸触媒が挙げられる。これらの触媒は1種を単独で用いてもよく、2種以上を混合して用いてもよい。   Examples of Friedel-Crafts reaction catalysts include Lewis acid catalysts such as zinc chloride, iron (III) chloride, tin (IV) chloride, and aluminum chloride. These catalysts may be used individually by 1 type, and 2 or more types may be mixed and used for them.

また、フリーデル・クラフツ反応触媒の使用量は通常架橋共重合体の重量に対して0.001〜10倍量、好ましくは0.1〜2倍量、更に好ましくは0.2〜1倍量である。   The amount of Friedel-Crafts reaction catalyst used is usually 0.001 to 10 times, preferably 0.1 to 2 times, more preferably 0.2 to 1 times the weight of the cross-linked copolymer. It is.

反応温度は、採用するフリーデル・クラフツ反応触媒の種類によっても異なるが、通常0℃以上で、55℃以下とすることが好ましい。   The reaction temperature varies depending on the type of Friedel-Crafts reaction catalyst to be employed, but is usually 0 ° C. or higher and preferably 55 ° C. or lower.

上記ハロアルキル化反応を実施することにより、ハロアルキル化架橋共重合体を得ることができる。   By performing the haloalkylation reaction, a haloalkylated crosslinked copolymer can be obtained.

(c)アミノ化工程においては、(b)で得たハロアルキル化架橋共重合体にアミン化合物を反応させることにより、アミノ基を導入して陰イオン交換樹脂を製造するが、アミノ基の導入についても公知の方法を用いて実施することができる。   (C) In the amination step, the haloalkylated crosslinked copolymer obtained in (b) is reacted with an amine compound to introduce an amino group to produce an anion exchange resin. Can also be carried out using known methods.

例えば、ハロアルキル化架橋共重合体を溶媒中に懸濁させ、トリメチルアミンやジメチルエタノールアミンなどのアミン化合物と反応させる方法が挙げられる。このアミノ基導入反応の際に用いられる溶媒としては、例えば水、トルエン、ジオキサン、ジメチルホルムアミド、ジクロロエタン等の1種を単独で、あるいは2種以上を混合して用いることができる。アミノ化工程後は、公知の方法によって塩形を各種アニオン形に変えることによって陰イオン交換樹脂が得られる。塩形は、Cl形、OH形、炭酸形、硫酸形などが使用される。   For example, a method in which a haloalkylated cross-linked copolymer is suspended in a solvent and reacted with an amine compound such as trimethylamine or dimethylethanolamine can be mentioned. As a solvent used in the amino group introduction reaction, for example, one kind of water, toluene, dioxane, dimethylformamide, dichloroethane and the like can be used alone or in admixture of two or more kinds. After the amination step, an anion exchange resin can be obtained by changing the salt form into various anion forms by a known method. As the salt form, Cl form, OH form, carbonic acid form, sulfuric acid form and the like are used.

<使用方法>
本発明の強塩基性陰イオン交換樹脂は、その優れたポリスチレンスルホン酸吸着性能から、特に陽イオン交換樹脂との混床形態での使用に好適である。ただし、陽イオン交換樹脂との混床形態での使用に限らず、本発明の強塩基性陰イオン交換樹脂は、その単独使用、その他の触媒樹脂との併用等、あらゆる形態で使用することができる。
<How to use>
The strong base anion exchange resin of the present invention is particularly suitable for use in a mixed bed form with a cation exchange resin because of its excellent polystyrene sulfonic acid adsorption performance. However, the present invention is not limited to use in a mixed bed form with a cation exchange resin, and the strongly basic anion exchange resin of the present invention can be used in any form such as use alone or in combination with other catalyst resins. it can.

本発明の強塩基性陰イオン交換樹脂と併用する陽イオン交換樹脂としては、ゲル型及びポーラス型の強酸性陽イオン交換樹脂が挙げられる。好ましくは耐酸化性の高い、ゲル型の架橋度の高い陽イオン交換樹脂が使用され、その架橋度は好ましくは8〜20重量%、さらに好ましくは12〜16重量%のものが使用される。上記範囲内において、陽イオン交換樹脂の架橋度が前記下限値以上であると、陽イオン交換樹脂からの溶出物の溶出量が低減される傾向にある。なお、本発明において、使用する陽イオン交換樹脂は特に制限されないが、通常、スルホン酸基を交換基として有する強酸性陽イオン交換樹脂が用いられる。   Examples of the cation exchange resin used in combination with the strongly basic anion exchange resin of the present invention include gel type and porous type strongly acidic cation exchange resins. Preferably, a cation exchange resin having a high oxidation resistance and a high degree of crosslinking is used, and the degree of crosslinking is preferably 8 to 20% by weight, more preferably 12 to 16% by weight. Within the above range, when the degree of crosslinking of the cation exchange resin is not less than the lower limit value, the elution amount of the eluate from the cation exchange resin tends to be reduced. In the present invention, the cation exchange resin to be used is not particularly limited, but usually a strong acid cation exchange resin having a sulfonic acid group as an exchange group is used.

これらの陽イオン交換樹脂と本発明の強塩基性陰イオン交換樹脂との使用割合は、用途に応じて適宜決定されるが、発電所の復水の脱塩処理においては、本発明の強塩基性陰イオン交換樹脂:強酸性陽イオン交換樹脂の体積比率として1:5〜5:1、特に1:3〜3:1で使用するのが好適である。   The ratio of use of these cation exchange resins and the strongly basic anion exchange resin of the present invention is appropriately determined according to the application, but in the demineralization treatment of power plant condensate, the strong base of the present invention is used. It is preferable to use the anionic exchange resin: strongly acidic cation exchange resin in a volume ratio of 1: 5 to 5: 1, particularly 1: 3 to 3: 1.

[復水脱塩方法および復水脱塩装置]
本発明の復水脱塩方法は、本発明の強塩基性陰イオン交換樹脂を用いて原子力発電所、火力発電所等の発電所の復水を脱塩処理するものであり、本発明の復水脱塩装置は、本発明の強塩基性陰イオン交換樹脂を含むイオン交換樹脂塔を備える発電所の復水脱塩装置である。
[Condensate demineralization method and condensate demineralization apparatus]
The condensate desalination method of the present invention is a method for desalinating the condensate of a power plant such as a nuclear power plant or a thermal power plant using the strongly basic anion exchange resin of the present invention. The water desalination apparatus is a condensate desalination apparatus for a power plant including an ion exchange resin tower containing the strongly basic anion exchange resin of the present invention.

本発明の復水脱塩方法および復水脱塩装置において、本発明の強塩基性陰イオン交換樹脂は、好ましくは前述の陽イオン交換樹脂と、前述の使用割合で混床形態で用いられる。   In the condensate demineralization method and condensate demineralization apparatus of the present invention, the strongly basic anion exchange resin of the present invention is preferably used in the mixed bed form with the above-mentioned cation exchange resin at the above-mentioned use ratio.

以下、実施例により本発明をより具体的に説明する。ただし、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

以下の実施例及び比較例における強塩基性陰イオン交換樹脂の各種物性の測定方法は以下の通りである。   The measuring methods of various physical properties of strongly basic anion exchange resins in the following examples and comparative examples are as follows.

<平均粒径の測定方法>
平均粒径は、三菱化学株式会社イオン交換樹脂事業部編ダイヤイオン(登録商標)(イオン交換樹脂・合成吸着剤マニュアル1)改訂4版第3刷(平成22年2月26日発行)第140〜142頁に記載される方法により算出した。
<Measuring method of average particle diameter>
The average particle size is Diaion (registered trademark) (ion exchange resin / synthetic adsorbent manual 1) revised edition 4th edition (issued February 26, 2010), No. 140 edited by Mitsubishi Chemical Corporation Ion Exchange Resin Division. It was calculated by the method described on page 142.

<水分量の測定方法>
水分量は、前記三菱化学株式会社イオン交換樹脂事業部編ダイヤイオン(登録商標)(イオン交換樹脂・合成吸着剤マニュアル1)改訂4版第3刷(平成22年2月26日発行)第131〜132頁に記載される方法により測定した。
<Method for measuring moisture content>
The moisture content is the third edition of the Diaion (registered trademark) (Ion Exchange Resin / Synthetic Adsorbent Manual 1) Revised Edition, 3rd edition (issued February 26, 2010) edited by the Mitsubishi Chemical Corporation Ion Exchange Resin Division. Measured by the method described on page 132.

<中性塩分解能力の測定方法>
中性塩分解能力は、前記三菱化学株式会社イオン交換樹脂事業部編ダイヤイオン(登録商標)(イオン交換樹脂・合成吸着剤マニュアル1)改訂4版第3刷(平成22年2月26日発行)第135〜137頁に記載される方法により測定した。
<Method for measuring neutral salt decomposition ability>
Neutral salt decomposition capacity is the third edition of the 4th edition of Diaion (registered trademark) (Ion Exchange Resin / Synthetic Adsorbent Manual 1) edited by the Mitsubishi Chemical Corporation Ion Exchange Resin Division (issued February 26, 2010) ) Measured by the method described on pages 135-137.

<ポリスチレンスルホン酸吸着量の測定方法>
東ソー有機化学(株)製ポリスチレンスルホン酸ナトリウム「ポリナスPS−1」を強酸性カチオン樹脂に通液してH形とした後、水を添加してH濃度として0.01mmol/Lに希釈することにより、濃度調整したポリスチレンスルホン酸水溶液を調製した。
強塩基性陰イオン交換樹脂を水酸化ナトリウム水溶液で処理して塩形をOH形に調整した後、tap法(水を入れたメスシリンダーに樹脂を入れて、底部を軽くたたいて、これ以上沈まなくなった状態で体積を読み取る)にて10mLの樹脂を採取してカラムに充填後、樹脂由来の有機溶出成分がなくなるまで十分に水洗を実施した。
続いて上記の濃度調整したポリスチレンスルホン酸溶液をSV(空間速度)=20hr−1で通液し、UV検出器(波長225nm)で溶出するポリスチレンスルホン酸溶液の吸光度を測定し、破過曲線を記録した。前記濃度調整したポリスチレンスルホン酸溶液のUV吸光度に対して、溶出してきたポリスチレンスルホン酸溶液のUV吸光度が50%となったときまでに強塩基性陰イオン交換樹脂に吸着されたポリスチレンスルホン酸の総吸着量を、ポリスチレンスルホン酸の吸着量として算出した。
<Measurement method of polystyrene sulfonic acid adsorption amount>
Tosoh Organic Chemical Co., Ltd. polystyrene sodium sulfonate “Polynas PS-1” is passed through a strongly acidic cation resin to form H, and then water is added to dilute to 0.01 mmol / L as H concentration. Thus, a polystyrene sulfonic acid aqueous solution whose concentration was adjusted was prepared.
After treating the strongly basic anion exchange resin with aqueous sodium hydroxide to adjust the salt form to OH form, tap method (put the resin in a graduated cylinder with water, tap the bottom, 10 mL of the resin was collected in a state in which the volume was read in a state where it did not sink, and the column was packed, and then washed thoroughly with water until the organic elution component derived from the resin disappeared.
Subsequently, the polystyrene sulfonic acid solution having the above concentration adjusted was passed at SV (space velocity) = 20 hr −1 , the absorbance of the polystyrene sulfonic acid solution eluted with a UV detector (wavelength 225 nm) was measured, and a breakthrough curve was obtained. Recorded. The total amount of polystyrene sulfonic acid adsorbed on the strongly basic anion exchange resin by the time when the UV absorbance of the eluted polystyrene sulfonic acid solution reached 50% with respect to the UV absorbance of the polystyrene sulfonic acid solution whose concentration was adjusted. The adsorption amount was calculated as the adsorption amount of polystyrene sulfonic acid.

<比表面積の測定方法>
強塩基性陰イオン交換樹脂を50℃の真空下で減圧加熱乾燥後、液体窒素下で吸着等温線(吸着ガス:クリプトン)を測定し、BETプロットを実施することで比表面積を算出した。なお、吸着等温線はカンタークローム社製オートソーブ1MPを用いて測定した。
<Method for measuring specific surface area>
The strongly basic anion exchange resin was dried by heating under reduced pressure under a vacuum of 50 ° C., then the adsorption isotherm (adsorbed gas: krypton) was measured under liquid nitrogen, and the BET plot was calculated to calculate the specific surface area. The adsorption isotherm was measured using an autosorb 1MP manufactured by Canterchrome.

<吸光度の測定方法>
検出器として積分球を使用した紫外・可視(UV−Vis)スペクトル測定装置(島津製作所製「UV2400PC」)において、スクリューキャップ付円筒セルに、サンプル(下記の方法に従って調製して、約600μmに粒度調整した湿潤状態の強塩基性陰イオン交換樹脂(Cl形))を密に充填し、波長800nmの光の反射率を測定し、クベルカ−ムンク変換により吸光度を求めた。
なお、サンプル(粒径約600μmに粒度調整した湿潤状態の強塩基性陰イオン交換樹脂)は以下に示す方法で調整した。
即ち、強塩基性陰イオン交換樹脂(Cl形)を600μmの篩にかけ、篩下(微粉)を取り除くとともに篩上の残留分を脱塩水で除去した。次に600μmの篩目に詰まった粒子を脱塩水の圧水でバットに回収した。この回収品を布に包み込み遠心分離して付着水分を除いた。遠心分離はかごの直径15cm、回転数3000rpmで7分間行った。
積分球は島津製作所製(検出器:ホトマル、内径:60mmφ、入口窓:12(W)×20(H)mm、出口窓:12(W)×24(H)mm、ホトマル窓:16mmφ、積分球の開口比:約11%)を使用した。ただし紫外・可視光の光路径は4mm×6mmである。スクリューキャップ付円筒セルは、GLサイエンス社製のスクリューキャップ付円筒セル(合成石英ガラス製、光路長:5mm、光路面のサイズ:22mmφ)を使用した。
また、スリット幅は5nmであった。装置のキャリブレーションは装置専用ホルダー(片開口27mmφ)に硫酸バリウムを詰めて、積分球の開口部にそのまま接触して行った。
反射率測定はサンプル(約600μmに粒度調整した湿潤状態の強塩基性陰イオン交換樹脂(Cl形))を積分球の後方に設置して行った。なお、サンプルの背面には黒色板を配置した。反射率測定後付属ソフトにてクベルカ−ムンク変換を行い、吸光度を求めた。
別に、同セルに硫酸バリウム(和光純薬製、和光1級)を充填し同様の測定を実施し、この値をセル自体の反射率および吸光度とした。
セルに強塩基性陰イオン交換樹脂を充填したときの吸光度からセルの吸光度を差し引いた値を強塩基性陰イオン交換樹脂の吸光度として算出した。なお測定は同一試料で3回以上を行い、平均値をとった。
<Measurement method of absorbance>
In an ultraviolet / visible (UV-Vis) spectrum measuring apparatus (“UV2400PC” manufactured by Shimadzu Corporation) using an integrating sphere as a detector, a sample (prepared according to the following method and having a particle size of about 600 μm is placed in a cylindrical cell with a screw cap. The adjusted wet base anion exchange resin (Cl form) was densely packed, the reflectance of light having a wavelength of 800 nm was measured, and the absorbance was determined by Kubelka-Munk conversion.
A sample (a strongly strong basic anion exchange resin in a wet state in which the particle size was adjusted to about 600 μm) was prepared by the method described below.
That is, a strongly basic anion exchange resin (Cl form) was passed through a 600 μm sieve to remove the sieve (fine powder), and the residue on the sieve was removed with demineralized water. Next, the particles clogged with a 600 μm sieve were collected in a vat with pressurized water of demineralized water. The collected product was wrapped in a cloth and centrifuged to remove adhering water. Centrifugation was performed for 7 minutes at a cage diameter of 15 cm and a rotational speed of 3000 rpm.
Integrating sphere manufactured by Shimadzu Corporation (detector: photomaru, inner diameter: 60 mmφ, entrance window: 12 (W) × 20 (H) mm, exit window: 12 (W) × 24 (H) mm, photomaru window: 16 mmφ, integral Sphere aperture ratio: about 11%) was used. However, the optical path diameter of ultraviolet / visible light is 4 mm × 6 mm. As the cylindrical cell with a screw cap, a cylindrical cell with a screw cap (manufactured by synthetic quartz glass, optical path length: 5 mm, optical path surface size: 22 mmφ) manufactured by GL Science Co., Ltd. was used.
The slit width was 5 nm. The calibration of the apparatus was performed by directly contacting the opening of the integrating sphere with barium sulfate packed in a dedicated holder (one opening 27 mmφ).
The reflectance was measured by placing a sample (a wet basic anion exchange resin in a wet state adjusted to a particle size of about 600 μm (Cl type)) behind the integrating sphere. A black plate was placed on the back of the sample. After the reflectance measurement, Kubelka-Munk conversion was performed with the attached software to determine the absorbance.
Separately, the same cell was filled with barium sulfate (manufactured by Wako Pure Chemicals, Wako Grade 1), and the same measurement was performed. The values were used as the reflectance and absorbance of the cell itself.
A value obtained by subtracting the absorbance of the cell from the absorbance when the cell was filled with the strongly basic anion exchange resin was calculated as the absorbance of the strongly basic anion exchange resin. The measurement was performed three times or more on the same sample, and the average value was taken.

<押し潰し強度の測定方法>
強塩基性陰イオン交換樹脂に水酸化ナトリウム水溶液を通液して塩形をOH形に調整した後、上記の吸光度測定と同様にして600μmの篩にかけて回収し、粒径約600μmに粒度調整した粒子から数100個を採取し、さらにその中からランダムに60個の粒子を選び、シャチロンテスター又は同等品にて強度測定を行った。さらにその平均値をとることで、樹脂1粒あたりの物理強度(=押し潰し強度)とした。押し潰し強度は250g/粒より大きい方が好ましい。
<Measurement method of crushing strength>
A sodium hydroxide aqueous solution was passed through a strongly basic anion exchange resin to adjust the salt form to OH form, and then collected through a 600 μm sieve in the same manner as in the above absorbance measurement, and the particle size was adjusted to about 600 μm. Several hundred particles were collected from the particles, and 60 particles were randomly selected from the particles, and the strength was measured with a Chatillon tester or equivalent. Furthermore, it was set as the physical strength per resin particle | grain (= crushing strength) by taking the average value. The crushing strength is preferably larger than 250 g / grain.

<実施例1>
モノマーとして、スチレン311gと純度57重量%のジビニルベンゼン51g(ジビニルベンゼン:29g、モノビニル芳香族モノマー:22g)を用い、更にイソオクタン181g、過酸化ジベンゾイル(純度75重量%、wet品)4.91gを混合してモノマー相とした。ポリビニルアルコール0.13重量%水溶液を水相とし、これと上記モノマー相を混合し、モノマー懸濁液を得た。該懸濁液を攪拌しながら75℃で6時間反応させ、その後80℃に昇温して3時間反応させて共重合体(1)を得た。
上記共重合体(1)100gを丸底フラスコに入れ、クロロメチルメチルエーテル500gを加え、共重合体を十分膨潤させた。その後、フリーデル・クラフツ反応触媒として塩化亜鉛50gを添加し、浴の温度を50℃にして攪拌しながら10時間反応させ、クロロメチル化共重合体(2)を得た。
上記クロロメチル化共重合体(2)150gを丸底フラスコに入れ、脱塩水319mL、トルエン256g、30重量%トリメチルアミン水溶液183mLを添加し、50℃で攪拌しながら8時間反応させて強塩基性陰イオン交換樹脂(Cl形)(サンプルA)を得た。得られた強塩基性陰イオン交換樹脂の評価結果を表1に示す。
<Example 1>
As monomers, 311 g of styrene and 51 g of divinylbenzene having a purity of 57% by weight (divinylbenzene: 29 g, monovinyl aromatic monomer: 22 g), 181 g of isooctane and 4.91 g of dibenzoyl peroxide (purity 75% by weight, wet product) were used. A monomer phase was obtained by mixing. A 0.13% by weight aqueous solution of polyvinyl alcohol was used as the aqueous phase, and this was mixed with the monomer phase to obtain a monomer suspension. The suspension was reacted at 75 ° C. for 6 hours with stirring, then heated to 80 ° C. and reacted for 3 hours to obtain a copolymer (1).
100 g of the copolymer (1) was put in a round bottom flask, and 500 g of chloromethyl methyl ether was added to sufficiently swell the copolymer. Thereafter, 50 g of zinc chloride was added as a Friedel-Crafts reaction catalyst, the temperature of the bath was set to 50 ° C., and the mixture was reacted for 10 hours with stirring to obtain a chloromethylated copolymer (2).
150 g of the above chloromethylated copolymer (2) is placed in a round bottom flask, 319 mL of demineralized water, 256 g of toluene, and 183 mL of 30% by weight trimethylamine aqueous solution are added, and the mixture is reacted at 50 ° C. for 8 hours with stirring. An ion exchange resin (Cl form) (Sample A) was obtained. Table 1 shows the evaluation results of the obtained strongly basic anion exchange resin.

<実施例2>
実施例1において、モノマー相をスチレン291g、純度57重量%のジビニルベンゼン48g(ジビニルベンゼン:27g、モノビニル芳香族モノマー:21g)、イソオクタン203g、過酸化ジベンゾイル(純度75重量%、wet品)4.54gの混合物とした以外は、実施例1と同様の方法で強塩基性陰イオン交換樹脂(Cl形)(サンプルB)を得た。得られた強塩基性陰イオン交換樹脂の評価結果を表1に示す。
<Example 2>
In Example 1, the monomer phase was 291 g of styrene, 48 g of divinylbenzene having a purity of 57% by weight (divinylbenzene: 27 g, monovinyl aromatic monomer: 21 g), 203 g of isooctane, dibenzoyl peroxide (purity 75% by weight, wet product). A strongly basic anion exchange resin (Cl form) (sample B) was obtained in the same manner as in Example 1, except that the mixture was 54 g. Table 1 shows the evaluation results of the obtained strongly basic anion exchange resin.

<比較例1〜4>
比較例1〜4として、市販の強塩基性陰イオン交換樹脂、即ち、三菱化学(株)製「SA10DL」、同「PA316」、ロームアンドハース社製「IRA400J」、同「IRA900」を使用した。それぞれ同様の評価を実施した結果を表1に示す。
<Comparative Examples 1-4>
As Comparative Examples 1 to 4, commercially available strongly basic anion exchange resins, ie, “SA10DL” and “PA316” manufactured by Mitsubishi Chemical Corporation, “IRA400J” and “IRA900” manufactured by Rohm and Haas, Inc. were used. . Table 1 shows the results of the same evaluation.

Figure 2013010097
Figure 2013010097

<実施例3>
市販の強酸性陽イオン交換樹脂である、三菱化学(株)製「SK1B」(スルホン酸基を交換基として有するゲル型強酸性陽イオン交換樹脂、架橋度8重量%)を、tap法にて50mL採取した。同様に、実施例1で得られた強塩基性陰イオン交換樹脂(Cl形)「サンプルA」を0.5mL採取し、両樹脂を300mL三角フラスコに投入した。さらに三角フラスコに100mLの超純水を投入した後、WATER BATH SHAKER MM−10(TAITEC社製)にセットし、水温80℃、100spmで20時間振盪した。上澄み液を回収し、UV−1600 GLP(島津製作所社製)で波長225nmにおける吸光度を測定した。結果を表2に示す。
なお、特開2001−293381号公報に記載されているように、波長225nmのUV吸光度を測定することにより、陽イオン交換樹脂から溶出するポリスチレンスルホン酸量を分析することができ、吸光度が大きい程溶出液(上澄み液)中のポリスチレンスルホン酸濃度が高いことを示す。このため、吸光度が低いほどポリスチレンスルホン酸が樹脂により除去されたこととなり好ましい。
<Example 3>
A commercially available strong acid cation exchange resin “SK1B” (gel-type strongly acidic cation exchange resin having a sulfonic acid group as an exchange group, crosslinking degree: 8% by weight) manufactured by Mitsubishi Chemical Corporation by the tap method. 50 mL was collected. Similarly, 0.5 mL of strongly basic anion exchange resin (Cl form) “Sample A” obtained in Example 1 was collected, and both resins were put into a 300 mL Erlenmeyer flask. Further, 100 mL of ultrapure water was added to the Erlenmeyer flask, and then set in a WATER BATH SHAKER MM-10 (manufactured by TAITEC) and shaken at a water temperature of 80 ° C. and 100 spm for 20 hours. The supernatant was collected, and the absorbance at a wavelength of 225 nm was measured with UV-1600 GLP (manufactured by Shimadzu Corporation). The results are shown in Table 2.
As described in JP-A-2001-293181, the amount of polystyrene sulfonic acid eluted from the cation exchange resin can be analyzed by measuring the UV absorbance at a wavelength of 225 nm. It shows that the polystyrenesulfonic acid concentration in the eluate (supernatant) is high. For this reason, the lower the absorbance, the more preferably the polystyrene sulfonic acid has been removed by the resin.

<実施例4>
実施例3において、強塩基性陰イオン交換樹脂(Cl形)として、実施例2で得られた強塩基性陰イオン交換樹脂(Cl形)「サンプルB」を用いた以外は同様の評価を実施した。結果を表2に示す。
<Example 4>
In Example 3, the same evaluation was performed except that the strongly basic anion exchange resin (Cl form) “Sample B” obtained in Example 2 was used as the strongly basic anion exchange resin (Cl form). did. The results are shown in Table 2.

<比較例5>
実施例3において、強塩基性陰イオン交換樹脂(Cl形)を使用せず、三菱化学(株)製「SK1B」のみで評価を実施した以外は同様の操作を行った。結果を表2に示す。
<Comparative Example 5>
In Example 3, the same operation was performed except that the evaluation was carried out only with “SK1B” manufactured by Mitsubishi Chemical Corporation without using a strongly basic anion exchange resin (Cl form). The results are shown in Table 2.

Figure 2013010097
Figure 2013010097

<評価>
表1および表2より、本発明の強塩基性陰イオン交換樹脂は、陽イオン交換樹脂からの溶出物の吸着性能に優れ、かつ実プラントでの使用に十分耐え得る強度を持つものであり、発電所の復水の脱塩処理に当たり、長期に亘り安定かつ効率的に処理を行えることが分かる。
<Evaluation>
From Table 1 and Table 2, the strongly basic anion exchange resin of the present invention is excellent in the adsorption performance of the effluent from the cation exchange resin, and has a strength that can sufficiently withstand use in an actual plant, It can be seen that the desalination treatment of the condensate at the power plant can be performed stably and efficiently over a long period of time.

本発明の強塩基性陰イオン交換樹脂は、陽イオン交換樹脂からの溶出物吸着性能に優れ、かつ実プラントでの使用に十分耐え得る強度を持つものであり、高純度の水質が要求される発電所における復水脱塩装置等に好適に使用することができ、その産業上の利用可能性は極めて高い。   The strongly basic anion exchange resin of the present invention is excellent in the eluate adsorption performance from the cation exchange resin and has a strength sufficient to withstand use in an actual plant, and requires high-purity water quality. It can be suitably used for a condensate desalination apparatus in a power plant, and its industrial applicability is extremely high.

Claims (10)

ゲル型樹脂であり、かつ、以下の方法で測定されるポリスチレンスルホン酸吸着量が0.25mmol/L−樹脂以上であって、平均粒径が300μm以上である、強塩基性陰イオン交換樹脂。
<ポリスチレンスルホン酸吸着量の測定方法>
東ソー有機化学(株)製ポリスチレンスルホン酸ナトリウム「ポリナスPS−1」を強酸性陽イオン交換樹脂に通液してH形とした後、H濃度として0.01mmol/Lに濃度調整したポリスチレンスルホン酸水溶液を調製する。
水酸化ナトリウム水溶液で処理してOH形に調整した強塩基性陰イオン交換樹脂をカラムに充填して水洗した後、濃度調整したポリスチレンスルホン酸水溶液を通液し、50%破過相当時のポリスチレンスルホン酸吸着量を求め、当該強塩基性陰イオン交換樹脂のポリスチレンスルホン酸の吸着量とする。
A strongly basic anion exchange resin which is a gel-type resin and has an adsorption amount of polystyrenesulfonic acid measured by the following method of 0.25 mmol / L-resin or more and an average particle diameter of 300 μm or more.
<Measurement method of polystyrene sulfonic acid adsorption amount>
Polystyrene sulfonic acid “Polynas PS-1” manufactured by Tosoh Organic Chemical Co., Ltd. was passed through a strongly acidic cation exchange resin to form H, and then the polystyrene sulfonic acid was adjusted to a concentration of 0.01 mmol / L as the H concentration. Prepare an aqueous solution.
The column is filled with a strongly basic anion exchange resin that has been adjusted to OH form by treatment with an aqueous sodium hydroxide solution, washed with water, and then passed through a polystyrenesulfonic acid aqueous solution with a concentration adjusted to give polystyrene equivalent to 50% breakthrough. The amount of sulfonic acid adsorbed is determined and taken as the amount of polystyrene sulfonic acid adsorbed by the strongly basic anion exchange resin.
以下の方法で測定される比表面積が1m/g未満である、請求項1に記載の強塩基性陰イオン交換樹脂。
<比表面積の測定方法>
強塩基性陰イオン交換樹脂を50℃の真空下で減圧加熱乾燥後、液体窒素下で吸着等温線(吸着ガス:クリプトン)を測定し、BETプロットを実施することで比表面積を算出する。
The strongly basic anion exchange resin according to claim 1, wherein the specific surface area measured by the following method is less than 1 m 2 / g.
<Method for measuring specific surface area>
The strongly basic anion exchange resin is dried by heating under reduced pressure under a vacuum of 50 ° C., an adsorption isotherm (adsorbed gas: krypton) is measured under liquid nitrogen, and a specific surface area is calculated by performing a BET plot.
以下の方法で測定される吸光度が0.10以上0.44以下である、請求項1又は2に記載の強塩基性陰イオン交換樹脂。
<吸光度の測定方法>
検出器として積分球を使用した紫外・可視スペクトル測定装置において、スクリューキャップ付円筒セルに、強塩基性陰イオン交換樹脂を密に充填して、波長800nmの光の反射率を測定し、クベルカ−ムンク変換により吸光度を求める。別途、同セルに硫酸バリウムを充填して同様の測定、変換を実施し、算出した吸光度をセルの吸光度とする。セルに強塩基性陰イオン交換樹脂を充填したときの吸光度からセルの吸光度を差し引いた値を、強塩基性陰イオン交換樹脂の吸光度として求める。
The strongly basic anion exchange resin according to claim 1 or 2, wherein the absorbance measured by the following method is 0.10 or more and 0.44 or less.
<Measurement method of absorbance>
In an ultraviolet / visible spectrum measuring apparatus using an integrating sphere as a detector, a cylindrical cell with a screw cap is densely filled with a strongly basic anion exchange resin, and the reflectance of light having a wavelength of 800 nm is measured. Absorbance is determined by Munch conversion. Separately, the same cell is filled with barium sulfate, the same measurement and conversion are performed, and the calculated absorbance is taken as the absorbance of the cell. A value obtained by subtracting the absorbance of the cell from the absorbance when the cell is filled with the strongly basic anion exchange resin is determined as the absorbance of the strongly basic anion exchange resin.
請求項1ないし3のいずれか1項に記載の強塩基性陰イオン交換樹脂を陽イオン交換樹脂との混床形態で使用する、強塩基性陰イオン交換樹脂の使用方法。   A method for using a strongly basic anion exchange resin, wherein the strongly basic anion exchange resin according to any one of claims 1 to 3 is used in a mixed bed form with a cation exchange resin. 請求項1ないし3のいずれか1項に記載の強塩基性陰イオン交換樹脂と陽イオン交換樹脂とを含む、混床イオン交換樹脂。   A mixed bed ion exchange resin comprising the strongly basic anion exchange resin according to any one of claims 1 to 3 and a cation exchange resin. 前記陽イオン交換樹脂の架橋度が8〜20重量%である、請求項5に記載の混床イオン交換樹脂。   The mixed bed ion exchange resin according to claim 5, wherein the degree of crosslinking of the cation exchange resin is 8 to 20% by weight. 発電所の復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、該イオン交換樹脂として請求項1ないし3のいずれか1項に記載の強塩基性陰イオン交換樹脂を使用する、復水脱塩方法。   In the condensate desalination method for desalinating condensate of a power plant with an ion exchange resin, the strongly basic anion exchange resin according to any one of claims 1 to 3 is used as the ion exchange resin. Condensate desalination method. 発電所の復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、該イオン交換樹脂として請求項5又は6に記載の混床イオン交換樹脂を使用する、復水脱塩方法。   A condensate desalination method in which the mixed bed ion exchange resin according to claim 5 or 6 is used as the ion exchange resin in a condensate desalination method in which the condensate of a power plant is desalted with an ion exchange resin. 発電所の復水を脱塩処理するイオン交換樹脂塔を備える復水脱塩装置において、該イオン交換樹脂塔が請求項1ないし3のいずれか1項に記載の強塩基性陰イオン交換樹脂を含む、復水脱塩装置。   A condensate demineralizer comprising an ion exchange resin tower for desalinating the condensate of a power plant, wherein the ion exchange resin tower comprises the strongly basic anion exchange resin according to any one of claims 1 to 3. Including condensate desalination equipment. 発電所の復水を脱塩処理するイオン交換樹脂塔を備える復水脱塩装置において、該イオン交換樹脂塔が請求項5又は6に記載の混床イオン交換樹脂を含む、復水脱塩装置。   A condensate demineralizer comprising an ion exchange resin tower for demineralizing condensate of a power plant, wherein the ion exchange resin tower comprises the mixed bed ion exchange resin according to claim 5 or 6. .
JP2012123381A 2011-05-31 2012-05-30 Strongly basic anion exchange resin and production method thereof, condensate demineralization method and condensate demineralization apparatus Active JP6164803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123381A JP6164803B2 (en) 2011-05-31 2012-05-30 Strongly basic anion exchange resin and production method thereof, condensate demineralization method and condensate demineralization apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011121988 2011-05-31
JP2011121988 2011-05-31
JP2012123381A JP6164803B2 (en) 2011-05-31 2012-05-30 Strongly basic anion exchange resin and production method thereof, condensate demineralization method and condensate demineralization apparatus

Publications (2)

Publication Number Publication Date
JP2013010097A true JP2013010097A (en) 2013-01-17
JP6164803B2 JP6164803B2 (en) 2017-07-19

Family

ID=47684470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123381A Active JP6164803B2 (en) 2011-05-31 2012-05-30 Strongly basic anion exchange resin and production method thereof, condensate demineralization method and condensate demineralization apparatus

Country Status (1)

Country Link
JP (1) JP6164803B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
CN105731594A (en) * 2016-03-29 2016-07-06 苏州蔻美新材料有限公司 Fluoride adsorption resin and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058832A (en) * 2009-09-07 2011-03-24 Ebara Corp System and method for demineralizing condensate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058832A (en) * 2009-09-07 2011-03-24 Ebara Corp System and method for demineralizing condensate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
CN105731594A (en) * 2016-03-29 2016-07-06 苏州蔻美新材料有限公司 Fluoride adsorption resin and preparation method thereof

Also Published As

Publication number Publication date
JP6164803B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
US8496121B2 (en) Macroporous copolymers with large pores
US7094349B2 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
RU2509731C2 (en) Method of iodide removal
US8822554B2 (en) Aminated ion exchange resins and production methods thereof
JP6145611B2 (en) Mixed ion exchange resin, desalting method and desalting apparatus
US8362182B2 (en) Process for producing cation exchangers
KR0160765B1 (en) Condensate purification process
JP6024416B2 (en) Ultrapure water production method and ultrapure water production apparatus
Kim et al. Simultaneous removal of phosphate and nitrate in wastewater using high-capacity anion-exchange resin
Zhang et al. Tunable synthesis of the polar modified hyper-cross-linked resins and application to the adsorption
JP6164803B2 (en) Strongly basic anion exchange resin and production method thereof, condensate demineralization method and condensate demineralization apparatus
WO1989011900A1 (en) Purification of effluent from wood pulp bleach plant
Ali et al. Study on the synthesis of a macroporous ethylacrylate‐divinylbenzene copolymer, its conversion into a bi‐functional cation exchange resin and applications for extraction of toxic heavy metals from wastewater
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2012515083A (en) Ion exchange resins containing interpenetrating polymer networks and their use for chromium removal
JP6136098B2 (en) Condensate demineralization method and condensate demineralization apparatus
CA2327165A1 (en) Process for preparing monodisperse adsorber resins and their use
JP6103802B2 (en) Strongly basic anion exchange resin and desalting method and desalting apparatus using the same
JPH03232528A (en) Adsorbent and method for removing suspended impurities
JP3982276B2 (en) Condensate treatment method
JP4511500B2 (en) Hydrogen ion type strongly acidic cation exchange resin
Alcazar et al. Sulfonation of microcapsules containing selective extractant agents
EP3268101A1 (en) Chromatographic separation of saccharides using polymeric macroporous alkylene-bridged resin
Takada et al. Synthesis and applications of monolithic ion exchange resin
Torquato et al. Evaluation of Crosslinked Sulfonated Polymers Derived from Different Resins for Removal of Ammonium Ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160907

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6164803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150