JP2013009419A - Adjusting method of temperature compensated piezoelectric oscillator and temperature compensated piezoelectric oscillator adjusted with the same method - Google Patents

Adjusting method of temperature compensated piezoelectric oscillator and temperature compensated piezoelectric oscillator adjusted with the same method Download PDF

Info

Publication number
JP2013009419A
JP2013009419A JP2012196041A JP2012196041A JP2013009419A JP 2013009419 A JP2013009419 A JP 2013009419A JP 2012196041 A JP2012196041 A JP 2012196041A JP 2012196041 A JP2012196041 A JP 2012196041A JP 2013009419 A JP2013009419 A JP 2013009419A
Authority
JP
Japan
Prior art keywords
temperature
piezoelectric oscillator
compensated piezoelectric
temperature compensated
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012196041A
Other languages
Japanese (ja)
Other versions
JP2013009419A5 (en
JP5429653B2 (en
Inventor
Katsuyoshi Terasawa
克義 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012196041A priority Critical patent/JP5429653B2/en
Publication of JP2013009419A publication Critical patent/JP2013009419A/en
Publication of JP2013009419A5 publication Critical patent/JP2013009419A5/en
Application granted granted Critical
Publication of JP5429653B2 publication Critical patent/JP5429653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a temperature compensated piezoelectric oscillator adjustment method for shortening temperature characteristic measuring time by simplifying an adjusting process, and to provide a temperature compensated piezoelectric oscillator adjusted with the same method.SOLUTION: An adjusting method of a temperature compensated piezoelectric oscillator 10 comprises a heater resistance 26 in a package of a piezoelectric oscillator mounting a vibrator 12 and an IC 14, measures a plurality of frequencies in a course of heating process while heating the temperature compensated piezoelectric oscillator 10, and obtains a temperature coefficient to adjust temperature characteristics. In at least one measurement of the frequencies, the frequency is measured after the temperature compensated piezoelectric oscillator 10 is heated with the heater resistance 26, compensated data is generated by conducting compensating calculation of the temperature coefficient from a plurality of measured values of the frequencies, and the compensated data is written to a storage part of the temperature compensated piezoelectric oscillator 10.

Description

本発明は、温度補償型圧電発振器の温度特性を補正する温度補償型圧電発振器の調整方法およびその方法により調整された温度補償型圧電発振器に関する。   The present invention relates to a method for adjusting a temperature compensated piezoelectric oscillator for correcting temperature characteristics of a temperature compensated piezoelectric oscillator, and a temperature compensated piezoelectric oscillator adjusted by the method.

携帯電話、パーソナルコンピュータ、携帯情報端末等の電子機器のクロック信号源などに広く利用されている温度補償型圧電発振器がある。温度補償型圧電発振器は、水晶振動子の温度特性の補償を行うことで動作温度領域における周波数の変位を数ppmにすることができ、これにより高精度の基準クロックとして機能する。   There are temperature-compensated piezoelectric oscillators that are widely used for clock signal sources of electronic devices such as mobile phones, personal computers, and portable information terminals. The temperature-compensated piezoelectric oscillator can compensate for the temperature characteristics of the crystal resonator so that the frequency displacement in the operating temperature region can be several ppm, thereby functioning as a highly accurate reference clock.

一般に水晶振動子の温度特性は、加工時にばらつきが発生し、またIC(発振回路)の特性ばらつき、発振器の設定環境の温度変化によるばらつきもあるため、製造した発振器すべての温度特性を同一に形成することは困難である。このため温度補償発振器は個々の発振器の温度特性をそれぞれ調整できるように、PROM(Programmable Read Only Memory)を内蔵し、補償度合いを設定できるようになっており、加工時に温度補償データを作成し個々の発振器に内蔵されたPROMに保存する調整作業が必要となる。   In general, the temperature characteristics of crystal units vary during processing, IC (oscillation circuit) characteristics, and variations due to temperature changes in the oscillator setting environment. It is difficult to do. For this reason, the temperature compensated oscillator has a built-in PROM (Programmable Read Only Memory) so that the temperature characteristics of each oscillator can be individually adjusted, and the degree of compensation can be set. The adjustment work stored in the PROM built in the oscillator is required.

従来の温度補償発振器の調整方法は、特許文献1に示すような恒温槽などに調整作業を行う発振器を入れ、周囲温度を変化させて水晶振動子の温度特性を測定し、水晶振動子の温度特性を打ち消すような補償データを決定し、発振器IC内のPROMに温度補償データを書き込んでいる。
特開2002−76774号公報
A conventional method for adjusting a temperature-compensated oscillator includes an oscillator that performs adjustment work in a thermostatic chamber as shown in Patent Document 1, measures the temperature characteristics of the crystal resonator by changing the ambient temperature, and determines the temperature of the crystal resonator. Compensation data that cancels the characteristics is determined, and temperature compensation data is written in the PROM in the oscillator IC.
JP 2002-76774 A

しかしながら従来の温度補償発振器の調整方法は、発振器の周囲温度を変化させるために恒温槽が必要となる。また恒温槽による温度調整は、設定温度に加熱して設定温度を維持するまでに時間がかかる。周波数測定のための設定温度は複数の温度を設定しているため、さらに時間がかかるという問題があった。   However, the conventional method for adjusting a temperature compensated oscillator requires a thermostatic bath in order to change the ambient temperature of the oscillator. Moreover, temperature adjustment by a thermostat takes time until it heats to preset temperature and maintains preset temperature. Since a plurality of temperatures are set for the frequency measurement, there is a problem that it takes more time.

ところで、発振器内の記憶部に記憶される補正電圧を表わすデータは、圧電発振器を恒温槽内に収容した後、圧電発振器を発振させた状態で周囲温度を変化させて取得しなければならないので、データの取得に時間がかかるという問題があった。   By the way, the data representing the correction voltage stored in the storage unit in the oscillator must be obtained by changing the ambient temperature in a state where the piezoelectric oscillator is oscillated after the piezoelectric oscillator is accommodated in the thermostatic bath. There was a problem that it took time to obtain data.

そこで本発明は上記従来技術の問題点を解決するため、調整工程を簡略化して温度特性の測定時間を短縮することができる温度補償型圧電発振器の調整方法およびその方法により調整された温度補償型圧電発振器を提供することを目的としている。   Therefore, in order to solve the above-mentioned problems of the prior art, the present invention provides a method for adjusting a temperature-compensated piezoelectric oscillator capable of simplifying the adjustment process and shortening the measurement time of temperature characteristics, and a temperature-compensated type adjusted by the method. The object is to provide a piezoelectric oscillator.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]振動子と、前記振動子の周波数温度特性を補正する温度補償回路および前記振動子を発振させる発振回路を有するICとを備えた温度補償型圧電発振器の調整方法であって、前記温度補償型圧電発振器に内蔵されたヒータ抵抗により前記温度補償型圧電発振器を加熱しながら前記温度補償型圧電発振器の出力周波数を測定し、前記出力周波数の測定値から温度係数を求め補償データを作成し、前記補償データを前記温度補償型圧電発振器の記憶部に書き込むことを特徴とする温度補償型圧電発振器の調整方法。   Application Example 1 A method for adjusting a temperature-compensated piezoelectric oscillator including a vibrator, a temperature compensation circuit that corrects a frequency temperature characteristic of the vibrator, and an IC having an oscillation circuit that oscillates the vibrator, The output frequency of the temperature-compensated piezoelectric oscillator is measured while heating the temperature-compensated piezoelectric oscillator with a heater resistor built in the temperature-compensated piezoelectric oscillator, and a temperature coefficient is obtained from the measured value of the output frequency to obtain compensation data. A method for adjusting a temperature-compensated piezoelectric oscillator, comprising creating and writing the compensation data in a storage unit of the temperature-compensated piezoelectric oscillator.

これにより温度補償型圧電発振器に内蔵したヒータ抵抗による加熱により発振器の加熱をすばやく行うことができ、設定温度までの加熱時間を大幅に短縮することができる。   Accordingly, the oscillator can be quickly heated by heating with the heater resistor built in the temperature compensated piezoelectric oscillator, and the heating time to the set temperature can be greatly shortened.

[適用例2]前記温度補償型圧電発振器の前記出力周波数を測定する工程の前に、前記記憶部に初期値を書き込むことを特徴とする適用例1に記載の温度補償型圧電発振器の調整方法。
これにより調整量を小さくすることができ、結果として温度係数の計算精度を上げることができる。
Application Example 2 The method for adjusting a temperature compensated piezoelectric oscillator according to Application Example 1, wherein an initial value is written in the storage unit before the step of measuring the output frequency of the temperature compensated piezoelectric oscillator. .
As a result, the adjustment amount can be reduced, and as a result, the calculation accuracy of the temperature coefficient can be increased.

[適用例3]前記ヒータ抵抗は、前記ICに形成されていることを特徴とする適用例1または2に記載の温度補償型圧電発振器の調整方法。
これにより部品点数を少なくすることができる。
Application Example 3 The method for adjusting a temperature compensated piezoelectric oscillator according to Application Example 1 or 2, wherein the heater resistor is formed in the IC.
Thereby, the number of parts can be reduced.

[適用例4]適用例1ないし適用例3のいずれかの方法により調整されたことを特徴とする温度補償型圧電発振器。
これにより適用例1ないし3のいずれかの作用効果を備えた温度補償型圧電発振器を製造することができる。
Application Example 4 A temperature-compensated piezoelectric oscillator adjusted by any one of Application Examples 1 to 3.
As a result, the temperature compensated piezoelectric oscillator having the effect of any one of the application examples 1 to 3 can be manufactured.

以下に、本発明に係る温度補償型圧電発振器の調整方法およびその方法により調整された温度補償型圧電発振器の最良の実施形態について説明する。
図1は本発明に用いられる実施形態の温度補償型圧電発振器の回路構成の説明図である。図示のように温度補償型圧電発振器10は、パッケージ30に振動子12とIC14を備えている。
Hereinafter, a method for adjusting a temperature compensated piezoelectric oscillator according to the present invention and a best embodiment of a temperature compensated piezoelectric oscillator adjusted by the method will be described.
FIG. 1 is an explanatory diagram of a circuit configuration of a temperature compensated piezoelectric oscillator according to an embodiment used in the present invention. As illustrated, the temperature compensated piezoelectric oscillator 10 includes a vibrator 12 and an IC 14 in a package 30.

パッケージ30は、電源端子(Vcc)32、周波数出力端子34、PROM書込み端子36、温度センサ出力端子38、接地端子(GND)40を有している。ここで周波数出力端子34は発振器からの周波数を出力するための端子である。PROM書込み端子36は外部からPROMに書き込むための端子である。温度センサ出力端子38は温度センサ20の出力電圧を外部に出力するための端子である。なおパッケージ30は熱伝導性のよいセラミックパッケージを用いると良い。   The package 30 has a power supply terminal (Vcc) 32, a frequency output terminal 34, a PROM write terminal 36, a temperature sensor output terminal 38, and a ground terminal (GND) 40. Here, the frequency output terminal 34 is a terminal for outputting the frequency from the oscillator. The PROM writing terminal 36 is a terminal for writing to the PROM from the outside. The temperature sensor output terminal 38 is a terminal for outputting the output voltage of the temperature sensor 20 to the outside. The package 30 may be a ceramic package with good thermal conductivity.

振動子12は、パッケージ30内に収容されており、一例としてATカットされた圧電振動子や、弾性表面波共振子などを用いることができる。ATカットされた圧電振動子は3次曲線で示される固有の周波数温度特性を有している。   The vibrator 12 is housed in the package 30 and, for example, an AT-cut piezoelectric vibrator, a surface acoustic wave resonator, or the like can be used. The AT-cut piezoelectric vibrator has a specific frequency-temperature characteristic indicated by a cubic curve.

IC14は、発振回路16、温度補償回路18、温度センサ20、PROM22、ヒータ抵抗制御回路24、ヒータ抵抗26を備えている。またIC14は電源端子32と接地端子40に接続されている。   The IC 14 includes an oscillation circuit 16, a temperature compensation circuit 18, a temperature sensor 20, a PROM 22, a heater resistance control circuit 24, and a heater resistor 26. The IC 14 is connected to the power supply terminal 32 and the ground terminal 40.

発振回路16は、振動子12の図示しない励振電極と電気的に接続されており、振動子12を発振させる回路である。発振回路16は周波数出力端子34に接続されている。   The oscillation circuit 16 is electrically connected to an excitation electrode (not shown) of the vibrator 12 and is a circuit that causes the vibrator 12 to oscillate. The oscillation circuit 16 is connected to the frequency output terminal 34.

記憶部となるPROM22は、複数のレジスタを有し、PROM書込み端子36に接続している。PROM22は、後述する温度センサ20で発生する1次の電圧から温度補償回路18で発生させる3次関数の電圧へ変換する情報がパーソナルコンピュータ(以下単にPCという)50から書き込まれる。PROM22の複数のレジスタには、PROM書込み端子36から書き込まれた水晶振動子特有の周波数温度特性を補正するためのデータを記憶することができるように構成されている。   The PROM 22 serving as a storage unit has a plurality of registers and is connected to a PROM write terminal 36. The PROM 22 is written with information from a personal computer (hereinafter simply referred to as a PC) 50 for converting a primary voltage generated by a temperature sensor 20 described later into a voltage of a cubic function generated by the temperature compensation circuit 18. The plurality of registers of the PROM 22 are configured to store data for correcting the frequency temperature characteristics peculiar to the crystal resonator written from the PROM writing terminal 36.

温度補償回路18は、本実施形態では一例として3次関数発生回路を用いている。3次関数発生回路は、温度センサ20からの電圧値を温度の3次関数の式で示される電圧値に変換する回路を有している。温度補償回路18は、発振回路16に接続し、PROM22のレジスタに記憶された3次関数の各次係数の値に従って、3次関数を発生し、温度センサ20から入力された電圧に対応した3次関数の値を電圧として発振回路16に出力するように構成されている。前記発振回路16は、電圧制御発振回路(VCXO)であるため、この温度補償回路18の出力電圧を制御電圧として入力することにより、温度補償回路18の出力電圧に応じて発振回路16の出力周波数が変化するように構成されている。   In this embodiment, the temperature compensation circuit 18 uses a cubic function generation circuit as an example. The cubic function generating circuit has a circuit that converts the voltage value from the temperature sensor 20 into a voltage value represented by an equation of a cubic function of temperature. The temperature compensation circuit 18 is connected to the oscillation circuit 16, generates a cubic function according to the value of each degree coefficient of the cubic function stored in the register of the PROM 22, and corresponds to the voltage input from the temperature sensor 20. The value of the next function is output to the oscillation circuit 16 as a voltage. Since the oscillation circuit 16 is a voltage controlled oscillation circuit (VCXO), by inputting the output voltage of the temperature compensation circuit 18 as a control voltage, the output frequency of the oscillation circuit 16 according to the output voltage of the temperature compensation circuit 18. Is configured to change.

温度センサ20は、本実施例ではIC14の内部に配置されている。温度センサ20は、温度補償回路18に接続し、検出した周囲温度の1次関数で示される電圧を発生する回路を有している。   The temperature sensor 20 is arranged inside the IC 14 in this embodiment. The temperature sensor 20 is connected to the temperature compensation circuit 18 and has a circuit that generates a voltage indicated by a linear function of the detected ambient temperature.

PC50は、PROM書込み端子36を介してPROM22と接続し、温度センサ出力端子38を介して温度センサ20と接続している。PC50は、あらかじめ水晶振動子の平均的な温度特性を近似する3次関数の式の3次係数、1次係数、及び0次係数などの初期値データがデータベースに収納されている。PC50は、初期値データに基づいて、振動子12の温度補正データを演算する処理機能を有している。   The PC 50 is connected to the PROM 22 via the PROM write terminal 36 and is connected to the temperature sensor 20 via the temperature sensor output terminal 38. In the PC 50, initial value data such as a third-order coefficient, a first-order coefficient, and a zero-order coefficient of an expression of a third-order function that approximates an average temperature characteristic of the crystal resonator is stored in a database in advance. The PC 50 has a processing function for calculating temperature correction data of the vibrator 12 based on the initial value data.

ヒータ抵抗制御回路24は、PROM22に接続している。ヒータ抵抗制御回路24は、PROM22からの温度制御データを読み取り、温度センサ22によって測定される温度が設定温度になるように、後述するヒータ抵抗26を制御している。   The heater resistance control circuit 24 is connected to the PROM 22. The heater resistance control circuit 24 reads temperature control data from the PROM 22 and controls a heater resistance 26 described later so that the temperature measured by the temperature sensor 22 becomes the set temperature.

本実施形態のヒータ抵抗26は、IC14の内部や表面に形成されている。IC14の表面に形成する場合は、一対の電極膜間に発熱膜が配置された発熱体を用いる。発熱体は、一対の電極膜間に電圧を印加することにより発熱する薄型のヒータ抵抗である、発熱体は、IC14の表面に形成された第1の電極膜上に発熱膜、第2の電極膜の順に成膜されて形成される。なお、発熱膜の材質は、例えばTaSiO、TaまたはBaTiOを適用する。ヒータ抵抗26はヒータ抵抗制御回路24と接続し、設定温度でパッケージ30内部を加熱させることができる。 The heater resistor 26 of the present embodiment is formed inside or on the surface of the IC 14. When forming on the surface of the IC 14, a heating element in which a heating film is disposed between a pair of electrode films is used. The heating element is a thin heater resistor that generates heat by applying a voltage between a pair of electrode films. The heating element is a heating film and a second electrode on the first electrode film formed on the surface of the IC 14. The films are formed in the order of the films. For example, TaSiO 2 , Ta 2 N 5 or BaTiO 3 is applied as the material of the heat generating film. The heater resistor 26 can be connected to the heater resistance control circuit 24 to heat the inside of the package 30 at a set temperature.

なお振動子12と温度センサ20の温度が近いほうが補償精度が上がるため、パッケージ30内のヒータ抵抗26、振動子12、温度センサ20はできるだけ近くに配置させるとよい。   Since the compensation accuracy increases as the temperature of the vibrator 12 and the temperature sensor 20 is closer, the heater resistor 26, the vibrator 12, and the temperature sensor 20 in the package 30 may be arranged as close as possible.

次に、上記構成による実施形態の温度補償型圧電発振器の調整方法について説明する。図2は本発明の温度補償型圧電発振器の調整方法のフローチャートである。
パッケージ30内に振動子12、ヒータ抵抗26が形成されたIC14を実装し、以下に示す温度特性の補正を行う。まず図2のフローチャートに示すように、PROM22のレジスタに初期値を書き込む(ステップ100)。すなわちPC50にあらかじめ記憶された水晶振動子の平均的な温度特性を近似する3次関数の式の3次係数、1次係数、及び0次係数などの初期値データがPROM22のレジスタに記憶される。
Next, a method for adjusting the temperature compensated piezoelectric oscillator according to the embodiment having the above-described configuration will be described. FIG. 2 is a flowchart of a method for adjusting a temperature compensated piezoelectric oscillator according to the present invention.
The IC 14 in which the vibrator 12 and the heater resistor 26 are formed is mounted in the package 30, and the temperature characteristics shown below are corrected. First, as shown in the flowchart of FIG. 2, the initial value is written in the register of the PROM 22 (step 100). That is, initial value data such as a third-order coefficient, a first-order coefficient, and a zeroth-order coefficient of a cubic function that approximates the average temperature characteristic of the crystal resonator stored in advance in the PC 50 is stored in the register of the PROM 22. .

ついで周波数出力端子34に接続された図示しない周波数測定器により周波数を測定し、第1の測定値f1とする(ステップ200)。温度補償回路18は、3次関数を発生し、温度センサ20から入力された周囲温度に対応する1次関数で示される電圧に応じた電圧を出力する。   Next, the frequency is measured by a frequency measuring device (not shown) connected to the frequency output terminal 34 to obtain a first measured value f1 (step 200). The temperature compensation circuit 18 generates a cubic function and outputs a voltage corresponding to the voltage indicated by the linear function corresponding to the ambient temperature input from the temperature sensor 20.

そしてPC50からPROM22にヒータ抵抗26を加熱させる制御データを書き込む。ヒータ抵抗26に電流を流し発振器内の温度を上げる(ステップ300)。   Then, control data for heating the heater resistor 26 is written from the PC 50 to the PROM 22. A current is passed through the heater resistor 26 to raise the temperature in the oscillator (step 300).

ヒータ抵抗26により発振器を加熱し、出力周波数を測定し、第nの測定値fnとする。ここでn−1次係数を求める場合にはn回の周波数測定を行う(ステップ400)。一例として3次係数を求める場合には、加熱しながら合計4回の周波数測定を行っている。   The oscillator is heated by the heater resistor 26, the output frequency is measured, and the nth measured value fn is obtained. Here, when obtaining the n−1 order coefficient, frequency measurement is performed n times (step 400). As an example, when obtaining a third-order coefficient, a total of four frequency measurements are performed while heating.

第1の測定値f1〜第nの測定値fnに基づいてn−1次係数の補正計算を行う(ステップ500)。複数の周波数測定値f1〜fnから、周波数温度特性のn−1次関数で表される近似式を求める。この近似式により、ヒータ抵抗の加熱前後で周波数変化がなくなるような温度補償回路から出力すべき補償電圧信号を表すn−1次関数の係数(補正データ)が求められる。
得られた補正データがPROM22に書き込まれる(ステップ600)。
Based on the first measurement value f1 to the n-th measurement value fn, correction calculation of the n−1 order coefficient is performed (step 500). From the plurality of frequency measurement values f1 to fn, an approximate expression represented by an n−1 order function of the frequency temperature characteristic is obtained. By this approximate expression, a coefficient (correction data) of an n−1 order function representing a compensation voltage signal to be output from the temperature compensation circuit so that the frequency change is eliminated before and after heating of the heater resistor is obtained.
The obtained correction data is written into the PROM 22 (step 600).

パッケージ30内の温度補償回路18は、温度センサ20で計測された測定値と、PROM22に書き込みされた補正データに基づいて、電圧信号を発生し、補償電圧信号として発振回路16に出力する。補償電圧信号に基づいて発振回路16の出力周波数が制御される。   The temperature compensation circuit 18 in the package 30 generates a voltage signal based on the measurement value measured by the temperature sensor 20 and the correction data written in the PROM 22, and outputs the voltage signal to the oscillation circuit 16 as a compensation voltage signal. Based on the compensation voltage signal, the output frequency of the oscillation circuit 16 is controlled.

図3は実施形態の温度補償型圧電発振器の温度特性を説明するグラフである。同図の縦軸は周波数偏差Δf/f(×10−6)、縦軸は温度(℃)をそれぞれ示している。ここで図中の破線はATカット水晶振動子の温度特性を示している。図中の一点鎖線は、ステップ100で初期値書き込みを行った直後の発振回路16の出力周波数の温度特性を示している。図中の実線は、ステップ600で補正データをPROM22に書き込み調整が完了した状態の発振回路16の出力周波数の温度特性を示している。図3は一例として、常温における測定点1:f1と40℃に加熱した測定点2:f2の周波数を測定し、1次係数の補正を行った温度特性を示している。図示のように水晶振動子の温度特性を打ち消すような補償データを決定し、補正後の温度特性のような±数ppmの精度で補償される。 FIG. 3 is a graph illustrating temperature characteristics of the temperature compensated piezoelectric oscillator according to the embodiment. In the figure, the vertical axis represents frequency deviation Δf / f (× 10 −6 ), and the vertical axis represents temperature (° C.). Here, the broken line in the figure indicates the temperature characteristic of the AT-cut quartz crystal resonator. A one-dot chain line in the figure indicates the temperature characteristic of the output frequency of the oscillation circuit 16 immediately after the initial value is written in Step 100. The solid line in the figure shows the temperature characteristic of the output frequency of the oscillation circuit 16 in the state where the correction data is written in the PROM 22 in step 600 and the adjustment is completed. FIG. 3 shows, as an example, temperature characteristics obtained by measuring the frequency of measurement point 1: f1 at normal temperature and measurement point 2: f2 heated to 40 ° C. and correcting the first order coefficient. As shown in the figure, compensation data that cancels the temperature characteristics of the crystal resonator is determined, and compensation is performed with an accuracy of ± several ppm as in the corrected temperature characteristics.

このような温度補償型圧電発振器の調整方法によれば、パッケージ内部に発熱体を形成させているので、従来のような恒温槽を用いた加熱に比べ、短時間で設定温度に加熱することができ、温度特性の調整時間を大幅に短縮することができる。またパッケージのIC内に形成した温度センサにより発振器の温度を測定しているため、測定の精度がよい。恒温槽などを用いて周囲温度を変化させる設備が必要なくなるため、設備投資のコストを低減することができる。また周囲温度を変化させる時間がなくなるため、生産性を向上させることができる。さらに記憶部のレジスタに初期値を書き込んでいるため、補償後のデータを微調整できる。また温度係数の計算精度を上げることができる。
上記温度補償型圧電発振器の調整方法により、補正後の温度特性のような±数ppmの精度で補償された温度補償型圧電発振器を調整することができる。
According to such a method for adjusting a temperature-compensated piezoelectric oscillator, a heating element is formed inside the package, so that it can be heated to a set temperature in a short time compared to heating using a conventional thermostat. This can greatly reduce the adjustment time of the temperature characteristics. Further, since the temperature of the oscillator is measured by a temperature sensor formed in the IC of the package, the measurement accuracy is good. Since the equipment for changing the ambient temperature using a thermostatic chamber or the like is not necessary, the cost of capital investment can be reduced. In addition, productivity is improved because there is no time to change the ambient temperature. Further, since the initial value is written in the register of the storage unit, the compensated data can be finely adjusted. Moreover, the calculation accuracy of the temperature coefficient can be increased.
By the adjustment method of the temperature compensated piezoelectric oscillator, it is possible to adjust the temperature compensated piezoelectric oscillator compensated with an accuracy of ± several ppm as in the corrected temperature characteristic.

図4は温度補償型圧電発振器の調整方法の変形例の説明図である。図1に示す温度補償型圧電発振器と変形例との相違は、ヒータ抵抗制御回路およびヒータ抵抗261の配置箇所である。その他の構成は図1の温度補償型圧電発振器と同様であり、その詳細な説明を省略する。   FIG. 4 is an explanatory diagram of a modification of the method of adjusting the temperature compensated piezoelectric oscillator. The difference between the temperature compensated piezoelectric oscillator shown in FIG. 1 and the modified example is the location of the heater resistance control circuit and the heater resistor 261. Other configurations are the same as those of the temperature compensated piezoelectric oscillator of FIG. 1, and detailed description thereof is omitted.

変形例の温度補償型圧電発振器100は、ヒータ抵抗261をパッケージ30の内部に配置している。具体的には、ヒータ抵抗261は、パッケージ30の表面であって振動子12及びIC14の近傍にニクロム線などの発熱体が形成されている。ヒータ抵抗261は、ヒータ抵抗接続端子42と接続し、パッケージ30外部に形成している図示しないヒータ抵抗制御回路と接続している。   In the temperature compensated piezoelectric oscillator 100 according to the modification, the heater resistor 261 is disposed inside the package 30. Specifically, the heater resistor 261 has a heating element such as a nichrome wire on the surface of the package 30 and in the vicinity of the vibrator 12 and the IC 14. The heater resistor 261 is connected to the heater resistor connection terminal 42 and is connected to a heater resistance control circuit (not shown) formed outside the package 30.

このような構成による変形例の温度補償型圧電発振器であっても、図1に示す温度補償型圧電発振器と同様に、パッケージ30内部にヒータ抵抗を形成させているので、温度特性の調整時間を大幅に短縮させることができ、図1の温度補償型圧電発振器と同様の作用効果が得られる。   Even in the temperature-compensated piezoelectric oscillator of the modification having such a configuration, the heater resistance is formed inside the package 30 as in the temperature-compensated piezoelectric oscillator shown in FIG. It can be significantly shortened, and the same effect as the temperature compensated piezoelectric oscillator of FIG. 1 can be obtained.

なお本実施形態では3次関数発生回路を用いて説明したが、温度補償回路はこれに限らず、1次関数発生回路、2次関数発生回路を設けることができる。また4次関数発生回路など高次の関数発生回路を設けることにより、さらに高精度に温度補償をすることができる。なお、ある温度範囲で一次関数的に変化する領域においては、少なくとも2点を測定することにより容易に補正することができる。   Although the third embodiment has been described using a cubic function generation circuit, the temperature compensation circuit is not limited to this, and a linear function generation circuit and a quadratic function generation circuit can be provided. Further, by providing a higher-order function generation circuit such as a quartic function generation circuit, temperature compensation can be performed with higher accuracy. It should be noted that in a region that changes in a linear function within a certain temperature range, it can be easily corrected by measuring at least two points.

本発明に用いられる温度補償型圧電発振器の回路構成の説明図である。It is explanatory drawing of the circuit structure of the temperature compensation type piezoelectric oscillator used for this invention. 本発明の温度補償型圧電発振器の調整方法のフローチャートである。It is a flowchart of the adjustment method of the temperature compensation type | mold piezoelectric oscillator of this invention. 実施形態の温度補償型圧電発振器の温度特性を説明するグラフである。It is a graph explaining the temperature characteristic of the temperature compensation type | mold piezoelectric oscillator of embodiment. 温度補償型圧電発振器の調整方法の変形例の説明図である。It is explanatory drawing of the modification of the adjustment method of a temperature compensation type piezoelectric oscillator.

10、100………温度補償型圧電発振器、12………振動子、14………IC、16………発振回路、18………温度補償回路、20………温度センサ、22………PROM、24………ヒータ抵抗制御回路、26、261………ヒータ抵抗、30………パッケージ、32………電源端子(Vcc)、34………周波数出力端子、36………PROM書込み端子、38………温度センサ出力端子、40………接地端子(GND)、42………ヒータ抵抗接続端子、50………パーソナルコンピュータ(PC)。 10, 100 ......... Temperature compensated piezoelectric oscillator, 12 ......... vibrator, 14 ......... IC, 16 ......... oscillation circuit, 18 ......... temperature compensation circuit, 20 ......... temperature sensor, 22 ... ... PROM, 24 .... Heater resistance control circuit, 26, 261 .... Heater resistance, 30 ..... Package, 32 .... Power supply terminal (Vcc), 34 .... Frequency output terminal, 36 .... PROM Write terminal, 38 ... Temperature sensor output terminal, 40 ... Ground terminal (GND), 42 ... Heater resistance connection terminal, 50 ... Personal computer (PC).

Claims (4)

振動子と、前記振動子の周波数温度特性を補正する温度補償回路および前記振動子を発振させる発振回路を有するICとを備えた温度補償型圧電発振器の調整方法であって、
前記温度補償型圧電発振器に内蔵されたヒータ抵抗により前記温度補償型圧電発振器を加熱しながら前記温度補償型圧電発振器の出力周波数を測定し、
前記出力周波数の測定値から温度係数を求め補償データを作成し、
前記補償データを前記温度補償型圧電発振器の記憶部に書き込むことを特徴とする温度補償型圧電発振器の調整方法。
A method for adjusting a temperature compensated piezoelectric oscillator comprising: a vibrator; a temperature compensation circuit that corrects a frequency temperature characteristic of the vibrator; and an IC having an oscillation circuit that oscillates the vibrator.
Measuring the output frequency of the temperature-compensated piezoelectric oscillator while heating the temperature-compensated piezoelectric oscillator by a heater resistor built in the temperature-compensated piezoelectric oscillator;
Find the temperature coefficient from the measured value of the output frequency and create compensation data,
A method for adjusting a temperature compensated piezoelectric oscillator, wherein the compensation data is written to a storage unit of the temperature compensated piezoelectric oscillator.
前記温度補償型圧電発振器の前記出力周波数を測定する工程の前に、前記記憶部に初期値を書き込むことを特徴とする請求項1に記載の温度補償型圧電発振器の調整方法。   The method for adjusting a temperature-compensated piezoelectric oscillator according to claim 1, wherein an initial value is written in the storage unit before the step of measuring the output frequency of the temperature-compensated piezoelectric oscillator. 前記ヒータ抵抗は、前記ICに形成されていることを特徴とする請求項1または2に記載の温度補償型圧電発振器の調整方法。   The method of adjusting a temperature compensated piezoelectric oscillator according to claim 1, wherein the heater resistor is formed in the IC. 請求項1ないし3のいずれかに記載の方法により調整されたことを特徴とする温度補償型圧電発振器。   A temperature compensated piezoelectric oscillator adjusted by the method according to claim 1.
JP2012196041A 2012-09-06 2012-09-06 Oscillator and method of manufacturing oscillator Active JP5429653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196041A JP5429653B2 (en) 2012-09-06 2012-09-06 Oscillator and method of manufacturing oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196041A JP5429653B2 (en) 2012-09-06 2012-09-06 Oscillator and method of manufacturing oscillator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008090148A Division JP5082988B2 (en) 2008-03-31 2008-03-31 Method for adjusting temperature compensated piezoelectric oscillator and temperature compensated piezoelectric oscillator adjusted by the method

Publications (3)

Publication Number Publication Date
JP2013009419A true JP2013009419A (en) 2013-01-10
JP2013009419A5 JP2013009419A5 (en) 2013-05-16
JP5429653B2 JP5429653B2 (en) 2014-02-26

Family

ID=47676306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196041A Active JP5429653B2 (en) 2012-09-06 2012-09-06 Oscillator and method of manufacturing oscillator

Country Status (1)

Country Link
JP (1) JP5429653B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170950A (en) * 2014-03-06 2015-09-28 日本電波工業株式会社 crystal device
JP2015211334A (en) * 2014-04-25 2015-11-24 京セラクリスタルデバイス株式会社 Piezoelectric device with thermostat, and manufacturing method of piezoelectric device with thermostat
US9444466B2 (en) 2014-03-27 2016-09-13 Seiko Epson Corporation Method of adjusting frequency of resonation device and method of manufacturing resonation device
JP2017130861A (en) * 2016-01-22 2017-07-27 株式会社大真空 Piezoelectric oscillator
JP2017130862A (en) * 2016-01-22 2017-07-27 株式会社大真空 Piezoelectric oscillator
JP2020115688A (en) * 2020-04-20 2020-07-30 株式会社大真空 Piezoelectric oscillator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036342A (en) * 1999-07-19 2001-02-09 Fujitsu General Ltd Crystal oscillator having temperature compensation
JP2001267847A (en) * 2000-03-17 2001-09-28 Asahi Kasei Microsystems Kk Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
JP2002076774A (en) * 2000-09-05 2002-03-15 Citizen Watch Co Ltd Method for regulating temperature compensated oscillator
JP2003163539A (en) * 2001-11-28 2003-06-06 Kyocera Corp Temperature-compensated quartz oscillator
JP2004258045A (en) * 2004-05-27 2004-09-16 Seiko Epson Corp Clock signal supply device, and its control method
JP2006014208A (en) * 2004-06-29 2006-01-12 Nippon Dempa Kogyo Co Ltd Crystal oscillator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036342A (en) * 1999-07-19 2001-02-09 Fujitsu General Ltd Crystal oscillator having temperature compensation
JP2001267847A (en) * 2000-03-17 2001-09-28 Asahi Kasei Microsystems Kk Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
JP2002076774A (en) * 2000-09-05 2002-03-15 Citizen Watch Co Ltd Method for regulating temperature compensated oscillator
JP2003163539A (en) * 2001-11-28 2003-06-06 Kyocera Corp Temperature-compensated quartz oscillator
JP2004258045A (en) * 2004-05-27 2004-09-16 Seiko Epson Corp Clock signal supply device, and its control method
JP2006014208A (en) * 2004-06-29 2006-01-12 Nippon Dempa Kogyo Co Ltd Crystal oscillator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170950A (en) * 2014-03-06 2015-09-28 日本電波工業株式会社 crystal device
US9444466B2 (en) 2014-03-27 2016-09-13 Seiko Epson Corporation Method of adjusting frequency of resonation device and method of manufacturing resonation device
JP2015211334A (en) * 2014-04-25 2015-11-24 京セラクリスタルデバイス株式会社 Piezoelectric device with thermostat, and manufacturing method of piezoelectric device with thermostat
JP2017130861A (en) * 2016-01-22 2017-07-27 株式会社大真空 Piezoelectric oscillator
JP2017130862A (en) * 2016-01-22 2017-07-27 株式会社大真空 Piezoelectric oscillator
JP2020115688A (en) * 2020-04-20 2020-07-30 株式会社大真空 Piezoelectric oscillator

Also Published As

Publication number Publication date
JP5429653B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5429653B2 (en) Oscillator and method of manufacturing oscillator
JP4738409B2 (en) Temperature compensated thermostatic chamber controlled crystal oscillator
JP5218169B2 (en) Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator
JP2011205166A5 (en)
JP6587560B2 (en) Crystal oscillator with temperature chamber
US9013244B2 (en) Oscillating device, oscillating element and electronic apparatus
US10135391B2 (en) Oscillation circuit, electronic apparatus, and moving object
JP6190664B2 (en) Crystal oscillator
JP2014197751A (en) Oscillator, electronic apparatus and mobile object
JP2016187154A (en) Oscillator, electronic apparatus, and mobile body
JP2016187152A (en) Method of manufacturing oscillator, oscillator, electronic apparatus, and mobile body
JP2016187153A (en) Oscillator, electronic apparatus, and mobile body
JP2007104162A (en) Manufacturing method of crystal oscillator, and crystal oscillator
US10128854B2 (en) Oscillation circuit, electronic apparatus, and moving object
JP5082988B2 (en) Method for adjusting temperature compensated piezoelectric oscillator and temperature compensated piezoelectric oscillator adjusted by the method
JP6060011B2 (en) Oscillator
JP2002076774A (en) Method for regulating temperature compensated oscillator
JP5977197B2 (en) Temperature control circuit, thermostatic chamber type piezoelectric oscillator, and temperature control method
JP2005347929A (en) Temperature compensating crystal oscillator and its adjustment method
JP2016178605A (en) Method of manufacturing oscillator
CN110198155A (en) A kind of digital temperature compensation crystal oscillator
JP5213845B2 (en) Temperature compensated crystal oscillator
JP2016178602A (en) Method of manufacturing oscillator
JP5831002B2 (en) Oscillators and electronics
JP2006140726A (en) Method and apparatus for adjusting frequency of piezoelectric oscillator, and piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5429653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350