JP2013008607A - Current switch and dc current switch - Google Patents

Current switch and dc current switch Download PDF

Info

Publication number
JP2013008607A
JP2013008607A JP2011141400A JP2011141400A JP2013008607A JP 2013008607 A JP2013008607 A JP 2013008607A JP 2011141400 A JP2011141400 A JP 2011141400A JP 2011141400 A JP2011141400 A JP 2011141400A JP 2013008607 A JP2013008607 A JP 2013008607A
Authority
JP
Japan
Prior art keywords
electrode
potential
current
capacitive element
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011141400A
Other languages
Japanese (ja)
Inventor
Shoji Haneda
正二 羽田
Minoru Okada
實 岡田
Haruki Wada
晴樹 和田
Fumio Mura
文夫 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Intellilink Corp
Original Assignee
NTT Data Intellilink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Intellilink Corp filed Critical NTT Data Intellilink Corp
Priority to JP2011141400A priority Critical patent/JP2013008607A/en
Publication of JP2013008607A publication Critical patent/JP2013008607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To interrupt the current of a DC and/or low frequency AC high voltage and/or large current path without generating arc discharge.SOLUTION: The current switch includes an electrode 1, an electrode 2, an electrode 3, and a capacitive element. One end of the capacitive element is connected with the electrode 2, and the other end of the capacitive element is connected with the electrode 3. A potential having one polarity of an external power supply is applied to the electrode 1, and a potential having the other polarity of an external power supply is output or not output to the electrode 3. The switch section of the current switch is closed when the electrodes 1, 2 and 3 are in contact state, and the switch section of the current switch is open when the electrodes 2 and 3 are in separation state.

Description

本発明は、電流開閉器において、高電圧直流、高電圧低周波交流、大電流直流及び大電流低周波交流に対応し、直流電流開閉器において、高電圧直流及び大電流直流に対応可能な、電流開閉器及び直流電流開閉器に関する。   The present invention corresponds to high voltage direct current, high voltage low frequency alternating current, large current direct current and large current low frequency alternating current in the current switch, and can correspond to high voltage direct current and large current direct current in the direct current switch. The present invention relates to a current switch and a direct current switch.

高圧及び/又は大電流の直流電流を遮断するとき、直流スイッチの電極間にアーク放電が発生し、直流電流は交流に比して遮断が容易ではなく、このため、直流スイッチはアーク放電を消去するため装置が大きく高価であり、直流を給電することが望ましいデータセンタなどの負荷(サーバ等)に対しても、従来から、系統(商用電源)の交流を直流変換し(停電時等のバッテリーバックアップのため)し、さらに該直流を交流変換して給電し、末端の負荷において各負荷が該交流を直流に変換し負荷に電力を供給している。
これら変換の都度、電力損失が発生し、かつ設備構築にも、設備価格が高価かつ設備機種が多く、多大な費用を必要とする。
さらに、近年においては、CO排出規制などにも関連し、直流・交流変換、さらに交流・直流変換を必要としない電力効率に優れる高圧直流給電方式(系統電源を直流変換し、負荷直前の降圧DC/DCコンバータまで高圧直流を給電する方式)が検討されている。
したがって、高圧及び/又は大電流の直流給電方式において、上記の直流遮断が難しいという問題点を解決する課題が存在する。
When cutting off high-voltage and / or high-current direct current, arc discharge occurs between the electrodes of the direct current switch, and direct current is not easy to interrupt compared to alternating current, so the direct current switch eliminates arc discharge. Therefore, the AC power of the system (commercial power supply) has been conventionally converted to direct current (batteries during power outages, etc.) even for loads (servers, etc.) such as data centers where the equipment is large and expensive, and it is desirable to supply direct current. In addition, the direct current is converted into alternating current to supply power, and each load converts the alternating current into direct current and supplies power to the load at the end load.
At each of these conversions, power loss occurs, and equipment construction is expensive and requires many equipment models because of the high equipment price.
Furthermore, in recent years, it is also related to CO 2 emission regulations, etc., DC / AC conversion, and high-voltage DC power supply system with excellent power efficiency that does not require AC / DC conversion (DC conversion of system power supply and step-down just before load) A method of supplying high-voltage direct current to a DC / DC converter) has been studied.
Therefore, in the high-voltage and / or large-current DC power supply method, there is a problem to solve the above-described problem that DC interruption is difficult.

特開2003−208829号公報Japanese Patent Laid-Open No. 2003-208829

特許文献1は、直流遮断器に関するものであるが、以下の問題が存在する。
以下、この出願の明細書の段落「0028」を下記に引用して説明する。
「この遮断器は、図1に示すように、導電支持板11に固定した一対の板ばね10(弾性電極)と、この板ばね10に常時は接触する固定電極20とを具え、板ばね10と固定電極20との間に絶縁板30を抜き差しすることで導通・遮断を行うものである。」
以上が特許文献1の記載の一部である。
一般に、直流、交流を問わず、開閉器(スイッチ)における両電極の導通接触部は、凹凸による表面加工が施され、両電極が閉じているとき(導通状態)、この両電極の導通接触部の凹凸部は相互に接触し導通している。したがって、両導通接触部の間に物を挿入することは困難である(仮に先端部が薄いテーパ状板版であっても。)。
また、上記挿入を容易にするためには、両導通接触部に凹凸を形成せず、つるつる状平面とすると、一般に、両導通接触部における接触導通性が悪い。
導通接触部が、凹凸による表面加工されている場合は、両導通接触部の接触導通性は良好である。
Patent Document 1 relates to a DC circuit breaker, but has the following problems.
Hereinafter, paragraph “0028” of the specification of this application will be described with reference to the following.
“As shown in FIG. 1, this circuit breaker includes a pair of leaf springs 10 (elastic electrodes) fixed to the conductive support plate 11 and a fixed electrode 20 that is always in contact with the leaf spring 10. The insulating plate 30 is inserted / removed between the fixed electrode 20 and the fixed electrode 20 to conduct / cut off. ”
The above is a part of the description of Patent Document 1.
In general, the conductive contact portion of both electrodes in a switch (switch), regardless of whether it is direct current or alternating current, is subjected to surface processing by unevenness, and when both electrodes are closed (conductive state), the conductive contact portion of both electrodes The concave and convex portions are in contact with each other and are conductive. Therefore, it is difficult to insert an object between the two conductive contact portions (even if it is a tapered plate having a thin tip portion).
Further, in order to facilitate the insertion, if the concave and convex portions are not formed on both the conductive contact portions and a smooth flat surface is used, the contact conductive property at both conductive contact portions is generally poor.
When the surface of the conductive contact portion is processed by unevenness, the contact conductivity of both conductive contact portions is good.

以上の現状に鑑み、本発明の電流開閉器及び直流電流開閉器は、高圧及び/又は大電流の直流電流において、開閉器を断とすべく電極間を開くとき、電極間に絶縁体を挿入させず、両導通接触部間にアーク放電を発生させないことを実現する。
さらにまた、本発明の電流開閉器においては、高圧及び/又は大電流の低周波交流及においても、アーク放電を発生させずに電流を遮断する電流開閉器を実現する。
In view of the above situation, the current switch and the direct current switch of the present invention insert an insulator between the electrodes when the electrodes are opened to disconnect the switch in a high-voltage and / or large-current DC current. Without realizing this, it is possible to prevent arc discharge from occurring between the two conductive contact portions.
Furthermore, the current switch of the present invention realizes a current switch that cuts off current without generating arc discharge even in a high-frequency and / or large-current low-frequency alternating current.

上記の目的を実現するべく本発明は以下の構成とする。
(1)請求項1に係る電流開閉器は、
電極1と、電極2と、電極3と、容量素子と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記容量素子の一端に伝達されるべく構成され、
前記電極3の電位は前記容量素子の他端に伝達されるべく構成され、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔し非導通状態となるとき、該電極2から前記容量素子及び前記外部の負荷を介して前記部分へ電流が流れ、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする。
(2)請求項2に係る電流開閉器は、
電極1と、電極2と、電極3と、容量素子と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記容量素子の一端に伝達されるべく構成され、
前記電極3の電位は前記容量素子の他端に伝達されるべく構成され、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔する一瞬、該電極2と該電極3との電位差が“0”又は極めて小さく、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする。
(3)請求項3に係る電流開閉器は、請求項1又は2において、
前記電極2と前記電極3を接触させた導通状態を保持し、該電極2と前記電極1を接触させ導通状態とすることにより、該電極3に前記外部の電源の前記一方の極性の電位を出力することを特徴とする。
(4)請求項4に係る直流電流開閉器は、
電極1と、電極2と、電極3と、容量素子と整流素子との直列接続回路と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記直列接続回路の一端に伝達されるべく構成され、
前記電極3の電位は前記直列接続回路の他端に伝達されるべく構成され、
前記直列接続回路の前記整流素子は、前記外部の電源の前記の一方の極性の電位に順方向であり、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔し非導通状態となるとき、該電極2から前記直列接続回路及び前記外部の負荷を介して前記部分へ電流が流れ、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする。
(5)請求項5に係る直流電流開閉器は、
電極1と、電極2と、電極3と、容量素子と整流素子との直列接続回路と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記直列接続回路の一端に伝達されるべく構成され、
前記電極3の電位は前記直列接続回路の他端に伝達されるべく構成され、
前記直列接続回路の前記整流素子は、前記外部の電源の前記の一方の極性の電位に順方向であり、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔する一瞬、該電極2と該電極3との電位差がほぼ“0”又は極めて小さく、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする。
(6)請求項6に係る電流開閉器は、
電極1と、電極2と、電極3と、容量素子と、を備え、
前記電極2には前記容量素子の一端が接続され、前記電極3には該容量素子の他端が接続され、前記電極1は外部の電源の一方の極性の電位が印加される電極であり、該電極3は該外部の該一方の極性の電位を出力又は非出力する電極であり、該電極1、該電極2及び該電極3が接触状態のときは、電流開閉器の開閉部が閉であり、該電極2と該電極3が離隔状態のときは、電流開閉器の開閉部が開であることを特徴とする。
(7)請求項7に係る直流電流開閉器は、
電極1と、電極2と、電極3と、容量素子と整流素子との直列接続回路と、を備え、
前記電極2には前記直列接続回路の一端が接続され、前記電極3には該直列接続回路の他端が接続され、前記電極1は外部の電源の一方の極性の電位が印加される電極であり、前記直列接続回路の前記整流素子は、該外部の電源の該一方の極性の電位に順方向であり、該電極3は該外部の電源の該一方の極性の電位を出力又は非出力する電極であり、該電極1、該電極2及び該電極3が接触状態のときは、直流電流開閉器の開閉部が閉であり、該電極2と該電極3が離隔状態のときは、直流電流開閉器の開閉部が開であることを特徴とする。
(8)請求項8に係る電流開閉器は、請求項1、2、3又は6のいずれかにおいて、
前記容量素子の両端に抵抗素子1が並列接続されていることを特徴とする。
(9)請求項7に係る直流電流開閉器は、請求項4、5又は7のいずれかにおいて、
前記容量素子の両端に抵抗素子1が並列接続されていることを特徴とする。
(10)請求項8に係る直流電流開閉器は、請求項4、5又は7のいずれかにおいて、
前記整流素子の両端に抵抗素子2が並列接続されていることを特徴とする。
In order to achieve the above object, the present invention has the following configuration.
(1) A current switch according to claim 1 is:
An electrode 1, an electrode 2, an electrode 3, and a capacitor;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the capacitive element,
The potential of the electrode 3 is configured to be transmitted to the other end of the capacitive element,
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. And the electrode 3 are separated and become non-conductive, current flows from the electrode 2 to the portion via the capacitive element and the external load, and arc discharge occurs between the electrode 2 and the electrode 3. It does not occur.
(2) A current switch according to claim 2 is:
An electrode 1, an electrode 2, an electrode 3, and a capacitor;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the capacitive element,
The potential of the electrode 3 is configured to be transmitted to the other end of the capacitive element,
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. The potential difference between the electrode 2 and the electrode 3 is “0” or very small for a moment when the electrode 3 is separated from the electrode 3, and no arc discharge is generated between the electrode 2 and the electrode 3.
(3) The current switch according to claim 3 is the current switch according to claim 1 or 2,
By maintaining the conductive state in which the electrode 2 and the electrode 3 are in contact with each other, the electrode 2 and the electrode 1 are brought into contact with each other to be in a conductive state, whereby the potential of the one polarity of the external power source is applied to the electrode 3. It is characterized by outputting.
(4) A DC current switch according to claim 4 is:
An electrode 1, an electrode 2, an electrode 3, and a series connection circuit of a capacitive element and a rectifying element;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the series connection circuit,
The potential of the electrode 3 is configured to be transmitted to the other end of the series connection circuit,
The rectifying element of the series connection circuit is forward to the potential of the one polarity of the external power source;
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. And the electrode 3 are separated from each other and become non-conductive, current flows from the electrode 2 to the portion via the series connection circuit and the external load, and an arc discharge occurs between the electrode 2 and the electrode 3. Is not generated.
(5) A DC current switch according to claim 5 is:
An electrode 1, an electrode 2, an electrode 3, and a series connection circuit of a capacitive element and a rectifying element;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the series connection circuit,
The potential of the electrode 3 is configured to be transmitted to the other end of the series connection circuit,
The rectifying element of the series connection circuit is forward to the potential of the one polarity of the external power source;
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. The potential difference between the electrode 2 and the electrode 3 is almost “0” or very small for a moment when the electrode 3 is separated from the electrode 3, and no arc discharge is generated between the electrode 2 and the electrode 3.
(6) A current switch according to claim 6 is:
An electrode 1, an electrode 2, an electrode 3, and a capacitor;
One end of the capacitive element is connected to the electrode 2, the other end of the capacitive element is connected to the electrode 3, and the electrode 1 is an electrode to which a potential of one polarity of an external power source is applied, The electrode 3 is an electrode that outputs or does not output the external potential of the one polarity. When the electrode 1, the electrode 2, and the electrode 3 are in contact, the switch of the current switch is closed. Yes, when the electrode 2 and the electrode 3 are in a separated state, the switch of the current switch is open.
(7) A DC current switch according to claim 7 is:
An electrode 1, an electrode 2, an electrode 3, and a series connection circuit of a capacitive element and a rectifying element;
One end of the series connection circuit is connected to the electrode 2, the other end of the series connection circuit is connected to the electrode 3, and the electrode 1 is an electrode to which a potential of one polarity of an external power supply is applied. And the rectifying element of the series connection circuit is forward to the potential of the one polarity of the external power supply, and the electrode 3 outputs or does not output the potential of the one polarity of the external power supply. When the electrode 1, the electrode 2 and the electrode 3 are in contact, the DC current switch is closed, and when the electrode 2 and the electrode 3 are separated, the direct current The opening / closing part of the switch is open.
(8) A current switch according to an eighth aspect is any one of the first, second, third, or sixth aspect,
A resistance element 1 is connected in parallel to both ends of the capacitive element.
(9) A DC current switch according to claim 7 is the method of any of claims 4, 5 or 7,
A resistance element 1 is connected in parallel to both ends of the capacitive element.
(10) A DC current switch according to claim 8 is the method of any one of claims 4, 5 and 7,
A resistance element 2 is connected in parallel to both ends of the rectifying element.

(A)本発明による電流開閉器は、アーク放電を発生させないで、高電圧直流、高電圧低周波交流、大電流直流及び大電流低周波交流電流を遮断できる。
(B)本発明による直流電流開閉器は、アーク放電を発生させないで、高電圧直流及び大電流直流を遮断できる。
(C)本発明による電流開閉器及び直流電流開閉器は、開閉器遮断(OFF)時にアーク放電を発生させることがなく、かつ、従来技術と比較し、構造が極めて小型簡素で製造コストが低い。
(D)特に、本発明による電流開閉器及び直流電流開閉器は、高電圧用に使用する場合、該開閉器に流れる電流容量が小さくなるため、さらに小型化が実現できる。
(E)従来技術のアーク放電消去開閉器は、アーク放電の発生は元来阻止できないものと容認して、発生するアーク放電を如何に小規模とするか、発生したアーク放電を如何に消去するかが課題であったが、本発明による電流開閉器及び直流電流開閉器は、アーク放電自体を発生させない開閉器である。
(A) The current switch according to the present invention can cut off high voltage direct current, high voltage low frequency alternating current, large current direct current and large current low frequency alternating current without causing arc discharge.
(B) The direct current switch according to the present invention can cut off high voltage direct current and large current direct current without causing arc discharge.
(C) The current switch and DC current switch according to the present invention do not generate arc discharge when the switch is turned off (OFF), and are extremely small and simple in structure and low in manufacturing cost as compared with the prior art. .
(D) In particular, when the current switch and the DC current switch according to the present invention are used for a high voltage, the current capacity flowing through the switch is reduced, so that further miniaturization can be realized.
(E) The arc discharge erasure switch of the prior art accepts that the occurrence of arc discharge cannot be prevented originally, and how to reduce the generated arc discharge, or how to erase the generated arc discharge. However, the current switch and the direct current switch according to the present invention are switches that do not generate arc discharge itself.

は、本発明による電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the current switch by this invention. は、本発明による電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the current switch by this invention. は、本発明による電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the current switch by this invention. は、本発明による電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the current switch by this invention. は、本発明による電流開閉器を応用した直流電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the direct current switch which applied the current switch by this invention. は、本発明による電流開閉器を応用した直流電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the direct current switch which applied the current switch by this invention. は、本発明による電流開閉器を応用した直流電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the direct current switch which applied the current switch by this invention. は、本発明による電流開閉器を応用した直流電流開閉器の実施の形態を示す構成図である。These are the block diagrams which show embodiment of the direct current switch which applied the current switch by this invention.

各実施の形態の説明の前に、本発明の基本事項を説明する。
各実施の形態において共通する本発明の基本的技術思想は、本発明の電流開閉器の実施の形態である電流開閉器を遮断(OFF)とする場合において、電流開閉器の導通時接触していた両電極が離隔を開始した瞬間、容量素子により、両電極間の電位差を“0”とし、 同様に、本発明の電流開閉器を応用した直流電流開閉器の実施の形態である直流電流開閉器を遮断(OFF)とする場合において、直流電流開閉器の導通時接触していた両電極が離隔を開始した瞬間、容量素子により、両電極間の電位差を極めて小さくし、離隔した両電極間に発生すべくアーク放電を発生させないことである。
Prior to the description of each embodiment, the basic items of the present invention will be described.
The basic technical idea of the present invention common to each embodiment is that when the current switch which is the embodiment of the current switch of the present invention is turned off (OFF), the contact is made when the current switch is turned on. At the moment when both electrodes start separating, the potential difference between both electrodes is set to “0” by the capacitive element. Similarly, the direct current switch according to the embodiment of the direct current switch using the current switch of the present invention is used. When the switch is turned off (OFF), the potential difference between the two electrodes is made extremely small by the capacitive element at the moment when both electrodes in contact with the DC current switch start to separate. The arc discharge is not generated in order to be generated.

(1)電流開閉器の実施の形態
(1−1)ハードウェア構造及び電気回路構成
図1〜図4は、本発明による実施の形態である電流開閉器の基本的原理を示す模式的ハードウェア構造図(電極1、電極2及び電極3)及び電気回路構成(C及びR1)である。
なお、本発明の基本部分に関係しない付帯的要素は各図において割愛しているが、明細書にて文言上で説明する。
(1) Embodiment of current switch (1-1) Hardware structure and electric circuit configuration FIGS. 1 to 4 are schematic hardware showing the basic principle of a current switch according to an embodiment of the present invention. It is structural drawing (electrode 1, electrode 2, and electrode 3) and electric circuit structure (C and R1).
Note that incidental elements not related to the basic part of the present invention are omitted in the drawings, but will be described in the description in the specification.

以下、図1〜図4を参照して、本発明の電流開閉器の実施の形態であるハードウェア構造及び電気回路構成を説明する。
本発明の電流開閉器の開閉部は、図1〜図4において、Et1で示される電極1、Et2で示される電極2、Et3で示される電極3で構成され、電極2Et2と電極3Et3を離隔させ、電極2Et2と電極3Et3が非導通、又は、電極2Et2と電極3Et3を接触させ、電極2Et2と電極3Et3が導通となることにより開閉器の機能を発揮する。
Hereinafter, with reference to FIGS. 1-4, the hardware structure and electric circuit structure which are embodiment of the current switch of this invention are demonstrated.
The switch of the current switch according to the present invention is composed of an electrode 1 indicated by Et1, an electrode 2 indicated by Et2, and an electrode 3 indicated by Et3 in FIGS. 1 to 4, and the electrode 2Et2 and the electrode 3Et3 are separated from each other. The electrode 2Et2 and the electrode 3Et3 are non-conducting, or the electrode 2Et2 and the electrode 3Et3 are brought into contact with each other, and the electrode 2Et2 and the electrode 3Et3 are brought into conduction, thereby exhibiting the function of the switch.

電極2Et2と電極3Et3を離隔させ、開閉部の電流を遮断(負荷への電力供給断)したうえで、さらにその後、電極1Et1と電極2Et2を離隔させる。
なお、以降、電極1Et1、電極2Et2、電極3Et3をそれぞれ単に、電極Et1、電極Et2、電極Et3と称す。
特許請求の範囲では、これらの電極をそれぞれ、電極1、電極2、電極3と称す。
The electrode 2Et2 and the electrode 3Et3 are separated from each other, the current of the opening / closing part is interrupted (power supply to the load is interrupted), and thereafter, the electrode 1Et1 and the electrode 2Et2 are separated from each other.
Hereinafter, the electrode 1Et1, the electrode 2Et2, and the electrode 3Et3 are simply referred to as an electrode Et1, an electrode Et2, and an electrode Et3, respectively.
In the claims, these electrodes are referred to as electrode 1, electrode 2, and electrode 3, respectively.

ただし、電極Et1、電極Et2、電極Et3のみでは、アーク放電を発生しない通常の電圧・電流の範囲内(すなわち、通常の開閉器が使用される電圧・電流の範囲内)において、開閉機能を有するものの、高電圧直流、高電圧交流、高電圧ではなくとも大電流直流又は高電圧ではなくとも大電流交流電流の遮断時にアーク放電が発生し開閉器を断(OFF)とすることはできない。 However, only the electrode Et1, the electrode Et2, and the electrode Et3 have a switching function within a normal voltage / current range in which arc discharge does not occur (that is, within a voltage / current range in which a normal switch is used). However, even if it is not high voltage direct current, high voltage alternating current, high voltage, or high voltage direct current, or not high voltage, arc discharge occurs when the high current alternating current is interrupted, and the switch cannot be turned off.

すなわち、本発明の電流開閉器及び後述する本発明の直流電流開閉器は、各電極を含むメカニカル部分のみ(すなわち、本発明の基本的技術思想である容量素子Cを除外した)において、アーク放電を意識しない通常の電圧範囲における耐圧、電流容量を満足するのみでよく、アーク放電阻止は電気回路で実現する。
したがって、本発明の電流開閉器及び後述する本発明の直流電流開閉器の開閉部はアーク放電を消滅させるための装置が不要で小型となる。
なお、上記及び明細書中の、高電圧(高圧)、低電圧(低圧)、高電圧ではない電圧、(低電圧とも一概に限定できないが。)大電流直流及び交流(周波数)は定性的表現のため、後述にて説明を補足する。
That is, the current switch according to the present invention and the direct current switch according to the present invention to be described later are arc discharge only in the mechanical part including each electrode (that is, excluding the capacitive element C which is the basic technical idea of the present invention). It is only necessary to satisfy the withstand voltage and current capacity in a normal voltage range that is not conscious of the arc, and arc discharge prevention is realized by an electric circuit.
Therefore, the current switch according to the present invention and the switch part of the direct current switch according to the present invention, which will be described later, do not require a device for extinguishing arc discharge, and become compact.
In addition, the high voltage (high voltage), the low voltage (low voltage), the voltage that is not a high voltage, and the high voltage direct current and the alternating current (frequency) are qualitative expressions. Therefore, the description will be supplemented later.

アーク放電を阻止するため、図1〜図4において“C”で表される容量素子(以降、容量素子Cと称す。特許請求の範囲では容量素子と称す。)を必要とする。
なお、必要に応じて、R1で表される抵抗素子(以降、抵抗素子R1と称す。特許請求の範囲では抵抗素子1と称す。)を容量素子Cに並列接続する。
In order to prevent arc discharge, a capacitive element represented by “C” in FIGS. 1 to 4 (hereinafter referred to as a capacitive element C. In the claims, it is referred to as a capacitive element) is required.
Note that a resistance element represented by R1 (hereinafter referred to as the resistance element R1. In the claims, referred to as the resistance element 1) is connected in parallel to the capacitor element C as necessary.

本発明の電流開閉器には、Li3で表される電流路3、Li4で表される電流路4、Li5で表される電流路5が存在する。
電流路3、電流路4、電流路5は、容量素子Cと抵抗素子R1との並列接続回路を電極Et2、電極Et3間に接続する。
以降、電流路3、電流路4、電流路5を、それぞれ、電流路Li3、電流路Li4、電流路Li5と称す。
また、電極Et3と、T3で表される電位出力用端子T3を接続する負荷L動作用電流路は電流路Li3である。
電流路Li3、電流路Li4、電流路Li5は、電極Et2と電極Et3を容量素子Cで接続する。
In the current switch of the present invention, there are a current path 3 represented by Li3, a current path 4 represented by Li4, and a current path 5 represented by Li5.
The current path 3, the current path 4, and the current path 5 connect a parallel connection circuit of the capacitive element C and the resistance element R1 between the electrode Et2 and the electrode Et3.
Hereinafter, the current path 3, the current path 4, and the current path 5 are referred to as a current path Li3, a current path Li4, and a current path Li5, respectively.
Further, the load L operation current path connecting the electrode Et3 and the potential output terminal T3 represented by T3 is a current path Li3.
In the current path Li3, the current path Li4, and the current path Li5, the electrode Et2 and the electrode Et3 are connected by the capacitive element C.

外部の電源の一方の極性の電位が印加されるT1で表される端子T1に、Li1で表される電流路1により電極Et1が接続される。
外部の電源の他方の極性の電位が印加されるT2で表される端子T2に、Li2で表される電流路2によりT4で表される電位出力用の端子T4が接続される。
以降、電流路1、電流路2をそれぞれ、電流路Li1、電流路Li2と称す。
An electrode Et1 is connected by a current path 1 represented by Li1 to a terminal T1 represented by T1 to which a potential of one polarity of an external power supply is applied.
A potential output terminal T4 represented by T4 is connected by a current path 2 represented by Li2 to a terminal T2 represented by T2 to which a potential of the other polarity of the external power supply is applied.
Hereinafter, the current path 1 and the current path 2 are referred to as a current path Li1 and a current path Li2, respectively.

なお、本発明の電流開閉器には、他方の極性の電位を伝達する端子T2、電流路Li2及び端子T4は必須要素ではない。
すなわち、外部の電源の一方の極性の電流路Li3を遮断すれば、電流が断となる。よって、本発明の電流開閉器には、端子T2、電流路Li2、端子T4は必須要素ではない。
In the current switch of the present invention, the terminal T2, the current path Li2, and the terminal T4 that transmit the potential of the other polarity are not essential elements.
That is, if the current path Li3 of one polarity of the external power supply is interrupted, the current is interrupted. Therefore, in the current switch according to the present invention, the terminal T2, the current path Li2, and the terminal T4 are not essential elements.

電極Et1、電極Et2及び電極Et3が全て接触(閉じている。)とき、端子T1の電位は、端子T3に出力される。 When the electrode Et1, the electrode Et2, and the electrode Et3 are all in contact (closed), the potential of the terminal T1 is output to the terminal T3.

各要素の接続関係を説明する。
端子T1には、電流路Li1を介して電極Et1が接続されている。
端子T2には、電流路Li2を介して端子T4が接続されている。
The connection relationship of each element will be described.
The electrode Et1 is connected to the terminal T1 through the current path Li1.
The terminal T4 is connected to the terminal T2 via the current path Li2.

電極Et2には、電流路Li4を介して、容量素子Cと抵抗素子R1の並列接続回路の一端が接続されている。 One end of a parallel connection circuit of the capacitive element C and the resistive element R1 is connected to the electrode Et2 via the current path Li4.

端子T3には、電流路Li5を介して、容量素子Cと抵抗素子R1の並列接続回路の他端が接続されている。 The other end of the parallel connection circuit of the capacitive element C and the resistive element R1 is connected to the terminal T3 via the current path Li5.

電極Et3は、電流路Li3を介して端子T3に接続されている。
端子T3、端子T4間には、外部の要素である負荷Lが接続されている。
The electrode Et3 is connected to the terminal T3 through the current path Li3.
A load L, which is an external element, is connected between the terminals T3 and T4.

電極Et1と電極Et3の間に電極Et2が存在する。
電極Et1を図示しない電流開閉器の筐体に固定してもよく、電極Et1に対して電極Et2及び電極Et3を可動可能とする。
An electrode Et2 exists between the electrode Et1 and the electrode Et3.
The electrode Et1 may be fixed to a casing of a current switch (not shown), and the electrode Et2 and the electrode Et3 are movable with respect to the electrode Et1.

電極Et1を固定とするか可動とするかは任意として、これら3個の電極は、いずれも相対的に全ての電極を離隔させて電流開閉器を非導通とし若しくは全ての電極を接触させ電流開閉器を導通とし、又は、電極Et2から電極Et3を離隔させ電流開閉器を非導通(負荷L電流断)とし若しくは電極Et2から電極Et3を離隔させた後、電極Et1から電極Et2を離隔させ、電極Et2を電極Et3に接触させることが可能である。 It is optional whether the electrode Et1 is fixed or movable, and these three electrodes are all separated from each other to make the current switch non-conductive, or all the electrodes are brought into contact with each other to make a current switch. The electrode Et2 is separated from the electrode Et2, the electrode Et3 is separated from the electrode Et2, the electrode Et3 is separated from the electrode Et2, and the electrode Et3 is separated from the electrode Et2. It is possible to contact Et2 with the electrode Et3.

本発明の電流開閉器の本来のスイッチ動作すなわち負荷Lへの電力の供給/非供給(遮断)は、電極Et2と電極Et3の接触/非接触(離隔)で行なわれる。
電極Et1と電極Et2の離隔は、負荷L電流を遮断した後、電流開閉器を完全にOFFする場合である。
The original switch operation of the current switch of the present invention, that is, the supply / non-supply (cutoff) of power to the load L is performed by the contact / non-contact (separation) of the electrode Et2 and the electrode Et3.
The separation between the electrode Et1 and the electrode Et2 is when the current switch is completely turned off after the load L current is cut off.

本発明の電流開閉器の通常の遮断は、電極Et1と電極Et2が接触させた状態で、電極Et3のみ、電極Et2から離隔させることである。
本発明の電流開閉器の通常の第2の遮断は、電極Et1と電極Et2の離隔であり電流開閉器を完全にOFFする場合である。
本発明の電流開閉器の通常の導通は、電極Et2と電極Et3が接触させた状態で、電極Et2を電極Et1に接触させることである。
The normal disconnection of the current switch of the present invention is that only the electrode Et3 is separated from the electrode Et2 while the electrode Et1 and the electrode Et2 are in contact with each other.
The normal second interruption of the current switch according to the present invention is the separation between the electrode Et1 and the electrode Et2, and is when the current switch is completely turned off.
The normal conduction of the current switch of the present invention is to bring the electrode Et2 into contact with the electrode Et1 in a state where the electrode Et2 and the electrode Et3 are in contact.

上記、3個の電極の動作は、図示しない本発明外の外力(ソレノイド、モータ、バネ、手動、等)により働くものとする。 The operation of the three electrodes is assumed to be performed by an external force (solenoid, motor, spring, manual, etc.) outside the present invention (not shown).

これら3個のそれぞれの電極の離隔動作は、図2を正視し、該図に示すように、電極Et1を基準として、電極Et3を上方向に平行移動させて電極Et2から離隔させるか、若しくは、図示しないが、電極Et3を横方向に水平移動させて電極Et2から離隔させるか、又は、上記離隔方法において電極Et3に回転を伴わせて電極Et2から離隔させるか若しくは別の如何なる離隔動作も可とし任意である。   The separation operation of each of these three electrodes may be performed by looking straight at FIG. 2 and, as shown in FIG. 2, by moving the electrode Et3 upward in parallel with the electrode Et1 as a reference, or separating from the electrode Et2. Although not shown in the figure, the electrode Et3 is moved horizontally in the horizontal direction to be separated from the electrode Et2, or the electrode Et3 is rotated away from the electrode Et2 in the above separation method, or any other separation operation is allowed. Is optional.

図3を正視し、該図に示すように、電極Et1を基準として、電極Et2を上方向に平行移動させて電極Et1から離隔させるか、若しくは、図示しないが、電極Et2を横方向に水平移動させて電極Et1から離隔させるか、又は、上記離隔方法において電極Et2に回転を伴わせて電極Et1から離隔させるか若しくは別の如何なる離隔動作も可とし任意である。 3, the electrode Et2 is translated upward from the electrode Et1 and separated from the electrode Et1 with reference to the electrode Et1, or the electrode Et2 is moved horizontally in the horizontal direction (not shown). The electrode Et1 can be separated from the electrode Et1, or the electrode Et2 can be separated from the electrode Et1 by rotating the electrode Et2 in the above-described separation method, or any other separation operation can be performed.

または、図2において、電極Et2を基準として、電極Et3を上方向に平行移動させて電極Et2から離隔させるか、若しくは、図示しないが、電極Et3を横方向に水平移動させて電極Et2から離隔させるか、又は、上記離隔方法において電極Et3に回転を伴わせて電極Et2から離隔させるか若しくは別の如何なる離隔動作も可とし任意である。 Alternatively, in FIG. 2, the electrode Et3 is translated upward from the electrode Et2 and separated from the electrode Et2, or although not shown, the electrode Et3 is horizontally moved laterally and separated from the electrode Et2. Alternatively, in the above-described separation method, the electrode Et3 is separated from the electrode Et2 with rotation, or any other separation operation is allowed and optional.

さらにまた、図2において、電極Et2を基準として、電極Et1を下方向に平行移動させて電極Et2から離隔させるか、若しくは、図示しないが、電極Et1を横方向に水平移動させて電極Et2から離隔させるか、又は、上記離隔方法において電極Et1に回転を伴わせて電極Et2から離隔させるか若しくは別の如何なる離隔動作も可とし任意である。 Furthermore, in FIG. 2, the electrode Et1 is translated downward from the electrode Et2 with reference to the electrode Et2, or is separated from the electrode Et2 by moving the electrode Et1 horizontally in the horizontal direction, although not shown. In the above-described separation method, the electrode Et1 is rotated and separated from the electrode Et2, or any other separation operation is allowed and optional.

また、図2において、電極Et3を基準として、電極Et1及び電極Et2を下方向に平行移動させて電極Et3から離隔させるか、若しくは、図示しないが、電極Et1及び電極Et2を横方向に水平移動させて電極Et3から離隔させるか、又は、上記離隔方法において電極Et1及び電極Et2に回転を伴わせて電極Et3から離隔させるか若しくは別の如何なる離隔動作も可とし任意である。 In FIG. 2, the electrode Et1 and the electrode Et2 are moved downward in parallel with respect to the electrode Et3 and separated from the electrode Et3, or although not shown, the electrode Et1 and the electrode Et2 are moved horizontally in the horizontal direction. The electrode Et3 may be separated from the electrode Et3, or the electrode Et1 and the electrode Et2 may be separated from the electrode Et3 by rotation in the above-described separation method, or any other separation operation may be permitted.

図4において、電極Et2を基準として、電極Et3を電極Et2に接触させてもよい。これは、この状態で、電極Et2を電極Et1に接触させて、電流開閉器をONに遷移させる前段階である In FIG. 4, the electrode Et3 may be brought into contact with the electrode Et2 with the electrode Et2 as a reference. This is the previous stage in which the electrode Et2 is brought into contact with the electrode Et1 and the current switch is turned ON in this state.

電極の離隔動作と接触動作は、上記それぞれの離隔動作に対して逆の経路をとる。
このように、3個のいずれかの電極を基準として、他の電極を移動させることが可能である。
The electrode separation operation and the contact operation take opposite paths to the above-described separation operations.
In this way, it is possible to move other electrodes with reference to any one of the three electrodes.

このような動作が可能であるということは、離隔する電極間にアーク放電が発生しないためであり、電極間の電流容量を確保できれば、如何なる電極の形状、離隔形態も可とする電流開閉器の形状の自由度、離隔動作の自由度を与えるものである。   The fact that such an operation is possible is because no arc discharge occurs between the electrodes that are spaced apart from each other, and if the current capacity between the electrodes can be ensured, any shape and separation form of the electrodes is possible. This gives the degree of freedom of shape and freedom of separation operation.

上記について補足すると、スイッチのようなものは、スイッチの設置位置により、元来、上下左右の区別が存在しないため、電極の離隔方向は極座標的に無数あり、また、離隔する電極において、どの電極を離隔動作の基準位置とするかは開閉器の製造上、用途の問題であり、これらを特定する必要性はない。   Supplementing the above, since there is no distinction between up and down and left and right depending on the position of the switch, there are innumerable electrode separation directions in polar coordinates. Whether or not is set as the reference position for the separation operation is a problem in use in manufacturing the switch, and there is no need to specify these.

どの電極の組み合わせが接触/非接触であるかが、本発明の電流開閉器及び本発明の直流電流開閉器の基本的技術思想である容量素子Cの一端及び他端の電位を制御する(容量素子Cの充放電)ことにおいて重要である。 Which electrode combination is contact / non-contact controls the potential of one end and the other end of the capacitive element C, which is the basic technical idea of the current switch of the present invention and the direct current switch of the present invention (capacitance). (Charging / discharging of the element C).

また、各電極の離隔のための移動には、該移動を自在とし、かつ、移動軌道を保持するための支えが必要であるが、これは本発明の本質ではないため、図示を割愛している。
用途、必要に応じて適切な移動を可能とする支持体(支え)を考慮することで足りる。
In addition, the movement for separating each electrode requires a support for making the movement free and maintaining the movement trajectory. However, this is not the essence of the present invention, so the illustration is omitted. Yes.
It is sufficient to consider the support (support) that enables appropriate movement as required.

さらにまた、本発明は電流スイッチであるため、感電を防止するための任意の絶縁体から構成される筐体が必要であるが、これも本発明の本質ではないため、必要に応じて適切な筐体を考慮することで足りるので図示を割愛している。 Furthermore, since the present invention is a current switch, a housing composed of an arbitrary insulator for preventing an electric shock is necessary. However, this is not the essence of the present invention, so that it is appropriate as necessary. Since it is sufficient to consider the housing, illustration is omitted.

以上説明したハードウェア構造及び電気回路構成は、高電圧直流、高電圧交流、高電圧ではなくとも(低電圧とも一概に限定できないが。)大電流直流又は高電圧ではなくとも(低電圧とも一概に限定できないが。)大電流低周波交流電流を遮断するとき、アーク放電を発生させないための必要最小限の必須要素を記載している。
図1〜図4は、本発明の電流開閉器がアーク放電を発生させないで、電流を遮断できる原理を示すものである。
The hardware structure and electric circuit configuration described above are not high-voltage direct current, high-voltage alternating current, or high voltage (although not limited to low voltage). (It is not limited to the above.) The minimum necessary elements for preventing arc discharge when a high-current low-frequency alternating current is interrupted are described.
1 to 4 show the principle that the current switch of the present invention can cut off the current without generating arc discharge.

したがって、代表的に図1〜図4により、本発明の電流開閉器のハードウェア構造及び電気回路構成を説明し、後述する動作説明もこれに基づく。 Therefore, the hardware structure and electric circuit configuration of the current switch according to the present invention will be described with reference to FIGS.

必須要素という観点からは、外部の電流源の一方の極性の電位を伝送する電流路のみを遮断することで足りるので、端子T2、端子T4及び電流路Li2も本発明の電流開閉器には不要とも言える。すなわち、必須要素ではない。 From the viewpoint of an essential element, it is sufficient to cut off only the current path that transmits the potential of one polarity of the external current source, so that the terminal T2, the terminal T4, and the current path Li2 are also unnecessary for the current switch according to the present invention. It can also be said. That is, it is not an essential element.

逆に、系統のhot側とcold側の区別が不明で、関電防止等のために両方をOFFしたい場合は、この電流開閉器又は直流電流開閉器を一方の極性及び他方の極性の電流路に挿入することも好適である。 Conversely, if the distinction between the hot side and the cold side of the system is unknown and you want to turn off both to prevent electrical charges, etc., this current switch or DC current switch should be connected to the current path of one polarity and the other polarity. It is also suitable to insert.

(1−2)ハードウェア及び電気回路の動作
図1〜図4を参照し、本発明の電流開閉器のハードウェア及び電気回路の動作を説明する、
(1-2) Operation of Hardware and Electric Circuit With reference to FIGS. 1 to 4, the operation of the hardware and electric circuit of the current switch according to the present invention will be described.

図1は、電極Et1、電極Et2及び電極Et3が全て接触している状態であり、端子T1、端子T2間に外部の電源を接続した場合を考える。
たとえば、外部の高電圧直流電源電位を印加するとする。外部の直流電源の一方の極性の電位を正極として、端子T1に印加し、外部の直流電源の他方の極性の電位を負極として、端子T2に印加したとする。
FIG. 1 shows a state in which the electrode Et1, the electrode Et2, and the electrode Et3 are all in contact, and a case where an external power source is connected between the terminal T1 and the terminal T2 is considered.
For example, assume that an external high voltage DC power supply potential is applied. It is assumed that the potential of one polarity of the external DC power supply is applied as a positive electrode to the terminal T1, and the potential of the other polarity of the external DC power supply is applied as a negative electrode to the terminal T2.

外部の負荷Lが要求する条件により、外部の高圧直流電源又は高圧ではないが大電流直流電源を接続することもある。「高圧の電流値<高圧ではないが大電流値」。左式のような電流の大小関係が一般的である。
また、高圧又は高圧ではない(以下、低圧と称することもある。)電圧の大きさの大小関係による区分により、「高圧の電流値≪低圧の大電流値」ともなる。
Depending on the conditions required by the external load L, an external high-voltage DC power supply or a high-current DC power supply that is not high-voltage may be connected. "High-voltage current value <high-voltage but not high-voltage value". The magnitude relation of current as shown in the left formula is common.
In addition, “high voltage current value << low voltage large current value” is also obtained depending on the magnitude of the magnitude of the voltage, which is not high voltage or high voltage (hereinafter also referred to as low voltage).

端子T1に印加された正極電位は、電流路Li1、電極Et1、電極Et2及び電極Et3に伝達され、電流路Li3を介して端子T3に出力される。
端子T2に印加された負極電位は、電流路Li2を介して端子T4に直結しているため、端子T4に外部の直流電源の負極電位が出力される。
The positive potential applied to the terminal T1 is transmitted to the current path Li1, the electrode Et1, the electrode Et2, and the electrode Et3, and is output to the terminal T3 through the current path Li3.
Since the negative potential applied to the terminal T2 is directly connected to the terminal T4 via the current path Li2, the negative potential of the external DC power supply is output to the terminal T4.

端子T3、端子T4間に外部の要素である負荷Lを接続すると該負荷Lに電力が供給される。これがスイッチ(本発明の電流開閉器)ON(電流開閉器が導通している状態であり、電流開閉器が閉の状態)の状態である。   When a load L, which is an external element, is connected between the terminals T3 and T4, electric power is supplied to the load L. This is the state of the switch (current switch of the present invention) ON (the current switch is conductive and the current switch is closed).

図1では、容量素子Cの電荷は、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li5の経路で完全に放電されている。   In FIG. 1, the charge of the capacitive element C is completely discharged through the current path Li4, the electrode Et2, the electrode Et3, the current path Li3, and the current path Li5.

次に図2を参照して、本発明の電流開閉器の動作を説明する。
図2は、スイッチ(本発明の電流開閉器)OFF(電流開閉器が非導通している状態であり、電流開閉器が開の状態)の状態である。
図2においては、電極Et3が電極Et2から離隔し、電極Et2と電極Et3が非接触であるため、端子T1、端子T3間は非導通であり、負荷Lに電力が供給されない。
Next, the operation of the current switch of the present invention will be described with reference to FIG.
FIG. 2 shows a state in which the switch (current switch of the present invention) is OFF (the current switch is non-conductive and the current switch is open).
In FIG. 2, since the electrode Et3 is separated from the electrode Et2 and the electrode Et2 and the electrode Et3 are not in contact with each other, the terminals T1 and T3 are non-conductive, and no power is supplied to the load L.

図2に遷移する前の図1の状態で、容量素子C(コンデンサ)は、容量素子Cの一端(正極)から、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li5、容量素子Cの他端(負極)の経路で放電されている。
電極Et2が電極Et3及び電極Et1に接触していない状態では、容量素子Cの放電は、抵抗素子R1を介して行われる。
In the state of FIG. 1 before the transition to FIG. 2, the capacitive element C (capacitor) has a current path Li4, an electrode Et2, an electrode Et3, a current path Li3, a current path Li5, a capacitance from one end (positive electrode) of the capacitive element C. It is discharged through the path of the other end (negative electrode) of the element C.
In a state where the electrode Et2 is not in contact with the electrode Et3 and the electrode Et1, the capacitive element C is discharged through the resistance element R1.

本発明の電流開閉器を遮断(OFF、すなわち、負荷Lへの電力供給を断とする。)するため、図1の状態から図2の状態に遷移(すなわち、電極Et3を電極Et2から離隔する。)するとき、仮に、図1、図2に示す容量素子Cが存在しないで、容量素子Cの両端部が開放(オープン。)されていると、電極Et2と電極Et3との間にアーク放電が発生し、電極Et3を電極Et2から遠ざけても、アーク放電が伸びるのみでアーク放電は消滅しない。 In order to cut off the current switch of the present invention (OFF, that is, the power supply to the load L is cut off), the state transitions from the state of FIG. 1 to the state of FIG. 2 (that is, the electrode Et3 is separated from the electrode Et2). .)), If the capacitive element C shown in FIGS. 1 and 2 does not exist and both ends of the capacitive element C are open (open), an arc discharge occurs between the electrode Et2 and the electrode Et3. Even if the electrode Et3 is moved away from the electrode Et2, the arc discharge only extends and the arc discharge does not disappear.

この理由は、容量素子Cが存在しな場合で、端子T1と端子T2との間に高電圧直流電源を印加した場合、電極Et1及び電極Et2は端子T1の電位であり、図2において電極Et3は、電極Et2と離隔しているため、電極Et3は、端子T3の電位(すなわち、端子T2の電位)であり、図1から図2に遷移するすなわち電極Et3が電極Et2から離隔するとき、電極Et2と電極Et3との間に、端子T1と端子T2間の電位差が発生しアーク放電が発生する。 This is because when the capacitive element C is not present and a high voltage DC power source is applied between the terminal T1 and the terminal T2, the electrode Et1 and the electrode Et2 are the potentials of the terminal T1, and the electrode Et3 in FIG. Is separated from the electrode Et2, the electrode Et3 is at the potential of the terminal T3 (that is, the potential of the terminal T2), and when the electrode Et3 is separated from the electrode Et2, the electrode Et3 is separated from the electrode Et2. A potential difference between the terminal T1 and the terminal T2 is generated between Et2 and the electrode Et3, and arc discharge is generated.

または、高電圧ではないが大電流直流電源を同様に接続し、端子T3、端子T4間に大電流(大容量負荷Lを接続)を流している場合も、アーク放電が発生する。
すなわち、高電圧及び/又は大電流が流れる電流路を遮断するとき、該遮断部に必然的にアーク放電が発生する。
Alternatively, although not a high voltage, a large current DC power supply is connected in the same manner, and arc discharge also occurs when a large current (a large load L is connected) flows between the terminals T3 and T4.
That is, when a current path through which a high voltage and / or a large current flows is interrupted, an arc discharge inevitably occurs at the interrupting portion.

しかしながら、本発明の電流開閉器には、電極Et2と電極Et3との間に容量素子Cが接続されているため、電極Et3が電極Et2から離隔する一瞬、電極Et2と電極Et3間に発生すべくアーク放電電流の代替電流が容量素子Cを介して流れるため該アーク放電は発生しない。
該アーク放電代替電流の電流路は、電極Et2から電流路Li4、容量素子C、電流路Li5、端子T3、負荷L、端子T4、電流路Li2、端子T2である。
However, in the current switch according to the present invention, since the capacitive element C is connected between the electrode Et2 and the electrode Et3, the electrode Et3 should be generated between the electrode Et2 and the electrode Et3 for a moment when the electrode Et3 is separated from the electrode Et2. Since an alternative current of the arc discharge current flows through the capacitive element C, the arc discharge does not occur.
The current path of the arc discharge alternative current is from the electrode Et2 to the current path Li4, the capacitive element C, the current path Li5, the terminal T3, the load L, the terminal T4, the current path Li2, and the terminal T2.

これを別の観点から考察すると、電極Et2と電極Et3との間に容量素子Cが接続されているため、電極Et3が電極Et2から離隔する一瞬は、電極Et2の電位と電極Et3の電位が同電位であり、電極Et2と電極Et3との電位差が、“0”Vであるためである。
仮に、容量素子Cが完全に放電していない場合は、電極Et2と電極Et3との電位差は極めて小さいものとなる。
電位差がなければ又は小さいければ、アーク放電は発生しない。
Considering this from another viewpoint, since the capacitive element C is connected between the electrode Et2 and the electrode Et3, the potential of the electrode Et2 and the potential of the electrode Et3 are the same for a moment when the electrode Et3 is separated from the electrode Et2. This is because the potential difference between the electrode Et2 and the electrode Et3 is “0” V.
If the capacitive element C is not completely discharged, the potential difference between the electrode Et2 and the electrode Et3 is extremely small.
If there is no potential difference or if it is small, no arcing will occur.

電極Et3が電極Et2から離隔する一瞬は、容量素子Cを流れる電流位相は進み、容量素子Cの端子間電圧位相は遅れ、該端子間電位差は “0”Vである。
したがって、電極Et2と電極Et3との間にアーク放電が発生しない。
For a moment when the electrode Et3 is separated from the electrode Et2, the phase of the current flowing through the capacitive element C is advanced, the voltage phase between the terminals of the capacitive element C is delayed, and the potential difference between the terminals is “0” V.
Therefore, no arc discharge occurs between the electrode Et2 and the electrode Et3.

容量素子Cの一端すなわち電極Et2と容量素子Cの他端すなわち電極Et3との電位差と、電極Et2と電極Et3との時間を考慮した離隔間隔を考えると、電極Et2から電極Et3が離隔する際、すなわち電極Et2と電極Et3との離隔間隔が、離隔した一瞬である無限小から、Xmm/msの速度で離隔する過程で、電極Et2の電位と電極Et3の電位とが電極間電位差放電(アーク放電ではない。)を発生する電位差に至るまで容量素子Cが充電(容量素子Cの端子間電位差の増大)される時刻には、電極Et3が電極Et2から必要十分離隔する。 Considering the potential difference between one end of the capacitive element C, that is, the electrode Et2 and the other end of the capacitive element C, that is, the electrode Et3, and the separation interval considering the time between the electrode Et2 and the electrode Et3, when the electrode Et3 is separated from the electrode Et2, That is, in the process in which the separation distance between the electrode Et2 and the electrode Et3 is separated at an Xmm / ms speed from an infinitesimal distance that is a moment of separation, the potential of the electrode Et2 and the potential of the electrode Et3 are changed between the electrodes. The electrode Et3 is separated from the electrode Et2 by a sufficient amount at the time when the capacitive element C is charged until the potential difference is generated (increased potential difference between terminals of the capacitive element C).

Xは、電極Et3が外力により移動させられる単位時間(ms)あたりの離隔距離である。 X is a separation distance per unit time (ms) by which the electrode Et3 is moved by an external force.

該電位差放電は、概略、電極間隔1mm以下、電位差1,000V以上で発生すると言われている。電極Et2と電極Et3との電位差が1,000Vでも、離隔間隔が1mm超となれば、該離隔した間隔に電位差放電を発生することはなく、かつ、これが発生しさらにアーク放電に移行することはない。
ここで、電位差放電とは一般的に、電極間に高圧を印加した場合に発生する電極間の絶縁耐圧を超えた場合に発生する放電である。
The potential difference discharge is generally said to occur when the electrode interval is 1 mm or less and the potential difference is 1,000 V or more. Even if the potential difference between the electrode Et2 and the electrode Et3 is 1,000 V, if the separation interval exceeds 1 mm, a potential difference discharge does not occur at the separation interval, and this occurs and further shifts to arc discharge. Absent.
Here, the potential difference discharge is generally a discharge that occurs when the withstand voltage between the electrodes that occurs when a high voltage is applied between the electrodes is exceeded.

端子T1、端子T2間に、高電圧ではないが大電流直流電源を接続した場合は、さらに電位差放電が発生することは困難である。ただ、電極Et2と電極Et3の離隔時瞬間のアーク放電に留意すればよい。 If a high-current DC power source is connected between the terminals T1 and T2 but not a high voltage, it is difficult to generate a potential difference discharge. However, attention should be paid to the arc discharge at the time of separation between the electrode Et2 and the electrode Et3.

なお、端子T3、端子T4間の電流値(負荷L電流値)により、容量素子Cの容量を決める。該電流値が大きい程、容量素子Cの容量を大きくする必要がある。
また、電極Et3が電極Et2から離隔する速度も重要であり、容量素子Cの充電による容量素子Cの端子間電位差と電極Et2と電極Et3の離隔間隔において、アーク放電を発生しないで離隔した後、電極Et2と電極Et3に電位差放電が発生しないように離隔間隔を大とすべく離隔速度を大とする。
Note that the capacitance of the capacitive element C is determined by the current value between the terminals T3 and T4 (load L current value). It is necessary to increase the capacitance of the capacitive element C as the current value increases.
In addition, the speed at which the electrode Et3 is separated from the electrode Et2 is also important. After the electrode Et3 is separated without causing arc discharge in the potential difference between the terminals of the capacitive element C due to the charging of the capacitive element C and the separation interval between the electrode Et2 and the electrode Et3, The separation speed is increased so as to increase the separation interval so that potential difference discharge does not occur between the electrodes Et2 and Et3.

なお、本発明の電流開閉器では、容量素子Cは、通常の容量すなわちμF単位、通常の開閉器の電極接点切り離し速度で十分である。 In the current switch according to the present invention, the capacitance C is sufficient for the normal capacitance, that is, in units of μF, and the normal contact point separation speed of the switch.

図1においては、容量素子Cに蓄積されている電荷は“0”であり、容量素子Cの一端と他端の電位差は“0”Vであり、容量素子Cの一端と他端の電位は、電極Et2、電極Et3、電極Et1及び端子T1の電位であったが、図2において、電極Et2と電極Et3が離隔して微小時間(容量素子Cと負荷Lとの時定数にもよるが)経過後、容量素子Cの他端の電位は、端子T2の電位(端子T2の電位を基準として“0”電位)に漸近していく。 In FIG. 1, the charge accumulated in the capacitor C is “0”, the potential difference between one end and the other end of the capacitor C is “0” V, and the potential at one end and the other end of the capacitor C is The potentials of the electrode Et2, the electrode Et3, the electrode Et1, and the terminal T1 are shown in FIG. 2, but the electrode Et2 and the electrode Et3 are separated from each other in FIG. 2 for a short time (depending on the time constant between the capacitive element C and the load L). After the lapse of time, the potential at the other end of the capacitive element C gradually approaches the potential at the terminal T2 (“0” potential with respect to the potential at the terminal T2).

すなわち、容量素子Cの端子間電位差は、端子T1と端子T2間の電位差となる。
よって、電極Et2と電極Et3との電位差は、端子T1と端子T2との電位差と同一となり、本来電位差放電が発生する電位差に達するが、電極Et2と電極Et3が必要十分に離隔し、該放電が発生せず、かつアーク放電に移行することはない。
That is, the potential difference between the terminals of the capacitive element C is the potential difference between the terminal T1 and the terminal T2.
Therefore, the potential difference between the electrode Et2 and the electrode Et3 is the same as the potential difference between the terminal T1 and the terminal T2, and reaches the potential difference where the potential difference discharge originally occurs, but the electrode Et2 and the electrode Et3 are separated sufficiently and the discharge is It does not occur and does not shift to arc discharge.

なお、抵抗素子R1は、容量素子Cに充電された電荷を放電するためのものであが、図2の状態では、該抵抗素子R1が端子T1と端子T2間の閉回路を構成する要素であるため、アーク放電を発生せず負荷Lに電力を供給しなくなった現在でも負荷Lの電力入力両端間(すなわち、端子T3、端子T4間)に、端子T1と端子T2間に印加された電位の一部(抵抗素子R1の抵抗値と負荷L直流抵抗値の比にもよるが)が発生しているため、電極Et2を次の段階に遷移(図3及び図4に)させる。 The resistor element R1 is for discharging the electric charge charged in the capacitor element C. In the state shown in FIG. 2, the resistor element R1 is an element constituting a closed circuit between the terminal T1 and the terminal T2. Therefore, the potential applied between the terminals T1 and T2 between both ends of the power input of the load L (that is, between the terminals T3 and T4) even when no electric discharge is generated and no power is supplied to the load L. Part (depending on the ratio between the resistance value of the resistance element R1 and the load L DC resistance value), the electrode Et2 is shifted to the next stage (FIGS. 3 and 4).

抵抗素子R1の抵抗値をあまり小さくすると、電極Et2から電極Et3を離隔して、本発明の電流開閉器を断とした場合も、抵抗素子R1を介して負荷L電流が流れるため、抵抗素子R1の抵抗値は、容量素子Cの電荷を放電する程度のものとする。 If the resistance value of the resistance element R1 is made too small, the load L current flows through the resistance element R1 even when the current switch of the present invention is disconnected by separating the electrode Et3 from the electrode Et2. It is assumed that the resistance value is such that the electric charge of the capacitive element C is discharged.

なお、図2の状態では、容量素子Cは、外部の一方の極性(正極)の電位が印加された端子T1にから、電流路Li1、電極Et1、電極Et2、電流路Li4、容量素子C、電流路Li5、端子T3、負荷L、端子T4、電流路Li2、外部の他方の極性(負極)の電位が印加された端子T2の電流路で充電される。 In the state of FIG. 2, the capacitive element C is connected to the current path Li1, the electrode Et1, the electrode Et2, the current path Li4, the capacitive element C, the terminal T1 to which an external potential of one polarity (positive electrode) is applied. Charging is performed through the current path Li5, the terminal T3, the load L, the terminal T4, the current path Li2, and the current path of the terminal T2 to which the other potential of the other polarity (negative electrode) is applied.

図2〜図4を参照して、次の段階における本発明の電流開閉器の動作を説明する。
図2の状態において、容量素子Cの一端の電位は、電極Et2、電極Et1及び端子T1の電位であるが、図3の状態に遷移(電極Et2が電極Et1から離隔する。)する直前は、容量素子Cの他端の電位が、端子T2の電位の電位となっているか又は、これに近い電位となっている必要がある。すなわち、容量素子Cの端子間電位差が、端子T1と端子T2との電位差又はこれに近い電位差となっている必要がある。
The operation of the current switch according to the present invention in the next stage will be described with reference to FIGS.
In the state of FIG. 2, the potential at one end of the capacitive element C is the potential of the electrode Et2, the electrode Et1, and the terminal T1, but immediately before the transition to the state of FIG. 3 (the electrode Et2 is separated from the electrode Et1). The potential at the other end of the capacitive element C needs to be equal to or close to the potential of the terminal T2. That is, the potential difference between the terminals of the capacitive element C needs to be a potential difference between the terminal T1 and the terminal T2 or a potential difference close thereto.

これを満足している場合、図2の状態から図3の状態(電極Et1から電極Et2の離隔)に遷移しても、電極Et1と電極Et2間にはアーク放電は発生しない。
これは、電極Et1と電極Et2が離隔する一瞬、電極Et1と電極Et2間の電位差が“0”又は小さいためである。
When this is satisfied, even if the state shown in FIG. 2 is changed to the state shown in FIG. 3 (the distance between the electrode Et1 and the electrode Et2), no arc discharge occurs between the electrode Et1 and the electrode Et2.
This is because the potential difference between the electrode Et1 and the electrode Et2 is “0” or small for a moment when the electrode Et1 and the electrode Et2 are separated.

次に、図3において、容量素子Cの電荷は抵抗素子R1を介して放電を開始し、容量素子Cの端子間電圧は無限小に漸近(これに要する時間は、容量素子Cと抵抗素子R1の時定数による。)していく。 Next, in FIG. 3, the electric charge of the capacitive element C starts to be discharged through the resistive element R1, and the voltage between the terminals of the capacitive element C is asymptotic to infinitesimal (the time required for this is the capacitive element C and the resistive element R1). Of time constant).

仮に、図2の状態から瞬間的(または、速く)に図4の状態へ遷移したとすると、容量素子Cの電荷が抵抗素子R1を介して放電する時間を与えられずに電極Et2と電極Et3が導通し、容量素子Cに蓄積された電荷により容量素子Cには短絡電流が流れる。
短絡経路は、容量素子Cの一端から、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li15、容量素子Cの他端である。
If the state of FIG. 2 is instantaneously (or quickly) transitioned to the state of FIG. 4, the electrode Et2 and the electrode Et3 are not given time for discharging the charge of the capacitive element C through the resistance element R1. Is conducted, and a short-circuit current flows through the capacitive element C due to the charge accumulated in the capacitive element C.
The short circuit path is from one end of the capacitive element C to the other end of the current path Li4, the electrode Et2, the electrode Et3, the current path Li3, the current path Li15, and the capacitive element C.

このような事象が発生すると、電極Et2及び電極Et3の接触部に損傷を与える可能性がある。
すなわち、電極Et2、電極Et3間に大電流が流れ、電極Et2と電極Et3が完全に接触する直前の瞬間は、電極Et2と電極Et3との接触抵抗が大きく(すなわち、不完全接触の瞬間時の接触抵抗)該接触部分に発熱が発生し両電極の溶融、両電極間の容着など両電極の接触部分に損傷を来す。
When such an event occurs, there is a possibility of damaging the contact portion between the electrode Et2 and the electrode Et3.
That is, a large current flows between the electrode Et2 and the electrode Et3, and the contact resistance between the electrode Et2 and the electrode Et3 is large immediately before the electrode Et2 and the electrode Et3 are completely in contact (that is, at the moment of incomplete contact). Contact resistance) Heat is generated at the contact portion, causing damage to the contact portion of both electrodes, such as melting of both electrodes and adhesion between both electrodes.

このような事象を回避するため、図3の状態を維持する時間を少し設け、蓄積された容量素子Cの電荷を抵抗素子R1により放電させることが好適である。
図3の状態では容量素子Cの端子間は短絡されずに、容量素子Cの蓄積電荷を抵抗素子R1により放電できる。
In order to avoid such an event, it is preferable to provide a little time for maintaining the state of FIG. 3 and to discharge the accumulated charge of the capacitive element C by the resistive element R1.
In the state of FIG. 3, the terminals of the capacitive element C are not short-circuited, and the accumulated charge of the capacitive element C can be discharged by the resistive element R1.

このような状態のままで、次にスイッチ(本発明の電流開閉器)ON(電流開閉器が導通している状態であり、電流開閉器が閉の状態)を迎えるまで放置していてもかまわない。 In this state, the switch (current switch of the present invention) may be left on until the switch is turned on (the current switch is in a conductive state and the current switch is closed). Absent.

次にスイッチ(本発明の電流開閉器)ONの状態に遷移するときは、図4(すなわち、電極Et2と電極Et3を接触させている状態)の状態を維持しながら、電極Et2を電極Et1に接触させる。
すなわち、図1に復帰(スイッチON)する。
Next, when the switch (current switch of the present invention) is turned on, the electrode Et2 is changed to the electrode Et1 while maintaining the state of FIG. 4 (ie, the state where the electrode Et2 and the electrode Et3 are in contact). Make contact.
That is, it returns to FIG. 1 (switch ON).

上記の過程(図4すなわち、電極Et2と電極Et3を接触させている状態)を経過しない(図3すなわち、電極Et2と電極Et3を離隔させている状態)で、先に電極Et2を電極Et1に接触させて(図2の状態)から、その後、電極Et3を電極Et2に接触させ、スイッチ(本発明の電流開閉器)ONの状態(図1の状態)に遷移させると、容量素子Cの両端は、電極Et2と電極Et3により短絡される。 Without passing the above process (FIG. 4, ie, the state where the electrode Et2 and the electrode Et3 are in contact) (FIG. 3, ie, the state where the electrode Et2 and the electrode Et3 are separated), the electrode Et2 is first moved to the electrode Et1. When the electrode Et3 is brought into contact with the electrode Et2 after being brought into contact (the state shown in FIG. 2), and the switch (current switch according to the present invention) is turned on (the state shown in FIG. 1), both ends of the capacitor C Are short-circuited by the electrode Et2 and the electrode Et3.

図2の状態では、容量素子Cが充電される。
図1の状態に遷移する前の図2の状態において容量素子Cに充電された電荷が、図1の状態において、急激に放電されるため、電極Et2、電極Et3間に大電流が流れ、電極Et2と電極Et3が完全に接触する直前の瞬間は、電極Et2と電極Et3との接触抵抗が大きく(すなわち、不完全接触の瞬間時の接触抵抗)該接触部分に発熱が発生し両電極の溶融、両電極間の容着など両電極の接触部分に損傷を来す。
In the state of FIG. 2, the capacitive element C is charged.
The charge charged in the capacitive element C in the state of FIG. 2 before the transition to the state of FIG. 1 is rapidly discharged in the state of FIG. 1, so that a large current flows between the electrode Et2 and the electrode Et3. Immediately before Et2 and electrode Et3 are in complete contact, the contact resistance between electrode Et2 and electrode Et3 is large (that is, the contact resistance at the moment of incomplete contact), and heat is generated at the contact portion, and both electrodes melt. The contact part of both electrodes, such as adhesion between both electrodes, is damaged.

この理由は、図2の状態では、外部の電源の一方の極性の電位すなわち正極電位が印加されている端子T1から、電流路Li1、電極Et1、電極Et2、電流路Li4、容量素子C、電流路Li5、端子T3、負荷L、端子T4、電流路Li2、外部の電源の他方の電位すなわち負極電位が印加されている端子T2の電流経路により、容量素子Cが充電され、放電できないためである。 This is because, in the state of FIG. 2, from the terminal T1 to which one polarity potential of the external power source, that is, the positive electrode potential is applied, the current path Li1, electrode Et1, electrode Et2, current path Li4, capacitive element C, current This is because the capacitive element C is charged and cannot be discharged by the path Li5, the terminal T3, the load L, the terminal T4, the current path Li2, and the other path of the external power source, that is, the current path of the terminal T2 to which the negative potential is applied. .

したがって、この場合、本発明の電流開閉器が図1の状態に遷移したとき、容量素子Cに充電された電荷が、容量素子Cの一端から、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li5、容量素子Cの他端の経路により急激に放電される。 Therefore, in this case, when the current switch of the present invention transitions to the state shown in FIG. 1, the charge charged in the capacitive element C is transferred from one end of the capacitive element C to the current path Li4, the electrode Et2, the electrode Et3, and the current path. It is rapidly discharged by Li3, the current path Li5, and the other end of the capacitive element C.

これを防止するため、図4の状態(電極Et2と電極Et3の接触関係)を維持しつつ電極Et2を電極Et1に接触させると、図1の状態に遷移し、遷移前の段階で容量素子Cが充電されないので、スイッチ(本発明の電流開閉器)ONの状態に復帰でき、容量素子Cの放電は有り得ない。 To prevent this, when the electrode Et2 is brought into contact with the electrode Et1 while maintaining the state of FIG. 4 (contact relationship between the electrode Et2 and the electrode Et3), the state transitions to the state of FIG. Is not charged, the switch (current switch of the present invention) can be returned to the ON state, and the capacitive element C cannot be discharged.

本発明の実施の形態において、端子T1に正極電位、端子T2に負極電位(端子T2を基準電位とするから端子T2は“0”電位)を印加する一例で動作説明をしたが、端子T1に負極電位、端子T2に正極電位(端子T2を基準電位とするから端子T2は“0”電位)を印加しても良く、又は、端子T1、端子T2間に低周波交流電源を接続してもよい。 In the embodiment of the present invention, the operation has been described with an example in which a positive potential is applied to the terminal T1 and a negative potential is applied to the terminal T2 (the terminal T2 is “0” potential since the terminal T2 is a reference potential). A negative potential and a positive potential (terminal T2 is “0” potential because terminal T2 is a reference potential) may be applied to terminal T2, or a low-frequency AC power source may be connected between terminals T1 and T2. Good.

すなわち、高電圧低周波交流又は低電圧大電流低周波交流電源を端子T1と端子T2に接続し、端子T3と端子T4に負荷Lを接続し、電極Et2から電極Et3を離隔(図1から図2への遷移)し、本発明の電流開閉器を開(OFF)としても電極Et2と電極Et3間にアーク放電は発生しない。 That is, a high-voltage low-frequency alternating current or a low-voltage large-current low-frequency alternating current power source is connected to the terminals T1 and T2, a load L is connected to the terminals T3 and T4, and the electrode Et3 is separated from the electrode Et2 (see FIG. 1). 2) and no arc discharge occurs between the electrode Et2 and the electrode Et3 even when the current switch of the present invention is opened (OFF).

これは、上記、直流電源を端子T1と端子T2間に接続した場合における電極Et2から電極Et3を離隔した動作説明と近似している。 This is similar to the above description of the operation in which the electrode Et3 is separated from the electrode Et2 when the DC power source is connected between the terminal T1 and the terminal T2.

すなわち、電極Et3が電極Et2から離隔する一瞬は、電極Et3と電極Et2の電位差は、“0”電位であり、低周波交流のサイクルによる電極Et2の電位の変化が、電極Et3が電極Et2から離隔する速度に対して、緩慢(よって、交流の微小区間では直流に近似可能)であるから、電極Et2と電極Et3の電位差が大となる前に、電極Et2と電極Et3には電位差放電が発生しない離隔間隔距離を確保することができる。 That is, for a moment when the electrode Et3 is separated from the electrode Et2, the potential difference between the electrode Et3 and the electrode Et2 is “0” potential, and the change in the potential of the electrode Et2 due to the low-frequency alternating current cycle causes the electrode Et3 to be separated from the electrode Et2. Therefore, before the potential difference between the electrode Et2 and the electrode Et3 becomes large, no potential difference discharge occurs in the electrode Et2 and the electrode Et3. A separation distance can be secured.

よって、高電圧低周波交流又は低電圧大電流低周波交流電源を端子T1と端子T2に接続して、電極Et2から電極Et3を離隔したときの動作説明は、上記、直流電源を端子T1と端子T2に接続して、電極Et2から電極Et3を離隔した動作説明と近似するため、これを援用し重複する説明を割愛する。 Therefore, the operation description when the high voltage low frequency alternating current or the low voltage large current low frequency alternating current power source is connected to the terminal T1 and the terminal T2 and the electrode Et3 is separated from the electrode Et2 is described above. In order to approximate to the operation description in which the electrode Et2 is separated from the electrode Et2 by connecting to T2, this is used and the overlapping description is omitted.

さらに、高電圧低周波交流又は低電圧大電流低周波交流電源を端子T1と端子T2に接続し、図1から図2への遷移を経てから、電極Et2を電極Et1から離隔(図2から図3への遷移)させる場合も、直流を端子T1と端子T2に印加し、図1から図2への遷移を経てから、電極Et2を電極Et1から離隔(図2から図3への遷移)させる場合と同様の説明となるため、これを援用し重複する説明を割愛する。 Further, a high voltage low frequency alternating current or a low voltage large current low frequency alternating current power source is connected to the terminals T1 and T2, and after the transition from FIG. 1 to FIG. 2, the electrode Et2 is separated from the electrode Et1 (FIG. 2 to FIG. 2). 3), direct current is applied to the terminal T1 and the terminal T2, and after the transition from FIG. 1 to FIG. 2, the electrode Et2 is separated from the electrode Et1 (transition from FIG. 2 to FIG. 3). Since it becomes the description similar to a case, this is used and the overlapping description is omitted.

ただし、直流と低周波交流の相違点は、低周波交流においては、アーク放電が発生しても、電位“0”クロス点でアーク放電が自ら消滅するという点である。 However, the difference between direct current and low frequency alternating current is that in low frequency alternating current, even if arc discharge occurs, the arc discharge itself disappears at the potential “0” crossing point.

本発明の電流開閉器を使用しなければ、すなわち、一般の交流電源を扱う交流開閉器で上記交流電流を断とするとき、アーク放電が発生する。
上記交流電流とは、ある程度の高電圧、ある程度の大電流の交流を示す。
If the current switch of the present invention is not used, that is, when the AC current is cut off by an AC switch that handles a general AC power source, arc discharge occurs.
The AC current indicates AC with a certain level of high voltage and a certain level of large current.

本発明の電流開閉器はこのような低周波交流に対しても、アーク放電を発生させない効果がある。 The current switch of the present invention is effective in preventing arc discharge even for such low-frequency alternating current.

本発明の電流開閉器を使用すると上記の直流電流を断とするとき、従来の直流電流遮断専用の大きく高価な開閉器を必要としない。
本発明の電流開閉器を使用すると上記の交流電流を断とするとき、従来の交流用である大きく高価な開閉器を必要としない。
When the current switch of the present invention is used, when the above-described direct current is cut off, a large and expensive switch dedicated to interrupting the direct current is not required.
When the current switch of the present invention is used, when the AC current is cut off, a large and expensive switch for conventional AC is not required.

(2)直流電流開閉器の実施の形態
(2−1)ハードウェア構造及び電気回路構成
図5〜図8は、本発明による実施の形態を示す直流電流開閉器の基本的原理を示す模式的ハードウェア構造図(電極1、電極2及び電極3)及び電気回路構成(C、R1、D及びR2)である。
なお、本発明の基本部分に関係しない付帯的要素は各図において割愛しているが、明細書にて文言上で説明する。
(2) Embodiment of DC Current Switch (2-1) Hardware Structure and Electric Circuit Configuration FIGS. 5 to 8 are schematic views showing the basic principle of a DC current switch showing an embodiment according to the present invention. It is a hardware structure figure (electrode 1, electrode 2, and electrode 3) and electric circuit composition (C, R1, D, and R2).
Note that incidental elements not related to the basic part of the present invention are omitted in the drawings, but will be described in the description in the specification.

以下、図5〜図8を参照して、本発明の直流電流開閉器の実施の形態のハードウェア構造及び電気回路構成を説明する。 Hereinafter, with reference to FIGS. 5 to 8, a hardware structure and an electric circuit configuration of a DC current switch according to an embodiment of the present invention will be described.

ただし、電流開閉器の実施の形態である図1〜図4と、直流電流開閉器の実施の形態である図5〜図8において共通するところの説明は重複するので、図5〜図8において図1〜図4と共通する要素(各素子等)は同一符号を付し、電流開閉器の実施の形態である図1〜図4の説明を援用し重複する説明を割愛する。両者において相違する箇所の説明を付加する。 However, since description common to FIGS. 1 to 4 which is the embodiment of the current switch and FIGS. 5 to 8 which is the embodiment of the direct current switch is duplicated, in FIGS. Elements common to FIGS. 1 to 4 (elements and the like) are denoted by the same reference numerals, and the description of FIGS. 1 to 4 which is an embodiment of the current switch is used to omit redundant description. A description of the differences between the two will be added.

電流開閉器の図1〜図4と直流電流開閉器図の5〜図8の相違点。
図5〜図8においては、図1〜図4における容量素子Cと抵抗素子R1の並列接続回路に、Dで表示される整流素子であるダイオードD(以下、ダイオードDと称す。)及びR2で表示される抵抗素子である抵抗素子R2(以下抵抗素子R2と称す。)の並列接続回路が、直列接続されている点である。
なお、特許請求の範囲においては、ダイオードDを整流素子、抵抗素子R2を抵抗素子2と称す。
The difference between FIG. 1 to FIG. 4 of the current switch and 5 to 8 of the DC current switch diagram.
5 to 8, diodes D (hereinafter referred to as diodes D) and R2, which are rectifying elements denoted by D, are connected to the parallel connection circuit of the capacitive element C and the resistance element R1 in FIGS. A parallel connection circuit of a resistance element R2 (hereinafter referred to as resistance element R2) which is a displayed resistance element is connected in series.
In the claims, the diode D is referred to as a rectifying element, and the resistance element R2 is referred to as a resistance element 2.

容量素子Cと抵抗素子R1の並列接続回路と、ダイオードDと抵抗素子R2の並列接続回路は、図5〜図8を正視して、左右入れ替えてもよい。 The parallel connection circuit of the capacitive element C and the resistance element R1 and the parallel connection circuit of the diode D and the resistance element R2 may be switched left and right when viewed from FIGS.

以上、本実施の形態は、ダイオードDと抵抗素子R2の並列接続回路が付加された要素が電流開閉器の実施の形態と相違するところである。
なお、ダイオードDは、端子T1、端子T2に印加される電位に対して順方向に接続される。
As described above, the present embodiment is different from the embodiment of the current switch in that an element to which a parallel connection circuit of the diode D and the resistance element R2 is added.
The diode D is connected in the forward direction with respect to the potential applied to the terminals T1 and T2.

なお、電流開閉器の実施の形態において、説明した低周波交流関する説明は、本直流電流開閉器の実施の形態では行なわない。
本発明は直流電流開閉器であるためである。
In the embodiment of the current switch, the explanation regarding the low-frequency alternating current described above is not performed in the embodiment of the direct current switch.
This is because the present invention is a direct current switch.

(2−2)ハードウェア及び電気回路の動作
図5〜図8を参照し、本発明の直流電流開閉器のハードウェア及び電気回路の動作を説明する。
(2-2) Operation of Hardware and Electric Circuit The operation of the hardware and electric circuit of the DC current switch according to the present invention will be described with reference to FIGS.

図5は、電極Et1、電極Et2及び電極Et3が全て接触している状態であり、端子T1、端子T2間に外部の電源を接続した場合を考える。 FIG. 5 shows a state in which the electrode Et1, the electrode Et2, and the electrode Et3 are all in contact, and a case where an external power source is connected between the terminal T1 and the terminal T2 is considered.

たとえば、外部の高電圧直流電源又は高電圧ではないが大電流直流電源を接続するとする。外部の直流電源の一方の極性の電位を正極として、端子T1に印加し、外部の直流電源の他方の極性の電位を負極として、端子T2に印加したとする。 For example, it is assumed that an external high-voltage DC power supply or a high-current DC power supply that is not a high voltage is connected. It is assumed that the potential of one polarity of the external DC power supply is applied as a positive electrode to the terminal T1, and the potential of the other polarity of the external DC power supply is applied as a negative electrode to the terminal T2.

外部の負荷Lが要求する条件により、外部の高圧直流電源又は高圧ではないが大電流電源を端子T1、端子T2間に接続する。「高圧の電流値<高圧ではないが大電流の電流値」。左式のような電流の大小関係が一般的である。
また、高圧、低圧の電圧の大きさの大小関係による区分により、「高圧の電流値≪高圧ではないが大電流の電流値」ともなる。
Depending on the conditions required by the external load L, an external high-voltage DC power source or a high-current power source that is not high-voltage is connected between the terminals T1 and T2. “High-voltage current value <high-voltage but not high-voltage current value”. The magnitude relation of current as shown in the left formula is common.
In addition, depending on the magnitude relationship between the magnitudes of the high-voltage and low-voltage voltages, “high-current current value << not high-voltage but high-current current value” is also obtained.

端子T1に印加された正極電位は、電流路Li1、電極Et1、電極Et2及び電極Et3に伝達され、電流路Li3を介して端子T3に出力される。
端子T2に印加された負極電位は電流路Li2を介して端子T4に直結しているため、端子T4に外部の負極電位が出力される。
The positive potential applied to the terminal T1 is transmitted to the current path Li1, the electrode Et1, the electrode Et2, and the electrode Et3, and is output to the terminal T3 through the current path Li3.
Since the negative potential applied to the terminal T2 is directly connected to the terminal T4 via the current path Li2, the external negative potential is output to the terminal T4.

端子T3、端子T4間に外部の要素である負荷Lを接続すると該負荷Lに電力が供給される。これがスイッチ(本発明の直流電流開閉器)ON(直流電流開閉器が導通している状態であり、直流電流開閉器が閉の状態)の状態である。   When a load L, which is an external element, is connected between the terminals T3 and T4, electric power is supplied to the load L. This is the state of the switch (DC current switch of the present invention) ON (the DC current switch is conductive and the DC current switch is closed).

次に図6を参照して、本発明の直流電流開閉器の動作を説明する。
図6は、スイッチ(本発明の直流電流開閉器)OFF(直流電流開閉器が非導通している状態であり、直流電流開閉器が開の状態)の状態である。
Next, the operation of the DC current switch according to the present invention will be described with reference to FIG.
FIG. 6 shows a state in which the switch (the direct current switch of the present invention) is OFF (the direct current switch is in a non-conductive state and the direct current switch is in an open state).

図6においては、電極Et3が電極Et2から離隔し、電極Et2と電極Et3が非接触であるため、端子T1、端子T3間は非導通であり、負荷Lに電力が供給されない。
図6に遷移する前の図5の状態はで、容量素子C(コンデンサ)は、抵抗素子R1及び抵抗素子R2を介して略完全に放電されているとする。
In FIG. 6, since the electrode Et3 is separated from the electrode Et2 and the electrode Et2 and the electrode Et3 are not in contact with each other, the terminals T1 and T3 are non-conductive, and power is not supplied to the load L.
The state of FIG. 5 before the transition to FIG. 6 is assumed, and it is assumed that the capacitive element C (capacitor) is almost completely discharged through the resistive element R1 and the resistive element R2.

放電は、基本的には容量素子Cに並列接続されている抵抗素子R1を介して行われるが、下記の放電経路でも放電される。
放電経路は、図6に遷移する前の図5において、容量素子Cの一端(正極)から、抵抗素子R2、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li5、容量素子Cの他端(負極)である。
The discharge is basically performed through a resistance element R1 connected in parallel to the capacitive element C, but is also discharged in the following discharge path.
In FIG. 5 before the transition to FIG. 6, the discharge path is from the one end (positive electrode) of the capacitive element C to the resistive element R2, the current path Li4, the electrode Et2, the electrode Et3, the current path Li3, the current path Li5, and the capacitive element C. The other end (negative electrode).

本発明の直流電流開閉器を遮断(OFF、すなわち、負荷Lへの電力供給を断とする。)するため、図5の状態から図6の状態に遷移(すなわち、電極Et3を電極Et2から離隔する。)させるとき、図5、図6に示す容量素子Cが存在しないで、容量素子Cの両端部が開放(オープン)されているとすると、電極Et2と電極Et3との間にアーク放電が発生し、電極Et3を電極Et2から遠ざけても、アーク放電が伸びるのみでアーク放電は消滅しない。 In order to cut off the DC current switch of the present invention (OFF, ie, power supply to the load L is cut off), the state transitions from the state of FIG. 5 to the state of FIG. 6 (that is, the electrode Et3 is separated from the electrode Et2). 5 and 6, if both ends of the capacitive element C are open (open), arc discharge occurs between the electrode Et2 and the electrode Et3. Even if it is generated and the electrode Et3 is moved away from the electrode Et2, the arc discharge only extends and the arc discharge does not disappear.

この理由は、図6において、容量素子Cが存在しないで、端子T1、端子T2間に高電位差を印加している場合、電極Et3が電極Et2から離隔する瞬間及びその後、電極Et1及び電極Et2の電位は端子T1の極性の電位であり、電極Et3の電位は端子T3及び端子T2の極性の電位であり、電極Et2と電極Et3との間に、端子T1と端子T2との間の高電位差が発生するためである。 The reason for this is that in FIG. 6, when the high potential difference is applied between the terminal T1 and the terminal T2 without the capacitive element C, the moment when the electrode Et3 is separated from the electrode Et2, and thereafter, the electrode Et1 and the electrode Et2 The potential is the potential of the polarity of the terminal T1, the potential of the electrode Et3 is the potential of the polarity of the terminal T3 and the terminal T2, and a high potential difference between the terminal T1 and the terminal T2 is present between the electrode Et2 and the electrode Et3. This is because it occurs.

このような状態であるため、容量素子Cが存在しない場合に、図5において、電極Et3を電極Et2から離隔すると両電極間にアーク放電が発生し継続する。 In such a state, when the capacitive element C is not present, in FIG. 5, when the electrode Et3 is separated from the electrode Et2, an arc discharge is generated between the electrodes and continues.

また、端子T1、端子T2間に、低圧を印加している場合でも、端子T3、端子T4間に大電流(大容量負荷を接続)を流していると、容量素子Cが存在しない場合に、図5において、電極Et3を電極Et2から離隔すると両電極間にアーク放電が発生し継続する。 Further, even when a low voltage is applied between the terminal T1 and the terminal T2, if a large current (a large capacity load is connected) flows between the terminal T3 and the terminal T4, the capacitive element C does not exist. In FIG. 5, when the electrode Et3 is separated from the electrode Et2, arc discharge is generated between the two electrodes and continues.

しかしながら、本発明の直流電流開閉器には、電極Et2と電極Et3間に容量素子Cが接続されている(ダイオードDと抵抗素子R2との並列接続回路を介して)ため、電極Et2と電極Et3の離隔時に、電極Et2と電極Et3との間に発生すべくアーク放電電流の代替電流がダイオードD及び容量素子Cを介して流れるためアーク放電は発生しない。 However, since the capacitive element C is connected between the electrode Et2 and the electrode Et3 (via a parallel connection circuit of the diode D and the resistance element R2) in the DC current switch of the present invention, the electrode Et2 and the electrode Et3 Since the alternative current of the arc discharge current flows through the diode D and the capacitive element C so as to be generated between the electrode Et2 and the electrode Et3 at the time of the separation, no arc discharge occurs.

該アーク放電代替電流の電流路は、電極Et2から電流路Li4、ダイオードD、容量素子C、電流路Li5、端子T3、負荷L、端子T4、電流路Li2、端子T2である。 The current path of the arc discharge alternative current is from the electrode Et2 to the current path Li4, the diode D, the capacitive element C, the current path Li5, the terminal T3, the load L, the terminal T4, the current path Li2, and the terminal T2.

これを別の観点から考察すると、電極Et2と電極Et3との間に容量素子Cが接続(ダイオードDと抵抗素子R2との並列接続回路を介して)されているため、電極Et3が電極Et2から離隔する一瞬は、電極Et2の電位と電極Et3の電位がほぼ同電位であり、電極Et2と電極Et3との電位差が、略“0.6”V(ほぼ“0”)であるためである。
仮に、容量素子Cが完全に放電していない場合は、、電極Et2と電極Et3との電位差は極めて小さいものとなる。
電位差がほぼ“0”又は小さいければ、アーク放電は発生しない。
Considering this from another viewpoint, since the capacitive element C is connected between the electrode Et2 and the electrode Et3 (via a parallel connection circuit of the diode D and the resistance element R2), the electrode Et3 is connected to the electrode Et2. The moment of separation is because the potential of the electrode Et2 and the potential of the electrode Et3 are approximately the same, and the potential difference between the electrode Et2 and the electrode Et3 is approximately “0.6” V (approximately “0”).
If the capacitive element C is not completely discharged, the potential difference between the electrode Et2 and the electrode Et3 is extremely small.
If the potential difference is approximately “0” or small, arc discharge does not occur.

ダイオードDを流れる電流値が大であると、ダイオードDの順方向降下電圧が若干大きくなるが。 If the current value flowing through the diode D is large, the forward voltage drop of the diode D is slightly increased.

電極Et3が電極Et2から離隔する瞬間は、容量素子Cを流れる電流位相は進み、容量素子Cの端子間電圧位相は遅れ、該端子間電位差は略“0.6”Vである。
したがって、電極Et2と電極Et3との間にアーク放電が発生しない。
At the moment when the electrode Et3 is separated from the electrode Et2, the phase of the current flowing through the capacitive element C is advanced, the voltage phase between the terminals of the capacitive element C is delayed, and the potential difference between the terminals is approximately “0.6” V.
Therefore, no arc discharge occurs between the electrode Et2 and the electrode Et3.

容量素子Cの一端すなわち電極Et2と容量素子Cの他端すなわち電極Et3との電位差と、電極Et2と電極Et3との時間を考慮した離隔間隔を考えると、電極Et2から電極Et3が離隔する際、すなわち電極Et2と電極Et3との離隔間隔が、離隔した一瞬である無限小から、Xmm/msの速度で離隔する過程で、電極Et2の電位と電極Et3の電位とが電極間電位差放電(アーク放電ではない。)を発生する電位差に至るまで容量素子Cが充電(容量素子Cの端子間電位差の増大)される時刻には、電極Et3が電極Et2から必要十分離隔する。 Considering the potential difference between one end of the capacitive element C, that is, the electrode Et2 and the other end of the capacitive element C, that is, the electrode Et3, and the separation interval considering the time between the electrode Et2 and the electrode Et3, when the electrode Et3 is separated from the electrode Et2, That is, in the process in which the separation distance between the electrode Et2 and the electrode Et3 is separated at an Xmm / ms speed from an infinitesimal distance that is a moment of separation, the potential of the electrode Et2 and the potential of the electrode Et3 are changed between the electrodes. The electrode Et3 is separated from the electrode Et2 by a sufficient amount at the time when the capacitive element C is charged until the potential difference is generated (increased potential difference between terminals of the capacitive element C).

Xは、電極Et3が外力により移動させられる単位時間(ms)あたりの離隔距離である。 X is a separation distance per unit time (ms) by which the electrode Et3 is moved by an external force.

該電位差放電は、概略、電極間隔1mm以下、電位差1,000V以上で発生すると言われている。電極Et2と電極Et3との電位差が1,000Vでも、離隔間隔が1mm超となれば、該離隔した間隔に電位差放電を発生することはなく、かつ、これが発生しさらにアーク放電に移行することはない。
ここで、電位差放電とは一般的に、電極間に高圧を印加した場合に発生する電極間の絶縁耐圧を超えた場合に発生する放電である。
The potential difference discharge is generally said to occur when the electrode interval is 1 mm or less and the potential difference is 1,000 V or more. Even if the potential difference between the electrode Et2 and the electrode Et3 is 1,000 V, if the separation interval exceeds 1 mm, a potential difference discharge does not occur at the separation interval, and this occurs and further shifts to arc discharge. Absent.
Here, the potential difference discharge is generally a discharge that occurs when the withstand voltage between the electrodes that occurs when a high voltage is applied between the electrodes is exceeded.

端子T1、端子T2間に、高電圧ではないが大電流直流電源を接続した場合は、さらに電位差放電が発生することは困難である。ただ、電極Et2と電極Et3の離隔時瞬間のアーク放電に留意すればよい。 If a high-current DC power source is connected between the terminals T1 and T2 but not a high voltage, it is difficult to generate a potential difference discharge. However, attention should be paid to the arc discharge at the time of separation between the electrode Et2 and the electrode Et3.

なお、端子T3、端子T4間の電流値(負荷L電流値)により、容量素子Cの容量を決める。該電流値が大きい程、容量素子Cの容量を大きくする必要がある。
また、電極Et3が電極Et2から離隔する速度も重要であり、容量素子Cの充電による容量素子Cの端子間電位差と電極Et2と電極Et3の離隔間隔において、アーク放電を発生しないで離隔した後、電極Et2と電極Et3に電位差放電が発生しないように離隔間隔を大とすべく離隔速度を大とする。
Note that the capacitance of the capacitive element C is determined by the current value between the terminals T3 and T4 (load L current value). It is necessary to increase the capacitance of the capacitive element C as the current value increases.
In addition, the speed at which the electrode Et3 is separated from the electrode Et2 is also important. After the electrode Et3 is separated without causing arc discharge in the potential difference between the terminals of the capacitive element C due to the charging of the capacitive element C and the separation interval between the electrode Et2 and the electrode Et3, The separation speed is increased so as to increase the separation interval so that potential difference discharge does not occur between the electrodes Et2 and Et3.

なお、本発明の電流開閉器では、容量素子Cは、通常の容量すなわちμF単位、通常の開閉器の電極接点切り離し速度で十分である。 In the current switch according to the present invention, the capacitance C is sufficient for the normal capacitance, that is, in units of μF, and the normal contact point separation speed of the switch.

図5においては、容量素子Cに蓄積されている電荷は“0”であり、容量素子Cの一端と他端の電位差は略“0.6”Vであり、容量素子Cの一端と他端の電位は、ほぼ、電極Et2、電極Et3、電極Et1及び端子T1の電位であったが、図6において、電極Et2と電極Et3が離隔して微小時間(容量素子Cと負荷Lとの時定数にもよるが)経過後、容量素子Cの他端の電位は、端子T2の電位(端子T2の電位を基準としてほぼ“0”電位)に漸近していく。
ここで、上記及び以降、ダイオードDの順方向電圧降下を無視する(ダイオードDの順方向電圧降下を考慮する場合「ほぼ」という表現とする。)。
In FIG. 5, the electric charge accumulated in the capacitive element C is “0”, the potential difference between one end and the other end of the capacitive element C is approximately “0.6” V, and the one end and the other end of the capacitive element C are Is substantially the potential of the electrode Et2, the electrode Et3, the electrode Et1, and the terminal T1, but in FIG. 6, the electrode Et2 and the electrode Et3 are separated from each other, and the time is constant (the time constant between the capacitive element C and the load L). After that, the potential of the other end of the capacitive element C gradually approaches the potential of the terminal T2 (almost “0” potential with respect to the potential of the terminal T2).
Here, the forward voltage drop of the diode D is ignored above and hereinafter (the expression “almost” when the forward voltage drop of the diode D is taken into consideration).

すなわち、容量素子Cの端子間電位差は、ほぼ、端子T1と端子T2間の電位差となる。
よって、電極Et2と電極Et3との電位差は、端子T1と端子T2との電位差と、ほぼ、同一となり、本来電位差放電が発生する電位差に達するが、電極Et2と電極Et3が必要十分に離隔し、該放電が発生せず、かつアーク放電に移行することはない。
That is, the potential difference between the terminals of the capacitive element C is substantially the potential difference between the terminal T1 and the terminal T2.
Therefore, the potential difference between the electrode Et2 and the electrode Et3 is substantially the same as the potential difference between the terminal T1 and the terminal T2, and reaches the potential difference where the potential difference discharge is originally generated, but the electrode Et2 and the electrode Et3 are sufficiently separated from each other. The discharge does not occur and does not shift to arc discharge.

なお、抵抗素子R1は、容量素子Cに充電された電荷を放電するためのものであが、図2の状態では、該抵抗素子R1が端子T1と端子T2間の閉回路を構成する要素であるため、アーク放電を発生せず負荷Lに電力を供給しなくなった現在でも負荷Lの電力入力両端間(すなわち、端子T3、端子T4間)に、端子T1と端子T2間に印加された電位の一部(抵抗素子R1の抵抗値と負荷L直流抵抗値の比にもよるが)が発生しているため、電極Et2を次の段階に遷移(図7及び図8に)させる。 The resistor element R1 is for discharging the electric charge charged in the capacitor element C. In the state shown in FIG. 2, the resistor element R1 is an element constituting a closed circuit between the terminal T1 and the terminal T2. Therefore, the potential applied between the terminals T1 and T2 between both ends of the power input of the load L (that is, between the terminals T3 and T4) even when no electric discharge is generated and no power is supplied to the load L. Part (depending on the ratio between the resistance value of the resistance element R1 and the load L DC resistance value), the electrode Et2 is shifted to the next stage (FIGS. 7 and 8).

抵抗素子R1の抵抗値をあまり小さくすると、電極Et2から電極Et3を離隔して、本発明の電流開閉器を断とした場合も、ダイオードD(抵抗素子R2を無視)及び抵抗素子R1を介して負荷L電流が流れるため、抵抗素子R1の抵抗値は、容量素子Cの電荷を放電する程度のものとする。 If the resistance value of the resistance element R1 is made too small, the current switch of the present invention is disconnected even if the electrode Et3 is separated from the electrode Et2 and the current switch of the present invention is cut off through the diode D (ignoring the resistance element R2) and the resistance element R1. Since the load L current flows, the resistance value of the resistance element R1 is assumed to be such that the charge of the capacitance element C is discharged.

なお、図6の状態では、容量素子Cは、外部の一方の極性(正極)の電位が印加された端子T1にから、電流路Li1、電極Et1、電極Et2、電流路Li4、ダイオードD(抵抗素子R2を無視)、容量素子C、電流路Li5、端子T3、負荷L、端子T4、電流路Li2、外部の他方の極性(負極)の電位が印加された端子T2の電流路で充電される。 In the state of FIG. 6, the capacitive element C has a current path Li1, an electrode Et1, an electrode Et2, a current path Li4, a diode D (resistor) from the terminal T1 to which an external potential of one polarity (positive electrode) is applied. The element R2 is ignored), the capacitive element C, the current path Li5, the terminal T3, the load L, the terminal T4, the current path Li2, and the current path of the terminal T2 to which the other potential of the other polarity (negative electrode) is applied. .

図6〜図8を参照して、次の段階における本発明の電流開閉器の動作を説明する。
図6の状態において、容量素子Cの一端の電位は、電極Et2、電極Et1及び端子T1の電位であるが、図7の状態に遷移(電極Et2が電極Et1から離隔する。)する直前は、容量素子Cの他端の電位が、ほぼ、端子T2の電位の電位となっているか又は、これに近い電位となっている必要がある。すなわち、容量素子Cの端子間電位差が、ほぼ、端子T1と端子T2との電位差又はこれに近い電位差となっている必要がある。
With reference to FIGS. 6-8, operation | movement of the current switch of this invention in the next step is demonstrated.
In the state of FIG. 6, the potential at one end of the capacitive element C is the potential of the electrode Et2, the electrode Et1, and the terminal T1, but immediately before the transition to the state of FIG. 7 (the electrode Et2 is separated from the electrode Et1). The potential of the other end of the capacitive element C needs to be approximately the potential of the terminal T2 or a potential close thereto. That is, the inter-terminal potential difference of the capacitive element C needs to be approximately the potential difference between the terminal T1 and the terminal T2 or a potential difference close thereto.

これを満足している場合、図6の状態から図7の状態(電極Et1から電極Et2の離隔)に遷移しても、電極Et1と電極Et2間にはアーク放電は発生しない。
これは、電極Et1と電極Et2が離隔する一瞬、電極Et1と電極Et2間の電位差が、ほぼ“0”V又は小さいためである。
When this is satisfied, even if the state shown in FIG. 6 is changed to the state shown in FIG. 7 (the distance between the electrode Et1 and the electrode Et2), no arc discharge occurs between the electrode Et1 and the electrode Et2.
This is because the potential difference between the electrode Et1 and the electrode Et2 is almost “0” V or small for a moment when the electrode Et1 and the electrode Et2 are separated.

次に、図8において、容量素子Cの電荷は抵抗素子R1及び抵抗素子R2を介して放電を開始し、容量素子Cの端子間電圧は無限小に漸近(これに要する時間は、容量素子Cと、抵抗素子R1とR2の並列接続抵抗値の時定数による。)していく。 Next, in FIG. 8, the electric charge of the capacitive element C starts to discharge through the resistive element R1 and the resistive element R2, and the voltage between the terminals of the capacitive element C approaches asymptotically (the time required for this is the capacitive element C And the time constant of the parallel connection resistance value of the resistance elements R1 and R2.

仮に、図6の状態から瞬間的(または、速く)に図8の状態へ遷移して、容量素子Cの電荷が抵抗素子R1を介して放電する時間を与えられずとも、ダイオードDが容量素子Cの充電電位極性と逆方向であるため、電極Et2、電極Et3間には、抵抗素子R2を介した容量素子Cの放電電流が流れるため、容量素子Cの両端子間は短絡しない。 Even if the state of FIG. 6 is instantaneously (or quickly) changed to the state of FIG. 8 and the time for discharging the charge of the capacitive element C through the resistive element R1 is not given, the diode D is Since the charge potential polarity of C is opposite, the discharge current of the capacitive element C via the resistance element R2 flows between the electrode Et2 and the electrode Et3, so that both terminals of the capacitive element C are not short-circuited.

したがって、このような事象(図6の状態から瞬間的(または、速く)に図8の状態へ遷移)が発生しても、容量素子C両端の短絡は無く、容量素子Cから大電流が流れず、電極Et2、電極Et3の接触部ダメージ(電流開閉器の実施の形態で説明した溶融、溶着など)を与えてしまうことがない。 Therefore, even if such an event (transition from the state of FIG. 6 instantaneously (or quickly) to the state of FIG. 8) occurs, there is no short circuit across the capacitive element C, and a large current flows from the capacitive element C. Therefore, the contact portion damage (melting, welding, etc. described in the embodiment of the current switch) is not given to the electrode Et2 and the electrode Et3.

すなわち、電極Et2及び電極Et3の接触部の溶融、電極Et2、電極Et3間の容着などの事象が発生しない。
したがって、図7の状態を維持する時間を設ける必要はない。
That is, events such as melting of the contact portion between the electrode Et2 and the electrode Et3 and adhesion between the electrode Et2 and the electrode Et3 do not occur.
Therefore, it is not necessary to provide time for maintaining the state of FIG.

図8の状態では容量素子Cの端子間は短絡されずに、容量素子Cの電荷を抵抗素子R1、抵抗素子R2を介してそれぞれ別に放電できる。
抵抗素子R2を介しての容量素子Cの電荷の放電経路は、容量素子Cの一端、抵抗素子R2、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li5、容量素子Cの他端となる。
In the state of FIG. 8, the terminals of the capacitive element C are not short-circuited, and the charge of the capacitive element C can be discharged separately via the resistive element R1 and the resistive element R2.
The discharge path of the charge of the capacitive element C through the resistive element R2 is one end of the capacitive element C, the resistive element R2, the current path Li4, the electrode Et2, the electrode Et3, the current path Li3, the current path Li5, and the capacitive element C. End.

図8において、容量素子Cの電荷は抵抗素子R1及び抵抗素子R2を介して放電を開始し、容量素子Cの端子間電圧は無限小に漸近(これに要する時間は、容量素子Cと、抵抗素子R1と抵抗素子R2の並列接続回路の時定数による。)していく。 In FIG. 8, the electric charge of the capacitive element C starts to discharge through the resistive element R1 and the resistive element R2, and the voltage between the terminals of the capacitive element C is asymptotic to infinitesimal (the time required for this is the same as that of the capacitive element C and the resistive element (Depending on the time constant of the parallel connection circuit of the element R1 and the resistance element R2).

このような状態(図8)のままで、次にスイッチ(本発明の直流電流開閉器)ON(直流電流開閉器が導通している状態であり、直流電流開閉器が閉の状態)を迎えるまで放置していてもかまわない。 In this state (FIG. 8), the switch (DC current switch of the present invention) is turned ON (the DC current switch is in a conductive state and the DC current switch is closed). You can leave it until.

次にスイッチ(本発明の直流電流開閉器)ONの状態に遷移するときは、図8の状態を維持しながら、電極Et2を電極Et1に接触させる必要はない。 Next, when the switch (DC current switch of the present invention) is turned on, it is not necessary to bring the electrode Et2 into contact with the electrode Et1 while maintaining the state of FIG.

本発明の直流電流開閉器では、上記の過程を経過(すなわち、図8の状態を維持すること)しないで、先に電極Et2を電極Et1に接触させる(図6の状態)ことができる。 In the DC current switch of the present invention, the electrode Et2 can be first brought into contact with the electrode Et1 (the state shown in FIG. 6) without passing through the above-described process (that is, maintaining the state shown in FIG. 8).

次に、電極Et3を電極Et2に接触させ、スイッチ(本発明の直流電流開閉器)ONの状態(図5の状態)に遷移させても、容量素子Cの充電電位極性がダイオードDの順方向とは逆であり、容量素子Cの電荷は、抵抗素子R2を介して放電されるため、電極Et2の接触部及び電極Et3の接触部にダメージ(溶融、溶着など)を与えることはない。 Next, even if the electrode Et3 is brought into contact with the electrode Et2 and the switch (DC current switch of the present invention) is switched to the ON state (the state shown in FIG. 5), the charge potential polarity of the capacitive element C is the forward direction of the diode D. Conversely, since the charge of the capacitive element C is discharged through the resistance element R2, the contact portion of the electrode Et2 and the contact portion of the electrode Et3 are not damaged (melted, welded, etc.).

この容量素子Cの放電経路は、容量素子Cの一端から、抵抗素子R2、電流路Li4、電極Et2、電極Et3、電流路Li3、電流路Li5、容量素子Cの他端である。 The discharge path of the capacitive element C is from one end of the capacitive element C to the resistive element R2, the current path Li4, the electrode Et2, the electrode Et3, the current path Li3, the current path Li5, and the other end of the capacitive element C.

本発明の実施の形態において、端子T1に正極電位、端子T2に負極電位を印加する一例で動作説明をしたが、端子T1に負極電位、端子T2に正極電位を印加しても良い。 In the embodiment of the present invention, the operation has been described with an example in which the positive potential is applied to the terminal T1 and the negative potential is applied to the terminal T2. However, the negative potential may be applied to the terminal T1 and the positive potential may be applied to the terminal T2.

上記のように、端子T1、端子T2間に逆極性の電位を印加する場合は、ダイオードDのアノードとカソードを逆にする。すなわち、図5〜図8とは逆極性でダイオードを接続する。 As described above, when a reverse polarity potential is applied between the terminal T1 and the terminal T2, the anode and the cathode of the diode D are reversed. That is, the diode is connected with the opposite polarity to that in FIGS.

本発明の実施の形態は、直流専用のアーク放電阻止、直流電流開閉器であるが、電極Et2の振る舞い、すなわち、電極Et3が電極Et2から離隔した後、電極Et2の電極Et3への接触及び電極Et2が電極Et1から離隔した後、電極Et2の電極Et1への接触に係る制御が簡単である利点がある。 The embodiment of the present invention is a direct-current arc discharge prevention and DC current switch, but the behavior of the electrode Et2, that is, the electrode Et2 contacts the electrode Et3 and the electrode Et3 after the electrode Et3 is separated from the electrode Et2. After Et2 is separated from the electrode Et1, there is an advantage that the control related to the contact of the electrode Et2 with the electrode Et1 is simple.

本発明の実施の形態において、端子T1に正極電位、端子T2に負極電位を印加する一例で動作説明をしたが、端子T1に負極電位、端子T2に正極電位を印加しても良い。 In the embodiment of the present invention, the operation has been described with an example in which the positive potential is applied to the terminal T1 and the negative potential is applied to the terminal T2. However, the negative potential may be applied to the terminal T1 and the positive potential may be applied to the terminal T2.

上記のように、端子T1、端子T2間に逆極性の電位を印加する場合は、ダイオードDのアノードとカソードを逆にする。すなわち、図5〜図8とは逆極性でダイオードを接続する。 As described above, when a reverse polarity potential is applied between the terminal T1 and the terminal T2, the anode and the cathode of the diode D are reversed. That is, the diode is connected with the opposite polarity to that in FIGS.

(3)補足説明
前述の(1−1)ハードウェア構造及び電気回路構成における「高電圧、高電圧ではない(低電圧とも一概に限定できないが。)電圧、大電流及び交流(周波数)の定性的表現」の補足説明。
高電圧(高圧)/低電圧(低圧)/「高電圧ではない」は、定性的であるが、これらについて、各電極を含むメカニカル部分において、特にアーク放電を意識しない通常の電圧範囲における耐圧・電流容量を満足するごく一般的なメカニカルスイッチについて、これらを説明する。
(3) Supplementary explanation (1-1) “High voltage, not high voltage (although not limited to low voltage)” in the hardware structure and electrical circuit configuration described above Qualitative characteristics of voltage, large current, and alternating current (frequency) Supplementary explanation of "referential expression".
High voltage (high voltage) / low voltage (low voltage) / "not high voltage" is qualitative, but with regard to these, in the mechanical part including each electrode, withstand voltage / voltage in a normal voltage range not particularly conscious of arc discharge These are described for a very general mechanical switch satisfying the current capacity.

(3−1)電圧及び電流値
一般に知られているアーク放電を発生する電極間電位差は、高電圧300V程度以上であり、300Vから見ると低電圧と考えられる48未満程度(48Vより大きく低下しない電圧)でも、電極間を流れる電流が大きいと、たとえば、数十A〜数千A〜数万Aなどの電流値で、アーク放電が発生すると言われている。
(3-1) Voltage and current values The generally known potential difference between electrodes for generating arc discharge is about 300 V or higher, and about 300 V or less, which is considered to be low voltage (less than 48 V). However, when the current flowing between the electrodes is large, for example, it is said that arc discharge occurs at a current value of tens of thousands to thousands of amperes.

すると、アーク放電を発生する電極間電位差は、300V程度以上としたが、電極間を流れる電流が、電極間電位差300V程度以上場合の電流値より大きいと、たとえば、特に高電圧ではない100V、200V程度でもアーク放電は発生することとなる。
当然ではあるが、このアーク放電は、電圧が印加されている電極間が開となるとき発生する場合のものである。
Then, the potential difference between the electrodes for generating the arc discharge is about 300 V or more. However, if the current flowing between the electrodes is larger than the current value when the potential difference between the electrodes is about 300 V or more, for example, 100 V, 200 V that is not particularly high voltage. Arc discharge will occur even at a degree.
As a matter of course, this arc discharge is generated when the gap between the electrodes to which the voltage is applied is opened.

すなわち、電極間にアーク放電が発生する電極間電位差は、流れる電流に大きく依存することとなる。   That is, the interelectrode potential difference at which arc discharge occurs between the electrodes greatly depends on the flowing current.

したがって、本明細書で高圧、低圧と表現されていても、上記の電流値を考慮したものと考える必要がある。すなわち、電極間電流値によって、電極間に印加される高圧/低圧におけるアーク放電が発生する区分が相違する。   Therefore, it is necessary to consider that the above current value is taken into consideration even if expressed as high pressure and low pressure in this specification. That is, the section in which arc discharge at high pressure / low pressure applied between the electrodes is generated differs depending on the interelectrode current value.

(3−2)交流の周波数
交流の周波数については、容量素子Cを使用し、ダイオードDを使用しない本発明の電流開閉器について、説明を付加する。
(3-2) AC Frequency For the AC frequency, a description is added for the current switch of the present invention that uses the capacitive element C and does not use the diode D.

交流の周波数は、本発明の電流開閉器に適用する場合、おおよそ100Hz程度以下であり、一般には、系統の周波数(50Hz、60Hz)を意味する。
これは、前述した、ごく一般的なメカニカルスイッチ(アーク放電を考慮しない)を本発明の実施の形態の電極に使用し、容量素子Cを付加したときの交流周波数である。
When applied to the current switch of the present invention, the AC frequency is about 100 Hz or less, and generally means the system frequency (50 Hz, 60 Hz).
This is an AC frequency when the above-described general mechanical switch (not considering arc discharge) is used for the electrode of the embodiment of the present invention and the capacitive element C is added.

当然ではあるが、交流の周波数は、容量素子Cの容量、電極の離隔速度(これは、電極の質量(すなわち、電極の電流容量に起因する。)、電極を移動させる外力とも関係するが)に依存する。 As a matter of course, the AC frequency is related to the capacitance of the capacitive element C, the separation speed of the electrode (this is related to the mass of the electrode (that is, due to the current capacity of the electrode), and the external force that moves the electrode). Depends on.

電極の離隔速度は、ごく一般的なメカニカルスイッチを本発明の実施の形態に使用した一般的な条件下であるため、容量素子Cの容量は、交流の周波数によりほぼ決定される。
交流では、電極の離隔時アーク放電が発生しなくても、離隔途中で交流電位が変化し、電極間電位差が大きくなり、電位差放電が発生し、これがアーク放電に移行する場合がある。
Since the electrode separation speed is a general condition in which a very general mechanical switch is used in the embodiment of the present invention, the capacitance of the capacitive element C is substantially determined by the AC frequency.
In alternating current, even when no arc discharge occurs when the electrodes are separated, the alternating potential changes during separation, the potential difference between the electrodes increases, and a potential difference discharge occurs, which may be transferred to arc discharge.

したがって、開閉器の電極の質量(これは、電極の電流容量に起因する。)及び両電極を離隔する速度(これは、電極を離隔させる外力に起因する。)と重要な因果関係が存在する。 Therefore, there is an important causal relationship between the mass of the switch electrode (this is due to the current capacity of the electrode) and the speed at which both electrodes are separated (which is due to the external force separating the electrodes). .

Et1、Et2、Et3 電極1〜電極3
C 容量素子
D 整流素子
R1、R2 抵抗素子1,2
Li1〜Li5 電流路1〜5
T1〜T4 端子1〜4
Et1, Et2, Et3 Electrode 1 to Electrode 3
C Capacitance element D Rectifier element R1, R2 Resistance element 1, 2
Li1 to Li5 Current paths 1 to 5
T1 to T4 Terminals 1 to 4

Claims (10)

電極1と、電極2と、電極3と、容量素子と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記容量素子の一端に伝達されるべく構成され、
前記電極3の電位は前記容量素子の他端に伝達されるべく構成され、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔し非導通状態となるとき、該電極2から前記容量素子及び前記外部の負荷を介して前記部分へ電流が流れ、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする電流開閉器。
An electrode 1, an electrode 2, an electrode 3, and a capacitor;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the capacitive element,
The potential of the electrode 3 is configured to be transmitted to the other end of the capacitive element,
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. And the electrode 3 are separated and become non-conductive, current flows from the electrode 2 to the portion via the capacitive element and the external load, and arc discharge occurs between the electrode 2 and the electrode 3. A current switch that does not generate.
電極1と、電極2と、電極3と、容量素子と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記容量素子の一端に伝達されるべく構成され、
前記電極3の電位は前記容量素子の他端に伝達されるべく構成され、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔する一瞬、該電極2と該電極3との電位差が“0”又は極めて小さく、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする電流開閉器。
An electrode 1, an electrode 2, an electrode 3, and a capacitor;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the capacitive element,
The potential of the electrode 3 is configured to be transmitted to the other end of the capacitive element,
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. The electric potential difference between the electrode 2 and the electrode 3 is “0” or very small for a moment when the electrode 3 and the electrode 3 are separated from each other, and no arc discharge is generated between the electrode 2 and the electrode 3. vessel.
前記電極2と前記電極3を接触させた導通状態を保持し、該電極2と前記電極1を接触させ導通状態とすることにより、該電極3に前記外部の電源の前記一方の極性の電位を出力することを特徴とする請求項1又は2に記載の電流開閉器。 By maintaining the conductive state in which the electrode 2 and the electrode 3 are in contact with each other, the electrode 2 and the electrode 1 are brought into contact with each other to be in a conductive state, whereby the potential of the one polarity of the external power source is applied to the electrode 3. The current switch according to claim 1, wherein the current switch is output. 電極1と、電極2と、電極3と、容量素子と整流素子との直列接続回路と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記直列接続回路の一端に伝達されるべく構成され、
前記電極3の電位は前記直列接続回路の他端に伝達されるべく構成され、
前記直列接続回路の前記整流素子は、前記外部の電源の前記の一方の極性の電位に順方向であり、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔し非導通状態となるとき、該電極2から前記直列接続回路及び前記外部の負荷を介して前記部分へ電流が流れ、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする直流電流開閉器。
An electrode 1, an electrode 2, an electrode 3, and a series connection circuit of a capacitive element and a rectifying element;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the series connection circuit,
The potential of the electrode 3 is configured to be transmitted to the other end of the series connection circuit,
The rectifying element of the series connection circuit is forward to the potential of the one polarity of the external power source;
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. And the electrode 3 are separated from each other and become non-conductive, current flows from the electrode 2 to the portion via the series connection circuit and the external load, and an arc discharge occurs between the electrode 2 and the electrode 3. A direct current switch characterized in that no generation occurs.
電極1と、電極2と、電極3と、容量素子と整流素子との直列接続回路と、を備え、
前記電極1には外部の電源の一方の極性の電位が印加されるべく構成され、
前記電極2は前記電極1と接触又は非接触可能に構成され、前記電極3は該電極2と接触又は非接触可能に構成され、
前記電極2の電位は前記直列接続回路の一端に伝達されるべく構成され、
前記電極3の電位は前記直列接続回路の他端に伝達されるべく構成され、
前記直列接続回路の前記整流素子は、前記外部の電源の前記の一方の極性の電位に順方向であり、
前記電極1、前記電極2及び前記電極3が導通状態にあるとき、該電極1に印加される前記外部の電源の前記一方の極性の電位は該電極3から出力され、
前記電極3と、前記外部の電源の他方の極性の電位が印加されている部分、との間に外部の負荷が接続され、前記電極1と前記電極2が導通している状態において該電極2と該電極3が離隔する一瞬、該電極2と該電極3との電位差がほぼ“0”又は極めて小さく、該電極2と該電極3との間にアーク放電が発生しないことを特徴とする直流電流開閉器。
An electrode 1, an electrode 2, an electrode 3, and a series connection circuit of a capacitive element and a rectifying element;
The electrode 1 is configured to be applied with a potential of one polarity of an external power source,
The electrode 2 is configured to be in contact with or non-contact with the electrode 1, and the electrode 3 is configured to be in contact with or non-contact with the electrode 2,
The potential of the electrode 2 is configured to be transmitted to one end of the series connection circuit,
The potential of the electrode 3 is configured to be transmitted to the other end of the series connection circuit,
The rectifying element of the series connection circuit is forward to the potential of the one polarity of the external power source;
When the electrode 1, the electrode 2 and the electrode 3 are in a conductive state, the one polarity potential of the external power source applied to the electrode 1 is output from the electrode 3,
An external load is connected between the electrode 3 and the portion of the external power source to which the other polarity potential is applied, and the electrode 2 is in a state where the electrode 1 and the electrode 2 are conductive. The electric potential difference between the electrode 2 and the electrode 3 is almost “0” or very small for a moment when the electrode 3 is separated from the electrode 3, and no arc discharge is generated between the electrode 2 and the electrode 3. Current switch.
電極1と、電極2と、電極3と、容量素子と、を備え、
前記電極2には前記容量素子の一端が接続され、前記電極3には該容量素子の他端が接続され、前記電極1は外部の電源の一方の極性の電位が印加される電極であり、該電極3は該外部の該一方の極性の電位を出力又は非出力する電極であり、該電極1、該電極2及び該電極3が接触状態のときは、電流開閉器の開閉部が閉であり、該電極2と該電極3が離隔状態のときは、電流開閉器の開閉部が開であることを特徴とする電流開閉器。
An electrode 1, an electrode 2, an electrode 3, and a capacitor;
One end of the capacitive element is connected to the electrode 2, the other end of the capacitive element is connected to the electrode 3, and the electrode 1 is an electrode to which a potential of one polarity of an external power source is applied, The electrode 3 is an electrode that outputs or does not output the external potential of the one polarity. When the electrode 1, the electrode 2, and the electrode 3 are in contact, the switch of the current switch is closed. A current switch characterized in that when the electrode 2 and the electrode 3 are in a separated state, the switch of the current switch is open.
電極1と、電極2と、電極3と、容量素子と整流素子との直列接続回路と、を備え、
前記電極2には前記直列接続回路の一端が接続され、前記電極3には該直列接続回路の他端が接続され、前記電極1は外部の電源の一方の極性の電位が印加される電極であり、前記直列接続回路の前記整流素子は、該外部の電源の該一方の極性の電位に順方向であり、該電極3は該外部の電源の該一方の極性の電位を出力又は非出力する電極であり、該電極1、該電極2及び該電極3が接触状態のときは、直流電流開閉器の開閉部が閉であり、該電極2と該電極3が離隔状態のときは、直流電流開閉器の開閉部が開であることを特徴とする直流電流開閉器。
An electrode 1, an electrode 2, an electrode 3, and a series connection circuit of a capacitive element and a rectifying element;
One end of the series connection circuit is connected to the electrode 2, the other end of the series connection circuit is connected to the electrode 3, and the electrode 1 is an electrode to which a potential of one polarity of an external power supply is applied. And the rectifying element of the series connection circuit is forward to the potential of the one polarity of the external power supply, and the electrode 3 outputs or does not output the potential of the one polarity of the external power supply. When the electrode 1, the electrode 2 and the electrode 3 are in contact, the DC current switch is closed, and when the electrode 2 and the electrode 3 are separated, the direct current A DC current switch characterized in that the switch part of the switch is open.
前記容量素子の両端に抵抗素子1が並列接続されていることを特徴とする請求項1、2、3又は6のいずれかに記載の電流開閉器。 The current switch according to claim 1, wherein a resistance element 1 is connected in parallel to both ends of the capacitive element. 前記容量素子の両端に抵抗素子1が並列接続されていることを特徴とする請求項4、5又は7のいずれかに記載の直流電流開閉器。 8. The DC current switch according to claim 4, wherein a resistance element 1 is connected in parallel to both ends of the capacitive element. 前記整流素子の両端に抵抗素子2が並列接続されていることを特徴とする請求項4、5又は7のいずれかに記載の直流電流開閉器。 8. The DC current switch according to claim 4, wherein a resistance element 2 is connected in parallel to both ends of the rectifying element.
JP2011141400A 2011-06-27 2011-06-27 Current switch and dc current switch Pending JP2013008607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011141400A JP2013008607A (en) 2011-06-27 2011-06-27 Current switch and dc current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011141400A JP2013008607A (en) 2011-06-27 2011-06-27 Current switch and dc current switch

Publications (1)

Publication Number Publication Date
JP2013008607A true JP2013008607A (en) 2013-01-10

Family

ID=47675783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011141400A Pending JP2013008607A (en) 2011-06-27 2011-06-27 Current switch and dc current switch

Country Status (1)

Country Link
JP (1) JP2013008607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050152A (en) * 2013-09-04 2015-03-16 河村電器産業株式会社 Dc switching device
WO2018131307A1 (en) 2017-01-13 2018-07-19 ソニー株式会社 Arc-suppressing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739192A (en) * 1971-11-24 1973-06-12 J Oswald Non oscillating arcless switching or inductive d.c. loads
JPS5435376U (en) * 1977-08-15 1979-03-08
JPS56104024U (en) * 1980-01-10 1981-08-14
JP2003208829A (en) * 2002-01-10 2003-07-25 Sumitomo Electric Ind Ltd Direct current breaker
JP2004014241A (en) * 2002-06-05 2004-01-15 Toshiba Corp Dc breaker
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739192A (en) * 1971-11-24 1973-06-12 J Oswald Non oscillating arcless switching or inductive d.c. loads
JPS5435376U (en) * 1977-08-15 1979-03-08
JPS56104024U (en) * 1980-01-10 1981-08-14
JP2003208829A (en) * 2002-01-10 2003-07-25 Sumitomo Electric Ind Ltd Direct current breaker
JP2004014241A (en) * 2002-06-05 2004-01-15 Toshiba Corp Dc breaker
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050152A (en) * 2013-09-04 2015-03-16 河村電器産業株式会社 Dc switching device
WO2018131307A1 (en) 2017-01-13 2018-07-19 ソニー株式会社 Arc-suppressing device
JPWO2018131307A1 (en) * 2017-01-13 2019-11-07 ソニー株式会社 Arc suppression device
JP7036033B2 (en) 2017-01-13 2022-03-15 ソニーグループ株式会社 Arc suppression device

Similar Documents

Publication Publication Date Title
CN101436490B (en) Micro-electromechanical system based switching
CN201549395U (en) Mechanical electronic DC switch
CN105659459A (en) High voltage dc breaker
CN103971955B (en) The contact assembly of parallel connection switching switch
WO2013013555A1 (en) An access control device for communication power supply storage battery
JPWO2015166600A1 (en) DC breaker
JP2013168347A (en) Power receptacle for direct-current distribution
CN109066606A (en) A kind of two-way forced commutation type direct current current-limiting circuit breaker
JP6024801B1 (en) Switching device, moving body, power supply system, and switching method
CN107924778B (en) Switching device
JP2013008607A (en) Current switch and dc current switch
CN101888045A (en) Circuit and method for preventing direct current arc discharge
CN107658970B (en) Relay protection circuit for fire-fighting equipment power supply
AU2019341286B2 (en) Arc-extinguishing circuit and apparatus
CN210111684U (en) Zero-interruption hybrid dual-power automatic conversion device
CN108054732B (en) The holding circuit of high-speed circuit breaker
CN101533727B (en) Switch crowbar circuit and control method thereof
CN101587786A (en) A kind of switch arc suppression circuit for switch devices and control method thereof
CN107710369B (en) Circuit-breaker
CN201465837U (en) Switch arc-suppressing circuit
CN105225814B (en) A kind of on-load tap-changer of transformer
JP2018181599A (en) Dc cutoff device
JP6662308B2 (en) DC power supply connector and DC power supply
CN111527575A (en) DC arc-extinguishing device
CN207819451U (en) A kind of motor-operating mechanism driving circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151029