JP2013007308A - Device and method for controlling cooling water of internal combustion engine - Google Patents

Device and method for controlling cooling water of internal combustion engine Download PDF

Info

Publication number
JP2013007308A
JP2013007308A JP2011139774A JP2011139774A JP2013007308A JP 2013007308 A JP2013007308 A JP 2013007308A JP 2011139774 A JP2011139774 A JP 2011139774A JP 2011139774 A JP2011139774 A JP 2011139774A JP 2013007308 A JP2013007308 A JP 2013007308A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
specific heat
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011139774A
Other languages
Japanese (ja)
Inventor
Koichiro Nakatani
好一郎 中谷
Akira Yamashita
晃 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011139774A priority Critical patent/JP2013007308A/en
Publication of JP2013007308A publication Critical patent/JP2013007308A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for preventing overheating of an internal combustion engine by using cooling water having a specific heat change band in at least one temperature region.SOLUTION: This device of controlling cooling water of an internal combustion engine using the cooling water having a specific heat change band while the specific heat changes in at least one temperature region comprises: a thermostat subject to opening and closing control for adjusting a temperature of the cooling water and having variable opening and closing control timing; a remaining latent heat amount estimation means for estimating a remaining latent heat not contributing to temperature rise of the cooling water obtained by the cooling water having the specific heat change band; and a control means opening the thermostat when the remaining latent heat amount estimated by the remaining latent heat amount estimation means becomes equal to or lower than a predetermined value being a threshold as to whether it is the timing for opening the thermostat.

Description

本発明は、内燃機関の冷却水制御装置及び内燃機関の冷却水制御方法に関する。   The present invention relates to an internal combustion engine coolant control apparatus and an internal combustion engine coolant control method.

内燃機関を冷却する冷却水として、固相状態と液相状態との間で相変化することにより媒体の比熱を変更する粒子を含むことで比熱が可変する冷却水を用いる技術が開示されている(例えば特許文献1参照)。これにより、粒子の蓄熱効果により熱を効率的に輸送することができ、その分だけポンプによる冷却水の循環量を少なくすることができ、冷却対象熱源の冷却効率を向上させることができる。   As cooling water for cooling an internal combustion engine, a technique is disclosed that uses cooling water whose specific heat is variable by including particles that change the specific heat of the medium by changing the phase between a solid phase state and a liquid phase state. (For example, refer to Patent Document 1). Thereby, heat can be efficiently transported by the heat storage effect of the particles, and the circulation amount of the cooling water by the pump can be reduced by that much, and the cooling efficiency of the heat source to be cooled can be improved.

特開2009−044896号公報JP 2009-044896 A

特許文献1に開示された比熱が可変する冷却水であると、粒子を含ませる冷却水媒体(溶媒)に、低比熱な冷却水媒体を使用することになる。低比熱な冷却水媒体を使用すると、冷却水に含まれる粒子によって高比熱となる比熱変化帯以外の温度域では、温度変化が激しい。そうすると、冷却水が比熱変化帯を超えて温度上昇した際に冷却が間に合わず、内燃機関のオーバーヒートを招くおそれがある。   When the cooling water disclosed in Patent Document 1 has variable specific heat, a cooling water medium having a low specific heat is used as the cooling water medium (solvent) containing the particles. When a cooling water medium having a low specific heat is used, the temperature changes drastically in a temperature range other than the specific heat changing zone where the specific heat is increased by the particles contained in the cooling water. Then, when the temperature of the cooling water rises beyond the specific heat change zone, the cooling is not in time, which may cause overheating of the internal combustion engine.

本発明の目的は、少なくとも1つの温度域で比熱変化帯を有する冷却水を使用して、内燃機関のオーバーヒートを抑制する技術を提供することにある。   An object of the present invention is to provide a technique for suppressing overheating of an internal combustion engine by using cooling water having a specific heat change zone in at least one temperature region.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
少なくとも1つの温度域で比熱が変化している状態の比熱変化帯を有する冷却水を使用する内燃機関の冷却水制御装置であって、
冷却水の温度を調節するために開閉制御されるサーモスタットであって、開閉制御タイミングが可変なサーモスタットと、
冷却水が比熱変化帯を有することで得られる冷却水の温度上昇に寄与しない残存潜熱量を推定する残存潜熱量推定手段と、
前記残存潜熱量推定手段によって推定された残存潜熱量が、前記サーモスタットを開弁させるタイミングか否かの閾値となる所定量以下になった場合に、前記サーモスタットを開弁させる制御手段と、
を備えたことを特徴とする内燃機関の冷却水制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A cooling water control device for an internal combustion engine that uses cooling water having a specific heat change zone in which the specific heat is changing in at least one temperature range,
A thermostat that is controlled to be opened and closed to adjust the temperature of the cooling water, and whose opening and closing control timing is variable,
A residual latent heat amount estimating means for estimating a residual latent heat amount that does not contribute to the temperature rise of the cooling water obtained by the cooling water having a specific heat change zone;
Control means for opening the thermostat when the residual latent heat amount estimated by the residual latent heat amount estimation means is equal to or less than a predetermined amount which is a threshold value indicating whether or not the timing for opening the thermostat;
A cooling water control device for an internal combustion engine, comprising:

ここで、比熱変化帯とは、冷却水の比熱が変化している状態の温度帯であり、この比熱変化帯では、冷却水に付与される熱量に変化が生じても、比熱が変化し冷却水の温度が変化し難くなるものである。また、残存潜熱量とは、冷却水が比熱変化帯を有することで得られる潜熱量であって、比熱変化帯で冷却水の比熱が変化することで冷却水の温度上昇に寄与しない潜熱量である。また、所定量とは、残存潜熱量がそれ以下になるとサーモスタットを開弁させるタイミングとなる量であり、サーモスタットを開弁させるタイミングか否かの閾値である。   Here, the specific heat change zone is a temperature zone in which the specific heat of the cooling water is changing. In this specific heat change zone, even if a change occurs in the amount of heat applied to the cooling water, the specific heat changes and cooling is performed. The temperature of water becomes difficult to change. The residual latent heat amount is a latent heat amount that is obtained when the cooling water has a specific heat change zone, and is a latent heat amount that does not contribute to an increase in the temperature of the cooling water because the specific heat of the cooling water changes in the specific heat change zone. is there. In addition, the predetermined amount is an amount that becomes a timing for opening the thermostat when the residual latent heat amount becomes less than that, and is a threshold value indicating whether or not it is a timing for opening the thermostat.

本発明によると、残存潜熱量が所定量以下になった場合に、サーモスタットを開弁させ
て冷却水の温度を低下させる。つまり、サーモスタットを開弁させるタイミングを残存潜熱量及び所定量に応じて変更することができる。このため、サーモスタットを開弁させて冷却水の温度を低下させる残存潜熱量が所定量以下になるタイミングを、内燃機関がオーバーヒートする手前のタイミングに設定することで、内燃機関のオーバーヒートを抑制することができる。したがって、少なくとも1つの温度域で比熱変化帯を有する冷却水を使用して、内燃機関のオーバーヒートを抑制することができる。
According to the present invention, when the residual latent heat amount becomes a predetermined amount or less, the thermostat is opened to reduce the temperature of the cooling water. That is, the timing for opening the thermostat can be changed according to the residual latent heat amount and the predetermined amount. For this reason, the overheating of the internal combustion engine is suppressed by setting the timing at which the residual latent heat amount that lowers the temperature of the cooling water by opening the thermostat to a predetermined amount or less is set to a timing before the internal combustion engine overheats. Can do. Therefore, it is possible to suppress overheating of the internal combustion engine by using cooling water having a specific heat change zone in at least one temperature range.

前記サーモスタットを開弁させるタイミングか否かの閾値となる所定量は、内燃機関の運転状態に応じて変更されるとよい。   The predetermined amount serving as a threshold value indicating whether or not the timing for opening the thermostat is preferably changed according to the operating state of the internal combustion engine.

本発明によると、サーモスタットを開弁させるタイミングを決定する所定量を、内燃機関の運転状態に応じて変更することができる。このため、サーモスタットを開弁させて冷却水の温度を低下させる残存潜熱量が所定量以下になるタイミングを、内燃機関の運転状態を考慮して内燃機関がオーバーヒートする手前のタイミングに設定することができ、内燃機関のオーバーヒートを抑制することができる。   According to the present invention, the predetermined amount for determining the timing for opening the thermostat can be changed according to the operating state of the internal combustion engine. For this reason, it is possible to set the timing at which the amount of residual latent heat that lowers the temperature of the cooling water by opening the thermostat to a predetermined amount or less is set to a timing before the internal combustion engine overheats in consideration of the operating state of the internal combustion engine. And overheating of the internal combustion engine can be suppressed.

前記制御手段が前記サーモスタットを開弁させるタイミングは、冷却水の温度が比熱変化帯内に存在し残存潜熱量が変化するタイミングであるとよい。   The timing when the control means opens the thermostat may be a timing when the temperature of the cooling water is within the specific heat change zone and the amount of residual latent heat changes.

本発明によると、冷却水の温度が変化せず残存潜熱量が変化するタイミングでサーモスタットを開弁させることができる。よって、残存潜熱量が変化せず冷却水の温度が変化しているような冷却水の温度がばらつくタイミングでサーモスタットを開弁してしまうことを回避することができ、冷却水の温度制御の不安定化を抑制することができる。   According to the present invention, the thermostat can be opened at the timing when the temperature of the cooling water does not change and the residual latent heat amount changes. Therefore, it is possible to avoid opening the thermostat at a timing when the temperature of the cooling water varies such that the remaining latent heat amount does not change and the temperature of the cooling water changes. Stabilization can be suppressed.

冷却水は、複数の温度域で比熱変化帯を有し、
前記制御手段が前記サーモスタットを開弁させるタイミングは、冷却水の温度が最も高い温度域での比熱変化帯内に存在し残存潜熱量が変化するタイミングであるとよい。
The cooling water has specific heat change bands in a plurality of temperature ranges,
The timing at which the control means opens the thermostat may be a timing at which the residual latent heat amount changes in the specific heat change zone in the temperature range where the temperature of the cooling water is highest.

本発明によると、最も高い温度域での比熱変化帯を、サーモスタットの開弁タイミングの調整に用いることができ、他の温度域での比熱変化帯を、冷却水の温度制御に用いることができる。   According to the present invention, the specific heat change zone in the highest temperature range can be used for adjusting the valve opening timing of the thermostat, and the specific heat change zone in other temperature ranges can be used for temperature control of the cooling water. .

冷却水は、相変化することにより媒体の比熱を変更する多種類の粒子を含むことで、複数の温度域で比熱変化帯を有するとよい。   The cooling water preferably has a specific heat change zone in a plurality of temperature ranges by including many kinds of particles that change the specific heat of the medium by phase change.

本発明によると、多種類の粒子が異なる温度域で相変化することにより、各種類の粒子が相変化する温度域が比熱変化帯となる。   According to the present invention, when various types of particles undergo a phase change in different temperature ranges, the temperature range in which each type of particles undergoes a phase change becomes a specific heat change zone.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
少なくとも1つの温度域で比熱が変化している状態の比熱変化帯を有する冷却水を使用する内燃機関の冷却水制御方法であって、
冷却水が比熱変化帯を有することで得られる冷却水の温度上昇に寄与しない残存潜熱量を推定し、
推定された残存潜熱量が、冷却水の温度を調節するために開閉制御されるサーモスタットであって、開閉制御タイミングが可変なサーモスタットを開弁させるタイミングか否かの閾値となる所定量以下になった場合に、前記サーモスタットを開弁させることを特徴とする内燃機関の冷却水制御方法である。
In the present invention, the following configuration is adopted. That is, the present invention
A cooling water control method for an internal combustion engine using cooling water having a specific heat change zone in a state where specific heat is changing in at least one temperature range,
Estimating the amount of residual latent heat that does not contribute to the temperature rise of the cooling water obtained by the cooling water having a specific heat change zone,
The estimated residual latent heat amount is a thermostat that is controlled to open and close in order to adjust the temperature of the cooling water, and is less than or equal to a predetermined amount that is a threshold value for determining whether or not to open the thermostat with variable open / close control timing. In this case, the cooling water control method for an internal combustion engine is characterized in that the thermostat is opened.

本発明によっても、少なくとも1つの温度域で比熱変化帯を有する冷却水を使用して、内燃機関のオーバーヒートを抑制することができる。   According to the present invention, the overheat of the internal combustion engine can be suppressed by using the cooling water having the specific heat change zone in at least one temperature range.

本発明によると、少なくとも1つの温度域で比熱変化帯を有する冷却水を使用して、内燃機関のオーバーヒートを抑制することができる。   According to the present invention, it is possible to suppress overheating of an internal combustion engine by using cooling water having a specific heat change zone in at least one temperature range.

本発明の実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. 実施例1に係る冷却水のモデルを示す図である。It is a figure which shows the model of the cooling water which concerns on Example 1. FIG. 実施例1に係る冷却水の温度と比熱との関係を示す図である。It is a figure which shows the relationship between the temperature of the cooling water which concerns on Example 1, and specific heat. 実施例1に係る比熱が変化する冷却水の温度上昇時の経過時間に対する、残存潜熱量変化、及び、冷却水の温度変化の特性曲線を示す図である。It is a figure which shows the characteristic curve of the residual latent-heat amount change and the temperature change of a cooling water with respect to the elapsed time at the time of the temperature rise of the cooling water from which the specific heat which concerns on Example 1 changes. 実施例1に係る所定量を機関負荷(機関回転速度)あたり放熱量から求めるマップを示す図である。It is a figure which shows the map which calculates | requires the predetermined amount which concerns on Example 1 from the thermal radiation amount per engine load (engine rotational speed). 実施例1に係る電子サーモスタットの開弁タイミング決定ルーチンを示すフローチャートである。4 is a flowchart illustrating a valve opening timing determination routine of the electronic thermostat according to the first embodiment.

以下に本発明の具体的な実施例を説明する。
<実施例1>
図1は、本発明の実施例1に係る内燃機関の冷却装置を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1では、シリンダブロック及びシリンダヘッドを冷却するために冷却水が冷却水通路2を循環する。冷却水通路2としては、冷却水がラジエータ3を流通する通路2a、冷却水がオイルクーラ4を流通する通路2b、冷却水がスロットル弁5a及びEGR弁5bを流通する通路2c、冷却水がリザーバタンク6を流通する通路2d、冷却水がヒータコア7を流通する通路2e、冷却水がEGRクーラ8を流通する通路2f、冷却水がそのまま流通するバイパス通路2gが設けられている。
Specific examples of the present invention will be described below.
<Example 1>
FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an internal combustion engine cooling apparatus according to a first embodiment of the present invention is applied. In the internal combustion engine 1 shown in FIG. 1, cooling water circulates through the cooling water passage 2 in order to cool the cylinder block and the cylinder head. The cooling water passage 2 includes a passage 2a through which the cooling water flows through the radiator 3, a passage 2b through which the cooling water flows through the oil cooler 4, a passage 2c through which the cooling water flows through the throttle valve 5a and the EGR valve 5b, and the cooling water as a reservoir. A passage 2d through which the tank 6 flows, a passage 2e through which the cooling water flows through the heater core 7, a passage 2f through which the cooling water flows through the EGR cooler 8, and a bypass passage 2g through which the cooling water flows as it is are provided.

ラジエータ3は、冷却水と外気とで熱交換して冷却水を冷却する。オイルクーラ4は、水冷式オイルクーラであり、内燃機関1に供給されるオイルと冷却水とで熱交換してオイルを冷却する。スロットル弁5aは、内燃機関1で吸気量を制御する弁であり、冷却水で冷却される。EGR弁5bは、内燃機関1に還流される排気の一部であるEGRガス量を制御する弁であり、冷却水で冷却される。リザーバタンク6は、冷却水を一時的に貯留する。ヒータコア7は、温められた冷却水により室内へ供給される空気を温める。EGRクーラ8は、水冷式EGRクーラであり、内燃機関1に還流されるEGRガスと冷却水とで熱交換してEGRガスを冷却する。   The radiator 3 cools the cooling water by exchanging heat between the cooling water and outside air. The oil cooler 4 is a water-cooled oil cooler, and cools the oil by exchanging heat between the oil supplied to the internal combustion engine 1 and the cooling water. The throttle valve 5a is a valve that controls the intake air amount in the internal combustion engine 1, and is cooled by cooling water. The EGR valve 5b is a valve that controls the amount of EGR gas that is part of the exhaust gas recirculated to the internal combustion engine 1, and is cooled by cooling water. The reservoir tank 6 temporarily stores cooling water. The heater core 7 warms the air supplied to the room with warmed cooling water. The EGR cooler 8 is a water-cooled EGR cooler, and cools the EGR gas by exchanging heat between the EGR gas recirculated to the internal combustion engine 1 and the cooling water.

冷却水がラジエータ3を流通する通路2aには、シリンダブロックから通じる冷却水がオイルクーラ4を流通する通路2bが合流する。また、冷却水がラジエータ3を流通する通路2aからは、冷却水がスロットル弁5a及びEGR弁5bを流通する通路2c、並びに、冷却水がリザーバタンク6を流通する通路2dが分岐する。シリンダブロックから通じた冷却水がEGRクーラ8を流通する通路2fは、冷却水がヒータコア7を流通する通路2eに合流する。   The passage 2 a through which the cooling water flows through the radiator 3 joins the passage 2 b through which the cooling water from the cylinder block flows through the oil cooler 4. The passage 2a through which the cooling water flows through the radiator 3 branches into a passage 2c through which the cooling water flows through the throttle valve 5a and the EGR valve 5b, and a passage 2d through which the cooling water flows through the reservoir tank 6. The passage 2 f through which the cooling water communicated from the cylinder block flows through the EGR cooler 8 joins the passage 2 e through which the cooling water flows through the heater core 7.

冷却水がラジエータ3を流通する通路2a及びバイパス通路2gが合流する部位には、電子サーモスタット9が配置されている。電子サーモスタット9は、冷却水の温度を調節するために指令に応じて開閉制御される制御弁であり、開閉制御タイミングが可変となっている。電子サーモスタット9を開弁することで冷却水がラジエータ3を流通するように冷却水の流通経路及び流通量を変更して冷却水の温度を低下させることができる。この開弁時、バイパス通路2gは冷却水の流通量が絞られる。反対に、電子サーモスタット9を閉弁することで冷却水がラジエータ3を流通し難くするように冷却水の流通経路及び流通
量を変更して冷却水の温度を低下し難くすることができる。この閉弁時、バイパス通路2gは冷却水の流通量が増加する。電子サーモスタット9の下流では冷却水をウォータポンプ10に送り込む。ウォータポンプ10は、冷却水を汲み上げて内燃機関1のシリンダブロックへ供給する。また、内燃機関1の出口に冷却水通路2が接続された部位には、水温センサ11が配置され、水温センサ11で内燃機関1から流出した冷却水の温度を検出する。
An electronic thermostat 9 is disposed at a portion where the passage 2a through which the cooling water flows through the radiator 3 and the bypass passage 2g merge. The electronic thermostat 9 is a control valve that is controlled to open and close in response to a command in order to adjust the temperature of the cooling water, and the open / close control timing is variable. By opening the electronic thermostat 9, the temperature of the cooling water can be lowered by changing the flow path and flow rate of the cooling water so that the cooling water flows through the radiator 3. When the valve is opened, the circulation amount of the cooling water is reduced in the bypass passage 2g. On the contrary, by closing the electronic thermostat 9, it is possible to change the flow path and flow rate of the cooling water so that the cooling water does not easily flow through the radiator 3, thereby making it difficult to lower the temperature of the cooling water. When the valve is closed, the circulation amount of the cooling water increases in the bypass passage 2g. Cooling water is fed into the water pump 10 downstream of the electronic thermostat 9. The water pump 10 pumps up cooling water and supplies it to the cylinder block of the internal combustion engine 1. Further, a water temperature sensor 11 is disposed at a portion where the cooling water passage 2 is connected to the outlet of the internal combustion engine 1, and the temperature of the cooling water flowing out from the internal combustion engine 1 is detected by the water temperature sensor 11.

ここで、冷却水通路2を流通する冷却水は、比熱が可変する冷却水であって、2つの温度域で比熱が変化している状態の比熱変化帯C1,C2を有する冷却水である。すなわち、冷却水は、固相状態と液相状態との間で相変化したり、液相状態と気相状態との間で相変化したりすることにより媒体の比熱を変更する2種類の粒子を含み比熱が可変する冷却水である。なお、粒子としては、固相状態と液相状態との間で相変化するものだけでなく、液相状態と気相状態との間で相変化するもの等を用いることができる。この粒子は、例えば、カプセルの中に、潜熱等で蓄熱でき、相変化する物質を入れて構成される。また、冷却水としては、2つの温度域で比熱変化帯を有するものだけでなく、1つや3つ以上の温度域で比熱変化帯を有するものでもよい。冷却水は、図2に示すように温度が一定以上になると内部の物質が固体から液体に相変化するような物質をカプセルで包んだ2つの粒子P1,P2を、冷却水の溶媒の中に混入させたものである。図2は、本実施例に係る冷却水のモデルを示す図である。図2では、粒子P1が相変化する場合を例示している。   Here, the cooling water flowing through the cooling water passage 2 is a cooling water whose specific heat is variable, and is a cooling water having specific heat change zones C1 and C2 in a state where the specific heat changes in two temperature ranges. That is, the cooling water has two types of particles that change the specific heat of the medium by changing the phase between the solid phase and the liquid phase, or changing between the liquid phase and the gas phase. It is a cooling water with a variable specific heat. As the particles, not only particles that change between a solid phase and a liquid phase but also particles that change between a liquid phase and a gas phase can be used. The particles are configured by, for example, putting a substance that can store heat by latent heat or the like and change phase in a capsule. Further, the cooling water is not limited to one having a specific heat change band in two temperature ranges, but may be one having a specific heat change band in one or three or more temperature ranges. As shown in FIG. 2, the cooling water is composed of two particles P1 and P2 encapsulating substances whose phase changes from a solid to a liquid when the temperature rises above a certain level. It is mixed. FIG. 2 is a diagram illustrating a cooling water model according to the present embodiment. FIG. 2 illustrates a case where the particle P1 undergoes a phase change.

図3は、本実施例に係る冷却水の温度と比熱との関係を示す図である。図2に示すように冷却水中の2種類の複数の粒子P1,P2が固相状態と液相状態との間で相変化することにより、2種類の粒子P1,P2が相変化して冷却水の比熱が変化している比熱変化帯C1,C2が生じる(図3参照)。この比熱変化帯C1,C2は、冷却水に熱が付与されても、粒子が相変化して冷却水の比熱が変化している状態の相変化温度帯となる(図4参照)。すなわち比熱変化帯とは、冷却水の比熱が変化している状態の温度帯であり、この比熱変化帯では、冷却水に付与される熱量に変化が生じても、比熱が変化し冷却水の温度が変化し難くなるものである。ここで、図3に示すように、2つの比熱変化帯C1,C2のうち、最も高い温度域の比熱変化帯C2における比熱の変化で許容可能な許容受熱量を、もう一方の他の比熱変化帯C1における許容受熱量よりも多くしている。ここで、許容受熱量とは、冷却水の比熱が変化することで冷却水が温度変化せずに許容可能となる受熱量であり、この許容受熱量を超えると、冷却水の温度が比熱変化帯から逸脱してしまうものである。言い換えると、図3に示すように、最も高い温度域の比熱変化帯C2における比熱変化量を、もう一方の他の比熱変化帯C1における比熱変化量よりも多くしている。このように許容受熱量を異ならせるために、比熱変化帯C2を形成する粒子P2の量を、比熱変化帯C1を形成する粒子P1の量よりも多くしている。   FIG. 3 is a diagram illustrating the relationship between the temperature of the cooling water and the specific heat according to the present embodiment. As shown in FIG. 2, two types of particles P1 and P2 in the cooling water undergo a phase change between the solid phase state and the liquid phase state, whereby the two types of particles P1 and P2 undergo a phase change and the cooling water. The specific heat change zones C1 and C2 in which the specific heat changes are generated (see FIG. 3). These specific heat change zones C1 and C2 are phase change temperature zones in which the phase of the particles changes and the specific heat of the cooling water is changed even if heat is applied to the cooling water (see FIG. 4). That is, the specific heat change zone is a temperature zone in which the specific heat of the cooling water is changing. In this specific heat change zone, even if the amount of heat applied to the cooling water changes, the specific heat changes and the cooling water changes. The temperature is difficult to change. Here, as shown in FIG. 3, of the two specific heat change zones C1 and C2, the allowable heat receiving amount allowable by the specific heat change in the specific heat change zone C2 in the highest temperature range is changed to the other specific heat change. More than the allowable heat receiving amount in the band C1. Here, the allowable heat receiving amount is a heat receiving amount that can be allowed without changing the temperature of the cooling water due to a change in the specific heat of the cooling water, and when the allowable heat receiving amount is exceeded, the temperature of the cooling water changes in the specific heat. It will deviate from the belt. In other words, as shown in FIG. 3, the specific heat change amount in the specific heat change zone C2 in the highest temperature range is made larger than the specific heat change amount in the other specific heat change zone C1. In order to vary the allowable heat receiving amount in this way, the amount of the particles P2 forming the specific heat change zone C2 is made larger than the amount of the particles P1 forming the specific heat change zone C1.

図4は、本実施例に係る比熱が変化する冷却水の温度上昇時の経過時間に対する、残存潜熱量変化、及び、冷却水の温度変化の特性曲線を示す図である。図4に示すように冷却水が温度上昇していくと、2つの比熱変化帯C1,C2を経過する。ここで、内燃機関1の電子サーモスタット9が開弁するタイミングは、図3に示すように、最も高い温度域の比熱変化帯C2に含まれるようにしている。これにより、内燃機関1の電子サーモスタット9が開弁する際に、最も高い温度域の比熱変化帯C2で異なる熱量を受熱することができる。これによって、許容受熱量を多くした最も高い温度域の比熱変化帯C2を有効利用するようにしている。このような冷却水を用いることにより、内燃機関1の暖機過程では従来よりも冷却水の比熱を下げておくことで内燃機関1の暖機性を向上して燃費向上でき、暖機後はある一定の温度域(相変化温度帯)で比熱が高くなることから、受熱量の許容範囲が増大してオーバーヒート等を回避することができる。   FIG. 4 is a diagram illustrating a characteristic curve of a change in residual latent heat amount and a change in temperature of the cooling water with respect to an elapsed time when the temperature of the cooling water in which specific heat changes according to the present embodiment. As shown in FIG. 4, when the temperature of the cooling water rises, two specific heat change zones C1 and C2 pass. Here, the timing at which the electronic thermostat 9 of the internal combustion engine 1 opens is included in the specific heat change zone C2 in the highest temperature range, as shown in FIG. Thereby, when the electronic thermostat 9 of the internal combustion engine 1 is opened, different amounts of heat can be received in the specific heat change zone C2 in the highest temperature range. As a result, the specific heat change zone C2 in the highest temperature range where the allowable heat receiving amount is increased is effectively used. By using such cooling water, the warm-up process of the internal combustion engine 1 can be improved in the warm-up process of the internal combustion engine 1 by lowering the specific heat of the coolant than before, so that the warm-up property of the internal combustion engine 1 can be improved and the fuel consumption can be improved. Since the specific heat increases in a certain temperature range (phase change temperature range), the allowable range of the amount of heat received can be increased to avoid overheating and the like.

この内燃機関1には、ECU(電子制御ユニット)12が併設されている。ECU12
には、水温センサ11、クランクポジションセンサ13やアクセルポジションセンサ14等の各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU12に入力されるようになっている。一方、ECU12には、スロットル弁5a、EGR弁5b、ヒータコア7、及び電子サーモスタット9、ウォータポンプ10等が電気配線を介して接続されており、ECU12によりこれらの機器が制御される。
The internal combustion engine 1 is provided with an ECU (electronic control unit) 12. ECU12
In addition, various sensors such as a water temperature sensor 11, a crank position sensor 13, and an accelerator position sensor 14 are connected via electric wiring, and output signals of these various sensors are input to the ECU 12. On the other hand, a throttle valve 5a, an EGR valve 5b, a heater core 7, an electronic thermostat 9, a water pump 10, and the like are connected to the ECU 12 through electric wiring, and these devices are controlled by the ECU 12.

(冷却水制御)
従来から比熱が可変する冷却水を使用することは考えられていた。この比熱が可変する冷却水であると、比熱変化を大きくするためや暖機性の向上のために、粒子を含ませる冷却水媒体(溶媒)に、低比熱な冷却水媒体を使用することになる。低比熱な冷却水媒体を使用すると、冷却水に含まれる粒子によって高比熱となる比熱変化帯以外の温度域では、温度変化が激しい。そうすると、冷却水が比熱変化帯を超えて温度上昇した際に冷却が間に合わず、内燃機関のオーバーヒートを招くおそれがある。
(Cooling water control)
Conventionally, it has been considered to use cooling water with variable specific heat. In order to increase the specific heat change and to improve the warm-up property, the cooling water medium having a variable specific heat is used to use a cooling water medium having a low specific heat as a cooling water medium (solvent) containing particles. Become. When a cooling water medium having a low specific heat is used, the temperature changes drastically in a temperature range other than the specific heat changing zone where the specific heat is increased by the particles contained in the cooling water. Then, when the temperature of the cooling water rises beyond the specific heat change zone, the cooling is not in time, which may cause overheating of the internal combustion engine.

そこで、本実施例では、残存潜熱量QLを推定し、最も高い温度域の比熱変化帯C2内における残存潜熱量QLが所定量QT以下になった場合に、電子サーモスタット9を開弁させるようにした。ここで、残存潜熱量QLとは、冷却水が比熱変化帯を有することで得られる潜熱量であって、比熱変化帯で冷却水の比熱が変化することで冷却水の温度上昇に寄与しない潜熱量である。また、所定量QTとは、残存潜熱量QLがそれ以下になると電子サーモスタット9を開弁させるタイミングとなる量であり、電子サーモスタット9を開弁させるタイミングか否かの閾値である。   Therefore, in this embodiment, the residual latent heat amount QL is estimated, and the electronic thermostat 9 is opened when the residual latent heat amount QL in the specific heat change zone C2 in the highest temperature range becomes equal to or less than a predetermined amount QT. did. Here, the residual latent heat amount QL is a latent heat amount obtained when the cooling water has a specific heat change zone, and the latent heat that does not contribute to the temperature rise of the cooling water by changing the specific heat of the cooling water in the specific heat change zone. Amount. Further, the predetermined amount QT is an amount that becomes a timing for opening the electronic thermostat 9 when the residual latent heat amount QL becomes less than that, and is a threshold value for determining whether or not the timing for opening the electronic thermostat 9 is reached.

具体的に本実施例では、冷却水の特性により予め定まっている潜熱総量から、冷却水への放熱量を差し引くことで、残存潜熱量QLを推定する。ここで、冷却水への放熱量は、水温センサ11で検出する冷却水の温度、及び、クランクポジションセンサ13やアクセルポジションセンサ14で検出した運転状態から判断する運転履歴に基づいて導出される。このような残存潜熱量QLを推定するECU12が、本発明の残存潜熱量推定手段に対応する。   Specifically, in the present embodiment, the residual latent heat amount QL is estimated by subtracting the heat radiation amount to the cooling water from the total latent heat amount determined in advance by the characteristics of the cooling water. Here, the amount of heat released to the cooling water is derived based on the temperature of the cooling water detected by the water temperature sensor 11 and the operating history determined from the operating state detected by the crank position sensor 13 and the accelerator position sensor 14. The ECU 12 that estimates the residual latent heat amount QL corresponds to the residual latent heat amount estimation means of the present invention.

残存潜熱量QLが推定されると、所定量QTを定める。図5は、所定量QTを機関負荷から求めるマップを示す図である。クランクポジションセンサ13やアクセルポジションセンサ14で検出した運転状態から、機関負荷を求め、図5に示すマップに基づき内燃機関1の運転状態に応じた所定量QTを定めることができる。このように所定量QTは、内燃機関1のオーバーヒート手前で電子サーモスタット9を開弁させるように、内燃機関1の運転状態に応じて変更されるものである。   When the residual latent heat amount QL is estimated, a predetermined amount QT is determined. FIG. 5 is a diagram showing a map for obtaining the predetermined amount QT from the engine load. The engine load can be obtained from the operating state detected by the crank position sensor 13 and the accelerator position sensor 14, and a predetermined amount QT corresponding to the operating state of the internal combustion engine 1 can be determined based on the map shown in FIG. Thus, the predetermined amount QT is changed according to the operating state of the internal combustion engine 1 so that the electronic thermostat 9 is opened before the internal combustion engine 1 is overheated.

そして、推定された残存潜熱量QLと、定められた所定量QTとを比較し、残存潜熱量QLが所定量QT以下になった場合に、電子サーモスタット9を開弁させる。このように残存潜熱量QLが所定量QT以下になった場合に、電子サーモスタット9を開弁させるECU12が、本発明の制御手段に対応する。   Then, the estimated remaining latent heat amount QL is compared with a predetermined amount QT, and when the remaining latent heat amount QL becomes equal to or less than the predetermined amount QT, the electronic thermostat 9 is opened. The ECU 12 that opens the electronic thermostat 9 when the residual latent heat amount QL becomes equal to or less than the predetermined amount QT corresponds to the control means of the present invention.

本実施例によると、残存潜熱量QLが所定量QT以下になった場合に、電子サーモスタット9を開弁させて冷却水の温度を低下させる。つまり、電子サーモスタット9を開弁させるタイミングを残存潜熱量QL及び所定量QTに応じて変更することができる。このため、電子サーモスタット9を開弁させて冷却水の温度を低下させる残存潜熱量QLが所定量QT以下になるタイミングを、内燃機関1がオーバーヒートする手前のタイミングに設定することで、内燃機関1のオーバーヒートを抑制することができる。したがって、2つの温度域で比熱変化帯C1,C2を有する冷却水を使用して、内燃機関1のオーバーヒートを抑制することができる。   According to this embodiment, when the residual latent heat amount QL becomes equal to or less than the predetermined amount QT, the electronic thermostat 9 is opened to lower the temperature of the cooling water. That is, the timing for opening the electronic thermostat 9 can be changed according to the residual latent heat amount QL and the predetermined amount QT. For this reason, by setting the timing at which the residual latent heat amount QL, which lowers the temperature of the cooling water by opening the electronic thermostat 9, to be equal to or less than the predetermined amount QT, is set to a timing before the internal combustion engine 1 overheats, Overheating can be suppressed. Therefore, it is possible to suppress overheating of the internal combustion engine 1 by using the cooling water having the specific heat change zones C1 and C2 in the two temperature ranges.

また本実施例によると、電子サーモスタット9を開弁させるタイミングは、冷却水の温度が最も高い温度域での比熱変化帯C2内に存在し残存潜熱量が変化するタイミングである。これにより、冷却水の温度が変化せず残存潜熱量QLが変化するタイミングで電子サーモスタット9を開弁させることができる。よって、残存潜熱量QLが変化せず冷却水の温度が変化しているような冷却水の温度がばらつくタイミングで電子サーモスタット9を開弁してしまうことを回避することができ、冷却水の温度制御の不安定化を抑制することができる。また、最も高い温度域での比熱変化帯C2を、電子サーモスタット9の開弁タイミングの調整に用いることができ、他の温度域での比熱変化帯C1を、冷却水の温度制御に用いることができる。   Further, according to the present embodiment, the timing for opening the electronic thermostat 9 is the timing at which the residual latent heat amount changes in the specific heat change zone C2 in the temperature range where the temperature of the cooling water is the highest. Thereby, the electronic thermostat 9 can be opened at the timing when the temperature of the cooling water does not change and the residual latent heat amount QL changes. Therefore, it is possible to avoid opening the electronic thermostat 9 at the timing when the temperature of the cooling water varies such that the residual latent heat amount QL does not change and the temperature of the cooling water changes. Control instability can be suppressed. Further, the specific heat change zone C2 in the highest temperature range can be used for adjusting the valve opening timing of the electronic thermostat 9, and the specific heat change zone C1 in other temperature ranges can be used for temperature control of the cooling water. it can.

また、電子サーモスタット9を開弁させるタイミングか否かの閾値となる所定量QTは、内燃機関1の運転状態に応じて変更される。このため、電子サーモスタット9を開弁させて冷却水の温度を低下させる残存潜熱量QLが所定量QT以下になるタイミングを、内燃機関1の運転状態を考慮して内燃機関1がオーバーヒートする手前のタイミングに設定することができ、内燃機関1のオーバーヒートを抑制することができる。   Further, the predetermined amount QT, which is a threshold value indicating whether or not the timing for opening the electronic thermostat 9 is changed according to the operating state of the internal combustion engine 1. For this reason, the timing at which the residual latent heat quantity QL, which opens the electronic thermostat 9 and lowers the temperature of the cooling water, becomes equal to or less than the predetermined quantity QT, before the internal combustion engine 1 overheats in consideration of the operating state of the internal combustion engine 1. The timing can be set, and overheating of the internal combustion engine 1 can be suppressed.

(電子サーモスタット9の開弁タイミング決定ルーチン)
ECU12が実施する電子サーモスタット9の開弁タイミング決定ルーチンについて、図6に示すフローチャートに基づいて説明する。図6は、本実施例に係る電子サーモスタットの開弁タイミング決定ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU12によって実行される。
(Valve opening timing determination routine of the electronic thermostat 9)
A routine for determining the valve opening timing of the electronic thermostat 9 executed by the ECU 12 will be described with reference to the flowchart shown in FIG. FIG. 6 is a flowchart showing a valve opening timing determination routine of the electronic thermostat according to the present embodiment. This routine is repeatedly executed by the ECU 12 every predetermined time.

S100では、冷却水温が比熱変化帯C2にあるか否か判定し、肯定判定された場合S101へ進み、否定判定された場合ルーチンを抜ける。
S101では、残存潜熱量QLを推定する。「残存潜熱量QL=潜熱総量−冷却水への放熱量」の式より推定される。S101を実行するECU12が本発明の残存潜熱量推定手段に対応する。S102では、所定量QTを定める。機関負荷(機関回転速度)あたり放熱量を図5に示すマップに取り込むことで定められる。S103では、残存潜熱量QLが所定量QT以下になるか否かを判別する。S103で肯定判定された場合には、S104へ移行する。S103で否定判定された場合には、本ルーチンを一旦終了する。S104では、電子サーモスタット9を開弁させる。S103及びS104を実行するECU12が本発明の制御手段に対応する。S104の処理の後、本ルーチンを一旦終了する。
In S100, it is determined whether or not the cooling water temperature is in the specific heat change zone C2. If an affirmative determination is made, the process proceeds to S101, and if a negative determination is made, the routine is exited.
In S101, the residual latent heat amount QL is estimated. It is estimated from the expression “residual latent heat amount QL = latent heat total amount−heat radiation amount to cooling water”. The ECU 12 that executes S101 corresponds to the residual latent heat amount estimating means of the present invention. In S102, a predetermined amount QT is determined. The amount of heat released per engine load (engine speed) is determined by taking it into the map shown in FIG. In S103, it is determined whether or not the residual latent heat amount QL is equal to or less than a predetermined amount QT. If a positive determination is made in S103, the process proceeds to S104. If a negative determination is made in S103, this routine is once terminated. In S104, the electronic thermostat 9 is opened. ECU12 which performs S103 and S104 respond | corresponds to the control means of this invention. After the processing of S104, this routine is temporarily terminated.

以上ルーチンによると、電子サーモスタット9の開弁タイミングを残存潜熱量QL及び所定量QTによって定めるので、電子サーモスタット9の開弁タイミングが内燃機関のオーバーヒート手前となり、内燃機関のオーバーヒートを抑制することができる。   According to the above routine, since the valve opening timing of the electronic thermostat 9 is determined by the residual latent heat amount QL and the predetermined amount QT, the valve opening timing of the electronic thermostat 9 is before the overheating of the internal combustion engine, and the overheating of the internal combustion engine can be suppressed. .

<その他>
本発明に係る内燃機関の冷却水制御装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。また、上記実施例は、内燃機関の冷却水制御方法の実施例でもある。
<Others>
The cooling water control apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention. Moreover, the said Example is also an Example of the cooling water control method of an internal combustion engine.

上記の実施例では、冷却水温が比熱変化帯C2にあるときに、比熱変化帯C2における冷却水の残存潜熱を推定し、運転条件に応じて定められる所定量との比較に基づき、サーモスタットの開弁を制御する例を説明したが、複数の比熱変化帯がある冷却水を用いる内燃機関の場合、各比熱変化帯において同様のサーモスタット制御を行っても良い。比熱変化帯によって制御の目的は異なるため、運転条件と所定量との関係は比熱変化帯によって変わってくる。例えば、比熱変化帯C2はオーバーヒートを防ぎたい運転条件であるか否かに応じて所定量を異ならせたが、低温域の比熱変化帯C1においては、例えば燃費特性などの観点から比熱変化帯C2とは別個に運転条件と所定量との関係を定めておくことが
好適である。
In the above embodiment, when the cooling water temperature is in the specific heat change zone C2, the remaining latent heat of the cooling water in the specific heat change zone C2 is estimated, and the thermostat is opened based on a comparison with a predetermined amount determined according to the operating conditions. Although the example which controls a valve was explained, in the case of an internal combustion engine using cooling water with a plurality of specific heat change zones, the same thermostat control may be performed in each specific heat change zone. Since the purpose of control varies depending on the specific heat change zone, the relationship between the operating condition and the predetermined amount varies depending on the specific heat change zone. For example, the specific heat change zone C2 is varied by a predetermined amount depending on whether or not the operating condition is desired to prevent overheating. However, in the specific heat change zone C1 in the low temperature range, the specific heat change zone C2 from the viewpoint of, for example, fuel consumption characteristics. It is preferable to define the relationship between the operating condition and the predetermined amount separately.

本発明は、所定の少なくとも1つの温度域(温度又は温度範囲をまとめて温度域と表現する)(上記の記載において比熱変化帯と称している)において比熱が前記所定の温度域以外の温度における比熱よりも大きい値をとる冷却水(熱媒体)を使用する内燃機関の冷却装置において内燃機関のオーバーヒートをより確実に抑制することを課題とし、そのために、前記内燃機関の冷却装置は、冷却水の流通する冷却水通路に設けられ前記冷却水から熱を奪うラジエータと、前記ラジエータをバイパスするバイパス通路と、閉じたときには前記ラジエータへの冷却水の流通を遮断して前記バイパス通路に冷却水を流通させ、開いたときには少なくとも前記ラジエータに冷却水を流通させるサーモスタットと、サーモスタットの開閉を制御する制御手段と、を備え、前記制御手段は、冷却水の温度が前記所定の温度域にあるときに、当該所定の温度域の冷却水の残存潜熱量が、内燃機関の運転状態に応じて定められる所定の閾値(所定量)以下となったときにサーモスタットを開弁することを特徴としている。前記所定の温度域が複数ある冷却水を使用する場合には、前記制御手段は、冷却水の温度が前記複数の温度域のうち最も高い温度域にあるときに、当該最も高い温度域の冷却水の残存潜熱量が閾値以下となったときにサーモスタットを開弁するようにしても良い。   In the present invention, the specific heat is at a temperature other than the predetermined temperature range in a predetermined at least one temperature range (the temperature or the temperature range is collectively expressed as a temperature range) (referred to as a specific heat change zone in the above description). An object of the present invention is to more reliably suppress overheating of an internal combustion engine in a cooling device for an internal combustion engine that uses a cooling water (heat medium) having a value larger than a specific heat. A radiator that takes heat from the cooling water, a bypass passage that bypasses the radiator, and a cooling water flow to the radiator when closed, A thermostat that distributes cooling water to at least the radiator when it is circulated and opened, and a control that controls opening and closing of the thermostat And the control means determines the remaining latent heat amount of the cooling water in the predetermined temperature range according to the operating state of the internal combustion engine when the temperature of the cooling water is in the predetermined temperature range. The thermostat is opened when a predetermined threshold value (predetermined amount) or less is reached. When using the cooling water having a plurality of the predetermined temperature ranges, the control means cools the highest temperature range when the temperature of the cooling water is in the highest temperature range among the plurality of temperature ranges. The thermostat may be opened when the residual latent heat amount of water becomes equal to or less than a threshold value.

前記所定の温度域は、冷却水に含まれる物質に相転移が起こる温度とすることができる。相転移により熱が放出されるか又は熱が吸収されるため、相転移が起こる温度では冷却水の比熱が大きくなる。このため、所定の温度域においては、熱の出入があったとしても冷却水の温度は略一定となる。相転移が起こる温度が異なる複数の種類の物質を冷却水に含むことで、複数の所定の温度域のときに所定の温度域以外のときよりも比熱が大きくなる。   The predetermined temperature range may be a temperature at which a phase transition occurs in a substance contained in the cooling water. Since heat is released or absorbed by the phase transition, the specific heat of the cooling water increases at the temperature at which the phase transition occurs. For this reason, in the predetermined temperature range, even if heat enters and exits, the temperature of the cooling water becomes substantially constant. By including a plurality of types of substances having different temperatures at which phase transition occurs in the cooling water, the specific heat becomes larger at a plurality of predetermined temperature ranges than at a temperature outside the predetermined temperature range.

上記の記載において粒子をカプセル粒子とした場合について詳細に説明する。冷却水は、冷却水のとり得る温度範囲内の所定の温度域で相転移する潜熱蓄熱材を内部に封入したカプセル粒子を含む液体である。封入された潜熱蓄熱材の相転移温度が異なる複数種類のカプセル粒子が混入されていてもよい。冷却水に含まれる、相転移温度が最も高い潜熱蓄熱材の潜熱の総量が、冷却水に含まれる、他のどの相転移温度の潜熱蓄熱材の潜熱の総量よりも大きくなるようにしても良い。冷却水に含まれる、ある潜熱蓄熱材の潜熱の総量は、冷却水に含まれる当該潜熱蓄熱材の全ての潜熱の合計である。例えば、相転移温度が最も高い潜熱蓄熱材を封入するカプセルの粒子数を他のカプセルの粒子数より多くする。カプセル粒子に封入された潜熱蓄熱材の相転移温度又は相転移が開始する温度及び相転移が終了する温度により定まる温度域では、冷却水に対する熱授受は潜熱蓄熱材の相転移のために費やされるため、冷却水の温度は略一定となる。すなわち、この温度域では冷却水のみかけの比熱が他の温度域における比熱よりも大きい。この温度域が比熱変化帯である。内燃機関がオーバーヒートする温度より低い温度域に前記所定の温度域が設定された冷却水を用いることにより、オーバーヒートする温度より低い温度域での熱の出入りに対し冷却水の温度が変化し難くなるためオーバーヒート耐性が向上する。ある温度域の冷却水の残存潜熱量は、冷却水に含まれる、当該温度域に相転移温度がある潜熱蓄熱材の潜熱の全量から、既に吸熱した熱量を差し引いた熱量である。   The case where the particles are capsule particles in the above description will be described in detail. The cooling water is a liquid containing capsule particles enclosing therein a latent heat storage material that undergoes a phase transition in a predetermined temperature range within the temperature range that the cooling water can take. Plural types of capsule particles having different phase transition temperatures of the enclosed latent heat storage material may be mixed. The total amount of latent heat of the latent heat storage material with the highest phase transition temperature contained in the cooling water may be larger than the total amount of latent heat of the latent heat storage material with any other phase transition temperature contained in the cooling water. . The total amount of latent heat of a latent heat storage material contained in the cooling water is the sum of all the latent heats of the latent heat storage material contained in the cooling water. For example, the number of capsule particles enclosing the latent heat storage material having the highest phase transition temperature is set to be larger than the number of particles in other capsules. In the temperature range determined by the phase transition temperature of the latent heat storage material enclosed in the capsule particles or the temperature at which the phase transition starts and the temperature at which the phase transition ends, heat transfer to the cooling water is expended for the phase transition of the latent heat storage material. For this reason, the temperature of the cooling water is substantially constant. That is, the apparent specific heat of the cooling water is larger in this temperature range than the specific heat in other temperature ranges. This temperature range is the specific heat change zone. By using the cooling water in which the predetermined temperature range is set in a temperature range lower than the temperature at which the internal combustion engine overheats, the temperature of the cooling water is less likely to change with respect to heat input and output in the temperature range lower than the overheating temperature. Therefore, the overheat resistance is improved. The remaining latent heat amount of the cooling water in a certain temperature range is a heat amount obtained by subtracting the amount of heat already absorbed from the total amount of latent heat of the latent heat storage material included in the cooling water and having a phase transition temperature in the temperature range.

図3において、冷却水は、所定の2つの温度域C1,C2(上記の記載において比熱変化帯と称している)における比熱が当該温度域C1,C2以外における比熱よりも大きくなる冷却水である。つまり、この冷却水は、相転移温度又は相転移の開始温度から終了温度までの温度範囲が温度域C1である所定の物質(潜熱蓄熱材)を封入したカプセル粒子と、相転移温度又は相転移の開始温度から終了温度までの温度範囲が温度域C2である所定の物質(潜熱蓄熱材)を封入したカプセル粒子と、を含み、温度域C1,C2においては、冷却水に出入りする熱がこれらの潜熱蓄熱材の相転移(固相と液相、液相と気相、固
相と気相など)のために費やされるため、冷却水の温度がこれらの温度域で略一定になり、冷却水の比熱が温度域C1,C2以外における比熱よりも見かけ上大きな値をとる多段可変比熱冷却水である。なお、冷却水は、相転移温度が異なる3種類以上の潜熱蓄熱材をカプセルに封入して冷却水に含ませる(混入させる)ことにより、3つ以上の所定温度域における比熱が当該所定温度域以外における比熱よりも大きな値になる冷却水であっても良い。
なお、一般に物質の比熱には温度依存性があり、温度変化に伴って比熱が変化する場合があるが、上述した所定温度域における比熱が所定温度域以外の温度における比熱より大きな値になるという比熱の温度変化は、冷却水に含ませた潜熱蓄熱材の相転移によるものであって、含有している物質の相転移によるものではない一般的な比熱の温度変化とは異なるものである。
In FIG. 3, the cooling water is cooling water in which the specific heat in two predetermined temperature ranges C1, C2 (referred to as specific heat change zones in the above description) is larger than the specific heat in other than the temperature ranges C1, C2. . That is, this cooling water is composed of capsule particles encapsulating a predetermined substance (latent heat storage material) whose phase range is the temperature range C1 from the phase transition temperature or the phase transition start temperature to the end temperature, and the phase transition temperature or phase transition. Capsule particles encapsulating a predetermined substance (latent heat storage material) whose temperature range from the start temperature to the end temperature is the temperature range C2, and in the temperature ranges C1 and C2, heat entering and exiting the cooling water Because it is used for the phase transition of the latent heat storage material (solid phase and liquid phase, liquid phase and gas phase, solid phase and gas phase, etc.), the temperature of the cooling water becomes substantially constant in these temperature ranges and cooling This is a multistage variable specific heat cooling water in which the specific heat of water is apparently larger than the specific heat outside the temperature ranges C1 and C2. The cooling water includes three or more types of latent heat storage materials having different phase transition temperatures enclosed in a capsule and included (mixed) in the cooling water, so that the specific heat in three or more predetermined temperature ranges is within the predetermined temperature range. Cooling water having a value larger than the specific heat in the other case may be used.
In general, the specific heat of a substance is temperature-dependent, and the specific heat may change as the temperature changes, but the specific heat in the predetermined temperature range described above is larger than the specific heat in a temperature other than the predetermined temperature range. The temperature change of the specific heat is due to the phase transition of the latent heat storage material contained in the cooling water, and is different from the general temperature change of the specific heat which is not due to the phase transition of the contained material.

また、図3に示すように本実施例では、冷却水の溶媒の比熱は、従来技術の冷却水の比熱よりも小さくしている。このように、温度と比熱との関係が、所定温度域以外では従来の冷却水よりも比熱が小さく、所定温度域では従来の冷却水よりも比熱が高くなることで、冷却水の温度が所定温度域以外の温度であるときは熱の出入りに対し冷却水の温度が速やかに変化する一方、冷却水の温度が所定温度域の温度であるときは熱の出入りに対し冷却水の温度変化が緩慢になる。そのため、暖機時に冷却水の温度が所定温度域以外の温度となるようにすることで冷却水の温度が速やかに上昇して燃費の向上が可能であるとともに、所定温度域では大きな熱授受があっても冷却水の温度を維持することが可能になるのでオーバーヒート耐性の向上や温度制御性の向上が可能である。   Moreover, as shown in FIG. 3, in this embodiment, the specific heat of the solvent of the cooling water is smaller than the specific heat of the cooling water of the prior art. As described above, the relationship between the temperature and the specific heat is such that the specific heat is smaller than that of the conventional cooling water except in the predetermined temperature range, and the specific heat is higher than that of the conventional cooling water in the predetermined temperature range. When the temperature is outside the temperature range, the temperature of the cooling water rapidly changes with the entry and exit of heat, while when the temperature of the cooling water is within the predetermined temperature range, the temperature change of the cooling water with respect to the entry and exit of heat. Become slow. For this reason, by setting the temperature of the cooling water to a temperature other than the predetermined temperature range during warm-up, the temperature of the cooling water can be quickly increased to improve fuel efficiency, and large heat transfer can be performed in the predetermined temperature range. Even if it exists, since it becomes possible to maintain the temperature of cooling water, the improvement of overheat tolerance and the improvement of temperature controllability are possible.

また、図3に示すように本実施例では、所定温度域C2にサーモスタットの開弁温度がある。すなわち、制御手段は、冷却水の温度が所定温度域C2にあり、かつ、所定温度域C2における冷却水の残存潜熱量が閾値以下となったときにサーモスタットを開弁する。冷却水の温度が所定温度域C2にある場合、冷却水に出入りする熱は、相転移温度が所定温度域C2にある潜熱蓄熱材の相転移に費やされ、冷却水の温度は所定温度域C2に維持される。所定温度域C2における冷却水の潜熱は、出入りした熱により既に相転移してしまった潜熱蓄熱材の分だけ減少する。制御手段は、所定温度域C2における冷却水の潜熱の総量から既に潜熱蓄熱材の相転移に費やされた熱量を差し引いた潜熱の残量(残存潜熱量)を推定し、この潜熱の残量が所定の閾値以下となったときに、サーモスタットを開弁する。この潜熱の残量がゼロになるまでは、熱の出入りがあっても冷却水の温度は所定温度域C2に維持されるので、残存潜熱量は、冷却水が所定温度域C2を逸脱することなく受熱(又は放熱)可能な熱量ということができる。   Further, as shown in FIG. 3, in the present embodiment, the thermostat valve opening temperature is in the predetermined temperature range C2. That is, the control means opens the thermostat when the temperature of the cooling water is in the predetermined temperature range C2 and the remaining latent heat amount of the cooling water in the predetermined temperature range C2 is equal to or less than the threshold value. When the temperature of the cooling water is in the predetermined temperature range C2, the heat entering and exiting the cooling water is spent on the phase transition of the latent heat storage material having the phase transition temperature in the predetermined temperature range C2, and the temperature of the cooling water is within the predetermined temperature range. Maintained at C2. The latent heat of the cooling water in the predetermined temperature range C2 is reduced by the amount of the latent heat storage material that has already undergone phase transition due to the heat that has entered and exited. The control means estimates the remaining amount of latent heat (residual latent heat amount) obtained by subtracting the amount of heat already spent for the phase transition of the latent heat storage material from the total amount of latent heat of the cooling water in the predetermined temperature range C2, and the remaining amount of latent heat. When is below a predetermined threshold, the thermostat is opened. Until the remaining amount of latent heat reaches zero, the temperature of the cooling water is maintained in the predetermined temperature range C2 even if heat enters and exits. Therefore, the residual latent heat amount is such that the cooling water deviates from the predetermined temperature range C2. It can be said that the amount of heat that can be received (or radiated).

また、図3に示すように本実施例では、冷却水は、2つの所定温度域C1,C2のうち、最も高い温度域C2における比熱が、所定温度域C1における比熱よりも大きい。言い換えると、所定温度域C1,C2以外の温度域における比熱に対する所定温度域C2における比熱の差分(比熱変化量、比熱変化幅)は、所定温度域C1,C2以外の温度域における比熱に対する所定温度域C1における比熱の差分よりも大きい。このために、所定温度域C2に相転移温度がある潜熱蓄熱材を封入するカプセル粒子P2の量を、所定温度域C1に相転移温度がある潜熱蓄熱材を封入するカプセル粒子P1の量よりも多くしている。   As shown in FIG. 3, in the present embodiment, the specific heat in the highest temperature range C2 of the cooling water in the two predetermined temperature ranges C1 and C2 is larger than the specific heat in the predetermined temperature range C1. In other words, the difference (specific heat change amount, specific heat change width) of the specific heat in the predetermined temperature region C2 with respect to the specific heat in the temperature region other than the predetermined temperature region C1, C2 is the predetermined temperature for the specific heat in the temperature region other than the predetermined temperature region C1, C2. It is larger than the difference in specific heat in the area C1. Therefore, the amount of capsule particles P2 enclosing the latent heat storage material having a phase transition temperature in the predetermined temperature region C2 is set to be larger than the amount of capsule particles P1 enclosing the latent heat storage material having the phase transition temperature in the predetermined temperature region C1. There are many.

図4は、冷却水に与えた熱量と、冷却水の温度及び冷却水の残存潜熱量と、の関係を示すもので、横軸は冷却水に与えた熱量とみることもできる。   FIG. 4 shows the relationship between the amount of heat given to the cooling water, the temperature of the cooling water and the residual latent heat amount of the cooling water, and the horizontal axis can also be regarded as the amount of heat given to the cooling water.

図5では、内燃機関の運転状態に応じて所定量QTを決定している。例えば、オーバーヒートを防ぎたい条件(高負荷運転時や、低車速時(ラジエータからの放熱量が少ない)や、外気温度(吸気温度)が高い時)では、所定量QTを大きな値に設定し、それ以外の
条件では、所定量QTを小さな値に設定する。これにより、オーバーヒートを防ぎたい条件では、比熱変化帯C2の冷却水の潜熱がある程度残っている状態(残存潜熱量が比較的多い状態)で電子サーモスタットが開弁される一方、それ以外の条件では、比熱変化帯C2の冷却水の潜熱が比較的少なくなる状態まで電子サーモスタットは開弁されない、というように、同じ比熱変化帯C2に冷却水の温度がある場合でも運転条件に応じて電子サーモスタットの開弁タイミングを異ならせることができ、オーバーヒート耐性の向上とともに冷却水温の制御性の向上が可能になる。図5は、機関負荷から所定量QTを求めるマップ又は演算の一例を示すものであり、高負荷ほど(横軸右側ほど)所定量QTが大きくなる。負荷に応じた所定量QTの値は、その負荷での運転状態において1回転あたり冷却水に放熱される熱量、言い換えれば、1回転あたり消費される冷却水の潜熱量に応じて定められる。図5においてある程度以上の負荷に対して所定量QTが一定値となるのは、所定量QTは比熱変化帯C2の冷却水の総潜熱量以上にはならないことを表している。比熱変化帯C2の冷却水の総潜熱量を超える熱が冷却水に対して与えられた場合は、総潜熱量を超える分が顕熱として冷却水の温度上昇を生じさせることになる。図5は機関負荷に応じて所定量QTを決定するマップの例だが、吸気温度や車速に応じて所定量QTを決定するマップに基づき所定量QTを決定しても良い。例えば、吸気温度が高いほど、車速が低いほど、オーバーヒートし易くなるため、所定量QTを大きい値に設定する。
In FIG. 5, the predetermined amount QT is determined according to the operating state of the internal combustion engine. For example, in conditions where you want to prevent overheating (high load operation, low vehicle speed (low heat dissipation from the radiator), or high outside air temperature (intake air temperature)), the predetermined amount QT is set to a large value, Under other conditions, the predetermined amount QT is set to a small value. Thus, under conditions where it is desired to prevent overheating, the electronic thermostat is opened in a state where the latent heat of the cooling water in the specific heat change zone C2 remains to some extent (a state where the residual latent heat amount is relatively large), while in other conditions The electronic thermostat is not opened until the latent heat of the cooling water in the specific heat change zone C2 becomes relatively small. Thus, even if the temperature of the cooling water is in the same specific heat change zone C2, the electronic thermostat It is possible to vary the valve opening timing, and it is possible to improve the controllability of the cooling water temperature as well as improving the overheat resistance. FIG. 5 shows an example of a map or calculation for obtaining the predetermined amount QT from the engine load. The higher the load (the right side of the horizontal axis), the larger the predetermined amount QT. The value of the predetermined amount QT according to the load is determined according to the amount of heat radiated to the cooling water per rotation in the operating state at the load, in other words, the latent heat amount of the cooling water consumed per rotation. In FIG. 5, the predetermined amount QT becomes a constant value with respect to a certain load or more, indicating that the predetermined amount QT does not exceed the total latent heat amount of the cooling water in the specific heat change zone C2. When heat exceeding the total latent heat amount of the cooling water in the specific heat change zone C2 is given to the cooling water, the amount exceeding the total latent heat amount causes sensible heat to increase the temperature of the cooling water. FIG. 5 is an example of a map for determining the predetermined amount QT according to the engine load, but the predetermined amount QT may be determined based on a map for determining the predetermined amount QT according to the intake air temperature or the vehicle speed. For example, the higher the intake air temperature and the lower the vehicle speed, the easier it is to overheat, so the predetermined amount QT is set to a large value.

1 内燃機関
2 冷却水通路
2a〜2g 通路
3 ラジエータ
4 オイルクーラ
5a スロットル弁
5b EGR弁
6 リザーバタンク
7 ヒータコア
8 クーラ
9 電子サーモスタット
10 ウォータポンプ
11 水温センサ
12 ECU
13 クランクポジションセンサ
14 アクセルポジションセンサ
C1,C2 比熱変化帯
P1,P2 粒子
1 Internal combustion engine 2 Cooling water passages 2a to 2g Passage 3 Radiator 4 Oil cooler 5a Throttle valve 5b EGR valve 6 Reservoir tank 7 Heater core 8 Cooler 9 Electronic thermostat 10 Water pump 11 Water temperature sensor 12 ECU
13 Crank position sensor 14 Accelerator position sensor C1, C2 Specific heat change zone P1, P2 Particles

Claims (6)

少なくとも1つの温度域で比熱が変化している状態の比熱変化帯を有する冷却水を使用する内燃機関の冷却水制御装置であって、
冷却水の温度を調節するために開閉制御されるサーモスタットであって、開閉制御タイミングが可変なサーモスタットと、
冷却水が比熱変化帯を有することで得られる冷却水の温度上昇に寄与しない残存潜熱量を推定する残存潜熱量推定手段と、
前記残存潜熱量推定手段によって推定された残存潜熱量が、前記サーモスタットを開弁させるタイミングか否かの閾値となる所定量以下になった場合に、前記サーモスタットを開弁させる制御手段と、
を備えたことを特徴とする内燃機関の冷却水制御装置。
A cooling water control device for an internal combustion engine that uses cooling water having a specific heat change zone in which the specific heat is changing in at least one temperature range,
A thermostat that is controlled to be opened and closed to adjust the temperature of the cooling water, and whose opening and closing control timing is variable,
A residual latent heat amount estimating means for estimating a residual latent heat amount that does not contribute to the temperature rise of the cooling water obtained by the cooling water having a specific heat change zone;
Control means for opening the thermostat when the residual latent heat amount estimated by the residual latent heat amount estimation means is equal to or less than a predetermined amount which is a threshold value indicating whether or not the timing for opening the thermostat;
A cooling water control device for an internal combustion engine, comprising:
前記サーモスタットを開弁させるタイミングか否かの閾値となる所定量は、内燃機関の運転状態に応じて変更されることを特徴とする請求項1に記載の内燃機関の冷却水制御装置。   The cooling water control device for an internal combustion engine according to claim 1, wherein the predetermined amount serving as a threshold value indicating whether or not the timing for opening the thermostat is changed according to an operating state of the internal combustion engine. 前記制御手段が前記サーモスタットを開弁させるタイミングは、冷却水の温度が比熱変化帯内に存在し残存潜熱量が変化するタイミングであることを特徴とする請求項1又は2に記載の内燃機関の冷却水制御装置。   3. The internal combustion engine according to claim 1, wherein the timing at which the control means opens the thermostat is a timing at which the temperature of the cooling water is within a specific heat change zone and the amount of residual latent heat changes. Cooling water control device. 冷却水は、複数の温度域で比熱変化帯を有し、
前記制御手段が前記サーモスタットを開弁させるタイミングは、冷却水の温度が最も高い温度域での比熱変化帯内に存在し残存潜熱量が変化するタイミングであることを特徴とする請求項3に記載の内燃機関の冷却水制御装置。
The cooling water has specific heat change bands in a plurality of temperature ranges,
The timing at which the control means opens the thermostat is a timing at which the amount of residual latent heat changes in the specific heat change zone in the temperature range where the temperature of the cooling water is highest. Cooling water control device for internal combustion engine.
冷却水は、相変化することにより媒体の比熱を変更する多種類の粒子を含むことで、複数の温度域で比熱変化帯を有することを特徴とする請求項4に記載の内燃機関の冷却水制御装置。   5. The cooling water for an internal combustion engine according to claim 4, wherein the cooling water includes a plurality of types of particles that change the specific heat of the medium by phase change, thereby having specific heat change zones in a plurality of temperature ranges. Control device. 少なくとも1つの温度域で比熱が変化している状態の比熱変化帯を有する冷却水を使用する内燃機関の冷却水制御方法であって、
冷却水が比熱変化帯を有することで得られる冷却水の温度上昇に寄与しない残存潜熱量を推定し、
推定された残存潜熱量が、冷却水の温度を調節するために開閉制御されるサーモスタットであって、開閉制御タイミングが可変なサーモスタットを開弁させるタイミングか否かの閾値となる所定量以下になった場合に、前記サーモスタットを開弁させることを特徴とする内燃機関の冷却水制御方法。
A cooling water control method for an internal combustion engine using cooling water having a specific heat change zone in a state where specific heat is changing in at least one temperature range,
Estimating the amount of residual latent heat that does not contribute to the temperature rise of the cooling water obtained by the cooling water having a specific heat change zone,
The estimated residual latent heat amount is a thermostat that is controlled to open and close in order to adjust the temperature of the cooling water, and is less than or equal to a predetermined amount that is a threshold value for determining whether or not to open the thermostat with variable open / close control timing. In this case, the cooling water control method for an internal combustion engine, wherein the thermostat is opened.
JP2011139774A 2011-06-23 2011-06-23 Device and method for controlling cooling water of internal combustion engine Withdrawn JP2013007308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139774A JP2013007308A (en) 2011-06-23 2011-06-23 Device and method for controlling cooling water of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139774A JP2013007308A (en) 2011-06-23 2011-06-23 Device and method for controlling cooling water of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013007308A true JP2013007308A (en) 2013-01-10

Family

ID=47674855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139774A Withdrawn JP2013007308A (en) 2011-06-23 2011-06-23 Device and method for controlling cooling water of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013007308A (en)

Similar Documents

Publication Publication Date Title
JP4860746B2 (en) Engine cooling system
US9500115B2 (en) Method and system for an internal combustion engine with liquid-cooled cylinder head and liquid-cooled cylinder block
US9850802B2 (en) Coolant control device
JP5880576B2 (en) Control device for cooling system
JP5780299B2 (en) Cooling water temperature control device for internal combustion engine
JP6096492B2 (en) Engine cooling system
KR101592428B1 (en) Integrated flow control valve apparatus
JP2011214566A (en) Cooling device for on-vehicle internal combustion engine
JP6023430B2 (en) Water-cooled engine cooling system
JP5682634B2 (en) Internal combustion engine cooling system
JP5637047B2 (en) Cooling water temperature control device for internal combustion engine
JP2013007308A (en) Device and method for controlling cooling water of internal combustion engine
WO2012059969A1 (en) Cooling system for internal combustion engine
JP2016211482A (en) Engine cooling device
WO2011089705A1 (en) Cooling device for vehicle
JP5605319B2 (en) Cooling device for internal combustion engine
JP2006132469A (en) Cooling device for egr gas
JP2013068169A (en) Device for cooling internal combustion engine
JP2013007312A (en) Device and method for controlling cooling water of internal combustion engine
JP2013007309A (en) Cooling device for internal combustion engine
CN111485989B (en) Cooling water control device for internal combustion engine
JP2010216410A (en) Engine oil temperature control device
JP2013044281A (en) Cooling apparatus for internal combustion engine
JP2013124546A (en) Cooling device of vehicle
JP2013096259A (en) Warm-up device of vehicle engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902