JP2013003522A - Manufacturing method and performance adjustment method of optical scanner - Google Patents

Manufacturing method and performance adjustment method of optical scanner Download PDF

Info

Publication number
JP2013003522A
JP2013003522A JP2011137497A JP2011137497A JP2013003522A JP 2013003522 A JP2013003522 A JP 2013003522A JP 2011137497 A JP2011137497 A JP 2011137497A JP 2011137497 A JP2011137497 A JP 2011137497A JP 2013003522 A JP2013003522 A JP 2013003522A
Authority
JP
Japan
Prior art keywords
unit
resonance frequency
adjusting
optical scanning
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011137497A
Other languages
Japanese (ja)
Inventor
Ryuichi Yoshida
龍一 吉田
Hirohisa Sueyoshi
浩久 末吉
Tetsuya Noda
哲也 野田
Naoki Kubo
直樹 久保
Takashi Matsuo
隆 松尾
Shohei Imai
梢平 今井
Kazumi Tomita
一美 富田
Kunihiro Agawa
訓弘 阿川
Takeya Hirao
雄也 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2011137497A priority Critical patent/JP2013003522A/en
Publication of JP2013003522A publication Critical patent/JP2013003522A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and a performance adjustment method of an optical scanner, which stabilize the performance of a scanner which inclines a mirror part to cause light to scan, in a high level without adjusting a resonance frequency of the mirror part.SOLUTION: An optical scanner 2 includes: a fixed frame 4; a driving part 5 which is coupled with the fixed frame and has an electro-mechanical conversion part and an elastic deformation part made into one body; a movable frame 6 which is coupled with the driving part 5 via a shaft part 8 and can be inclined mainly in a first direction; and a mirror part 3 which is coupled with the movable frame 6 via a torsion bar 7 and is inclined mainly in a second direction orthogonal to the first direction. In the manufacturing method and the performance adjustment method of the optical scanner, a resonance frequency of the driving part 5 is adjusted to a prescribed driving part resonance frequency corresponding to a mirror part resonance frequency of the assembled mirror part 3.

Description

本発明は、光走査装置の製造方法および性能調整方法に関し、特に、MEMSミラーを備えた光走査装置の製造方法および性能調整方法に関する。   The present invention relates to an optical scanning device manufacturing method and a performance adjustment method, and more particularly, to an optical scanning device manufacturing method and a performance adjustment method including a MEMS mirror.

従来、レーザー光等を走査する光スキャナ(光走査装置)を備えたレーザープリンターやレーザープロジェクター等が知られている。レーザープリンターでは、多角柱ミラーをモーターで回転させて反射光を走査するポリゴンミラーや、平面ミラーを電磁アクチュエーターによって回転駆動させるガルバノミラー等を有するものがある。   Conventionally, a laser printer, a laser projector, or the like provided with an optical scanner (optical scanning device) that scans laser light or the like is known. Some laser printers include a polygon mirror that scans reflected light by rotating a polygonal column mirror with a motor, a galvano mirror that rotates a plane mirror by an electromagnetic actuator, and the like.

これらのポリゴンミラーやガルバノミラー等を用いた光スキャナーは比較的サイズが大きいので、より小型化を実現するために、集積回路製造技術を応用してミラーや弾性梁等の構成部品を一体的に成形加工したMEMS(Micro Electro Mechanical Systems)の開発が進んでいる。   Optical scanners using these polygon mirrors and galvanometer mirrors are relatively large in size, so in order to achieve further miniaturization, integrated circuit manufacturing technology is applied to integrate components such as mirrors and elastic beams. Development of molded MEMS (Micro Electro Mechanical Systems) is advancing.

また、レーザープロジェクターなどの画像投影装置でも、より小型化された光スキャナー(光走査装置)を得るために、MEMSによって走査ミラー(ミラー部)を構成することが模索されており、本出願人からも、MEMSミラーをミラー部として用いた光スキャナーを備えた画像投影装置が既に出願されている(例えば、特許文献1参照)。   Further, even in an image projection apparatus such as a laser projector, in order to obtain a more compact optical scanner (optical scanning apparatus), it has been sought to form a scanning mirror (mirror part) by MEMS. In addition, an image projection apparatus including an optical scanner using a MEMS mirror as a mirror unit has already been filed (for example, see Patent Document 1).

MEMSを用いた小型の光スキャナー(光走査装置)のミラー部を大きく傾向させるためには、圧電アクチュエーターの駆動周波数とミラー部の機械的共振周波数とが合致していることが好ましい。しかし、製造される際の寸法誤差や加工バラツキによって、それぞれの製品毎に共振周波数がばらつくことがある。   In order to make the mirror portion of a small-sized optical scanner (optical scanning device) using MEMS have a large tendency, it is preferable that the drive frequency of the piezoelectric actuator matches the mechanical resonance frequency of the mirror portion. However, the resonance frequency may vary from product to product due to dimensional errors and processing variations during manufacture.

そのために、ミラー部に質量片を付着して、共振周波数を可変にして、各製品の共振周波数を個別に高精度に調整可能とした光走査装置(光スキャナー)が既に出願されている(例えば、特許文献2参照)。   For this purpose, an optical scanning device (optical scanner) has been filed (for example, an optical scanner) that allows mass pieces to be attached to the mirror portion, the resonance frequency is variable, and the resonance frequency of each product can be individually adjusted with high accuracy (for example, , See Patent Document 2).

特開2010−266508号公報JP 2010-266508 A 特開2004−219889号公報JP 2004-219889 A

圧電素子などの電気機械変換素子の機械変位を弾性変形部を介して伝達することで、ミラー部を傾向させることができる。また、ミラー部を弾性変形部と細い梁を介して支持することで、ミラー部の共振を利用して、ミラー部をより大きく傾向させることができる。しかし、特許文献2に開示されているように、ミラー部の共振周波数を調整するために、ミラー部に質量片を付加(あるいは、質量片を除去)する構成では、ミラー部が細い梁を介して支持されているため、加工の際に破損する虞が生じて問題となる。   By transmitting the mechanical displacement of the electromechanical transducer such as a piezoelectric element through the elastic deformation portion, the mirror portion can be made to tend. Further, by supporting the mirror part via the elastically deforming part and the thin beam, the mirror part can be made to tend to be larger by utilizing the resonance of the mirror part. However, as disclosed in Patent Document 2, in a configuration in which mass pieces are added to the mirror portion (or the mass pieces are removed) in order to adjust the resonance frequency of the mirror portion, the mirror portion passes through a thin beam. Therefore, there is a risk of breakage during processing, which causes a problem.

また、ミラー部の共振周波数が異なると、この新たな共振周波数に応じた周波数で圧電アクチュエーターを駆動させる必要が生じてしまうので、ミラー部の共振周波数の変化はシステム制約上望ましくない。   In addition, if the resonance frequency of the mirror portion is different, it becomes necessary to drive the piezoelectric actuator at a frequency corresponding to the new resonance frequency. Therefore, a change in the resonance frequency of the mirror portion is not desirable due to system constraints.

そのために、ミラー部の共振周波数を調整することなく、圧電アクチュエーターの駆動周波数とミラー部の機械的共振周波数とが合致することが好ましく、ミラー部を傾向して光を走査するスキャナー性能が高いレベルで安定している光スキャナー(光走査装置)であることが望まれる。   For this reason, it is preferable that the drive frequency of the piezoelectric actuator and the mechanical resonance frequency of the mirror part match without adjusting the resonance frequency of the mirror part, and the scanner performance to scan the light with a tendency to the mirror part is high. It is desirable that the optical scanner be stable and stable.

また、ミラー部の共振周波数を調整することなく、ミラー部を傾向して光を走査するスキャナー性能が高いレベルで安定する光走査装置の製造方法および性能調整方法であることが好ましい。   In addition, it is preferable that the method and the method for adjusting the performance of the optical scanning device have a high level of scanner performance for scanning the light by tending to the mirror without adjusting the resonance frequency of the mirror.

本発明は、上記の事情に鑑みてなされたものであって、ミラー部の共振周波数を調整することなく、ミラー部を傾向して光を走査するスキャナー性能が高いレベルで安定する光走査装置の製造方法および性能調整方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is an optical scanning device that has a high level of scanner performance that scans light by tending to the mirror without adjusting the resonance frequency of the mirror. An object is to provide a manufacturing method and a performance adjustment method.

上記目的を達成するために本発明は、固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され前記第一方向と直交する第二方向に主に傾向するミラー部と、を備える光走査装置の製造方法であって、前記駆動部の共振周波数を、組み付けた前記ミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整する調整工程を有することを特徴としている。   In order to achieve the above object, the present invention provides a fixed frame, a drive unit coupled to the fixed frame, in which an electromechanical conversion unit and an elastically deforming unit are integrated, and coupled via the drive unit and a shaft unit. An optical scanning device comprising: a movable frame that can be tilted mainly in a first direction; and a mirror unit that is connected to the movable frame via a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction. The manufacturing method includes an adjustment step of adjusting a resonance frequency of the driving unit to a predetermined driving unit resonance frequency corresponding to a mirror unit resonance frequency of the assembled mirror unit.

上記の構成によると、駆動部の共振周波数をミラー部の共振周波数に応じた所定の駆動部共振周波数に調整してミラー部のスキャナー性能を安定化させることができる。また、ミラー部という壊れやすいデバイス側で調整する必要がないので、良品率が向上する光走査装置の製造方法となる。   According to the above configuration, the scanner performance of the mirror unit can be stabilized by adjusting the resonance frequency of the drive unit to a predetermined drive unit resonance frequency corresponding to the resonance frequency of the mirror unit. In addition, since it is not necessary to make adjustment on the fragile device side, which is a mirror portion, the method of manufacturing an optical scanning device improves the yield rate.

また本発明は上記構成の光走査装置の製造方法において、前記軸部は、前記ミラー部と前記駆動部との互いの共振周波数に影響を与えない程度に低剛性な高変形構造部を備えていることを特徴としている。この構成によると、ミラー部の共振周波数と駆動部の共振周波数を独立的に制御することがでる。   According to the present invention, in the method of manufacturing the optical scanning device having the above configuration, the shaft portion includes a highly deformable structure portion having low rigidity so as not to affect the resonance frequency of the mirror portion and the drive portion. It is characterized by being. According to this configuration, the resonance frequency of the mirror part and the resonance frequency of the drive part can be controlled independently.

また本発明は上記構成の光走査装置の製造方法において、前記調整工程は、前記駆動部共振周波数を前記ミラー部共振周波数よりも所定の周波数分高く又は低くする調整を行うことを特徴としている。この構成によると、ミラー部共振周波数に接近した少し高いか低い駆動部共振周波数に調整することで、環境などの変化に対して強いロバストな系を構築することができ、低剛性の軸部を介して、ミラー部を大きく傾向することができる。   According to the present invention, in the method of manufacturing an optical scanning device having the above-described configuration, the adjustment step performs an adjustment to make the drive unit resonance frequency higher or lower than the mirror unit resonance frequency by a predetermined frequency. According to this configuration, by adjusting to a slightly higher or lower drive unit resonance frequency close to the mirror unit resonance frequency, it is possible to construct a robust system that is strong against changes in the environment, etc. Therefore, the mirror part can be greatly tended.

また本発明は上記構成の光走査装置の製造方法において、前記調整工程は、前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴としている。この構成によると、作製したミラー部の共振周波数にバラツキが生じても、電機機械変換部の特性にバラツキが生じても、電気機械変換部の質量の一部除去や質量の一部付与により、駆動部の共振周波数を適当な範囲に調整することができ、スキャナー性能が安定した光走査装置を製造することができる。   According to the present invention, in the method of manufacturing the optical scanning device having the above-described configuration, the adjusting step is performed by removing a part of the mass of the electromechanical conversion unit or by applying a part of the mass. According to this configuration, even if variations occur in the resonance frequency of the produced mirror part, even if variations occur in the characteristics of the electromechanical conversion part, by removing part of the mass of the electromechanical conversion part or applying part of the mass, The resonance frequency of the drive unit can be adjusted to an appropriate range, and an optical scanning device with stable scanner performance can be manufactured.

また本発明は上記構成の光走査装置の製造方法において、前記調整工程は、一体化した前記弾性変形部と前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴としている。この構成によると、作製した駆動部の質量の一部除去や質量の一部付与により、駆動部共振周波数を適当な範囲に調整して、スキャナー性能が安定した光走査装置を製造することができる。   According to the present invention, in the method of manufacturing the optical scanning device having the above-described configuration, the adjustment step is performed by removing a part of the mass of the integrated elastic deformation part and the electromechanical conversion part or by applying a part of the mass. It is characterized by that. According to this configuration, it is possible to manufacture an optical scanning device with stable scanner performance by adjusting the drive unit resonance frequency to an appropriate range by removing a part of the mass of the manufactured drive unit or adding a part of the mass. .

また本発明は上記構成の光走査装置の製造方法において、前記調整工程は、前記弾性変形部と前記電気機械変換部とを一体化する位置の調整で行うことを特徴としている。この構成によると、作製したミラー部の共振周波数にバラツキが生じても、取り付ける電気機械変換部の特性にバラツキが生じても、弾性変形部に対する電気機械変換部の取り付け位置の調整により、駆動部共振周波数を適当な範囲に調整して、スキャナー性能が安定した光走査装置を製造することができる。   According to the present invention, in the method of manufacturing the optical scanning device having the above-described configuration, the adjustment step is performed by adjusting a position where the elastic deformation portion and the electromechanical conversion portion are integrated. According to this configuration, the drive unit can be adjusted by adjusting the mounting position of the electromechanical conversion unit with respect to the elastically deformable part, even if the resonance frequency of the manufactured mirror unit varies or the characteristic of the electromechanical conversion unit to be mounted varies. By adjusting the resonance frequency within an appropriate range, an optical scanning device with stable scanner performance can be manufactured.

また本発明は上記構成の光走査装置の製造方法において、前記調整工程は、前記弾性変形部に対する前記電気機械変換部の大きさの調整で行うことを特徴としている。この構成によると、作製したミラー部の共振周波数にバラツキが生じても、作製した電気機械変換部の特性にバラツキが生じても、弾性変形部に貼付する電気機械変換部の大きさを変える調整により、駆動部共振周波数を適当な範囲に調整して、スキャナー性能が安定した光走査装置を製造することができる。   According to the present invention, in the method of manufacturing the optical scanning device having the above-described configuration, the adjustment step is performed by adjusting the size of the electromechanical conversion unit with respect to the elastic deformation unit. According to this configuration, even if the resonance frequency of the manufactured mirror part varies or the characteristics of the produced electromechanical conversion part vary, the adjustment for changing the size of the electromechanical conversion part to be attached to the elastic deformation part Thus, the optical scanning device with stable scanner performance can be manufactured by adjusting the drive unit resonance frequency to an appropriate range.

また本発明は上記構成の光走査装置の製造方法において、前記調整工程は、前記弾性変形部に前記電気機械変換部を貼付する際の接着剤に配合する添加粒子の粒径を調整することで行うことを特徴としている。この構成によると、作製したミラー部の共振周波数にバラツキが生じても、作製した電気機械変換部の特性にバラツキが生じても、接着剤に配合する添加粒子の粒径を調整して弾性変形部に電気機械変換部を貼付する際の接着層の厚みを変えて、駆動部共振周波数を適当な範囲に調整することができ、スキャナー性能が安定した光走査装置を製造することができる。   In the method of manufacturing an optical scanning device having the above-described configuration, the adjusting step may include adjusting a particle size of additive particles to be blended in an adhesive when the electromechanical conversion unit is attached to the elastically deforming unit. It is characterized by doing. According to this configuration, even if the resonance frequency of the produced mirror part varies or the characteristics of the produced electromechanical conversion part also vary, the particle size of the additive particles blended in the adhesive is adjusted and elastic deformation occurs. By changing the thickness of the adhesive layer when attaching the electromechanical conversion part to the part, the resonance frequency of the drive part can be adjusted to an appropriate range, and an optical scanning device with stable scanner performance can be manufactured.

また本発明は、固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され前記第一方向と直交する第二方向に主に傾向するミラー部とを備える光走査装置の性能調整方法であって、前記駆動部の共振周波数を、組み付けた前記ミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整することを特徴としている。   The present invention also includes a fixed frame, a drive unit coupled to the fixed frame, in which the electromechanical conversion unit and the elastically deforming unit are integrated, and the drive unit and the shaft unit coupled to each other mainly in the first direction. A method of adjusting the performance of an optical scanning device, comprising: a movable frame that can be tilted to a movable portion; and a mirror unit that is connected to the movable frame via a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction, The resonance frequency of the drive unit is adjusted to a predetermined drive unit resonance frequency corresponding to the mirror unit resonance frequency of the assembled mirror unit.

上記の構成によると、駆動部の共振周波数をミラー部の共振周波数に応じた所定の駆動部共振周波数に調整することで、所望のスキャナー性能を発揮させ安定化させることができる。また、ミラー部という壊れやすいデバイス側で調整する必要がないので、マイクロスキャナー製造時の良品率が向上する。   According to the above configuration, by adjusting the resonance frequency of the drive unit to a predetermined drive unit resonance frequency corresponding to the resonance frequency of the mirror unit, desired scanner performance can be exhibited and stabilized. In addition, since it is not necessary to adjust on the fragile device side called the mirror portion, the yield rate at the time of manufacturing the micro scanner is improved.

また本発明は上記構成の光走査装置の性能調整方法において、前記軸部は、前記ミラー部と前記駆動部との互いの共振周波数に影響を与えない程度に低剛性な高変形構造部を備えていることを特徴としている。この構成によると、ミラー部の共振周波数と駆動部の共振周波数を独立的に制御することがでる。   According to the present invention, in the method for adjusting the performance of the optical scanning device having the above-described configuration, the shaft portion includes a highly deformable structure portion having low rigidity so as not to affect the resonance frequency of the mirror portion and the driving portion. It is characterized by having. According to this configuration, the resonance frequency of the mirror part and the resonance frequency of the drive part can be controlled independently.

また本発明は上記構成の光走査装置の性能調整方法において、前記所定の駆動部共振周波数に調整する調整工程は、前記駆動部共振周波数を前記ミラー部共振周波数よりも所定の周波数分高く又は低くする調整を行うことを特徴としている。この構成によると、ミラー部共振周波数に接近した少し高いか低い駆動部共振周波数に調整することで、環境などの変化に対して強いロバストな系を構築することができ、低剛性の軸部を介して、ミラー部を大きく傾向することができる。   According to the present invention, in the method for adjusting the performance of the optical scanning device having the above-described configuration, the adjustment step of adjusting to the predetermined drive unit resonance frequency may be performed such that the drive unit resonance frequency is higher or lower than the mirror unit resonance frequency by a predetermined frequency. It is characterized by making adjustments. According to this configuration, by adjusting to a slightly higher or lower drive unit resonance frequency close to the mirror unit resonance frequency, it is possible to construct a robust system that is strong against changes in the environment, etc. Therefore, the mirror part can be greatly tended.

また本発明は上記構成の光走査装置の性能調整方法において、前記所定の駆動部共振周波数に調整する調整工程は、前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴としている。この構成によると、作製したミラー部の共振周波数にバラツキが生じても、電機機械変換部の特性にバラツキが生じても、電気機械変換部の質量の一部除去や質量の一部付与により、駆動部の共振周波数を適当な範囲に調整することができ、スキャナー性能を容易に安定化させることができる。   According to the present invention, in the method of adjusting the performance of the optical scanning device having the above-described configuration, the adjustment step of adjusting to the predetermined drive unit resonance frequency may include removing part of the mass of the electromechanical conversion unit or applying part of the mass. It is characterized by being performed by. According to this configuration, even if variations occur in the resonance frequency of the produced mirror part, even if variations occur in the characteristics of the electromechanical conversion part, by removing part of the mass of the electromechanical conversion part or applying part of the mass, The resonance frequency of the drive unit can be adjusted to an appropriate range, and the scanner performance can be easily stabilized.

また本発明は上記構成の光走査装置の性能調整方法において、前記所定の駆動部共振周波数に調整する調整工程は、一体化した前記弾性変形部と前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴としている。この構成によると、作製した駆動部の質量の一部除去や質量の一部付与により、駆動部共振周波数を適当な範囲に調整して、スキャナー性能を容易に安定化させることができる。   Further, in the performance adjustment method of the optical scanning device having the above configuration according to the present invention, the adjustment step of adjusting to the predetermined drive unit resonance frequency may include removing part of the mass of the integrated elastic deformation unit and the electromechanical conversion unit, Or it is characterized by performing by giving a part of the said mass. According to this configuration, it is possible to easily stabilize the scanner performance by adjusting the drive unit resonance frequency to an appropriate range by removing a part of the mass of the manufactured drive unit or adding a part of the mass.

また本発明は上記構成の光走査装置の性能調整方法において、前記所定の駆動部共振周波数に調整する調整工程は、前記弾性変形部と前記電気機械変換部とを一体化する位置の調整で行うことを特徴としている。この構成によると、圧電素子の受け入れ検査などにより予め判断できる共振周波数のずれに応じて、その貼付位置を調整して、ミラー部の共振周波数に応じた適当な駆動部共振周波数を発揮するように調整することができる。   According to the present invention, in the performance adjustment method of the optical scanning device having the above-described configuration, the adjustment step of adjusting to the predetermined drive unit resonance frequency is performed by adjusting a position where the elastic deformation unit and the electromechanical conversion unit are integrated. It is characterized by that. According to this configuration, the attachment position is adjusted according to the deviation of the resonance frequency that can be determined in advance by, for example, receiving inspection of the piezoelectric element, so that an appropriate drive part resonance frequency corresponding to the resonance frequency of the mirror part is exhibited. Can be adjusted.

また本発明は上記構成の光走査装置の性能調整方法において、前記所定の駆動部共振周波数に調整する調整工程は、前記弾性変形部に対する前記電気機械変換部の大きさの調整で行うことを特徴としている。この構成によると、形状誤差や材料のロット変動などで、圧電素子の素材自体の特性にバラツキが生じても、製品毎の大きさを変えることで、ミラー部の共振周波数に応じた適当な駆動部共振周波数を発揮するように調整することができる。   According to the present invention, in the performance adjustment method of the optical scanning device having the above-described configuration, the adjustment step of adjusting to the predetermined drive unit resonance frequency is performed by adjusting the size of the electromechanical conversion unit with respect to the elastic deformation unit. It is said. According to this configuration, even if the characteristics of the piezoelectric element itself vary due to shape errors or material lot fluctuations, by changing the size of each product, it is possible to drive appropriately according to the resonance frequency of the mirror part. It can adjust so that a part resonance frequency may be exhibited.

また本発明は上記構成の光走査装置の性能調整方法において、前記所定の駆動部共振周波数に調整する調整工程は、前記弾性変形部に前記電気機械変換部を貼付する際の接着剤に配合する添加粒子の粒径を調整することで行うことを特徴としている。この構成によると、作製したミラー部の共振周波数に応じて、もしくは、取り付ける圧電素子の特性に応じて、添加粒子の粒径を変えることで、駆動部の共振周波数を調整することができる。   According to the present invention, in the performance adjustment method for the optical scanning device having the above-described configuration, the adjustment step for adjusting to the predetermined drive unit resonance frequency is blended with an adhesive when the electromechanical conversion unit is attached to the elastic deformation unit. It is characterized by adjusting the particle size of the additive particles. According to this configuration, the resonance frequency of the drive unit can be adjusted by changing the particle diameter of the additive particles according to the resonance frequency of the manufactured mirror part or according to the characteristics of the piezoelectric element to be attached.

本発明によれば、駆動部の共振周波数を、組み付けたミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整するので、ミラー部の共振周波数を調整することなく、ミラー部を傾向して光を走査するスキャナー性能が高いレベルで安定する光走査装置の製造方法および性能調整方法を得ることができる。   According to the present invention, the resonance frequency of the drive unit is adjusted to a predetermined drive unit resonance frequency corresponding to the mirror unit resonance frequency of the assembled mirror unit, so that the mirror unit can be adjusted without adjusting the resonance frequency of the mirror unit. Accordingly, it is possible to obtain an optical scanning device manufacturing method and a performance adjustment method in which the scanner performance for scanning light tends to be stable at a high level.

本発明に係る光走査装置の概略平面図である。1 is a schematic plan view of an optical scanning device according to the present invention. 光走査装置の要部断面図である。It is principal part sectional drawing of an optical scanning device. ミラー部共振周波数と駆動部共振周波数との関係を示す図である。It is a figure which shows the relationship between a mirror part resonance frequency and a drive part resonance frequency. 共振周波数調整部の第一の調整工程を説明する平面図である。It is a top view explaining the 1st adjustment process of a resonant frequency adjustment part. 共振周波数調整部の第二の調整工程を説明する平面図である。It is a top view explaining the 2nd adjustment process of a resonant frequency adjustment part. 共振周波数調整部の調整部位の変化を説明する平面図である。It is a top view explaining the change of the adjustment part of a resonant frequency adjustment part. 調整部位の変化に対応して変化する共振周波数の変遷を示す図である。It is a figure which shows transition of the resonant frequency which changes corresponding to the change of an adjustment site | part. 共振周波数調整部の第三の調整工程を説明する平面図である。It is a top view explaining the 3rd adjustment process of a resonant frequency adjustment part. 第三の調整工程に応じて変化する共振周波数の変遷を示す図である。It is a figure which shows transition of the resonant frequency which changes according to a 3rd adjustment process. 共振周波数調整部の第四の調整工程を説明する断面図である。It is sectional drawing explaining the 4th adjustment process of a resonant frequency adjustment part. 第四の調整工程に応じて変化する共振周波数の変遷を示す図である。It is a figure which shows transition of the resonant frequency which changes according to a 4th adjustment process. 本発明に係る光走査装置を備えたモバイル端末の作動状態を示す概略説明図である。It is a schematic explanatory drawing which shows the operating state of the mobile terminal provided with the optical scanning device which concerns on this invention.

以下に本発明の実施形態を図面を参照して説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。   Embodiments of the present invention will be described below with reference to the drawings. Moreover, the same code | symbol is used about the same structural member, and detailed description is abbreviate | omitted suitably.

本発明に係る光走査装置の製造方法は、固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され第一方向と直交する第二方向に主に傾向するミラー部とを備える光走査装置2の製造方法である。光走査装置2は、例えば、図9に示す携帯電話やPDA(Personal Digital Assistant)などのモバイル端末40に搭載されるプロジェクター100に装備され、投影面41上に光を水平方向(H方向)および垂直方向(V方向)に走査するものである。   The method of manufacturing an optical scanning device according to the present invention includes a fixed frame, a drive unit coupled to the fixed frame, in which the electromechanical conversion unit and the elastic deformation unit are integrated, and the drive unit and the shaft unit. An optical scanning device 2 comprising: a movable frame that is connected and tiltable mainly in the first direction; and a mirror unit that is connected to the movable frame via a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction. It is a manufacturing method. The optical scanning device 2 is installed in a projector 100 mounted on a mobile terminal 40 such as a mobile phone or a PDA (Personal Digital Assistant) shown in FIG. 9, for example, and the light is projected on the projection surface 41 in the horizontal direction (H direction) and Scan in the vertical direction (V direction).

例えば、光源としてレーザー光を用い、投影面41上においてレーザー光を水平方向(H方向)および垂直方向(V方向)に走査することによって、プロジェクター100に入力された画像情報を投影面41に投影する。この投影面41としては、別途準備したスクリーンでもよいが、スクリーン以外のものでもよい。例えば、壁面などを投影面41としてもよい。   For example, image information input to the projector 100 is projected onto the projection surface 41 by using laser light as the light source and scanning the laser light in the horizontal direction (H direction) and the vertical direction (V direction) on the projection surface 41. To do. The projection surface 41 may be a screen prepared separately, but may be other than a screen. For example, a wall surface or the like may be used as the projection surface 41.

光源にRGB3色の光源を用いることで、スクリーン上にカラー映像を投影することができる。その際、ミラー部の傾向量により映像の投影範囲、解像度が決まり、映像の品質を決定する。そのために、映像の品質の向上にとっては、ミラー部の傾向量は大きいことが好ましい。   By using RGB three-color light sources as light sources, a color image can be projected on the screen. At that time, the projection range and resolution of the video are determined by the tendency amount of the mirror part, and the quality of the video is determined. Therefore, it is preferable that the tendency amount of the mirror portion is large for improving the quality of the video.

また、梁により支持されたミラー部と圧電素子を貼付した駆動部は、各々独立した共振周波数を有する構成を取り、ミラー部の共振周波数(ミラー部共振周波数)と駆動部の共振周波数(駆動部共振周波数)を近づけることで、ミラー部の傾向量を大きくすることができる。   In addition, the mirror supported by the beam and the drive unit to which the piezoelectric element is attached have a configuration having independent resonance frequencies. The resonance frequency of the mirror unit (mirror unit resonance frequency) and the resonance frequency of the drive unit (drive unit) By making the resonance frequency closer, the tendency amount of the mirror portion can be increased.

次に、図1を用いて光走査装置2の一例について説明する。光走査装置2は、光源から出射されるレーザー光を二次元走査するためのものであって、レーザー光を投影面41(図9参照)に向けて反射するミラー部3を少なくとも有している。このミラー部3の傾斜角(反射角)は変動可能となっており、ミラー部3の傾斜角を変動させることにより、光走査装置2によるレーザー光の二次元走査が行われる。   Next, an example of the optical scanning device 2 will be described with reference to FIG. The optical scanning device 2 is for two-dimensionally scanning laser light emitted from a light source, and has at least a mirror unit 3 that reflects the laser light toward a projection surface 41 (see FIG. 9). . The tilt angle (reflection angle) of the mirror unit 3 can be changed. By changing the tilt angle of the mirror unit 3, two-dimensional scanning of laser light by the optical scanning device 2 is performed.

また、ミラー部3をMEMSに組み込み、そのミラー部3が組み込まれたMEMSを光走査装置2としている。また、この光走査装置2は、略平坦で厚みが小さく、かつ、その外形が平面視において略正方形状(例えば、1辺の長さが約1cm)となっている。   The mirror unit 3 is incorporated in the MEMS, and the MEMS in which the mirror unit 3 is incorporated is used as the optical scanning device 2. In addition, the optical scanning device 2 is substantially flat and has a small thickness, and the outer shape thereof is substantially square (for example, the length of one side is about 1 cm) in plan view.

具体的な構造としては、光走査装置2はシリコン基板に対してエッチング処理などを施すことで得られる構造体からなっており、ミラー部3に加えて、固定枠4、駆動部5および可動枠6などを一体的に有している。なお、以下の説明では、ミラー部3の中心を図の横方向に横切る軸をX軸とし、ミラー部3の中心を図の縦方向に横切る軸をY軸とする。言い換えると、X軸とY軸とが直交する点をミラー部3の中心とする。   As a specific structure, the optical scanning device 2 includes a structure obtained by performing an etching process or the like on the silicon substrate. In addition to the mirror unit 3, the fixed frame 4, the driving unit 5, and the movable frame are included. 6 etc. are integrated. In the following description, an axis that crosses the center of the mirror unit 3 in the horizontal direction in the figure is an X axis, and an axis that crosses the center of the mirror unit 3 in the vertical direction in the figure is a Y axis. In other words, the point where the X axis and the Y axis are orthogonal to each other is the center of the mirror unit 3.

ミラー部3は、Y軸に平行な第1軸部(トーションバー7)とX軸に平行で第1軸部と略直角に交差する第2軸部(軸8)を介して回動可能である。固定枠4は、光走査装置2の外縁に相当する部分であって、他の部分(ミラー部3、駆動部5および可動枠6など)を取り囲んでいる。すなわち、光走査装置2は、固定枠4と、互いに異なる軸方向を有する第1軸部及び第2軸部と、第1軸部の回動によって回動するとともに、第2軸部の回動によって回動するミラー部3と、ミラー部3及び第1軸部を囲み、第2軸部の回動によって回動する可動枠6と、電気機械変換素子部と、電気機械変換素子部で発生する変位をミラー部3の傾向に伝達する弾性変形部と、を備えている。   The mirror part 3 is rotatable via a first shaft part (torsion bar 7) parallel to the Y axis and a second shaft part (shaft 8) parallel to the X axis and intersecting the first shaft part at a substantially right angle. is there. The fixed frame 4 is a part corresponding to the outer edge of the optical scanning device 2 and surrounds other parts (the mirror unit 3, the drive unit 5, the movable frame 6 and the like). That is, the optical scanning device 2 rotates by the rotation of the fixed shaft 4, the first and second shaft portions having different axial directions, and the first shaft portion, and the rotation of the second shaft portion. Generated by the mirror unit 3 that is rotated by, the movable frame 6 that surrounds the mirror unit 3 and the first shaft unit, and that is rotated by the rotation of the second shaft unit, the electromechanical conversion element unit, and the electromechanical conversion element unit. And an elastic deformation part that transmits the displacement to the tendency of the mirror part 3.

弾性変形部と電気機械変換素子部とを一体化した部位である駆動部5は、X軸方向において固定枠4と分離され、Y軸方向において固定枠4と連結されている。すなわち、弾性変形部は、第2軸部(軸8)と固定枠4とを連結し、電気機械変換素子部は、正電極と負電極で挟まれた電気機械変換素子層を有する。さらに、駆動部5は4つの圧電アクチュエーター部を含んでいるとともに、その4つの圧電アクチュエーター部がX軸およびY軸のそれぞれを対称軸として対称となり、かつ、互いに離間した状態となるように配置されている。また、駆動部5としての圧電アクチュエーター部は、圧電素子(PZTなどを原料とした焼結体を分極処理したもの)を一対の電極で挟持し、それをシリコン基板の駆動部5となる領域(弾性変形部)上に貼り付けることによって形成されている。   The drive unit 5, which is a part where the elastically deforming unit and the electromechanical conversion element unit are integrated, is separated from the fixed frame 4 in the X-axis direction and is connected to the fixed frame 4 in the Y-axis direction. That is, the elastically deforming portion connects the second shaft portion (shaft 8) and the fixed frame 4, and the electromechanical conversion element portion has an electromechanical conversion element layer sandwiched between the positive electrode and the negative electrode. Further, the drive unit 5 includes four piezoelectric actuator units, and the four piezoelectric actuator units are arranged so as to be symmetric with respect to the X axis and the Y axis, respectively, and separated from each other. ing. The piezoelectric actuator unit as the drive unit 5 sandwiches a piezoelectric element (a material obtained by polarization treatment of a sintered body made of PZT or the like as a raw material) with a pair of electrodes, and serves as a region (the drive unit 5 of the silicon substrate). It is formed by affixing on the elastic deformation part).

このような駆動部5では、一対の電極に電圧が印加されると、一対の電極に挟持された圧電素子が伸長または収縮する。そして、圧電素子が伸長または収縮すると、それに応じて、シリコン基板の駆動部5となる領域である弾性変形部が撓む。すなわち、駆動部5は、電力が供給されることで駆動する。   In such a drive unit 5, when a voltage is applied to the pair of electrodes, the piezoelectric element sandwiched between the pair of electrodes expands or contracts. When the piezoelectric element expands or contracts, the elastically deforming portion, which is the region that becomes the driving portion 5 of the silicon substrate, bends accordingly. That is, the drive unit 5 is driven by being supplied with electric power.

また、図に示すように、可動枠6は、駆動部5の内側に位置する略ひし形形状の枠である。この可動枠6のX軸上の両端部は軸8(第2軸部)を介して駆動部5と連結され、それ以外の部分は駆動部5から分離されている。これにより、可動枠6は、X軸周りに回動可能となっていることになる。   Further, as shown in the figure, the movable frame 6 is a substantially rhombus-shaped frame located inside the drive unit 5. Both ends of the movable frame 6 on the X axis are connected to the drive unit 5 via the shaft 8 (second shaft portion), and the other parts are separated from the drive unit 5. Thereby, the movable frame 6 can be rotated around the X axis.

可動枠6の内側には、Y軸方向に沿って延びる一対のトーションバー7(第1軸部)が設けられている。この一対のトーションバー7は、Y軸と重なり、かつ、X軸に対して対称となるように配置されている。さらに、一対のトーションバー7のそれぞれの一方端は、可動枠6のY軸上の端部に連結されている。   A pair of torsion bars 7 (first shaft portions) extending along the Y-axis direction are provided inside the movable frame 6. The pair of torsion bars 7 are arranged so as to overlap the Y axis and be symmetric with respect to the X axis. Further, one end of each of the pair of torsion bars 7 is connected to an end of the movable frame 6 on the Y axis.

そして、ミラー部3は、一対のトーションバー7のそれぞれの他方端の間に配置されており、その他方端によって支持されている。このため、ミラー部3は、可動枠6と共にX軸周りに回動され、トーションバー7を回動軸としてY軸周りに回動されることになる。なお、ミラー部3は、略円形状に形成されており、金やアルミニウムなどからなる反射膜をシリコン基板のミラー部3となる領域上に貼り付けることで得ている。   And the mirror part 3 is arrange | positioned between each other end of a pair of torsion bars 7, and is supported by the other end. For this reason, the mirror part 3 is rotated around the X axis together with the movable frame 6, and is rotated around the Y axis with the torsion bar 7 as the rotation axis. The mirror part 3 is formed in a substantially circular shape, and is obtained by sticking a reflective film made of gold, aluminum or the like on the region to be the mirror part 3 of the silicon substrate.

光走査装置2は、上記のような構造となっている。そして、この光走査装置2の走査動作は、4つの駆動部5を駆動(変形)させるタイミングを調整し、ミラー部3をX軸周りおよびY軸周りに振動させることによって行われる。例えば、X軸周りに振動するときの周波数は約60Hzに設定され、Y軸周りに振動するときの周波数は約30kHzに設定される。   The optical scanning device 2 has the above structure. The scanning operation of the optical scanning device 2 is performed by adjusting the timing for driving (deforming) the four drive units 5 and vibrating the mirror unit 3 around the X axis and the Y axis. For example, the frequency when vibrating around the X axis is set to about 60 Hz, and the frequency when vibrating around the Y axis is set to about 30 kHz.

4つの駆動部5のそれぞれに5−1〜5−4の符号を付して具体的に説明すると、ミラー部3をX軸周りに振動させる際には、駆動部5−1および5−3を一方の組とするとともに、駆動部5−2および5−4を他方の組とし、一方の組および他方の組のそれぞれに印加する電圧の正負を反転させる。具体的には、一方の組である駆動部5−1および5−3を上向きに撓む方向に変形させ、他方の組である駆動部5−2および5−4を下向きに撓む方向に変形させると、ミラー部3が可動部6と共にX軸周りに回転する。次に、一方の組である駆動部5−1および5−3を下向きに撓む方向に変形させ、他方の組である駆動部5−2および5−4を上向きに撓む方向に変形させると、ミラー部3が可動部6と共にX軸周りに逆周りに回転する。これにより、ミラー部3が可動枠6と共にX軸周りに振動し、ミラー部3の傾きがX軸周りに変動する。なお、トーションバー7のねじれ方向はX軸周りの振動方向と直交する方向であるため、このミラー部3のX軸周りの振動には影響しない。   More specifically, each of the four drive units 5 is denoted by reference numerals 5-1 to 5-4. When the mirror unit 3 is vibrated around the X axis, the drive units 5-1 and 5-3 are provided. , And the drive units 5-2 and 5-4 as the other set, the polarity of the voltage applied to each of the one set and the other set is reversed. Specifically, the drive units 5-1 and 5-3 that are one set are deformed in a direction that bends upward, and the drive units 5-2 and 5-4 that are the other set are bent in a direction that bends downward. When deformed, the mirror unit 3 rotates around the X axis together with the movable unit 6. Next, the drive units 5-1 and 5-3 that are one set are deformed in a direction that bends downward, and the drive units 5-2 and 5-4 that are the other set are deformed in a direction that bends upward. Then, the mirror unit 3 rotates together with the movable unit 6 in the reverse direction around the X axis. Thereby, the mirror part 3 vibrates around the X axis together with the movable frame 6, and the inclination of the mirror part 3 varies around the X axis. Since the torsion bar 7 is twisted in a direction perpendicular to the vibration direction around the X axis, it does not affect the vibration of the mirror portion 3 around the X axis.

また、ミラー部3をY軸周りに振動させる際には、駆動部5−1および5−2を一方の組とするとともに、駆動部5−3および5−4を他方の組とし、一方の組および他方の組のそれぞれに印加する電圧の正負を反転させる。具体的には、一方の組である駆動部5−1および5−2を上向きに撓む方向に変形させ、他方の組である駆動部5−3および5−4を下向きに撓む方向に変形させると、ミラー部3が可動部6と共にY軸周りに回転する。次に、一方の組である駆動部5−1および5−2を下向きに撓む方向に変形させ、他方の組である駆動部5−3および5−4を上向きに撓む方向に変形させると、ミラー部3が可動部6と共にY軸周りに逆周りに回転する。これにより、ミラー部3が可動枠6と共にY軸周りに振動し、ミラー部3の傾きがY軸周りに変動する。   Further, when the mirror unit 3 is vibrated around the Y axis, the drive units 5-1 and 5-2 are set as one set, and the drive units 5-3 and 5-4 are set as the other set. The polarity of the voltage applied to each of the set and the other set is reversed. Specifically, the drive units 5-1 and 5-2 that are one set are deformed in a direction that bends upward, and the drive units 5-3 and 5-4 that are the other set are bent in a direction that bends downward. When deformed, the mirror unit 3 rotates around the Y axis together with the movable unit 6. Next, the drive units 5-1 and 5-2 that are one set are deformed in a direction that bends downward, and the drive units 5-3 and 5-4 that are the other set are deformed in a direction that bends upward. Then, the mirror unit 3 rotates together with the movable unit 6 in the reverse direction around the Y axis. Thereby, the mirror part 3 vibrates around the Y axis together with the movable frame 6, and the inclination of the mirror part 3 fluctuates around the Y axis.

このとき、駆動部5を変形させることのみでミラー部3をY軸周りに傾かせようとすると、ミラー部3のY軸周りの傾きの変動は小さくなってしまう。このため、実際に走査動作を行う際には、駆動部5に印加される電圧の周波数によってミラー部3が共振するように、駆動部5への印加電圧の周波数が設定される。   At this time, if the mirror unit 3 is tilted about the Y axis only by deforming the drive unit 5, the variation in the tilt of the mirror unit 3 about the Y axis becomes small. For this reason, when the scanning operation is actually performed, the frequency of the applied voltage to the drive unit 5 is set so that the mirror unit 3 resonates with the frequency of the voltage applied to the drive unit 5.

上記のように光走査装置2を動作させることで、互いに直交している2軸周りにミラー部3を回動させることができ、レーザー光を1つのミラー部3で二次元走査することが可能となる。   By operating the optical scanning device 2 as described above, the mirror unit 3 can be rotated around two axes orthogonal to each other, and laser light can be two-dimensionally scanned by the single mirror unit 3. It becomes.

ところで、本実施形態では、製造誤差などにより生じる不安定要因を容易に調整し安定して大きな変形量を得るために、ミラー部3の共振周波数は変えずに、圧電素子側(駆動部側)の共振周波数を調整するようにしている。すなわち、本実施形態に係る光走査装置2は、駆動部5の共振周波数を、予め所定の基準周波数より所定範囲高いか低い周波数に設定しておき、さらに、組み付けたミラー部3のミラー部共振周波数に応じた所定の駆動部共振周波数に調整している。   By the way, in this embodiment, in order to easily adjust an unstable factor caused by a manufacturing error and stably obtain a large amount of deformation, the resonance frequency of the mirror unit 3 is not changed and the piezoelectric element side (driving unit side) is changed. The resonance frequency is adjusted. That is, in the optical scanning device 2 according to this embodiment, the resonance frequency of the drive unit 5 is set in advance to a frequency higher or lower than a predetermined reference frequency by a predetermined range, and further, the mirror unit resonance of the assembled mirror unit 3 is set. The drive unit is adjusted to a predetermined resonance frequency corresponding to the frequency.

上記の構成であれば、駆動部5の共振周波数をミラー部共振周波数に近づけるように調整し、ミラー部共振周波数よりも所定の周波数分高く又は低く調整して、ミラー部3のスキャナー性能を安定化させることができる。また、ミラー部3という壊れやすいデバイス側で調整する必要がないので、良品率が向上する。   With the above configuration, the resonance frequency of the drive unit 5 is adjusted to be close to the mirror unit resonance frequency, and is adjusted to be higher or lower by a predetermined frequency than the mirror unit resonance frequency, thereby stabilizing the scanner performance of the mirror unit 3. It can be made. In addition, since it is not necessary to make adjustment on the fragile device side of the mirror unit 3, the yield rate is improved.

また、駆動部5の共振周波数を調整しても、ミラー部3の共振周波数が影響を受けないように、駆動部5とミラー部3を備える可動枠6とを連結する梁である軸部8は、低剛性で高変形構造部を備えることが好ましい。詳しくは、軸部8は、ミラー部3と駆動部5との互いの共振周波数に影響を与えない程度に低剛性な高変形構造部を備えている事が好ましい。このような構成であれば、ミラー部3の共振周波数と駆動部5の共振周波数を独立的に制御することができ、低剛性の軸部8を介して、ミラー部3を大きく傾向することができる。   In addition, even if the resonance frequency of the drive unit 5 is adjusted, the shaft unit 8 is a beam that connects the drive unit 5 and the movable frame 6 including the mirror unit 3 so that the resonance frequency of the mirror unit 3 is not affected. Is preferably provided with a highly rigid structure portion with low rigidity. Specifically, it is preferable that the shaft portion 8 includes a highly deformable structure portion having low rigidity so as not to affect the mutual resonance frequency of the mirror portion 3 and the drive portion 5. With such a configuration, the resonance frequency of the mirror unit 3 and the resonance frequency of the drive unit 5 can be controlled independently, and the mirror unit 3 tends to be greatly increased via the low-rigidity shaft unit 8. it can.

この低剛性で高変形構造部は、例えば、軸部8の一部に細い梁からなる蛇行部を設けることで実現できる。   This low-rigidity and high-deformation structure part can be realized, for example, by providing a meandering part made of a thin beam in a part of the shaft part 8.

また、駆動部5の共振周波数は、組み付けたミラー部3の共振周波数に接近した少し高い共振周波数に設定しておくことが好ましい。例えば、ミラー部共振周波数に対して駆動部共振周波数を約5%高い値に設定する。こうすることで、環境などの変化に対して強いロバストな系を構築することが可能となる。   The resonance frequency of the drive unit 5 is preferably set to a slightly higher resonance frequency that is close to the resonance frequency of the assembled mirror unit 3. For example, the drive unit resonance frequency is set to a value about 5% higher than the mirror unit resonance frequency. By doing so, it is possible to construct a robust system that is strong against changes in the environment and the like.

電気機械変換素子層は、図2に示すように固定部11(光走査装置2を取り付ける固定枠4に相当)に弾性変形部12(シリコン基板の一部に相当し、弾性変形部12と電気機械変換素子層とを一体化した部位が駆動部5に相当する)を積層し、この上に電極部(正極用電極部13A、負極用電極部13B)を設け、接着層14を介して圧電素子51を接着固定する。また、圧電素子51は、例えば、正電極15と負電極16との一対の電極で挟まれたユニモルフ型の電気機械変換素子である。   As shown in FIG. 2, the electromechanical conversion element layer includes a fixing portion 11 (corresponding to the fixing frame 4 to which the optical scanning device 2 is attached) and an elastic deformation portion 12 (corresponding to a part of the silicon substrate. A portion where the mechanical conversion element layer is integrated is equivalent to the drive unit 5), and electrode portions (a positive electrode portion 13 </ b> A and a negative electrode portion 13 </ b> B) are provided thereon, and a piezoelectric layer is provided via the adhesive layer 14. The element 51 is bonded and fixed. The piezoelectric element 51 is, for example, a unimorph electromechanical transducer that is sandwiched between a pair of electrodes of a positive electrode 15 and a negative electrode 16.

接着層14は異方性導電接着層であることが好ましい。接着層14が異方性導電接着層であれば、弾性変形部12上の正負極用電極部に電極で挟まれた圧電素子51を載置して、押圧することで、この正負極用電極部(13A、13B)と直上の電極(15、16)とを電気的に接続することができる。   The adhesive layer 14 is preferably an anisotropic conductive adhesive layer. If the adhesive layer 14 is an anisotropic conductive adhesive layer, the positive and negative electrode electrodes are formed by placing and pressing the piezoelectric element 51 sandwiched between the electrodes on the positive and negative electrode portions on the elastic deformation portion 12. The part (13A, 13B) and the electrode (15, 16) directly above can be electrically connected.

すなわち、電気機械変換素子部(圧電素子51)は、弾性変形部12上に設ける電極部と異方性導電接着層を介して接合される。この構成であれば、弾性変形部12上に設ける電極部と、この上に配設する電気機械変換素子部(圧電素子51)の正負の電極とを、短絡を生じずに接合することができる。すなわち、電気機械変換素子部に給電するための電極部を、弾性変形部との接着部に設けることができる。   That is, the electromechanical conversion element part (piezoelectric element 51) is joined to the electrode part provided on the elastic deformation part 12 via the anisotropic conductive adhesive layer. If it is this structure, the electrode part provided on the elastic deformation part 12 and the positive / negative electrode of the electromechanical conversion element part (piezoelectric element 51) arrange | positioned on it can be joined, without producing a short circuit. . That is, the electrode part for supplying electric power to the electromechanical conversion element part can be provided in the adhesive part with the elastic deformation part.

この異方性導電接着層は、弾性変形部12と電気機械変換素子部(圧電素子51)との間隙を、電気機械変換素子部の共振周波数を安定化する所定間隔に保持する粒子14aを含有することが好ましい。また、この粒子14aは導電性を有することが好ましい。この構成であれば、異方性導電接着層に配合する導電性の粒子14aを介して、弾性変形部12と電気機械変換素子部(圧電素子51)との間隙を所定間隔とすることができ、ミラー部3の傾向量に影響する駆動部5の共振周波数を安定化させて、結果としてミラー部3の傾向量を安定化させることが可能となる。   This anisotropic conductive adhesive layer contains particles 14a that maintain the gap between the elastic deformation portion 12 and the electromechanical transducer element (piezoelectric element 51) at a predetermined interval that stabilizes the resonance frequency of the electromechanical transducer element. It is preferable to do. Moreover, it is preferable that this particle | grain 14a has electroconductivity. With this configuration, the gap between the elastic deformation portion 12 and the electromechanical conversion element portion (piezoelectric element 51) can be set to a predetermined interval via the conductive particles 14a blended in the anisotropic conductive adhesive layer. The resonance frequency of the drive unit 5 that affects the tendency amount of the mirror unit 3 can be stabilized, and as a result, the tendency amount of the mirror unit 3 can be stabilized.

このようにして、駆動部5の共振周波数を安定化すると共に、この駆動部共振周波数をミラー部の共振周波数に近づけることで、ミラー部3の傾向量を大きくできる。すなわち、駆動部共振周波数をミラー部共振周波数に近い所定の共振周波数に設定することで、ミラー部3を安定して、且つ、大きく傾向できる。   In this way, the resonance frequency of the drive unit 5 is stabilized, and the tendency amount of the mirror unit 3 can be increased by bringing the drive unit resonance frequency close to the resonance frequency of the mirror unit. That is, by setting the drive unit resonance frequency to a predetermined resonance frequency close to the mirror unit resonance frequency, the mirror unit 3 can be stably and greatly increased.

上記したように、光走査装置2は、シリコン基板に対してエッチング処理などを施すことで得られる構造体からなっており、ミラー部3に加えて、固定枠4、駆動部5および可動枠6などを一体的に有している。このように、ミラー部3と駆動部5と可動枠6とを一体に形成しているので、小型化することが可能である。また、駆動部5の共振周波数をミラー部3の共振周波数に近づけているので、大きな変形量を得ることができ、結果としてミラー部3を充分傾向することが可能となる。   As described above, the optical scanning device 2 is formed of a structure obtained by performing an etching process or the like on a silicon substrate, and in addition to the mirror unit 3, the fixed frame 4, the drive unit 5, and the movable frame 6. And so on. Thus, since the mirror part 3, the drive part 5, and the movable frame 6 are integrally formed, it is possible to reduce the size. Further, since the resonance frequency of the drive unit 5 is close to the resonance frequency of the mirror unit 3, a large amount of deformation can be obtained, and as a result, the mirror unit 3 can be sufficiently prone.

例えば、図3に示すように、ミラー部共振周波数MRが29.2kHzのときに、駆動部の共振周波数DRをそれよりも約5%高い30.6kHzとなるようにしている。この二つの共振周波数を一致させることが最も効率的であるが、環境による共振周波数変動などを考慮して、ミラー部共振周波数に対し、圧電素子が貼付された駆動部5の共振周波数を約5%高めに設定し、環境などの変化に強いロバストな系として使用している。   For example, as shown in FIG. 3, when the mirror part resonance frequency MR is 29.2 kHz, the resonance frequency DR of the drive part is set to 30.6 kHz, which is about 5% higher than that. Although it is most efficient to make these two resonance frequencies coincide with each other, the resonance frequency of the drive unit 5 to which the piezoelectric element is attached is set to about 5 with respect to the resonance frequency of the mirror portion in consideration of the resonance frequency variation due to the environment. It is used as a robust system that is resistant to changes in the environment.

製造時に、形状誤差や圧電素子などの材料のロット変動などで、ミラー部共振周波数と駆動部共振周波数との差幅が変化すると、製品毎に性能バラツキが生じる。そのために、所定の部位に圧電素子を貼付して駆動部を作製する際に、この駆動部共振周波数をミラー部共振周波数に応じた適当な値に調整しておくことが好ましい。すなわち、本発明に係る光走査装置の性能調整方法は、駆動部の共振周波数を、組み付けたミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整し、スキャナー性能を安定化させるものである。なお、駆動部の共振周波数DRをミラー部共振周波数MRより所定の周波数分低くすることによっても、環境などの変化に強いロバストな系を構築できる。   When the difference width between the mirror part resonance frequency and the drive part resonance frequency changes due to a shape error or a lot fluctuation of a material such as a piezoelectric element at the time of manufacturing, performance varies from product to product. Therefore, it is preferable to adjust the drive unit resonance frequency to an appropriate value according to the mirror unit resonance frequency when a drive unit is manufactured by attaching a piezoelectric element to a predetermined part. That is, in the performance adjustment method of the optical scanning device according to the present invention, the resonance frequency of the drive unit is adjusted to a predetermined drive unit resonance frequency corresponding to the mirror unit resonance frequency of the assembled mirror unit to stabilize the scanner performance. Is. Note that a robust system that is resistant to changes in the environment and the like can also be constructed by lowering the resonance frequency DR of the drive unit by a predetermined frequency from the mirror unit resonance frequency MR.

次に、この駆動部共振周波数を所望の値に修正する光走査装置の性能調整方法について図4〜図8Bを用いて説明する。   Next, a method for adjusting the performance of the optical scanning device for correcting the drive unit resonance frequency to a desired value will be described with reference to FIGS.

駆動部の共振周波数を調整するには、一旦駆動部を作製した後に調整する事後調整と、部品特性に応じて予め調整する事前調整とがある。事後調整としては、一旦作製した電気機械変換部の質量の一部除去、または、質量の一部付与、もしくは、電気機械変換部と弾性変形部とが一体化された駆動部の質量の一部除去、または、質量の一部付与で行う調整工程を採用する。また、事前調整としては、駆動部の圧電素子貼付位置の調整で行う調整工程と、駆動部に貼付する圧電素子の大きさを調整する調整工程と、駆動部に圧電素子を貼付する際の接着剤に配合する添加粒子の粒径を調整する調整工程とを採用する。   To adjust the resonance frequency of the drive unit, there are a post-adjustment that is adjusted after the drive unit is once manufactured, and a pre-adjustment that is adjusted in advance according to the component characteristics. As a post-adjustment, a part of the mass of the electromechanical conversion unit once manufactured, a part of the mass, or a part of the mass of the drive unit in which the electromechanical conversion unit and the elastic deformation unit are integrated An adjustment process performed by removal or partial application of mass is employed. In addition, as pre-adjustment, an adjustment process performed by adjusting the piezoelectric element application position of the drive unit, an adjustment process of adjusting the size of the piezoelectric element applied to the drive unit, and adhesion when the piezoelectric element is applied to the drive unit And an adjustment step of adjusting the particle size of the additive particles to be blended in the agent.

例えば、電気機械変換部や駆動部の質量の一部除去は、駆動部の所定部位をレーザー加工により除去することで行う。また、質量の一部付与は、所定部位に樹脂などを付着して行う。駆動部の圧電素子貼付位置の調整は、圧電素子の受け入れ検査などにより予め判断できる共振周波数のずれに応じて、その貼付位置を調整して行う。例えば、入荷した圧電素子の板厚が厚くなっている場合、そのまま所定の位置に貼付すると共振周波数は高くなってしまう。そこで、予め、貼付する位置を軸部に近づけることで共振周波数を下げるように工夫する。また、貼付する位置を変えることに替えて、貼付する圧電素子の大きさを調整してもよい。また、圧電素子を貼付する際に用いる接着剤の所定粒径の粒子を添加して、弾性変形部との間隔を調整することでも、駆動部の共振周波数を調整することが可能である。   For example, part of the mass of the electromechanical conversion unit and the drive unit is removed by removing a predetermined portion of the drive unit by laser processing. Further, part of the mass is given by attaching a resin or the like to a predetermined part. The adjustment of the piezoelectric element attaching position of the driving unit is performed by adjusting the attaching position according to the deviation of the resonance frequency that can be determined in advance by an acceptance inspection of the piezoelectric element. For example, when the plate thickness of the received piezoelectric element is thick, the resonance frequency becomes high if it is applied as it is at a predetermined position. Therefore, in advance, the device is devised so as to lower the resonance frequency by bringing the position to be applied closer to the shaft portion. Further, the size of the piezoelectric element to be attached may be adjusted instead of changing the position to be attached. Further, the resonance frequency of the drive unit can be adjusted by adding particles having a predetermined particle diameter of an adhesive used for attaching the piezoelectric element and adjusting the distance from the elastically deforming part.

例えば、図4には、電気機械変換部などの駆動部5の所定部位をレーザー加工により除去する第一の調整工程を示している。図に示すように、駆動部5の軸部8から離れた固定部側に近い部分をレーザー加工して、所定量除去する。このようにして、固定部側に除去部R1を設けたマイクロスキャナー1Aは、振動の節を一部除去するので、剛性が弱くなって駆動部5の共振周波数を下げることができる。   For example, FIG. 4 shows a first adjustment process for removing a predetermined portion of the drive unit 5 such as an electromechanical conversion unit by laser processing. As shown in the figure, a portion near the fixed portion side away from the shaft portion 8 of the drive portion 5 is laser processed to remove a predetermined amount. Thus, since the micro scanner 1A provided with the removal portion R1 on the fixed portion side removes a part of the vibration node, the rigidity becomes weak and the resonance frequency of the drive portion 5 can be lowered.

また、図5に示す光走査装置2Bは、軸部8に近い変位側に除去部R2を設けた例を示す。この第二の調整工程では、振動の節ではなく腹を削ることになって、駆動部5の質量が減るので、共振周波数を上げる効果を有する。すなわち、駆動部5の共振周波数を上げたい場合は、駆動部5の変位側を所定量除去し、駆動部5の共振周波数を下げたい場合は、駆動部5の固定部側を所定量除去するとよい。   Further, the optical scanning device 2B shown in FIG. 5 shows an example in which a removal portion R2 is provided on the displacement side close to the shaft portion 8. In this second adjustment step, not the vibration node but the belly is shaved, and the mass of the drive unit 5 is reduced, so that the resonance frequency is increased. That is, when the resonance frequency of the drive unit 5 is to be increased, the displacement side of the drive unit 5 is removed by a predetermined amount, and when the resonance frequency of the drive unit 5 is to be decreased, the fixed part side of the drive unit 5 is removed by a predetermined amount. Good.

この除去する形状は、図示するような半円形でも、円形でもよい。また、その大きさは所定量となる一個でも、合計して所定量となるように複数除去してもよく、組み込んだミラー部や貼付した圧電素子に応じて適宜調整することができる。このように、駆動部5の固定部側から変位部に至る所定部分を共振周波数調整部とし、この共振周波数調整部を介して、駆動部5の共振周波数をミラー部3の共振周波数に近づけて所望のスキャナー性能を発揮させ安定化させることができる。   The shape to be removed may be semicircular as shown or circular. Further, the size may be a single predetermined amount or a plurality may be removed so that the total amount becomes a predetermined amount, and can be appropriately adjusted according to the incorporated mirror portion or the attached piezoelectric element. In this way, a predetermined portion from the fixed portion side of the drive unit 5 to the displacement unit is used as a resonance frequency adjustment unit, and the resonance frequency of the drive unit 5 is brought close to the resonance frequency of the mirror unit 3 through this resonance frequency adjustment unit. Desired scanner performance can be exhibited and stabilized.

次に、図6A、図6Bを用いて、調整部位の変化に対応して変化する共振周波数の変遷について説明する。例えば、図6Aに示す光走査装置2Cのように、駆動部5(5−3)に設ける除去部R1を図中の矢印DXに示す方向に、固定部側から変位側まで変化させると、その共振周波数は図6Bに示すように変遷する。   Next, the transition of the resonance frequency that changes corresponding to the change of the adjustment region will be described with reference to FIGS. 6A and 6B. For example, when the removal unit R1 provided in the drive unit 5 (5-3) is changed from the fixed unit side to the displacement side in the direction indicated by the arrow DX in the drawing as in the optical scanning device 2C illustrated in FIG. 6A, The resonance frequency changes as shown in FIG. 6B.

図6Bに示す周波数カーブSC1は、矢印DXに示す調整部位の変化に対応して変化する共振周波数の変遷を示している。この図の横軸は、固定部側から変位側となる先端側に至る調整部位の位置を表しており、縦軸は、周波数の増減%を表している。また、この周波数の増減は±3%の幅を目途としている。   A frequency curve SC1 shown in FIG. 6B shows a change in the resonance frequency that changes in response to a change in the adjustment site indicated by the arrow DX. The horizontal axis of this figure represents the position of the adjustment part from the fixed part side to the tip side that is the displacement side, and the vertical axis represents the frequency increase / decrease%. In addition, this frequency increase / decrease is aimed at a range of ± 3%.

これは、駆動部を30kHzで駆動するときに、±1kHzを調整幅としたためである。本実施形態の光走査装置2Cは、二次モードの固有振動を利用しているので、共振周波数は図に示す周波数カーブSC1のように二次曲線状に変遷しており、この固定部側の−領域AR1と+領域AR2を用いて調整するとよい。すなわち、この−領域AR1と+領域AR2を共振周波数調整部とすることで、共振周波数を±3%の範囲で調整できる。   This is because ± 1 kHz is used as the adjustment width when the drive unit is driven at 30 kHz. Since the optical scanning device 2C of the present embodiment uses the natural vibration of the secondary mode, the resonance frequency is changed to a quadratic curve as shown in the frequency curve SC1 shown in the figure. It is good to adjust using the region AR1 and the region AR2. That is, the resonance frequency can be adjusted in a range of ± 3% by using the −region AR1 and the + region AR2 as a resonance frequency adjusting unit.

次に、図7A、図7Bを用いて、駆動部の圧電素子貼付位置の調整で行う第三の調整工程、および、この圧電素子の貼付位置の変化に対応する共振周波数の変遷について説明する。この第三の調整工程は、圧電素子の受け入れ検査などにより予め判断できる共振周波数のずれに応じて、その貼付位置を調整するものである。例えば、図7Aに示す光走査装置2Dのように、駆動部5(5−1)に貼付する圧電素子51の貼付位置を51Aから51Bに、軸部8から離れた位置から軸部8に接近した位置まで変化させると、その共振周波数は図7Bに示すように変遷する。   Next, with reference to FIGS. 7A and 7B, a description will be given of a third adjustment step performed by adjusting the piezoelectric element attaching position of the drive unit, and the transition of the resonance frequency corresponding to the change in the attaching position of the piezoelectric element. In the third adjusting step, the sticking position is adjusted in accordance with the deviation of the resonance frequency that can be determined in advance by, for example, an acceptance inspection of the piezoelectric element. For example, as in the optical scanning device 2D shown in FIG. 7A, the attachment position of the piezoelectric element 51 to be attached to the drive unit 5 (5-1) is moved from 51A to 51B, and the position away from the shaft part 8 is approached to the shaft part 8. When changed to the position, the resonance frequency changes as shown in FIG. 7B.

図7Bに示す周波数カーブSC2は、矢印DXに示す調整部位の位置の変化に対応する共振周波数を示している。この図の横軸は、変位側となる軸部から離れた固定部側から軸部に接近した位置に至る調整部位の位置を表しており、縦軸は、周波数の増減%を表している。また、この周波数の増減は前述したように±3%の幅を目途としている。   A frequency curve SC2 illustrated in FIG. 7B indicates a resonance frequency corresponding to a change in the position of the adjustment portion indicated by the arrow DX. The horizontal axis of this figure represents the position of the adjustment part from the fixed part side away from the shaft part on the displacement side to the position approaching the shaft part, and the vertical axis represents the frequency increase / decrease%. The increase / decrease of the frequency is aimed at ± 3% as described above.

このように、圧電素子51の貼付位置が51A(軸部8から離れた位置)であれば、共振周波数を+3%上げることができ、圧電素子51の貼付位置が51B(軸部8に接近した位置)であれば、共振周波数を−3%下げることができる。すなわち、この貼付位置51Aから51Bまでを共振周波数調整部とすることで、共振周波数を±3%の範囲で調整できる。   Thus, if the sticking position of the piezoelectric element 51 is 51A (position away from the shaft portion 8), the resonance frequency can be increased by + 3%, and the sticking position of the piezoelectric element 51 is close to 51B (shaft portion 8). Position), the resonance frequency can be lowered by -3%. That is, the resonance frequency can be adjusted in a range of ± 3% by using the pasting positions 51A to 51B as the resonance frequency adjusting unit.

また、駆動部の圧電素子貼付位置の調整で行う第三の調整工程に替えて、駆動部に貼付する圧電素子の大きさを調整する事前調整を行ってもよい。この調整工程であれば、形状誤差や材料のロット変動などで、圧電素子の素材自体の特性にバラツキが生じても、製品毎の大きさを変えることで、ミラー部の共振周波数に応じた適当な駆動部共振周波数を発揮するように調整することができる。   Further, instead of the third adjustment step performed by adjusting the piezoelectric element attaching position of the drive unit, a pre-adjustment for adjusting the size of the piezoelectric element attached to the drive unit may be performed. With this adjustment process, even if the characteristics of the piezoelectric element itself vary due to shape errors or material lot fluctuations, the size of each product can be changed to suit the resonance frequency of the mirror. It is possible to adjust so as to exhibit a proper drive unit resonance frequency.

次に、図8A、図8Bを用いて、駆動部に圧電素子を貼付する際の接着剤に配合する添加粒子の粒径を調整する第四の調整工程、および、この圧電素子を貼付する際に用いる接着剤の所定粒径の粒子を添加して、弾性変形部との間隔を調整することに対応して変化する共振周波数の変遷について説明する。   Next, with reference to FIGS. 8A and 8B, a fourth adjustment step for adjusting the particle size of the additive particles to be blended in the adhesive when the piezoelectric element is applied to the drive unit, and when this piezoelectric element is applied The transition of the resonance frequency that changes corresponding to the adjustment of the distance from the elastic deformation portion by adding particles having a predetermined particle size of the adhesive used in the above will be described.

例えば、この接着剤は異方性導電接着層を形成する接着剤であって、絶縁性を有するエポキシ樹脂に、導電性コートを施した所定の粒径(例えば、10μm)のセラミックボール(添加粒子;粒子14a)を混入したものを用いる。セラミックボールの配合量は、例えば、重量比で5%程度であり、このセラミックボールを5%配合したエポキシ樹脂を弾性変形部上に形成した電極部に塗布し、この上に圧電素子を載置して押圧し、熱硬化させて固定する。すると、この添加粒子(粒子14a)の粒径が貼り合わせる圧電素子と弾性変形部との間隔を規定する。   For example, this adhesive is an adhesive that forms an anisotropic conductive adhesive layer, and is a ceramic ball (added particles) having a predetermined particle size (for example, 10 μm) obtained by applying an electrically conductive coating to an insulating epoxy resin. A mixture of particles 14a) is used. The amount of the ceramic balls is, for example, about 5% by weight. An epoxy resin containing 5% of the ceramic balls is applied to the electrode portion formed on the elastically deformed portion, and the piezoelectric element is placed thereon. Then press, heat cure and fix. Then, the particle size of the additive particles (particles 14a) defines the interval between the piezoelectric element to be bonded and the elastically deformed portion.

そのために、例えば10μmの粒径の粒子14aを添加すると、圧電素子と弾性変形部との間隔Eは10μmとなり、この構造に応じた共振周波数を呈する。また、20μmの粒径の粒子14aを添加すると、圧電素子と弾性変形部との間隔は20μmとなり、この構造に応じた新たな共振周波数を呈する。   Therefore, for example, when a particle 14a having a particle diameter of 10 μm is added, the distance E between the piezoelectric element and the elastically deforming portion becomes 10 μm, and exhibits a resonance frequency corresponding to this structure. When the particle 14a having a particle diameter of 20 μm is added, the distance between the piezoelectric element and the elastically deforming portion becomes 20 μm, and a new resonance frequency corresponding to this structure is exhibited.

すなわち、この添加粒子の粒径を変えて、駆動部の共振周波数を調整可能となる。例えば図8Aに示すように、弾性変形部12として厚み50μmのシリコン基板を用い、この上に所定粒子径の粒子14aを添加したエポキシ系の接着剤を塗布した接着層14を介して厚み70μmの圧電素子を貼付した駆動部を作製し、この共振周波数を測定した。   That is, the resonance frequency of the drive unit can be adjusted by changing the particle size of the additive particles. For example, as shown in FIG. 8A, a silicon substrate having a thickness of 50 μm is used as the elastically deformable portion 12, and a 70 μm thickness is provided via an adhesive layer 14 on which an epoxy adhesive to which particles 14a having a predetermined particle diameter are added is applied. A drive unit to which a piezoelectric element was attached was produced, and the resonance frequency was measured.

その結果、図8Bの周波数カーブSC3に示すように、本実施形態では、粒径が10μmの場合に、−1%であり、ここから、粒径が増加するに連れて共振周波数も増加していることが判る。すなわち、圧電素子を貼付する際に用いる接着剤の粒子径を変えて、共振周波数を−1%〜+3%の間で調整可能となる。   As a result, as shown in the frequency curve SC3 of FIG. 8B, in this embodiment, when the particle size is 10 μm, it is −1%, and from this point, the resonance frequency increases as the particle size increases. I know that. That is, the resonance frequency can be adjusted between -1% and + 3% by changing the particle diameter of the adhesive used when attaching the piezoelectric element.

上記したように、本発明に係る光走査装置の性能調整方法は、固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され前記第一方向と直交する第二方向に主に傾向するミラー部とを備える光走査装置において、駆動部の共振周波数を、組み付けたミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整し、スキャナー性能を安定化させるものである。   As described above, the method of adjusting the performance of the optical scanning device according to the present invention includes a fixed frame, a drive unit coupled to the fixed frame, in which the electromechanical conversion unit and the elastic deformation unit are integrated, and the drive unit. And a movable frame that is connected via a shaft part and is tiltable mainly in a first direction, and a mirror part that is connected to the movable frame via a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction; In this optical scanning device, the resonance frequency of the drive unit is adjusted to a predetermined drive unit resonance frequency corresponding to the mirror unit resonance frequency of the assembled mirror unit to stabilize the scanner performance.

また、その共振周波数に調整する調整工程は、電気機械変換部もしくは駆動部の質量の一部除去、または、質量の一部付与で行う調整方法、駆動部の圧電素子貼付位置の調整で行う調整方法、駆動部に貼付する圧電素子の大きさを調整する調整方法、駆動部に圧電素子を貼付する際の接着剤に配合する添加粒子の粒径を調整する調整方法の少なくとも一つを含む。   In addition, the adjustment process for adjusting the resonance frequency includes an adjustment method performed by removing a part of the mass of the electromechanical conversion unit or the drive unit or by applying a part of the mass, and an adjustment performed by adjusting the piezoelectric element pasting position of the drive unit. At least one of a method, an adjustment method for adjusting the size of the piezoelectric element to be attached to the drive unit, and an adjustment method for adjusting the particle size of the additive particles to be mixed in the adhesive when the piezoelectric element is attached to the drive unit.

次に、本発明に係る光走査装置の製造方法について説明する。本発明に係る光走査装置の製造方法は、上記の光走査装置の性能調整方法を用いて、スキャナー性能を安定化している。すなわち、固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され前記第一方向と直交する第二方向に主に傾向するミラー部とを備える光走査装置の製造方法であって、駆動部の共振周波数を、組み付けたミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整し、スキャナー性能を安定化している。   Next, a method for manufacturing the optical scanning device according to the present invention will be described. The manufacturing method of the optical scanning device according to the present invention stabilizes the scanner performance by using the above-described optical scanning device performance adjustment method. That is, a fixed frame, a drive unit connected to the fixed frame, in which the electromechanical conversion unit and the elastic deformation unit are integrated, and the drive unit and the shaft unit are connected to each other and can be tilted mainly in the first direction. A method of manufacturing an optical scanning device comprising: a movable frame; and a mirror unit that is connected to the movable frame via a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction. The scanner performance is stabilized by adjusting the frequency to a predetermined drive unit resonance frequency corresponding to the mirror unit resonance frequency of the assembled mirror unit.

また、その共振周波数に調整する調整工程は、電気機械変換部もしくは駆動部の質量の一部除去、または、質量の一部付与で行う調整方法、駆動部の圧電素子貼付位置の調整で行う調整方法、駆動部に貼付する圧電素子の大きさを調整する調整方法、駆動部に圧電素子を貼付する際の接着剤に配合する添加粒子の粒径を調整する調整方法の少なくとも一つを含む。また、これらを組み合わせた調整工程であってもよい。   In addition, the adjustment process for adjusting the resonance frequency includes an adjustment method performed by removing a part of the mass of the electromechanical conversion unit or the drive unit or by applying a part of the mass, and an adjustment performed by adjusting the piezoelectric element pasting position of the drive unit. At least one of a method, an adjustment method for adjusting the size of the piezoelectric element to be attached to the drive unit, and an adjustment method for adjusting the particle size of the additive particles to be mixed in the adhesive when the piezoelectric element is attached to the drive unit. Moreover, the adjustment process which combined these may be sufficient.

このような製造方法とすることで、ミラー部の共振周波数を変えることなくスキャナー性能を安定化させることができる。また、ミラー部という壊れやすいデバイス側で調整作業を行う必要がなるため、作業中の製品破壊などが生じずに、良品率が向上する光走査装置の製造方法を得ることができる。   By adopting such a manufacturing method, the scanner performance can be stabilized without changing the resonance frequency of the mirror portion. In addition, since it is necessary to perform adjustment work on the fragile device side, which is a mirror part, it is possible to obtain a method of manufacturing an optical scanning device that improves the yield rate without causing product destruction during the work.

以上、説明したように、本発明に係る光走査装置の製造方法および性能調整方法によれば、駆動部の共振周波数を、予め所定の基準周波数より所定範囲高いか低い周波数に設定し、組み付けたミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整するので、ミラー部の共振周波数を調整することなく、ミラー部を傾向して光を走査するスキャナー性能が高いレベルで安定する光走査装置を製造することができる。   As described above, according to the manufacturing method and the performance adjustment method of the optical scanning device according to the present invention, the resonance frequency of the driving unit is set to a frequency that is higher or lower than a predetermined reference frequency in advance and assembled. Since the drive unit is adjusted to a predetermined drive unit resonance frequency according to the mirror unit resonance frequency of the mirror unit, the scanner performance for scanning the light with a tendency to the mirror unit is stabilized at a high level without adjusting the resonance frequency of the mirror unit. An optical scanning device can be manufactured.

また、電気機械変換部もしくは駆動部の質量の一部除去、または、質量の一部付与で行う調整方法、駆動部の圧電素子貼付位置の調整で行う調整方法、駆動部に貼付する圧電素子の大きさを調整する調整方法、駆動部に圧電素子を貼付する際の接着剤に配合する添加粒子の粒径を調整する調整方法の少なくとも一つを含む調整工程を有するので、ミラー部の共振周波数を変えることなく、駆動部の共振周波数を調整してスキャナー性能を安定化させることができる。また、ミラー部の共振周波数を変えることなくスキャナー性能を安定化させることができるので、作業中の製品破壊などが生じずに、良品率が向上する。   In addition, an adjustment method performed by removing a part of the mass of the electromechanical conversion unit or the drive unit or by applying a part of the mass, an adjustment method performed by adjusting the piezoelectric element pasting position of the drive unit, and a piezoelectric element pasted on the drive unit Since there is an adjustment step including at least one of an adjustment method for adjusting the size and an adjustment method for adjusting the particle size of the additive particles blended in the adhesive when the piezoelectric element is attached to the drive unit, the resonance frequency of the mirror unit The scanner performance can be stabilized by adjusting the resonance frequency of the driving unit without changing the frequency. In addition, since the scanner performance can be stabilized without changing the resonance frequency of the mirror portion, the yield rate is improved without causing product destruction during operation.

そのために、本発明に係る光走査装置の製造方法および性能調整方法は、安定したスキャナー性能を備え、大量生産化が求められる映像投影手段に好適に利用可能となる。   Therefore, the manufacturing method and the performance adjustment method of the optical scanning device according to the present invention can be suitably used for image projection means having stable scanner performance and requiring mass production.

2、2A〜2D 光走査装置
3 ミラー部
4 固定枠
5 駆動部
6 可動枠
11 固定部
12 弾性変形部
14 接着層
14a 粒子(添加粒子)
15 正電極
16 負電極
DR 駆動部共振周波数
MR ミラー部共振周波数
R1、R2 除去部(共振周波数調整部)
41 投影面
51 圧電素子(電気機械変換素子)
100 プロジェクター
2, 2A-2D Optical scanning device 3 Mirror part 4 Fixed frame 5 Drive part 6 Movable frame 11 Fixed part 12 Elastic deformation part 14 Adhesive layer 14a Particle (addition particle)
15 Positive electrode 16 Negative electrode DR Drive part resonance frequency MR Mirror part resonance frequency R1, R2 Removal part (resonance frequency adjustment part)
41 Projection surface 51 Piezoelectric element (electromechanical transducer)
100 projector

Claims (16)

固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され前記第一方向と直交する第二方向に主に傾向するミラー部と、を備える光走査装置の製造方法であって、
前記駆動部の共振周波数を、組み付けた前記ミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整する調整工程を有することを特徴とする光走査装置の製造方法。
A fixed frame, a drive unit coupled to the fixed frame, in which the electromechanical conversion unit and the elastic deformation unit are integrated, and a movable unit that is coupled via the drive unit and the shaft unit and is tiltable mainly in the first direction. A method of manufacturing an optical scanning device comprising: a frame; and a mirror unit that is connected to the movable frame via a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction,
A method of manufacturing an optical scanning device, comprising: an adjustment step of adjusting a resonance frequency of the driving unit to a predetermined driving unit resonance frequency corresponding to a mirror unit resonance frequency of the assembled mirror unit.
前記軸部は、前記ミラー部と前記駆動部との互いの共振周波数に影響を与えない程度に低剛性な高変形構造部を備えていることを特徴とする請求項1に記載の光走査装置の製造方法。   2. The optical scanning device according to claim 1, wherein the shaft portion includes a highly deformable structure portion having low rigidity so as not to affect a mutual resonance frequency of the mirror portion and the driving portion. Manufacturing method. 前記調整工程は、前記駆動部共振周波数を前記ミラー部共振周波数よりも所定の周波数分高く又は低くする調整を行うことを特徴とする請求項1または2に記載の光走査装置の製造方法。   3. The method of manufacturing an optical scanning device according to claim 1, wherein in the adjustment step, the drive unit resonance frequency is adjusted to be higher or lower than the mirror unit resonance frequency by a predetermined frequency. 前記調整工程は、前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴とする請求項1から3のいずれかに記載の光走査装置の製造方法。   4. The method of manufacturing an optical scanning device according to claim 1, wherein the adjustment step is performed by removing a part of the mass of the electromechanical conversion unit or applying a part of the mass. 5. 前記調整工程は、一体化した前記弾性変形部と前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴とする請求項1から3のいずれかに記載の光走査装置の製造方法。   The said adjustment process is performed by partial removal of the mass of the said elastic deformation part and the said electromechanical conversion part which were integrated, or the partial provision of the said mass, The one in any one of Claim 1 to 3 characterized by the above-mentioned. Manufacturing method of the optical scanning device. 前記調整工程は、前記弾性変形部と前記電気機械変換部とを一体化する位置の調整で行うことを特徴とする請求項1から3のいずれかに記載の光走査装置の製造方法。   4. The method of manufacturing an optical scanning device according to claim 1, wherein the adjustment step is performed by adjusting a position where the elastic deformation portion and the electromechanical conversion portion are integrated. 5. 前記調整工程は、前記弾性変形部に対する前記電気機械変換部の大きさの調整で行うことを特徴とする請求項1から3のいずれかに記載の光走査装置の製造方法。   The method of manufacturing an optical scanning device according to claim 1, wherein the adjusting step is performed by adjusting a size of the electromechanical conversion unit with respect to the elastically deforming unit. 前記調整工程は、前記弾性変形部に前記電気機械変換部を貼付する際の接着剤に配合する添加粒子の粒径を調整することで行うことを特徴とする請求項1から3のいずれかに記載の光走査装置の製造方法。   The said adjustment process is performed by adjusting the particle size of the addition particle | grains mix | blended with the adhesive agent at the time of sticking the said electromechanical conversion part on the said elastic deformation part, Either of Claim 1 to 3 characterized by the above-mentioned. The manufacturing method of the optical scanning device of description. 固定枠と、該固定枠に連結され、電気機械変換部と弾性変形部とが一体化された駆動部と、該駆動部と軸部を介して連結され主に第一方向に傾動可能な可動枠と、該可動枠とトーションバーを介して連結され前記第一方向と直交する第二方向に主に傾向するミラー部と、を備える光走査装置の性能調整方法であって、
前記駆動部の共振周波数を、組み付けた前記ミラー部のミラー部共振周波数に応じた所定の駆動部共振周波数に調整することを特徴とする光走査装置の性能調整方法。
A fixed frame, a drive unit coupled to the fixed frame, in which the electromechanical conversion unit and the elastic deformation unit are integrated, and a movable unit that is coupled via the drive unit and the shaft unit and is tiltable mainly in the first direction. A performance adjustment method for an optical scanning device, comprising: a frame; and a mirror unit that is connected to the movable frame and a torsion bar and that is mainly inclined in a second direction orthogonal to the first direction,
A method for adjusting the performance of an optical scanning device, wherein the resonance frequency of the drive unit is adjusted to a predetermined drive unit resonance frequency corresponding to a mirror unit resonance frequency of the assembled mirror unit.
前記軸部は、前記ミラー部と前記駆動部との互いの共振周波数に影響を与えない程度に低剛性な高変形構造部を備えていることを特徴とする請求項9に記載の光走査装置の性能調整方法。   10. The optical scanning device according to claim 9, wherein the shaft portion includes a highly deformable structure portion having low rigidity so as not to affect a mutual resonance frequency of the mirror portion and the driving portion. Performance adjustment method. 前記所定の駆動部共振周波数に調整する調整工程は、前記駆動部共振周波数を前記ミラー部共振周波数よりも所定の周波数分高く又は低くする調整を行うことを特徴とする請求項9または10に記載の光走査装置の性能調整方法。   11. The adjustment step of adjusting to the predetermined drive unit resonance frequency adjusts the drive unit resonance frequency to be higher or lower than the mirror unit resonance frequency by a predetermined frequency. Method for adjusting the performance of the optical scanning apparatus of the present invention. 前記所定の駆動部共振周波数に調整する調整工程は、前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴とする請求項9から11のいずれかに記載の光走査装置の性能調整方法。   The adjustment step of adjusting to the predetermined drive unit resonance frequency is performed by removing a part of the mass of the electromechanical conversion unit or applying a part of the mass. A method for adjusting the performance of the described optical scanning device. 前記所定の駆動部共振周波数に調整する調整工程は、一体化した前記弾性変形部と前記電気機械変換部の質量の一部除去、または、当該質量の一部付与によって行うことを特徴とする請求項9から11のいずれかに記載の光走査装置の性能調整方法。   The adjusting step for adjusting to the predetermined drive unit resonance frequency is performed by removing a part of the mass of the integrated elastic deformation unit and the electromechanical conversion unit or by applying a part of the mass. Item 12. A method for adjusting the performance of an optical scanning device according to any one of Items 9 to 11. 前記所定の駆動部共振周波数に調整する調整工程は、前記弾性変形部と前記電気機械変換部とを一体化する位置の調整で行うことを特徴とする請求項9から11のいずれかに記載の光走査装置の性能調整方法。   The adjusting step for adjusting to the predetermined drive unit resonance frequency is performed by adjusting a position where the elastically deforming unit and the electromechanical conversion unit are integrated. Method for adjusting performance of optical scanning device. 前記所定の駆動部共振周波数に調整する調整工程は、前記弾性変形部に対する前記電気機械変換部の大きさの調整で行うことを特徴とする請求項9から11のいずれかに記載の光走査装置の性能調整方法。   The optical scanning device according to claim 9, wherein the adjustment step of adjusting to the predetermined drive unit resonance frequency is performed by adjusting a size of the electromechanical conversion unit with respect to the elastic deformation unit. Performance adjustment method. 前記所定の駆動部共振周波数に調整する調整工程は、前記弾性変形部に前記電気機械変換部を貼付する際の接着剤に配合する添加粒子の粒径を調整することで行うことを特徴とする請求項9から11のいずれかに記載の光走査装置の性能調整方法。   The adjustment step of adjusting to the predetermined drive unit resonance frequency is performed by adjusting the particle size of the additive particles blended in the adhesive when the electromechanical conversion unit is attached to the elastic deformation unit. The method for adjusting the performance of the optical scanning device according to claim 9.
JP2011137497A 2011-06-21 2011-06-21 Manufacturing method and performance adjustment method of optical scanner Withdrawn JP2013003522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137497A JP2013003522A (en) 2011-06-21 2011-06-21 Manufacturing method and performance adjustment method of optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137497A JP2013003522A (en) 2011-06-21 2011-06-21 Manufacturing method and performance adjustment method of optical scanner

Publications (1)

Publication Number Publication Date
JP2013003522A true JP2013003522A (en) 2013-01-07

Family

ID=47672122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137497A Withdrawn JP2013003522A (en) 2011-06-21 2011-06-21 Manufacturing method and performance adjustment method of optical scanner

Country Status (1)

Country Link
JP (1) JP2013003522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574007A (en) * 2019-03-28 2021-10-29 富士胶片株式会社 Micromirror device and driving method of micromirror device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574007A (en) * 2019-03-28 2021-10-29 富士胶片株式会社 Micromirror device and driving method of micromirror device

Similar Documents

Publication Publication Date Title
KR101306847B1 (en) Optical scanning device
WO2009087883A1 (en) Micro scanner and method for controlling micro scanner
US8345340B2 (en) Method of adjusting a resonance frequency of an optical scanning device
KR101343314B1 (en) light beam scanning device
JP2008076696A (en) Actuator, optical scanner, and image forming apparatus
US9664899B2 (en) Optical scanning device and image reading system
US8325407B2 (en) Oscillating device, optical scanning device using the same, image display apparatus, and control method of the oscillating device
JP2008304553A (en) Actuator, optical scanner and image forming apparatus
JP3129219B2 (en) Optical scanner
JP2008170565A (en) Oscillating body apparatus and image forming apparatus using the same
JP2008083603A (en) Optical scanning element, optical scanning apparatus, optical scanning type display and retina scanning type display
JP2011064928A (en) Two-dimensional optical scanner
CN107636512B (en) Movable reflection element and two-dimensional scanning device
JP4735535B2 (en) Optical scanning element, optical scanning device, optical scanning display device, retinal scanning display device, and method for generating through hole in optical scanning device
JP2008145839A (en) Optical scanner
JP2004341364A (en) Oscillation mirror, method of manufacturing the same, optical scanning module, optical write device and image forming apparatus
JPWO2015145943A1 (en) Optical scanning device
JP2008111882A (en) Actuator, optical scanner and image forming apparatus
JP2013003522A (en) Manufacturing method and performance adjustment method of optical scanner
JP2007292919A (en) Optical scanner
JP2015210450A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2015210451A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2013003523A (en) Optical scanner and mirror drive unit
JP6231361B2 (en) Vibration element and optical scanning device
JP2005266567A (en) Polarizing mirror, method of controlling resonance frequency, optical writing device, and image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902