JP2013002855A - Used fuel reprocessing method - Google Patents

Used fuel reprocessing method Download PDF

Info

Publication number
JP2013002855A
JP2013002855A JP2011131857A JP2011131857A JP2013002855A JP 2013002855 A JP2013002855 A JP 2013002855A JP 2011131857 A JP2011131857 A JP 2011131857A JP 2011131857 A JP2011131857 A JP 2011131857A JP 2013002855 A JP2013002855 A JP 2013002855A
Authority
JP
Japan
Prior art keywords
oxalic acid
uranium
oxide
acid precipitation
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011131857A
Other languages
Japanese (ja)
Other versions
JP5758209B2 (en
Inventor
Koji Mizuguchi
浩司 水口
Yuya Takahashi
優也 高橋
Tsuneo Omura
恒雄 大村
Shohei Kanemura
祥平 金村
Takashi Omori
孝 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011131857A priority Critical patent/JP5758209B2/en
Publication of JP2013002855A publication Critical patent/JP2013002855A/en
Application granted granted Critical
Publication of JP5758209B2 publication Critical patent/JP5758209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To more efficiently precipitate and collect uranium in an oxalic acid precipitation step in a used fuel reprocessing method.SOLUTION: A used fuel reprocessing method 1 includes a dissolution step 2 of dissolving a used oxide fuel to a nitric acid solution, electrolytic reduction valence adjustment step 4 for uranium extraction of reducing plutonium to be trivalent, a centrifugal extraction step 5 of collecting hexavalent uranium, an electrolytic reduction valence adjustment step 6 for oxalic acid precipitation of adjusting valence of uranium residual in the nitric acid solution from hexavalent to quadrivalent, an oxalic acid precipitation step 7 of precipitating valence adjusted uranium, minor actinide and fission product as oxalic acid precipitate, an oxide transformation step 8 of transforming the oxalic acid precipitate to a precipitate oxide, and an electrolytic reduction step 9 of immersing the precipitate oxide in mixed fused salt, bringing the precipitate oxide in contact with a cathode and collecting uranium, plutonium and minor actinide in the precipitate oxide.

Description

本発明は、使用済み燃料から不要な核分裂生成物を分離し燃料として再利用する使用済み燃料再処理方法に関する。   The present invention relates to a spent fuel reprocessing method in which unnecessary fission products are separated from spent fuel and reused as fuel.

原子力発電所から発生する使用済み燃料中には、ウラン、超ウラン元素の他に、核分裂生成物であるアルカリ金属、アルカリ土類金属、希土類等が含まれており、再処理工程を経て燃料として再利用することができる。   Spent fuel generated from nuclear power plants contains fission products such as alkali metals, alkaline earth metals and rare earths in addition to uranium and transuranium elements. Can be reused.

従来のピューレックス法をはじめとする湿式再処理法は、使用済み燃料を硝酸水溶液に溶解した後、共除染工程で核分裂生成物を分離した後、UとPuの分配工程でUとPuを分離し、UとPuは各々、U精製工程、Pu精製工程で精製した後、Pu溶液をU溶液と一緒にして混合脱硝しており、UとPuとが一旦分配工程で分離していることから絶対的な核不拡散性があるとは言いがたい。   In the conventional wet reprocessing method including the Purex method, after the spent fuel is dissolved in an aqueous nitric acid solution, the fission product is separated in the co-decontamination step, and then U and Pu are separated in the U and Pu distribution step. Separation, U and Pu are purified in U purification process and Pu purification process, respectively, Pu solution is mixed with U solution and denitrated, and U and Pu are once separated in distribution process It is hard to say that there is absolute nuclear non-proliferation.

そこで、湿式再処理法で使用済み燃料溶解液から大部分のウランを分離し高純度の軽水炉用酸化ウランを回収すると共に、乾式再処理法でPuとNp,Am,Cmなどのマイナーアクチニド(MA)を回収することのできる、湿式再処理法と乾式再処理法を組み合わせたいわゆるハイブリッド再処理方法が開発されている(例えば、特許文献1参照。)。この方法によれば、核不拡散性の高い、すなわちPuを単独で回収できない再処理プロセスを実現することができる。   Therefore, most of the uranium is separated from the spent fuel solution by the wet reprocessing method to recover high purity uranium oxide for light water reactors, and minor actinides such as Pu, Np, Am, and Cm (MA) by the dry reprocessing method. A so-called hybrid reprocessing method combining a wet reprocessing method and a dry reprocessing method has been developed (see, for example, Patent Document 1). According to this method, it is possible to realize a reprocessing process with high nuclear non-proliferation, that is, Pu that cannot be recovered alone.

また、従来の湿式再処理法において、シュウ酸沈殿工程の前段に電解還元工程を設け、ウランの価数調整を行うことによって、シュウ酸沈殿工程におけるUおよびPuの沈殿量を調整する技術が開発されている(例えば、特許文献2参照。)。   In addition, in the conventional wet reprocessing method, a technology has been developed to adjust the amount of U and Pu precipitated in the oxalic acid precipitation process by providing an electrolytic reduction process before the oxalic acid precipitation process and adjusting the valence of uranium. (For example, see Patent Document 2).

特開2009−288178号公報JP 2009-288178 A 特許第3120002号公報Japanese Patent No. 3100022

しかしながら、上述した特許文献1に記載の技術は、湿式再処理法の工程から得られたPuおよびUを含む硝酸水溶液からPuおよびUを沈殿回収するためにシュウ酸沈殿法を採用しているが、硝酸水溶液中において一部のUが6価のウラニルイオンとして存在するためにシュウ酸沈殿工程において、Uは6価のウラニルイオンとして存在してシュウ酸と塩を生成し、ウランを沈殿回収しにくいという課題があった。   However, although the technique described in Patent Document 1 described above employs an oxalic acid precipitation method to precipitate and recover Pu and U from an aqueous nitric acid solution containing Pu and U obtained from the wet reprocessing process. In the nitric acid aqueous solution, some U exists as hexavalent uranyl ions, so in the oxalic acid precipitation step, U exists as hexavalent uranyl ions to produce oxalic acid and salts, and precipitate and recover uranium. There was a problem that it was difficult.

また、上述した特許文献2に記載の技術は、UおよびPuの沈殿量の調整を目的として行っているものであり、さらに使用済み燃料中の軽水炉用酸化ウランが分離回収されていないウラン全量に対して電解還元価数調整を行っているため、設備容量や処理時間のコストが増大する課題があった。   In addition, the technique described in Patent Document 2 described above is performed for the purpose of adjusting the precipitation amount of U and Pu, and further, uranium oxide for light water reactors in spent fuel is reduced to the total amount of uranium that has not been separated and recovered. On the other hand, since the electrolytic reduction valence adjustment is performed, there is a problem that the cost of equipment capacity and processing time increases.

そこで本発明は、シュウ酸沈殿工程においてより効率よくウランを沈殿回収することができる使用済み燃料再処理方法の提供を目的とする。   Accordingly, an object of the present invention is to provide a spent fuel reprocessing method capable of precipitating and recovering uranium more efficiently in the oxalic acid precipitation step.

上記目的を達成するために、本発明の使用済み燃料再処理方法は、使用済み酸化物燃料を解体してせん断された燃料を硝酸水溶液に溶解する溶解工程と、前記硝酸水溶液に溶解したプルトニウムを3価に還元するウラン抽出用電解還元価数調整工程と、ウラン抽出用電解還元価数調整工程を経た燃料を有機溶媒と接触させ、6価のウランを抽出剤に抽出させることにより、酸化ウランを回収する遠心抽出工程と、遠心抽出工程で硝酸水溶液に残留したウランを6価から4価に価数調整するシュウ酸沈殿用電解還元価数調整工程と、シュウ酸沈殿用電解還元価数調整工程で価数調整されたウラン、マイナーアクチニドおよび核分裂生成物をシュウ酸沈殿法によりシュウ酸沈殿物として沈殿させるシュウ酸沈殿工程と、シュウ酸沈殿物を脱水し、酸化雰囲気中で沈殿物酸化物に転換する酸化物転換工程と、アルカリ金属の塩化物溶融塩中にアルカリ金属酸化物を溶解した混合溶融塩中または、アルカリ土類金属の塩化物溶融塩中にアルカリ土類金属酸化物を溶解した混合溶融塩中に、沈殿物酸化物を浸漬し、この沈殿物酸化物を陰極に接触させて沈殿物酸化物中のウラン、プルトニウムおよびマイナーアクチニドを回収する電解還元工程とを備えることを特徴とする。   In order to achieve the above object, the spent fuel reprocessing method of the present invention comprises a melting step of disassembling a spent oxide fuel and dissolving a sheared fuel in an aqueous nitric acid solution, and a plutonium dissolved in the aqueous nitric acid solution. The uranium oxide is obtained by contacting the fuel that has undergone the uranium extraction electroreduction valence adjustment step for reducing to trivalent and the uranium extraction electroreduction valence adjustment step with an organic solvent, and extracting hexavalent uranium into the extractant. Extraction step for recovering uranium, electroreduction valence adjustment step for oxalic acid precipitation for adjusting uranium remaining in aqueous nitric acid solution from hexavalent to tetravalent in the centrifugal extraction step, and electrolytic reduction valence adjustment for oxalic acid precipitation An oxalic acid precipitation step in which uranium, minor actinides and fission products whose valences have been adjusted in the process are precipitated as an oxalic acid precipitate by an oxalic acid precipitation method, and dehydrating the oxalic acid precipitate, An oxide conversion step in which it is converted into a precipitate oxide in a crystallization atmosphere, and in a mixed molten salt obtained by dissolving an alkali metal oxide in an alkali metal chloride molten salt or in an alkaline earth metal chloride molten salt Electrolysis in which precipitate oxide is immersed in a mixed molten salt in which alkaline earth metal oxide is dissolved, and this precipitate oxide is brought into contact with the cathode to recover uranium, plutonium and minor actinides in the precipitate oxide. A reduction step.

本発明によれば、使用済み燃料再処理方法のシュウ酸沈殿工程においてより効率よくウランを沈殿回収することができる。   According to the present invention, uranium can be collected and recovered more efficiently in the oxalic acid precipitation step of the spent fuel reprocessing method.

本発明の第1の実施形態に係る使用済み燃料再処理方法を示す概略フロー図。1 is a schematic flowchart showing a spent fuel reprocessing method according to a first embodiment of the present invention. 本発明の第1の実施形態に係る使用済み燃料再処理方法のU抽出用電解還元価数調整工程で用いるバッチ電解装置を示す概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a batch electrolyzer used in a U extraction electroreduction valence adjustment step of a spent fuel reprocessing method according to a first embodiment of the present invention. 本発明の第1の実施形態に係る使用済み燃料再処理方法のシュウ酸沈殿用電解還元価数調整工程で用いるフロー電解装置を示す概略断面図。The schematic sectional drawing which shows the flow electrolysis apparatus used at the electrolytic reduction valence adjustment process for oxalic acid precipitation of the spent fuel reprocessing method concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係る使用済み燃料再処理方法の電解還元工程で用いる電解還元装置を示す概略断面図。The schematic sectional drawing which shows the electrolytic reduction apparatus used at the electrolytic reduction process of the spent fuel reprocessing method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る使用済み燃料再処理方法を示す概略フロー図。The schematic flowchart which shows the spent fuel reprocessing method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る使用済み燃料再処理方法を示す概略フロー図。The schematic flowchart which shows the spent fuel reprocessing method which concerns on the 3rd Embodiment of this invention.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

(第1の実施形態)
(構成)
以下、本発明の第1の実施形態に係る使用済み燃料再処理方法について図1乃至図4を参照して説明する。図1は、本発明の第1の実施形態に係る使用済み燃料再処理方法を示す概略フロー図である。
(First embodiment)
(Constitution)
Hereinafter, a spent fuel reprocessing method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a schematic flowchart showing a spent fuel reprocessing method according to the first embodiment of the present invention.

使用済み燃料再処理方法1は、溶解工程2と、遠心清澄工程3と、U抽出用電解還元価数調整工程4と、遠心抽出工程5と、シュウ酸沈殿用電解還元価数調整工程6と、シュウ酸沈殿工程7と、酸化物転換工程8と、電解還元工程9と、電解精製工程10と、蒸留工程11と、射出成形工程12と、FP処理/廃塩処理工程13と、Zr,Ru,Tc除去工程14と、逆抽出/U濃縮工程15と、U精製/脱硝工程16と、白金族FP回収工程17とから構成される。   The spent fuel reprocessing method 1 includes a dissolution step 2, a centrifugal clarification step 3, a U extraction electrolytic reduction valence adjustment step 4, a centrifugal extraction step 5, and an oxalic acid precipitation electrolytic reduction valence adjustment step 6. , Oxalic acid precipitation step 7, oxide conversion step 8, electrolytic reduction step 9, electrolytic purification step 10, distillation step 11, injection molding step 12, FP treatment / waste salt treatment step 13, Zr, The Ru / Tc removal process 14, the back extraction / U concentration process 15, the U purification / denitration process 16, and the platinum group FP recovery process 17 are configured.

湿式プロセス21は、溶解工程2と、遠心清澄工程3と、U抽出用電解還元価数調整工程4と、遠心抽出工程5と、Zr,Ru,Tc除去工程14と、逆抽出/U濃縮工程15と、U精製/脱硝工程16とから構成される。湿式プロセス21は、使用済み酸化物燃料である軽水炉SFL(Spent Fuel)31を用いて溶解工程2、遠心清澄工程3、U抽出用電解還元価数調整工程4、遠心抽出工程5、Zr,Ru,Tc除去工程14、逆抽出/U濃縮工程15、U精製/脱硝工程16を順に行って酸化物燃料である軽水炉FL(Fuel)を得る。   The wet process 21 includes a dissolution step 2, a centrifugal clarification step 3, a U extraction electrolytic reduction valence adjustment step 4, a centrifugal extraction step 5, a Zr, Ru, Tc removal step 14, and a back extraction / U concentration step. 15 and a U refining / denitration step 16. The wet process 21 uses a light water reactor SFL (Spent Fuel) 31 which is a spent oxide fuel, a dissolution step 2, a centrifugal clarification step 3, a U extraction electrolytic reduction valence adjustment step 4, a centrifugal extraction step 5, Zr, Ru , Tc removal step 14, back extraction / U concentration step 15, and U refining / denitration step 16 are sequentially performed to obtain a light water reactor FL (Fuel) which is an oxide fuel.

改良アクアパイロプロセス22は、シュウ酸沈殿用電解還元価数調整工程6と、シュウ酸沈殿工程7と、酸化物転換工程8と、電解還元工程9と、白金族FP回収工程17とから構成される。改良アクアパイロプロセス22は、湿式プロセス21の遠心抽出工程5における硝酸水溶液を用いてシュウ酸沈殿用電解還元価数調整工程6、シュウ酸沈殿工程7、酸化物転換工程8、電解還元工程9を順に行う。さらにシュウ酸沈殿工程7におけるろ液36を用いて白金族FP回収工程17を行う。   The improved aqua pyro process 22 includes an electrolytic reduction valence adjustment step 6 for oxalic acid precipitation, an oxalic acid precipitation step 7, an oxide conversion step 8, an electrolytic reduction step 9, and a platinum group FP recovery step 17. The The improved aqua pyro process 22 comprises an electrolytic reduction valence adjustment process 6 for oxalic acid precipitation, an oxalic acid precipitation process 7, an oxide conversion process 8 and an electrolytic reduction process 9 using an aqueous nitric acid solution in the centrifugal extraction process 5 of the wet process 21. Do in order. Further, the platinum group FP recovery step 17 is performed using the filtrate 36 in the oxalic acid precipitation step 7.

乾式プロセス23は、電解精製工程10と、蒸留工程11と、射出成形工程12と、FP処理/廃塩処理工程13とから構成される。乾式プロセス23は、改良アクアパイロプロセス22の電解還元工程9において還元回収したU、Puおよび高速炉SFL32を用いて電解精製工程10、蒸留工程11、射出成形工程12を順に行って高速炉FL34を得る。さらに電解精製工程10および蒸留工程11における不純物、残留物を用いてFP処理/廃塩処理工程13を行う。   The dry process 23 includes an electrolytic refining step 10, a distillation step 11, an injection molding step 12, and an FP treatment / waste salt treatment step 13. The dry process 23 uses the U, Pu and fast reactor SFL32 reduced and recovered in the electrolytic reduction process 9 of the improved aqua pyro process 22 to perform the electrolytic purification process 10, the distillation process 11 and the injection molding process 12 in this order, thereby changing the fast reactor FL34. obtain. Further, the FP treatment / waste salt treatment step 13 is performed using impurities and residues in the electrolytic purification step 10 and the distillation step 11.

(作用)
以下、本発明の第1の実施形態の作用について説明する。まず、軽水炉SFL31から湿式プロセス21、改良アクアパイロプロセス22、乾式プロセス23によって高速炉FL34を得る方法について説明する。
(Function)
The operation of the first embodiment of the present invention will be described below. First, a method for obtaining the fast reactor FL34 from the light water reactor SFL31 by the wet process 21, the improved aqua pyro process 22, and the dry process 23 will be described.

溶解工程2において、解体してせん断された軽水炉SFL31の全量を硝酸で溶解する。このとき、Uは6価、Puは4価の状態で存在している。さらに遠心清澄工程3において、遠心分離によって溶解液に含まれる不溶性の成分を除去する。   In the melting step 2, the entire amount of the light water reactor SFL31 disassembled and sheared is dissolved with nitric acid. At this time, U exists in a hexavalent state and Pu exists in a tetravalent state. Further, in the centrifugal clarification step 3, insoluble components contained in the lysate are removed by centrifugation.

次にU抽出用電解還元価数調整工程4において、Puを電解還元して3価にする。図2は、本発明の第1の実施形態に係る使用済み燃料再処理方法のU抽出用電解還元価数調整工程で用いるバッチ電解装置を示す概略断面図である。バッチ電解装置50は、陰極室51と陽極室52が隔膜53を介して隔てられている。陰極室51には陰極液54が溜められ、この陰極液54に陰極55と参照電極56が挿入されている。また、陽極室52には陽極液57が溜められ、この陽極液57に陽極58が挿入されている。陰極55および陽極58は電源59に接続されている。また、陰極55と参照電極56が電位差計60に接続されている。参照電極60としては、たとえば銀/塩化銀電極を用いる。なお、陰極室51には陰極液54を攪拌するための攪拌子61が設けられている。   Next, in the electrolytic reduction valence adjustment step 4 for U extraction, Pu is electrolytically reduced to trivalent. FIG. 2 is a schematic cross-sectional view showing a batch electrolysis apparatus used in the U extraction electroreduction valence adjustment step of the spent fuel reprocessing method according to the first embodiment of the present invention. In the batch electrolysis apparatus 50, a cathode chamber 51 and an anode chamber 52 are separated by a diaphragm 53. A catholyte 54 is stored in the cathode chamber 51, and a cathode 55 and a reference electrode 56 are inserted into the catholyte 54. An anolyte 57 is stored in the anodic chamber 52, and an anode 58 is inserted into the anolyte 57. The cathode 55 and the anode 58 are connected to a power source 59. A cathode 55 and a reference electrode 56 are connected to a potentiometer 60. As the reference electrode 60, for example, a silver / silver chloride electrode is used. The cathode chamber 51 is provided with a stirrer 61 for stirring the catholyte 54.

このとき、陰極電位が−100mV以下にすることにより、Npを5価に維持しながら、Puを3価に還元する。一部4価還元されたUは、Puを4価から3価に還元するためにも使われ、逆にU自身は大部分が6価に酸化される。   At this time, by reducing the cathode potential to −100 mV or less, Pu is reduced to trivalent while Np is maintained at pentavalent. The partially tetravalent reduced U is also used to reduce Pu from tetravalent to trivalent, while U itself is mostly oxidized to hexavalent.

次に遠心抽出工程5において、U抽出用電解還元価数調整工程4でUを価数調整した硝酸水溶液をTBP(リン酸トリブチル)−30%ドデカンで抽出すると、大部分(約90%)の6価のUがTBP−30%ドデカン溶液に抽出される。Puの3価イオン、Npの5価イオンは一部のUの4価イオンと共に、硝酸水溶液に残留する。遠心抽出工程5では、遠心分離機を用いて硝酸水溶液とTBPを分離する。遠心分離機の回転筒内で遠心力により比重の大きい水相は回転筒の外周部に集まり、回転筒に開けられた孔を通って水相受液部に流れる。比重の小さい溶媒相は回転軸の近くに集まり、上端仕切り板の孔を通って上方へ流れ溶媒受液部に流出する。   Next, in the centrifugal extraction process 5, when the nitric acid aqueous solution whose valence was adjusted in the electrolytic extraction valence adjustment process 4 for U extraction was extracted with TBP (tributyl phosphate) -30% dodecane, most (about 90%) Hexavalent U is extracted into a TBP-30% dodecane solution. The trivalent ion of Pu and the pentavalent ion of Np remain in the aqueous nitric acid solution together with some U tetravalent ions. In the centrifugal extraction step 5, the aqueous nitric acid solution and TBP are separated using a centrifuge. In the rotating cylinder of the centrifuge, the aqueous phase having a large specific gravity is collected by the centrifugal force on the outer periphery of the rotating cylinder and flows to the aqueous phase receiving part through the hole formed in the rotating cylinder. The solvent phase having a small specific gravity gathers near the rotation axis, flows upward through the hole in the upper end partition plate, and flows out to the solvent receiver.

遠心抽出工程5における硝酸水溶液は、改良アクアパイロプロセス22において高速炉FL34を精製する工程に用いられる。また、大部分(90%)の6価のUを含むTBPは、後述する軽水炉FL33の精製工程に用いられる。   The nitric acid aqueous solution in the centrifugal extraction step 5 is used for the step of purifying the fast reactor FL 34 in the modified aqua pyro process 22. In addition, most (90%) of TBP containing hexavalent U is used in the purification process of the light water reactor FL33 described later.

まず、硝酸水溶液を用いた高速炉FL34の精製工程について説明する。Uは通常硝酸水溶液中で6価のウラニルイオンとして安定して存在するので、遠心抽出工程5において硝酸水溶液に残留した4価イオンとして存在するUは6価のウラニルイオンへ再び酸化する。そこで、改良アクアパイロプロセス22のシュウ酸沈殿用電解還元価数調整工程6において、遠心抽出工程5で残留した硝酸水溶液に対して電解還元価数調整を行い、Uを6価から4価のイオンに価数調整する。   First, the purification process of the fast reactor FL34 using a nitric acid aqueous solution will be described. Since U normally exists stably as hexavalent uranyl ions in an aqueous nitric acid solution, U present as tetravalent ions remaining in the aqueous nitric acid solution in the centrifugal extraction step 5 is oxidized again to hexavalent uranyl ions. Therefore, in the electrolytic reduction valence adjustment step 6 for oxalic acid precipitation of the improved aqua pyro process 22, the electrolytic reduction valence adjustment is performed on the nitric acid aqueous solution remaining in the centrifugal extraction step 5, and U is changed from hexavalent to tetravalent ions. Adjust the valence.

シュウ酸沈殿用電解還元価数調整工程6におけるUの電解還元価数調整には、フロー電解を用いた装置を適用する。図3は、本発明の第1の実施形態に係る使用済み燃料再処理方法のシュウ酸沈殿用電解還元価数調整工程で用いるフロー電解装置を示す概略断面図である。   An apparatus using flow electrolysis is applied to the electrolytic reduction valence adjustment of U in the electrolytic reduction valence adjustment step 6 for oxalic acid precipitation. FIG. 3 is a schematic cross-sectional view showing a flow electrolysis apparatus used in the electrolytic reduction valence adjusting step for oxalic acid precipitation in the spent fuel reprocessing method according to the first embodiment of the present invention.

フロー電解装置70は、隔膜筒71と、炭素繊維72と、金属線73と、筐体74と、電源75と、陰極槽76と、陽極槽77と、参照極78とから構成される。隔膜筒71として、多孔質の筒形状のアルミナやセラミックスを適用することができる。筐体74は内部に隔膜筒71を収容し、一端から使用済み燃料が溶解した硝酸水溶液を内部に導入し、隔膜筒71内部を通って他端から硝酸水溶液を排出する構造である。さらに、隔膜筒71内部によって陰極槽76を形成し、隔膜筒71の周囲に硝酸水溶液を保持する陽極槽77を形成する。   The flow electrolysis apparatus 70 includes a diaphragm cylinder 71, carbon fibers 72, a metal wire 73, a housing 74, a power source 75, a cathode tank 76, an anode tank 77, and a reference electrode 78. As the diaphragm cylinder 71, porous cylindrical alumina or ceramics can be applied. The casing 74 has a structure in which the diaphragm cylinder 71 is housed, an aqueous nitric acid solution in which spent fuel is dissolved is introduced from one end, and the aqueous nitric acid solution is discharged from the other end through the diaphragm cylinder 71. Further, a cathode tank 76 is formed inside the diaphragm cylinder 71, and an anode tank 77 for holding a nitric acid aqueous solution is formed around the diaphragm cylinder 71.

隔膜筒71内部の陰極槽76に炭素繊維72を設ける。隔膜筒71の周囲には金属線73を巻き回す。陰極を炭素繊維72、陽極を金属線73として電源75を接続する。さらに隔膜筒71を参照極78とする。筐体74の一端から使用済み燃料が溶解した硝酸水溶液を隔膜筒71内部である陰極槽76に流通させながら電解還元を行う。このとき、隔膜筒71は隔膜として作用し、隔膜筒71を透過したイオンは金属線73の陽極によって酸化され、陽極槽77内部の硝酸水溶液中に溶解する。   A carbon fiber 72 is provided in the cathode chamber 76 inside the diaphragm cylinder 71. A metal wire 73 is wound around the diaphragm cylinder 71. A power source 75 is connected with the carbon fiber 72 as the cathode and the metal wire 73 as the anode. Further, the diaphragm cylinder 71 is used as a reference electrode 78. Electrolytic reduction is performed while flowing a nitric acid aqueous solution in which spent fuel is dissolved from one end of the casing 74 to the cathode tank 76 inside the diaphragm cylinder 71. At this time, the diaphragm cylinder 71 acts as a diaphragm, and ions that have permeated through the diaphragm cylinder 71 are oxidized by the anode of the metal wire 73 and dissolved in the nitric acid aqueous solution inside the anode tank 77.

フロー電解装置70は電極面積が広いため、下記(1)式のように6価のウラニルイオンを4価のイオンに価数調整することができる。さらに6価のウラニルイオンを3価のイオンに価数調整してもよい。このとき、前工程の遠心抽出工程5において大部分のUが除かれているので価数調整を行うUが最小限で済み、使用電力や設備容量を削減することができる。さらに、6価のウラニルイオンを全量4価または3価のイオンに価数調整するため、価数調整されたイオンの量を随時計測し、6価と4価または3価のイオンの割合を調整する必要がない。   Since the flow electrolyzer 70 has a large electrode area, the valence of hexavalent uranyl ions can be adjusted to tetravalent ions as shown in the following formula (1). Furthermore, the valence may be adjusted from a hexavalent uranyl ion to a trivalent ion. At this time, since most of U is removed in the centrifugal extraction step 5 of the previous step, the U for performing valence adjustment can be minimized, and the power consumption and equipment capacity can be reduced. Furthermore, in order to adjust the valence of hexavalent uranyl ions to the total amount of tetravalent or trivalent ions, the amount of valence-adjusted ions is measured as needed, and the ratio of hexavalent and tetravalent or trivalent ions is adjusted. There is no need to do.

UO 2++4H+2e→U4++2HO・・・(1)
次にシュウ酸沈殿工程7において、シュウ酸沈殿用電解還元価数調整工程6で価数調整された水溶液に対して、シュウ酸を添加し、シュウ酸沈殿35を生じさせる。シュウ酸沈殿35中には、PuとNpやAm、Cmなどのマイナーアクチニド、希土類元素(RE)およびアルカリ土類金属元素の一部が含まれる。さらに、シュウ酸沈殿用電解還元価数調整工程6においてUが4価または3価に価数調整されているため、Uもシュウ酸沈殿35中に効率よく沈殿する。
UO 2 2+ + 4H + + 2e → U 4+ + 2H 2 O (1)
Next, in the oxalic acid precipitation step 7, oxalic acid is added to the aqueous solution whose valence has been adjusted in the oxalic acid precipitation electrolytic reduction valence adjustment step 6, thereby producing an oxalic acid precipitate 35. The oxalic acid precipitate 35 contains Pu, minor actinides such as Np, Am, and Cm, rare earth elements (RE), and a part of alkaline earth metal elements. Further, since U is valence adjusted to tetravalent or trivalent in the electrolytic reduction valence adjusting step 6 for oxalic acid precipitation, U is also efficiently precipitated in the oxalic acid precipitation 35.

シュウ酸沈殿工程7において、U、Pu、マイナーアクチニドおよび希土類元素などはシュウ酸沈殿35として回収される。またシュウ酸沈殿工程7において、核分裂生成物のうちアルカリ金属元素や白金族元素はろ液36中に沈殿せずに溶解している。白金族元素とは、パラジウム、ルテニウム、ロジウムをはじめとする白金族FPを含む元素である。白金族FPは、後述する白金族FP回収工程17にて回収される。   In the oxalic acid precipitation step 7, U, Pu, minor actinides, rare earth elements and the like are recovered as the oxalic acid precipitation 35. In the oxalic acid precipitation step 7, alkali metal elements and platinum group elements of the fission products are dissolved in the filtrate 36 without being precipitated. The platinum group element is an element containing a platinum group FP including palladium, ruthenium, and rhodium. The platinum group FP is recovered in a platinum group FP recovery step 17 described later.

次に酸化物転換工程8において、シュウ酸沈殿工程7で回収されたシュウ酸沈殿35に、オゾンもしくは酸化性のガスを吹き込みながら水分を加熱しながら除去すると、U、Pu、マイナーアクチニドおよび希土類元素の酸化物37が生成する。さらに、酸化物37の水分を酸素を真空に引きながら完全に除去する。   Next, in the oxide conversion step 8, when moisture is removed while heating ozone or oxidizing gas into the oxalic acid precipitation 35 recovered in the oxalic acid precipitation step 7, U, Pu, minor actinides and rare earth elements are removed. The oxide 37 is formed. Further, the moisture of the oxide 37 is completely removed while pulling oxygen to a vacuum.

次に電解還元工程9において、U、Puおよびマイナーアクチニド金属18を還元して回収する。図4は、本発明の第1の実施形態に係る使用済み燃料再処理方法の電解還元工程で用いる電解還元装置を示す概略断面図である。電解還元装置81は、ステンレス鋼製の陰極バスケット82に酸化物37を入れ、内部に混合溶融塩を保持した溶融塩電解槽83に装荷する。ここで混合溶融塩は、アルカリ金属またはアルカリ土類金属の塩化物の溶融塩中にアルカリ金属またはアルカリ土類金属の酸化物を溶解したものが好ましい。さらに具体的には、たとえば、LiClの溶融塩中にLiOを溶解した混合溶融塩、MgClの溶融塩中にMgOを溶解した混合溶融塩、CaClの溶融塩中にCaOを溶解した混合溶融塩のいずれかが好ましい。 Next, in the electrolytic reduction process 9, U, Pu, and the minor actinide metal 18 are reduced and recovered. FIG. 4 is a schematic cross-sectional view showing the electrolytic reduction apparatus used in the electrolytic reduction process of the spent fuel reprocessing method according to the first embodiment of the present invention. The electrolytic reduction apparatus 81 is charged in a molten salt electrolysis tank 83 in which an oxide 37 is placed in a cathode basket 82 made of stainless steel and a mixed molten salt is held therein. Here, the mixed molten salt is preferably prepared by dissolving an alkali metal or alkaline earth metal oxide in a molten salt of an alkali metal or alkaline earth metal chloride. More specifically, for example, a mixed molten salt obtained by dissolving Li 2 O in a molten salt of LiCl, a mixed molten salt obtained by dissolving MgO in a molten salt of MgCl 2 , and CaO dissolved in a molten salt of CaCl 2 . Any of the mixed molten salts is preferred.

U、Pu、マイナーアクチニドおよび希土類元素の酸化物37の入った陰極バスケット82を電源84の陰極85に接続し、不溶解性の、たとえば白金やグラッシーカーボン製の陽極85を設置し、電源84の陽極に接続する。溶融塩87中で陰極バスケット82と陽極85に電圧を印加し、陰極バスケット82中のU、Puおよびマイナーアクチニド酸化物中の酸素イオンが引き抜かれて金属に還元され、U、Puおよびマイナーアクチニドを回収する。核分裂生成物であるCsなどのアルカリ金属元素やSrのようなアルカリ土類金属元素、およびCeやNdのような希土類元素は溶融塩中に溶解するのでU、Puおよびマイナーアクチニドと分離することができる。   A cathode basket 82 containing U, Pu, minor actinides, and rare earth element oxide 37 is connected to a cathode 85 of a power source 84, and an insoluble anode 85 made of platinum or glassy carbon is installed. Connect to the anode. A voltage is applied to the cathode basket 82 and the anode 85 in the molten salt 87, and oxygen ions in the U, Pu, and minor actinide oxides in the cathode basket 82 are extracted and reduced to metal, and U, Pu, and minor actinides are reduced. to recover. Since fission products such as Cs, alkali metal elements such as Cs, alkaline earth metal elements such as Sr, and rare earth elements such as Ce and Nd are dissolved in the molten salt, they can be separated from U, Pu and minor actinides. it can.

最後に乾式プロセス23において、電解還元工程9で得られたU、Puおよびマイナーアクチニドから高速炉FL34を得る。まず、電解精製工程10において電解還元工程9で得られたU、Puおよびマイナーアクチニドおよび高速炉SFL32を用いて電解精製を行う。さらに蒸留工程11において、蒸留によってさらに不純物を取り除き、射出成形工程12において高速炉FL34を形成する。   Finally, in the dry process 23, the fast reactor FL34 is obtained from U, Pu and minor actinides obtained in the electrolytic reduction step 9. First, in the electrolytic purification step 10, electrolytic purification is performed using U, Pu, minor actinides obtained in the electrolytic reduction step 9, and the fast reactor SFL32. Further, in the distillation step 11, impurities are further removed by distillation, and in the injection molding step 12, a fast reactor FL34 is formed.

さらに改良アクアパイロプロセス22の白金族FP回収工程17おいて、シュウ酸沈殿工程7で得られるろ液36から白金族核分裂生成物(白金族FP)を回収する。核分裂生成物のうち、アルカリ金属元素や白金族元素はシュウ酸沈殿せず、ろ液36中に溶解している。ここで、この白金族FP回収工程17で使用される装置は、U抽出用電解還元価数調整工程4で使用される図2に示すバッチ電解装置50を適用することができる。   Further, in the platinum group FP recovery step 17 of the improved aqua pyro process 22, a platinum group fission product (platinum group FP) is recovered from the filtrate 36 obtained in the oxalic acid precipitation step 7. Among the fission products, alkali metal elements and platinum group elements are not precipitated with oxalic acid but dissolved in the filtrate 36. Here, the apparatus used in the platinum group FP recovery step 17 may be the batch electrolyzer 50 shown in FIG. 2 used in the U-extraction electrolytic reduction valence adjustment step 4.

白金族FP回収工程17において、核分裂生成物が溶解しているろ液36を陰極室51に入れ、ここに不溶解性の陰極55を浸漬して電解を行なう。電源59によって電圧を陽極58および陰極55に印加すると、陰極室51のろ液36に含まれている核分裂生成物のうち、白金族FPであるPd、Ru、RhおよびMo、Tcが陰極55に析出回収される。一方、陽極室52には酸の陽極液57を入れる。このとき、陰極液54であるろ液中のCsなどのアルカリ金属元素およびSrなどのアルカリ土類元素はろ液36中に残留するので白金族FPと分離できる。 In the platinum group FP recovery step 17, the filtrate 36 in which the fission product is dissolved is placed in the cathode chamber 51, and the insoluble cathode 55 is immersed therein to perform electrolysis. When a voltage is applied to the anode 58 and the cathode 55 by the power source 59, among the fission products contained in the filtrate 36 of the cathode chamber 51, platinum group FPs Pd, Ru, Rh, Mo, and Tc are applied to the cathode 55. Precipitation is recovered. On the other hand, an acid anolyte 57 is placed in the anode chamber 52. At this time, the alkali metal element such as Cs and the alkaline earth element such as Sr in the filtrate which is the catholyte 54 remain in the filtrate 36 and can be separated from the platinum group FP.

印加する電圧は、陰極室51に浸漬した参照電極56と陰極55の電位差を電位差計60で測定し、白金族FPが水素発生させずに陰極55に析出する電位に制御する。白金族FPが高レベル廃棄物中に移行しないので、ガラス固化体の製造における負担を減少させることができる。さらに、高レベル廃棄物の発生量を低減することができる。   The applied voltage is controlled by controlling the potential difference between the reference electrode 56 immersed in the cathode chamber 51 and the cathode 55 with a potentiometer 60 and depositing the platinum group FP on the cathode 55 without generating hydrogen. Since the platinum group FP does not migrate into the high-level waste, it is possible to reduce the burden in manufacturing the vitrified body. Furthermore, the amount of high-level waste generated can be reduced.

最後に、湿式プロセス21において軽水炉FL33を得る方法について説明する。遠心抽出工程5におけるTBPには、軽水炉SFL31中の約90%のUが溶解している。まず、Zr,Ru,Tc除去工程14において、Uが溶解したTBPに含まれるZr,Ru,Tcを電解還元して回収する。逆抽出/U濃縮工程15においてUをTBPから硝酸水溶液へ逆抽出し水相を蒸発させてU濃縮する。さらにU精製/脱硝工程16おいて、Uを硝酸で洗浄した後、酸化物に転換して高純度のUOとして回収し、軽水炉FL33を得る。 Finally, a method for obtaining the light water reactor FL33 in the wet process 21 will be described. About 90% of U in the light water reactor SFL31 is dissolved in the TBP in the centrifugal extraction step 5. First, in the Zr, Ru, Tc removal step 14, Zr, Ru, Tc contained in TBP in which U is dissolved is electrolytically reduced and recovered. In the back extraction / U concentration step 15, U is back-extracted from TBP into an aqueous nitric acid solution to evaporate the aqueous phase and concentrate U. Further, in the U refining / denitration step 16, U is washed with nitric acid, then converted to an oxide and recovered as high-purity UO 2 to obtain a light water reactor FL33.

(効果)
本発明の第1の実施形態によれば、シュウ酸沈殿工程7の前段にシュウ酸沈殿用電解還元価数調整工程6を設け、遠心抽出工程5で残留した硝酸水溶液に含まれるUを6価から4価のイオンに価数調整することによって、シュウ酸沈殿工程7において効率よくUを沈殿回収することができる。
(effect)
According to the first embodiment of the present invention, the oxalic acid precipitation electrolytic reduction valence adjusting step 6 is provided before the oxalic acid precipitation step 7, and U contained in the nitric acid aqueous solution remaining in the centrifugal extraction step 5 is hexavalent. By adjusting the valence to 4 valent ions, U can be efficiently recovered by precipitation in the oxalic acid precipitation step 7.

なお、改良アクアパイロプロセス22における酸化物転換工程8および電解還元工程9は、塩素化工程および脱水工程ならびに溶融塩電解工程に代えることができる。この場合、塩素化工程で、このシュウ酸沈殿35に塩酸を添加し、100℃以下で溶解した後、過酸化水素を添加することによりシュウ酸を水と二酸化炭素に分解する。シュウ酸沈殿35のU、Puおよびマイナーアクチニドはこの塩素化工程で塩化物に転換される。   The oxide conversion step 8 and the electrolytic reduction step 9 in the improved aqua pyro process 22 can be replaced with a chlorination step, a dehydration step, and a molten salt electrolysis step. In this case, in the chlorination step, hydrochloric acid is added to the oxalic acid precipitate 35 and dissolved at 100 ° C. or lower, and then hydrogen peroxide is added to decompose the oxalic acid into water and carbon dioxide. U, Pu and minor actinides in oxalic acid precipitate 35 are converted to chloride in this chlorination step.

次に、脱水工程で、塩酸溶液の水分を蒸発除去した後、還元性の不活性ガス(たとえばアルゴンや窒素)の気流中で約200℃前後で水分を完全に除去する。これにより、無水のU、Puおよびマイナーアクチニドの塩化物(無水塩化物)が生成される。さらに無水塩化物を溶融塩電解工程で電解することにより、高速炉燃料として使用することが可能なU、Puおよびマイナーアクチニドの金属を回収することができる。   Next, in the dehydration step, the water in the hydrochloric acid solution is removed by evaporation, and then the water is completely removed at about 200 ° C. in a stream of a reducing inert gas (for example, argon or nitrogen). This produces anhydrous U, Pu and minor actinide chlorides (anhydrous chlorides). Furthermore, by electrolyzing anhydrous chloride in the molten salt electrolysis process, U, Pu and minor actinide metals that can be used as fast reactor fuel can be recovered.

(第2の実施形態)
(構成)
以下、本発明の第2の実施形態に係る使用済み燃料再処理方法について図5を参照して説明する。第1の実施形態に係る使用済み燃料再処理方法の各部と同一部分には同一符号を付し、同一の構成についての説明は省略する。
(Second Embodiment)
(Constitution)
The spent fuel reprocessing method according to the second embodiment of the present invention will be described below with reference to FIG. The same parts as those in the spent fuel reprocessing method according to the first embodiment are denoted by the same reference numerals, and description of the same configuration is omitted.

図5は、本発明の第2の実施形態に係る使用済み燃料再処理方法を示す概略フロー図である。第2の実施形態が第1の実施形態と異なる点は、シュウ酸沈殿用電解還元価数調整工程6をシュウ酸沈殿工程7の前段に代えて、シュウ酸沈殿工程7の後段に設けた点である。シュウ酸沈殿用電解還元価数調整工程6はシュウ酸沈殿工程7におけるろ液36の価数調整を行う。   FIG. 5 is a schematic flowchart showing a spent fuel reprocessing method according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that the oxalic acid precipitation electrolytic reduction valence adjustment step 6 is provided in the subsequent stage of the oxalic acid precipitation step 7 instead of the previous stage of the oxalic acid precipitation step 7. It is. The electrolytic reduction valence adjustment step 6 for oxalic acid precipitation adjusts the valence of the filtrate 36 in the oxalic acid precipitation step 7.

(作用)
以下、本発明の第2の実施形態の作用について説明する。本実施形態におけるシュウ酸沈殿工程7では、あらかじめウランの価数調整がされていないため、6価のウラニルイオンとして存在するウランは沈殿せずにろ液36中に留まる。
(Function)
The operation of the second embodiment of the present invention will be described below. In the oxalic acid precipitation step 7 in the present embodiment, since the uranium valence is not adjusted in advance, uranium existing as hexavalent uranyl ions remains in the filtrate 36 without being precipitated.

シュウ酸沈殿用電解還元価数調整工程6において、シュウ酸沈殿工程7におけるろ液36を電解還元する。このとき、シュウ酸沈殿工程7において沈殿しなかった6価のウランが4価に価数調整され、ろ液36から沈殿してシュウ酸沈殿35となる。   In the electrolytic reduction valence adjusting step 6 for oxalic acid precipitation, the filtrate 36 in the oxalic acid precipitation step 7 is electrolytically reduced. At this time, the hexavalent uranium that has not precipitated in the oxalic acid precipitation step 7 is adjusted to a valence of 4, and is precipitated from the filtrate 36 to become an oxalic acid precipitate 35.

後段の酸化物転換工程8では、シュウ酸沈殿工程7において沈殿したシュウ酸沈殿35およびシュウ酸沈殿用電解還元価数調整工程6において沈殿したシュウ酸沈殿35を用いて上述した酸化物転換を行う。   In the subsequent oxide conversion step 8, the above-described oxide conversion is performed using the oxalic acid precipitation 35 precipitated in the oxalic acid precipitation step 7 and the oxalic acid precipitation 35 precipitated in the oxalic acid precipitation electrolytic reduction valence adjusting step 6. .

(効果)
本発明の第2の実施形態によれば、シュウ酸沈殿用電解還元価数調整工程6をシュウ酸沈殿工程7の後段に設け、シュウ酸沈殿工程7においてウランを沈殿させるとともに、シュウ酸沈殿工程7において沈殿しなかったウランをシュウ酸沈殿用電解還元価数調整工程6において沈殿させることができる。
(effect)
According to the second embodiment of the present invention, the electrolytic reduction valence adjusting step 6 for oxalic acid precipitation is provided after the oxalic acid precipitation step 7 to precipitate uranium in the oxalic acid precipitation step 7, and the oxalic acid precipitation step. Uranium that has not been precipitated in 7 can be precipitated in the electrolytic reduction valence adjusting step 6 for oxalic acid precipitation.

なお、シュウ酸沈殿用電解還元価数調整工程6とシュウ酸沈殿工程7の順序を入れ替えるだけでなく、シュウ酸沈殿用電解還元価数調整工程6とシュウ酸沈殿工程7を交互に繰り返したり、フロー電解装置70でシュウ酸沈殿用電解還元価数調整工程6を行いながらシュウ酸を加えてシュウ酸沈殿工程7を行うことも可能である。   In addition, not only the order of the electrolytic reduction valence adjustment step 6 for oxalic acid precipitation and the oxalic acid precipitation step 7 is replaced, but also the electrolytic reduction valence adjustment step 6 for oxalic acid precipitation and the oxalic acid precipitation step 7 are alternately repeated, It is also possible to perform the oxalic acid precipitation step 7 by adding oxalic acid while performing the electrolytic reduction valence adjusting step 6 for oxalic acid precipitation in the flow electrolyzer 70.

(第3の実施形態)
(構成)
以下、本発明の第3の実施形態に係る使用済み燃料再処理方法について図6を参照して説明する。第1の実施形態に係る使用済み燃料再処理方法の各部と同一部分には同一符号を付し、同一の構成についての説明は省略する。
(Third embodiment)
(Constitution)
Hereinafter, a spent fuel reprocessing method according to a third embodiment of the present invention will be described with reference to FIG. The same parts as those in the spent fuel reprocessing method according to the first embodiment are denoted by the same reference numerals, and description of the same configuration is omitted.

図6は、本発明の第3の実施形態に係る使用済み燃料再処理方法を示す概略フロー図である。第3の実施形態が第1の実施形態と異なる点は、白金族FP回収工程17を改良アクアパイロプロセス22のシュウ酸沈殿工程の後段に代えて、湿式プロセス21の遠心清澄工程3の後段に設けた点である。白金族FP回収工程17は、遠心清澄工程3を終えた硝酸水溶液から白金族FPの回収を行う。   FIG. 6 is a schematic flowchart showing a spent fuel reprocessing method according to the third embodiment of the present invention. The third embodiment is different from the first embodiment in that the platinum group FP recovery step 17 is replaced by a post stage of the centrifugal clarification step 3 of the wet process 21 instead of the post stage of the oxalic acid precipitation step of the improved aqua pyro process 22. It is a point provided. The platinum group FP recovery step 17 recovers the platinum group FP from the nitric acid aqueous solution that has undergone the centrifugal clarification step 3.

(作用)
以下、本発明の第3の実施形態の作用について説明する。白金族FP回収工程17において、図2に示すバッチ電解装置50の陰極室51に遠心清澄工程3を終えた硝酸水溶液を陰極室51に入れ、ここに不溶解性の陰極55を浸漬して電解を行なう。
(Function)
The operation of the third embodiment of the present invention will be described below. In the platinum group FP recovery step 17, the aqueous nitric acid solution after the centrifugal clarification step 3 is placed in the cathode chamber 51 of the batch electrolysis apparatus 50 shown in FIG. 2, and the insoluble cathode 55 is immersed in the cathode chamber 51 for electrolysis. To do.

(効果)
本発明の第3の実施形態によれば、白金族FP回収工程17を湿式プロセス21の遠心抽出工程5の後段に設けることによって、遠心清澄工程3を終えた硝酸水溶液から白金族FPの回収を行うことができる。
(effect)
According to the third embodiment of the present invention, the platinum group FP recovery step 17 is provided after the centrifugal extraction step 5 of the wet process 21, thereby recovering the platinum group FP from the aqueous nitric acid solution after the centrifugal clarification step 3. It can be carried out.

1・・・使用済み燃料再処理方法
2・・・溶解工程
3・・・遠心清澄工程
4・・・U抽出用電解還元価数調整工程
5・・・遠心抽出工程
6・・・シュウ酸沈殿用電解還元価数調整工程
7・・・シュウ酸沈殿工程
8・・・酸化物転換工程
9・・・電解還元工程
10・・・電解精製工程
11・・・蒸留工程
12・・・射出成形工程
13・・・FP処理/廃塩処理工程
14・・・Zr,Ru,Tc除去工程
15・・・逆抽出/U濃縮工程
16・・・U精製/脱硝工程
17・・・白金族FP回収工程
21・・・湿式プロセス
22・・・改良アクアパイロプロセス
23・・・乾式プロセス
31・・・軽水炉SFL
32・・・高速炉SFL
33・・・軽水炉FL
34・・・軽水炉FL
35・・・シュウ酸沈殿
36・・・ろ液
37・・・廃棄物
50・・・バッチ電解装置
51・・・陰極室
52・・・陽極室
53・・・隔膜
54・・・陰極液
55・・・陰極
56・・・参照電極
57・・・陽極液
58・・・陽極
59・・・電源
60・・・電位差計
61・・・攪拌子
70・・・フロー電解装置
71・・・隔膜筒
72・・・炭素繊維
73・・・金属線
74・・・筐体
75・・・電源
76・・・陰極槽
77・・・陽極槽
78・・・参照極
81・・・電解還元装置
82・・・陰極バスケット
83・・・溶融塩電解槽
84・・・電源
85・・・陰極
86・・・陽極
DESCRIPTION OF SYMBOLS 1 ... Used fuel reprocessing method 2 ... Dissolution process 3 ... Centrifugal clarification process 4 ... Electrolytic reduction valence adjustment process 5 for U extraction Centrifugal extraction process 6 ... Oxalic acid precipitation Electrolytic reduction valence adjustment process 7 ... Oxalic acid precipitation process 8 ... Oxide conversion process 9 ... Electrolytic reduction process 10 ... Electrolytic purification process 11 ... Distillation process 12 ... Injection molding process 13 ... FP treatment / waste salt treatment step 14 ... Zr, Ru, Tc removal step 15 ... Back extraction / U concentration step 16 ... U purification / denitration step 17 ... Platinum group FP recovery step 21 ... Wet process 22 ... Improved aqua pyro process 23 ... Dry process 31 ... Light water reactor SFL
32 ... Fast Reactor SFL
33 ... Light water reactor FL
34 ... Light water reactor FL
35 ... Oxalic acid precipitation 36 ... Filtrate 37 ... Waste 50 ... Batch electrolysis device 51 ... Cathode chamber 52 ... Anode chamber 53 ... Diaphragm 54 ... Catholyte 55 ... cathode 56 ... reference electrode 57 ... anolyte 58 ... anode 59 ... power source 60 ... potentiometer 61 ... stirrer 70 ... flow electrolysis device 71 ... diaphragm Cylinder 72 ... Carbon fiber 73 ... Metal wire 74 ... Housing 75 ... Power source 76 ... Cathode tank 77 ... Anode tank 78 ... Reference electrode 81 ... Electrolytic reduction device 82 ... Cathode basket 83 ... Molten salt electrolytic cell 84 ... Power source 85 ... Cathode 86 ... Anode

Claims (5)

使用済み酸化物燃料を解体してせん断された燃料を硝酸水溶液に溶解する溶解工程と、
前記硝酸水溶液に溶解したプルトニウムを3価に還元するウラン抽出用電解還元価数調整工程と、
前記ウラン抽出用電解還元価数調整工程を経た燃料を有機溶媒と接触させ、6価のウランを抽出剤に抽出して酸化ウランを回収する遠心抽出工程と、
前記遠心抽出工程で前記硝酸水溶液に残留したウランを6価から4価または3価に価数調整するシュウ酸沈殿用電解還元価数調整工程と、
前記シュウ酸沈殿用電解還元価数調整工程で価数調整された前記ウラン、マイナーアクチニドおよび核分裂生成物をシュウ酸沈殿法によりシュウ酸沈殿物として沈殿させるシュウ酸沈殿工程と、
前記シュウ酸沈殿物を脱水し、酸化雰囲気中で沈殿物酸化物に転換する酸化物転換工程と、
アルカリ金属の塩化物溶融塩中にアルカリ金属酸化物を溶解した混合溶融塩中または、アルカリ土類金属の塩化物溶融塩中にアルカリ土類金属酸化物を溶解した混合溶融塩中に、前記沈殿物酸化物を浸漬し、この沈殿物酸化物を陰極に接触させて前記沈殿物酸化物中の前記ウラン、前記プルトニウムおよび前記マイナーアクチニドを回収する電解還元工程とを備えることを特徴とする使用済み燃料再処理方法。
A dissolution process in which spent oxide fuel is disassembled and the sheared fuel is dissolved in an aqueous nitric acid solution;
An electroreduction valence adjusting step for extracting uranium for reducing plutonium dissolved in the nitric acid aqueous solution to trivalent;
A centrifugal extraction step of bringing the fuel that has undergone the electrolytic reduction valence adjustment step for uranium extraction into contact with an organic solvent, extracting hexavalent uranium into an extractant, and recovering uranium oxide;
An electrolytic reduction valence adjustment step for oxalic acid precipitation for adjusting the uranium remaining in the aqueous nitric acid solution in the centrifugal extraction step from hexavalent to tetravalent or trivalent;
An oxalic acid precipitation step of precipitating the uranium, minor actinide and fission product adjusted in the electrolytic reduction valence adjustment step for oxalic acid precipitation as an oxalic acid precipitate by an oxalic acid precipitation method;
An oxide conversion step of dehydrating the oxalic acid precipitate and converting it to a precipitate oxide in an oxidizing atmosphere;
In the mixed molten salt obtained by dissolving an alkali metal oxide in an alkali metal chloride molten salt, or in the mixed molten salt obtained by dissolving an alkaline earth metal oxide in an alkaline earth metal chloride molten salt. An electrolytic reduction step of immersing a material oxide and bringing the precipitate oxide into contact with a cathode to recover the uranium, the plutonium and the minor actinide in the precipitate oxide. Fuel reprocessing method.
前記酸化物転換工程および前記電解還元工程に代えて、
前記シュウ酸沈殿物に塩酸を添加して塩化物に転換する塩素化工程と、
前記塩化物を、還元性の不活性なガス気流中で脱水させることにより無水塩化物を合成する脱水工程と、
前記無水塩化物を溶融塩に溶解して、電解により陰極にウラン、プルトニウムおよびマイナーアクチニドを回収する溶融塩電解工程とを備えることを特徴とする請求項1に記載の使用済み燃料再処理方法。
Instead of the oxide conversion step and the electrolytic reduction step,
A chlorination step of adding hydrochloric acid to the oxalic acid precipitate to convert it to chloride;
A dehydration step of synthesizing the anhydrous chloride by dehydrating the chloride in a reducing inert gas stream;
The spent fuel reprocessing method according to claim 1, further comprising a molten salt electrolysis step of dissolving the anhydrous chloride in the molten salt and recovering uranium, plutonium and minor actinides at the cathode by electrolysis.
前記シュウ酸沈殿用電解還元価数調整工程は、前記シュウ酸沈殿工程の前段に代えて前記シュウ酸沈殿工程の後段に設けられ、
前記シュウ酸沈殿用電解還元価数調整工程は、前記硝酸水溶液に代えて前記シュウ酸沈殿工程において沈殿せずに残ったろ液中に残留するウランを6価から4価または3価に価数調整することを特徴とする請求項1または請求項2に記載の使用済み燃料再処理方法。
The electrolytic reduction valence adjustment step for oxalic acid precipitation is provided in the subsequent stage of the oxalic acid precipitation process instead of the previous stage of the oxalic acid precipitation process,
In the electrolytic reduction valence adjustment step for oxalic acid precipitation, the uranium remaining in the filtrate remaining without precipitation in the oxalic acid precipitation step is adjusted from hexavalent to tetravalent or trivalent instead of the aqueous nitric acid solution. The spent fuel reprocessing method according to claim 1, wherein the spent fuel is reprocessed.
前記シュウ酸沈殿工程で沈殿せずに残った前記ろ液を陰極室に入れ、この陰極室に不溶解性材料からなる陰極を挿入し、前記陰極室とは隔壁で隔てられた陽極室に酸性溶液を入れて電解して、前記ろ液中に残留する白金族FPを前記陰極に析出回収する白金族FP回収工程をさらに有することを特徴とする請求項1乃至請求項3の何れか一項に記載の使用済み燃料再処理方法。   The filtrate remaining without being precipitated in the oxalic acid precipitation step is put into a cathode chamber, a cathode made of an insoluble material is inserted into the cathode chamber, and the cathode chamber is acidic in an anode chamber separated by a partition wall. 4. The platinum group FP recovery step further comprising a platinum group FP recovery step of depositing and recovering a platinum group FP remaining in the filtrate on the cathode by adding a solution and performing electrolysis. A spent fuel reprocessing method described in 1. 前記白金族FP回収工程は、前記シュウ酸沈殿工程の後段に代えて前記溶解工程の後段に設けられ、前記ろ液に代えて前記硝酸水溶液から白金族FPを回収することを特徴とする請求項4に記載の使用済み燃料再処理方法。   The platinum group FP recovery step is provided after the dissolution step instead of the oxalic acid precipitation step, and collects the platinum group FP from the nitric acid aqueous solution instead of the filtrate. 4. The spent fuel reprocessing method according to 4.
JP2011131857A 2011-06-14 2011-06-14 Spent fuel reprocessing method Active JP5758209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131857A JP5758209B2 (en) 2011-06-14 2011-06-14 Spent fuel reprocessing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131857A JP5758209B2 (en) 2011-06-14 2011-06-14 Spent fuel reprocessing method

Publications (2)

Publication Number Publication Date
JP2013002855A true JP2013002855A (en) 2013-01-07
JP5758209B2 JP5758209B2 (en) 2015-08-05

Family

ID=47671592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131857A Active JP5758209B2 (en) 2011-06-14 2011-06-14 Spent fuel reprocessing method

Country Status (1)

Country Link
JP (1) JP5758209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122392A (en) * 2011-12-09 2013-06-20 Toshiba Corp Uranium collection method
JP2015094754A (en) * 2013-11-14 2015-05-18 株式会社東芝 Intermediate product storage method and intermediate product manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188187A (en) * 1992-01-14 1993-07-30 Power Reactor & Nuclear Fuel Dev Corp Recovery of valuable metal from nuclear-fuel reprocessing dissolution liquid
JPH0854493A (en) * 1994-08-17 1996-02-27 Toshiba Corp Method for reprocessing spent fuel
JP2000227497A (en) * 1999-02-04 2000-08-15 Japan Nuclear Cycle Development Inst States Of Projects Separation recovery method of platinum group element, technetium, tellurium and selenium
JP2009537838A (en) * 2006-05-24 2009-10-29 コミッサリア タ レネルジー アトミーク Method for reprocessing spent nuclear fuel to prepare uranium / plutonium mixed oxide
JP2009288178A (en) * 2008-05-30 2009-12-10 Toshiba Corp Method for reprocessing spent nuclear fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188187A (en) * 1992-01-14 1993-07-30 Power Reactor & Nuclear Fuel Dev Corp Recovery of valuable metal from nuclear-fuel reprocessing dissolution liquid
JPH0854493A (en) * 1994-08-17 1996-02-27 Toshiba Corp Method for reprocessing spent fuel
JP2000227497A (en) * 1999-02-04 2000-08-15 Japan Nuclear Cycle Development Inst States Of Projects Separation recovery method of platinum group element, technetium, tellurium and selenium
JP2009537838A (en) * 2006-05-24 2009-10-29 コミッサリア タ レネルジー アトミーク Method for reprocessing spent nuclear fuel to prepare uranium / plutonium mixed oxide
JP2009288178A (en) * 2008-05-30 2009-12-10 Toshiba Corp Method for reprocessing spent nuclear fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122392A (en) * 2011-12-09 2013-06-20 Toshiba Corp Uranium collection method
JP2015094754A (en) * 2013-11-14 2015-05-18 株式会社東芝 Intermediate product storage method and intermediate product manufacturing apparatus

Also Published As

Publication number Publication date
JP5758209B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5193687B2 (en) Spent fuel reprocessing method
US8506786B2 (en) Method for recovery of residual actinide elements from chloride molten salt
KR20090112862A (en) A process for the recovery of uranium from spent nuclear fuel by using a high alkaline carbonate solution
JPS60224097A (en) Method of recovering plutonium in solid waste
JP6272228B2 (en) Process for preparing actinide and / or lanthanoid oxyhalides and / or oxides from a medium comprising at least one molten salt
JP5758209B2 (en) Spent fuel reprocessing method
JPH03123896A (en) Recovery of actinides
JP3120002B2 (en) Reprocessing of spent fuel
RU2537969C1 (en) Method of recovering nuclear fuel material
JP3342968B2 (en) Reprocessing of spent fuel
JP2000284090A (en) Method for reprocessing spent nuclear fuel
KR101513652B1 (en) Method of processing composite wastes
JP4025125B2 (en) How to reprocess spent fuel
KR101553895B1 (en) Method of processing composite wastes
JP2997266B1 (en) Method for separating and recovering platinum group elements, technetium, tellurium and selenium
JP2005315790A (en) Reprocessing method for spent oxide fuel
JPWO2004036595A1 (en) Light water reactor spent fuel reprocessing method and apparatus
JPH09257985A (en) Reprocessing method for spent fuel
JP5065163B2 (en) Method for recycling uranium from spent nuclear fuel
JP5784476B2 (en) Uranium recovery method
WO2011144937A1 (en) Novel reprocessing method
JPH07140293A (en) Recovery method of transuranic element from high level radioactive waste liquid
JP3319657B2 (en) How to convert transuranium oxalate into chloride
JP3910605B2 (en) Method for electrolytic reprocessing of spent salt from spent fuel
JP2007101495A (en) Reprocessing method of spent nuclear fuel or radioactive waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R151 Written notification of patent or utility model registration

Ref document number: 5758209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151