JP2013002843A - Radiation dose reduction method - Google Patents

Radiation dose reduction method Download PDF

Info

Publication number
JP2013002843A
JP2013002843A JP2011131488A JP2011131488A JP2013002843A JP 2013002843 A JP2013002843 A JP 2013002843A JP 2011131488 A JP2011131488 A JP 2011131488A JP 2011131488 A JP2011131488 A JP 2011131488A JP 2013002843 A JP2013002843 A JP 2013002843A
Authority
JP
Japan
Prior art keywords
radiation
green
radioactive
radiation dose
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011131488A
Other languages
Japanese (ja)
Other versions
JP5435762B2 (en
Inventor
Masahiro Hachiman
昌裕 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAHATA KOGYO KK
Original Assignee
YAHATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAHATA KOGYO KK filed Critical YAHATA KOGYO KK
Priority to JP2011131488A priority Critical patent/JP5435762B2/en
Publication of JP2013002843A publication Critical patent/JP2013002843A/en
Application granted granted Critical
Publication of JP5435762B2 publication Critical patent/JP5435762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing a radiation dose with high safety, easily and at low costs for radiation contamination, in an overall contaminated area, especially, in agricultural lands, caused by leaking radioactive substances because of an accident in a nuclear plant.SOLUTION: Micronekton is brought into contact with radioactive substances (micronekton is soft porous ancient oceanic humus, indicates natural mineral resulting from burying, depositing and denaturing various oceanic lives or the like under natural phenomena such as crustal alteration in ancient times, and is mined from the Tanakura fracture zone in Fukushima prefecture). Micronekton powder is dispersed over the radioactive substances.

Description

本発明は、放射性物質からの被ばく放射線量を、ミロネクトンを用いて低減する方法に関する。   The present invention relates to a method for reducing the radiation dose from a radioactive substance by using mironectin.

原子力発電所の事故で、大量の放射性物質が放出され、空気中に放出されたものは広い範囲に拡散し、農地、運動場等に降り注いだ。
このため一部では表土の除去が行われているが、汚染地域が広域にわたるため難しい。また特に農地は、農耕従事者の安全のみならず、農作物に吸着等されれば、農作物の安全性が損なわれるため低濃度の放射性物質による広範囲な汚染に対する対策が必要とされている。
In the accident at a nuclear power plant, a large amount of radioactive material was released, and what was released into the air diffused over a wide area and poured onto farmland, playgrounds, etc.
For this reason, some topsoil is removed, but it is difficult because the contaminated area covers a wide area. In particular, agricultural land is not only safe for farmers but also adsorbed by agricultural products, so that the safety of agricultural products is impaired. Therefore, countermeasures against a wide range of contamination by low-concentration radioactive materials are required.

特許文献1には、放射性核種を封止するためのセメント系固型化材が提案されており、セメント系固型化材に、必要に応じて用いられる骨材として、ゼオライトが放射性核種(例えば、セシウム、ストロンチウム)の吸着性能が高く、固化体が収容された固化容器8が地中に埋設処理された後に損傷した場合でも放射性核種の地中への漏出が抑制されるため好ましく、また、ゼオライトの最大粒径が2.5mm以下の場合には、より高い放射性核種吸着能を有するため好ましいと記載されている。しかしこれはセメント中に骨材としてゼオライトを含むものであって放射性物質と直接接触させることを意図するものではない。   Patent Document 1 proposes a cement-based solidifying material for sealing a radionuclide, and zeolite is a radionuclide (for example, as an aggregate used as necessary for the cement-based solidifying material. , Cesium, strontium) adsorption performance is high, and even if the solidified container 8 containing the solidified body is damaged after being buried in the ground, it is preferable because leakage of radionuclides to the ground is suppressed, When the maximum particle size of zeolite is 2.5 mm or less, it is described that it is preferable because it has higher radionuclide adsorption ability. However, this includes zeolite as an aggregate in the cement and is not intended to be in direct contact with the radioactive material.

一方、特許文献2には、従来、ウランをはじめとする放射性物質の除去法には、吸着法、気泡分離法、溶媒抽出法等が提案されているが、これ等の中では吸着法が最も良い方法とされており、このような吸着法では使用する吸着剤の特性によって、放射性物質の除去効率が決まる。従来使用されている吸着剤としては、含水酸化チタン、方鉛鉱、酸化マンガン、リン酸ジルコニウム、更には、活性炭やアルミナに担持した含水酸化チタン等の無機吸着剤や、アシドキシム型キレート樹脂やヘキサカルボン酸等の有機系吸着剤があるが、従来の吸着剤は吸着能が低く、中低レベルの放射性廃棄物の除去について、十分に技術は開発されていないため、四価金属の含水亜鉄酸塩と四価または/および二価金属の水和酸化物とを含有する放射性物質の吸着剤および該吸着剤を用いた放射性物質の吸着方法が提案されている。   On the other hand, Patent Document 2 has conventionally proposed an adsorption method, a bubble separation method, a solvent extraction method, and the like as a method for removing radioactive substances such as uranium. In such an adsorption method, the removal efficiency of radioactive substances is determined by the characteristics of the adsorbent used. Conventionally used adsorbents include hydrous titanium oxide, galena, manganese oxide, zirconium phosphate, inorganic adsorbents such as hydrous titanium oxide supported on activated carbon and alumina, acid oxime type chelate resins, and hexagonal resins. There are organic adsorbents such as carboxylic acids, but conventional adsorbents have low adsorption capacity, and technology has not been developed enough to remove medium to low levels of radioactive waste. An adsorbent for a radioactive substance containing an acid salt and a hydrated oxide of a tetravalent or / and divalent metal and a method for adsorbing a radioactive substance using the adsorbent have been proposed.

しかし、上記従来技術では、人体、環境に対する安全性が不明であり、又高価で、処置が簡単にできないことから、農地、牧地、運動場、道路、等に降下付着した放射性物質から放射される放射線による被ばく線量を、特に人体、動植物環境に障害を与えることなく、安全、簡易かつ安価に低減する方法が必要とされている。   However, in the above prior art, safety to the human body and the environment is unknown, and since it is expensive and cannot be easily treated, it is radiated from radioactive materials that have fallen and adhered to farmland, pastures, playgrounds, roads, etc. There is a need for a method for reducing the exposure dose of radiation in a safe, simple and inexpensive manner without particularly damaging the human body and animal and plant environments.

特開2008−241587号公報Japanese Patent Application Laid-Open No. 2008-241587 特開平5−146674号公報JP-A-5-146684

本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、安全、簡易かつ安価に放射性物質からの被ばく放射線量を低減する方法を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for reducing the radiation dose from radioactive materials in a safe, simple and inexpensive manner.

請求項1に記載の発明は、ミロネクトンを放射性物質に接触させることを特徴とする放射線物質からの放射線被ばく線量を低減する方法である。   The invention according to claim 1 is a method for reducing the radiation exposure dose from a radioactive material, characterized in that mironekton is brought into contact with the radioactive material.

請求項2に記載の発明は、放射性物質で汚染された物質にミロネクトン粉末を散布することを特徴とする放射線被ばく線量低減方法である。   Invention of Claim 2 is a radiation exposure dose reduction method characterized by spraying mironekton powder on the substance contaminated with the radioactive substance.

以下、本発明について詳しく説明する。
本発明にいう放射線とは、物質に当たったときに物質を構成している原子を、荷電粒子を媒介して電離するものすなわち、電離性放射線をいう。
また、放射能とは、ある種の不安定な原子核が放射線の放出を伴いながら別の種類の原子核に変化する、放射性崩壊をする性質をいう。
The present invention will be described in detail below.
The term “radiation” as used in the present invention refers to ionizing radiation that ionizes atoms constituting a substance through a charged particle when it hits the substance.
Radioactivity refers to the property of radioactive decay in which a certain kind of unstable nucleus changes to another kind of nucleus with radiation emission.

福島第1原子力発電所の事故で放出された放射線を発する物質、核種は定かではないが、131I、137Csが大きな割合を占めるといわれている。131I、137Csはβ崩壊することが知られている。131Iの半減期は約8日、137Csの半減期は約30年といわれている。放射線を発する物質である核種から崩壊により、放射線が、放出され続けている。 Although the materials and nuclides that emit radiation released in the accident at the Fukushima Daiichi Nuclear Power Station are not clear, 131 I and 137 Cs are said to occupy a large proportion. 131 I and 137 Cs are known to β - decay. 131 I has a half-life of about 8 days and 137 Cs has a half-life of about 30 years. Radiation continues to be released from the nuclide, which is a substance that emits radiation, due to decay.

本発明は福島第1原子力発電所の事故で放出された放射線物質によって汚染された土壌にミロネクトン粉末を散布したところ、土壌表面からの放射線量が急激に減じることを発見して発明したものである。     The present invention has been invented by discovering that the amount of radiation from the soil surface is drastically reduced when milonecton powder is sprayed on soil contaminated with radioactive material released in the accident at the Fukushima Daiichi nuclear power plant. .

ここでミロネクトンとは軟質多孔性古代海洋腐植質であって、古代に様々な海洋動植物(藻類・プランクトン・珊瑚・魚介類等)が地殻変動等の自然現象によって埋没堆積し、変性されてできた海泥であって天然の鉱物をいい、福島県の棚倉破砕帯から採掘される。
ミロネクトンは珪酸、Al23を主成分とし、66種類以上の元素を含み、平均細孔半径50nmの微孔を有する多孔質体である。珪酸はSiO39やSiO618の型であるため酸素の持続放出性を有しイオン交換力が強い。ミロネクトンの鉱床から採掘後、粉砕されて、吸着、吸湿、陽イオン交換性を有するため天然資源粉体として動物植物生育補助資材・水質改善に用いられる。粉末状のミロネクトンとしては八幡礦業株式会社の登録商標である商品名が付された「ミネグリーン」、「ミネグレット」等の製品を用いることができる。
Here, mironekton is a soft porous ancient marine humus, and various marine animals and plants (algae, plankton, coral, seafood, etc.) were buried and deposited by natural phenomena such as crustal deformation in the ancient times. Sea mud is a natural mineral that is mined from the Tanakura Shatter Zone in Fukushima Prefecture.
Milonecton is a porous body mainly composed of silicic acid and Al 2 O 3 , contains 66 or more elements, and has micropores with an average pore radius of 50 nm. Since silicic acid is a type of SiO 3 O 9 or SiO 6 O 18 , it has a sustained release of oxygen and a strong ion exchange power. Mined from the mironekton deposit and then crushed and adsorbed, hygroscopic, and cation-exchangeable, it is used as a natural resource powder for animal plant growth aids and water quality improvement. As the powdered mironekton, products such as “Minegreen” and “Minegrette” with the trade names of registered trademarks of Yahata Industry Co., Ltd. can be used.

地表及び浅土中に存在する放射性物質からの放射線被ばく量を低減させるには、ミロネクトンを放射性物質に接触させればよく、田畑の裸地、運動場、農作物植生地等にはミロネクトン粉末を散布することで簡易に接触させることができる。散布は乾燥状態で粉末を噴霧してもよく、更に粉末散布後水を散水してもよく、水と混ぜてスラリー状にして散布してもよい。
粉末散布はいずれの方法で行っても良く、従来の農薬散布機等が有効に利用できる。
また、上記散布後または直接耕作地の表土層に、ミロネクトンの粉体を鋤き込む等して放射性物質に接触させてもよい。
ミロネクトンは河川、池水等の放射能汚染水に投用してもよく、ミロネクトンを固化焼結したものを、水中に投用することで水中の放射能汚染物からの放射線を低減することができる。
In order to reduce the radiation exposure from radioactive materials present on the ground and shallow soil, it is only necessary to contact milonecton with radioactive materials, and mironecton powder is applied to bare fields, playgrounds, crop vegetation, etc. It can be made to contact simply. For spraying, the powder may be sprayed in a dry state, and water may be sprayed after the powder is sprayed, or may be mixed with water to form a slurry.
Powder spraying may be performed by any method, and a conventional agricultural chemical spraying machine or the like can be used effectively.
Further, after spraying or directly into the topsoil layer of the cultivated land, it may be brought into contact with the radioactive substance by, for example, swallowing mironecton powder.
Milonecton may be thrown into radioactively contaminated water such as rivers, pond water, etc., and solidified and sintered mironecton can be used to reduce radiation from radioactive pollutants in the water. .

ミロネクトンを成分とする放射線低減物質としてはミロネクトン単独でもよいし、ゼオライト等の、ミロネクトンの放射線低減効果を阻害しないものを混合して用いてもよい。
広い面積における被ばく低減をするためにはミロネクトンを粉砕した粉末にして接触面積、被覆面積、を広げることが好ましい。
ミロネクトン粉末を散布等する量は、対象とする土壌等の放つ放射線の強さ等にあわせ、適宜設定すればよく、又数度に分けて散布してもよい。
The radiation-reducing substance containing mironectin as a component may be mironectone alone or a mixture of materials such as zeolite that do not inhibit the effect of mironectone to reduce radiation.
In order to reduce the exposure over a wide area, it is preferable to increase the contact area and the covering area by pulverizing mironecton powder.
The amount of the mironecton powder to be sprayed may be appropriately set according to the intensity of radiation emitted from the target soil or the like, or may be sprayed in several degrees.

請求項1に記載の発明によれば、放射性物質にミロネクトンを接触させることで放射性物質から発する放射線の被ばく量を低減させることができる。
作用機作は明かではないが、放射性物質が被覆されることにより単純に遮蔽される効果の他にも、特に原子力発電所から飛散した放射性物質は微粒子状と考えられるため、放射性微粒子が多孔性であるミロネクトンの細孔中に物理的吸着・化学的吸着され、あるいは、ミロネクトンの有するイオン交換能にて細孔中に捕捉されて空間的に封じこめられることにより放射線が細孔を構成する各種元素を含む物質により遮蔽されるためではないかと推測される。
According to the first aspect of the present invention, the amount of radiation emitted from the radioactive substance can be reduced by bringing mironecton into contact with the radioactive substance.
Although the mechanism of action is not clear, in addition to the effect of being simply shielded by the radioactive material being coated, the radioactive material scattered from the nuclear power plant is considered to be in the form of fine particles. Various types of radiation that constitutes pores by being physically or chemically adsorbed in the pores of mironecton, or trapped in the pores by the ion exchange ability of mironectin and spatially confined It is presumed that this may be due to shielding by a substance containing an element.

実施例1において土の直上で放射線量を経時的に測定した、ミネグリーン散布前後の放射線量の差の推移を表すグラフである。It is a graph showing transition of the difference of the radiation dose before and after Minnegreen spraying which measured the radiation dose with time in Example 1 just above soil. 実施例1において土の20cm上で放射線量を経時的に測定した、ミネグリーン散布前後の放射線量の差の推移を表すグラフである。It is a graph showing transition of the difference of the radiation dose before and after Minne Green spraying which measured the radiation dose over time in 20 cm of soil in Example 1. FIG. 実施例4において、トラクターに接続したブロードキャスターによりミネグリーンを水田に散布している様子を表す写真である。In Example 4, it is a photograph showing a mode that Minine green is sprayed on a paddy field by the broadcaster connected to the tractor.

以下、本発明の実施例を挙げて本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples of the present invention.

室内実験
福島県相馬郡飯館村で採取した畑の表土に対しミロネクトンの粉末を用いた。ミロネクトンの粉末は八幡礦業株式会社のミロネクトンを粉砕した粉状となった植物生長促進剤として用いられている「登録商標ミネグリーン」を用いた。
A4サイズの3個のバットに表土(原土)500gを平らに敷き、その上にミネグリーンを100g又は30g散布し、散布前、散布直後の放射線量を測定した。ミネグリーンを散布し放射線量を測定後スプレイで各バットに100g水を散布した。ミネグリーン散布40時間後、91時間後、19日後、24日後に土又はミネグリーン散布表面の直上と、20cm上の放射線量を測定した。測定にはS.E.インターナショナル社製インスペクターEXPプラスを用いた。以下実施例2、3、4も同じ測定器で測定した。ミネグリーンの嵩比重は略0.9である。測定はガイガーカウンターのプローブを1分間所定の高さで水平方向に移動させ指示値の中で最も高い値を求めた。尚ミネグリーン散布後40時間後の測定は20cmではなく15cm上で行った。
結果を表1に示す。
Laboratory experiment Milonecton powder was used for the topsoil of the field collected in Iidate-mura, Soma-gun, Fukushima. As the powder of mironekton, “registered trademark Minne Green” used as a plant growth promoter in the form of a powder obtained by pulverizing mironekton from Yawata Corporation was used.
500 g of topsoil (raw soil) was laid flat on three A4 size bats, and 100 g or 30 g of mince green was sprayed thereon, and the radiation dose before and immediately after spraying was measured. After spraying minne green and measuring the radiation dose, each bat was sprayed with 100 g of water. After 40 hours, 91 hours, 19 days, and 24 days after spraying Minne Green, the radiation dose immediately above the soil or Minne Green spray surface and 20 cm above was measured. S. E. An International Inspector EXP Plus was used. Hereinafter, Examples 2, 3, and 4 were also measured with the same measuring device. Minine Green has a bulk specific gravity of about 0.9. The measurement was performed by moving the probe of the Geiger counter horizontally at a predetermined height for 1 minute to obtain the highest value among the indicated values. In addition, the measurement 40 hours after Minne Green spraying was performed on 15 cm instead of 20 cm.
The results are shown in Table 1.

表1によればバット毎に原土の放射線の量は異なるが、いずれも時間経過と共に放射線量は低下している。これは主に131Iの崩壊によるものと思われる。 According to Table 1, the amount of radiation on the soil differs from bat to bat, but in all cases, the amount of radiation decreases with time. This is probably due to the 131 I decay.

土の直上におけるミネグリーン散布の効果を明らかにするため図1にミネグリーン100g散布、ミネグリーン30g散布、ミネグリーンは散布しない原土のものについてのそれぞれ原土またはミネグリーンの直上で測定した測定値の初期値からの変化値(差違)の経時変化を示す。縦軸目盛りはμSv/hである。図1で明らかなように、ミネグリーンを散布したものは散布量が30g、100gのもの共に大きな放射線量低減効果を示している。   In order to clarify the effect of spraying mineral green directly on the soil, Fig. 1 shows the measurements of mineral green 100g sprayed, mineral green 30g sprayed, and mineral green that was not sprayed on the raw soil or mineral green. The change over time of the change value (difference) from the initial value of the value is shown. The vertical scale is μSv / h. As can be seen from FIG. 1, the sprayed mineral green shows a large radiation dose reduction effect for both sprayed amounts of 30 g and 100 g.

土から20cm上におけるミネグリーン散布の効果を明らかにするため図2にミネグリーン100g散布、ミネグリーン30g散布、ミネグリーンは散布しない原土のものについて20cm上で測定した測定値の初期値からの変化値(差違)の経時変化を表す。縦軸目盛りはμSv/hである。
時間経過とともに、ミネグリーンを散布していない原土も放射線量が減退しており、これは半減期の短い131Iの崩壊によると思われる。ミネグリーンを100g散布したものよりも30g散布したものの方が効果が大きく見えるが、30g散布のものは元々の原土の放射線量が大きかったことが関与していると思われる。
In order to clarify the effect of mince green spraying 20 cm above the soil, Fig. 2 shows the initial values of the measured values measured 20 cm above for the raw soil that is not sprayed with 100 g minmine green, 30 g minine green. It represents the change over time of the change value (difference). The vertical scale is μSv / h.
With the passage of time, the radiation dose of the untreated soil also decreased, which may be due to the decay of 131 I, which has a short half-life. The effect of 30 g of sprayed mineral green appears to be more effective than that of 100 g of minne green, but it seems that the 30 g sprayed material was associated with a higher radiation dose of the original raw soil.

実地での評価のため、放射能による低濃度汚染地帯である福島県相馬郡飯舘村の農家に協力いただき以下の効果測定を行った。
実験日 平成23年5月31日
場所 福島県相馬郡飯館村飯樋字八和木580
ミネグリーン散布量 85kg (100リッター)
散布面積 約100m2
上記条件で「庭」にミネグリーンを散布、放射線を測定した。
散布前測定値7.756マイクロシーベルトあったところが散布後は5.118マイクロシーベルトに低減し
散布前測定値9.748マイクロシーベルトあったところが散布後は5.142マイクロシーベルトに低減していた。
For the evaluation in the field, the following effects were measured with the cooperation of farmers in Iitate Village, Soma-gun, Fukushima, which is a low-concentration contaminated area due to radioactivity.
Experiment date May 31, 2011 Place 580 Iwagi, Iitate, Iidate-mura, Soma-gun, Fukushima
Minne green spray amount 85kg (100 liters)
Spreading area approx. 100m 2
Under the above-mentioned conditions, “green” was sprayed on the “garden” and the radiation was measured.
The pre-dispersion measurement of 7.756 microsieverts was reduced to 5.118 microsieverts after spraying, and the pre-spread measurement of 9.748 microsieverts was reduced to 5.142 microsieverts after spraying. It was.

実験日 平成23年5月31日
場所 福島県相馬郡飯館村そば畑
ミネグリーン散布量 51kg (60リッター)
散布面積 そば畑3,000m2の内約100m2
上記条件でそば畑にミネグリーンを散布、 放射線を測定した。
ミネグリーン散布地は8.408マイクロシーベルト、及び5.624マイクロシーベルトであったが、未散布地を測定したところ9.426マイクロシーベルト、10.000マイクロシーベルトであり、低減効果が認められた。
Experiment day May 31, 2011 Place Soba field, Iidate-mura, Soma-gun, Fukushima Minna green spray amount 51kg (60 liters)
Which approximately 100m 2 of the spray area buckwheat field 3,000m 2
Under the above conditions, Minna Green was sprayed on the buckwheat field and the radiation was measured.
Minine green spraying areas were 8.408 microsieverts and 5.624 microsieverts, but when unspreading grounds were measured, they were 9.426 microsieverts and 10.000 microsieverts. Admitted.

実験日 平成23年6月3日
場所 福島県相馬郡飯館村水田
散布面積 12a
ミネグリーン散布量476kg (560リッター)
ミネグリーンをトラクターに接続したブロードキャスターにより水田に散布した。
Experiment day June 3, 2011 Place Paddy field, Iidate-mura, Soma-gun, Fukushima Pref.
Minne green spread 476kg (560 liters)
Minine green was sprayed on paddy fields using a broadcaster connected to a tractor.

上記条件で飯館村水田で放射性低減効果確認実験を行った。
A地点 ミネグリーン散布前15.08マイクロシーベルトあったものが散布後は10.02マイクロシーベルトに低減されていた (5.06マイクロシーベルト減)。
B地点 ミネグリーン散布前15.20マイクロシーベルトあったものが散布後は8.936マイクロシーベルトに低減されていた (6.264マイクロシーベルト減)。
Under the above-mentioned conditions, an experiment for confirming the radioactive reduction effect was conducted in Iidate Village paddy field.
Point A What was 15.08 microsievert before spraying Minine Green was reduced to 10.02 microsievert after spraying (down 5.06 microsievert).
Point B What was 15.20 microsievert before spraying Minine Green was reduced to 8.936 microsievert after spraying (down 6.264 microsievert).

原子力発電所の事故で放射性物質が漏出することによって生じる地域全体、特に農地等の汚染による被害が大きく、早期に解決することが望まれている。本発明によれば、ミロネクトンを放射性物質に接触されるだけで安全性高く、簡単、安価に放射性物質から発する放射線量を低減することができ有効に利用されうる。
また本発明によれば、農地等に、ミロネクトンの粉末を散布するだけで安全性高く、簡単、安価に農地等から発する放射線量を低減することができ有効に利用されうる。
The damage caused by the contamination of the whole area, especially farmland, etc. caused by radioactive material leakage due to an accident at a nuclear power plant is large, and it is desired to solve it early. ADVANTAGE OF THE INVENTION According to this invention, the amount of radiation emitted from a radioactive substance can be reduced easily and cheaply with high safety only by contacting mironecton with the radioactive substance, and can be effectively used.
Further, according to the present invention, the amount of radiation emitted from farmland or the like can be effectively reduced by simply spraying mironecton powder on the farmland or the like, and the radiation dose emitted from the farmland or the like can be reduced easily and inexpensively.

Claims (2)

ミロネクトンを放射性物質に接触させることを特徴とする放射線物質からの被ばく放射線量を低減する方法。   A method for reducing the radiation dose from a radioactive material, characterized by bringing mironectin into contact with the radioactive material. 放射性物質で汚染された物質にミロネクトン粉末を散布することを特徴とする被ばく放射線量低減方法。   A method for reducing radiation dose, characterized by spraying mironectin powder on a substance contaminated with a radioactive substance.
JP2011131488A 2011-06-13 2011-06-13 Radiation dose reduction method Expired - Fee Related JP5435762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131488A JP5435762B2 (en) 2011-06-13 2011-06-13 Radiation dose reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131488A JP5435762B2 (en) 2011-06-13 2011-06-13 Radiation dose reduction method

Publications (2)

Publication Number Publication Date
JP2013002843A true JP2013002843A (en) 2013-01-07
JP5435762B2 JP5435762B2 (en) 2014-03-05

Family

ID=47671583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131488A Expired - Fee Related JP5435762B2 (en) 2011-06-13 2011-06-13 Radiation dose reduction method

Country Status (1)

Country Link
JP (1) JP5435762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134425A (en) * 2013-01-09 2014-07-24 Masaaki Ishizeki Radioactive cesium decontamination agent, concrete member, building member, paint for building, and resin product using the same, submerged scattering device of the same, and decontamination method of radioactive cesium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CSNC200801267020; '各社皮脂関連原料・添加剤紹介' FRAGRANCE JOURNAL Vol.22, No.10 第22巻, 津野田 勲 ▲C▼フレグランス ジャーナル社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134425A (en) * 2013-01-09 2014-07-24 Masaaki Ishizeki Radioactive cesium decontamination agent, concrete member, building member, paint for building, and resin product using the same, submerged scattering device of the same, and decontamination method of radioactive cesium

Also Published As

Publication number Publication date
JP5435762B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Arai et al. Arsenic speciation and reactivity in poultry litter
Voronina et al. Returning land contaminated as a result of radiation accidents to farming use
Ashraf et al. Retracted article: release, deposition and elimination of radiocesium (137 Cs) in the terrestrial environment
US20110015064A1 (en) Low-impact delivery system for in situ treatment of contaminated sediment
JP2014134425A (en) Radioactive cesium decontamination agent, concrete member, building member, paint for building, and resin product using the same, submerged scattering device of the same, and decontamination method of radioactive cesium
JP5435762B2 (en) Radiation dose reduction method
Kryshev et al. Radioecological state of lakes in the southern Ural impacted by radioactivity release of the 1957 radiation accident
JP2013190408A (en) Processing method for reduction in radiation dose of radioactive material-containing incinerated ash or the like
JP5789317B2 (en) Soil composition and its use for coating plants contaminated with radioactive material and planting plants
JP2013068484A (en) Processing method of radioactivity waste using ryukyus limestone
JP5885991B2 (en) Spatial radiation shielding method
JP2013113721A (en) Method for decontaminating radioactive contaminant
Falciglia et al. Application of a γRS index-based method and techno-economic analysis for in situ treatment of 137Cs-contaminated soils by cement-barite based stabilisation/solidification
JP2013113743A (en) Method for treating radioactive contaminant by using ryukyu limestone
Saeed et al. The dangers of ionizing radiation that affect human safety and the environment: A review Article
Selvasekarapandian et al. Indoor gamma dose measurement along the East coast of Tamilnadu, India using TLD
US20160361742A1 (en) Soil texture improving agent or improvement microorganism proliferation agent, soil ground solidification method, improvement microorganism proliferation method and decontamination method, and decontamination method of soil contaminated with radioactive material
WO2008070293A2 (en) Low- impact delivery system for in situ treatment of contaminated sediment
KR20150086665A (en) Method of Removing Cesium from Wastewater by the Solidified Sericite
JP2019101039A (en) Method of treating soil containing radioactive material
JP2013036968A (en) Method of removing, shielding (suppressing divergence of) and collecting radioactive substance using foamed ore
JP6806361B2 (en) Method for manufacturing radiation-attenuating carbide composite material
Mikheikin et al. Interpolyelectrolyte complexes for contaminated soil immobilization and remediation
Mallampati et al. Novel approach for the remediation of radioactive cesium contaminated soil with nano-Fe/Ca/CaO dispersion mixture in dry condition
Nishioka et al. STUDY ON EXTRACTION AND ADSORPTION OF CESIUM FROM VERMICULITE MIXTURE SAND

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131207

R150 Certificate of patent or registration of utility model

Ref document number: 5435762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees