JP2013002441A - Internal combustion engine for power generation - Google Patents

Internal combustion engine for power generation Download PDF

Info

Publication number
JP2013002441A
JP2013002441A JP2011160332A JP2011160332A JP2013002441A JP 2013002441 A JP2013002441 A JP 2013002441A JP 2011160332 A JP2011160332 A JP 2011160332A JP 2011160332 A JP2011160332 A JP 2011160332A JP 2013002441 A JP2013002441 A JP 2013002441A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
power generation
cylinder
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011160332A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shinohara
克彦 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011160332A priority Critical patent/JP2013002441A/en
Publication of JP2013002441A publication Critical patent/JP2013002441A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine for power generation using explosive combustion to improve the generating efficiency by inexpensive and renewable inflammable pulverized fuel.SOLUTION: Hindrances by ashes or carbides generated when inflammable powder is explosively combusted are removed by carrying out the role of a piston inside a cylinder of the internal combustion engine by the liquid inside the cylinder.

Description

本発明は可燃性粉体を利用することのできる発電用内燃機関に関する。  The present invention relates to an internal combustion engine for power generation that can utilize combustible powders.

従来発電用内燃機関として天然ガス、石油を利用していたが、発電効率が低く主に小規模な非常用電源として利用されていた。  Conventionally, natural gas and oil have been used as an internal combustion engine for power generation, but the power generation efficiency is low and it is mainly used as a small-scale emergency power source.

又発電用燃料として、天然ガス、石油、石炭は地球温暖化と排ガスに、原子力は安全性に、水力は利用できる場所、風力と太陽光は利用できる時間にそれぞれ問題があった。  As fuels for power generation, natural gas, oil, and coal have problems with global warming and exhaust gas, nuclear power has safety, where hydropower can be used, and wind power and sunlight have problems.

そこで、再生可能で安価でしかもクリーンな燃料が利用できかつ電気変換効率のよい発電装置が求められていた。  Therefore, there has been a demand for a power generation device that can use renewable, inexpensive, clean fuel, and has high electrical conversion efficiency.

そのため日光エネルギーの貯蔵庫である植物からエタノールや油を抽出していたが、その抽出に多大なエネルギーを要し、直接植物を利用する電気変換効率のよい発電装置が求められていた。  For this reason, ethanol and oil were extracted from plants that are storages for sunlight energy. However, a large amount of energy was required for the extraction, and a power generation device with high electrical conversion efficiency that directly uses plants was demanded.

FAQ粉じん爆発 日清エンジニアリング株式会社FAQ Dust explosion Nissin Engineering Co., Ltd. ウイキペデア 内燃機関WikiPedea Internal combustion engine 電気事業連合会 でんきの情報広場Electricity Federation of Japan Electric Power Information Plaza

従来から発電効率を高めるために、燃料の爆発燃焼力とその余熱を利用していたが、安価な燃料として可燃性粉体を利用すれば、大量の灰や炭化物が発生し、発電装置を連続して運転する事ができなかった。  Conventionally, in order to increase power generation efficiency, the explosive combustion power of fuel and its residual heat have been used. However, if flammable powder is used as an inexpensive fuel, a large amount of ash and carbides are generated, and the power generator is continuously connected. I couldn't drive.

そのため、安価な燃料である草木、石油を生産する藻等の乾燥粉体と空気の混合体の爆発燃焼力とその余熱を利用する発動効率の良い発電装置ができなかった。  For this reason, a power generation apparatus with high activation efficiency that uses the explosive combustion power and residual heat of a mixture of dry powder such as grass and oil, which is an inexpensive fuel, and algae that produces oil, and air, has not been achieved.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、従来は直接利用できなかった例えば 植物乾燥粉体を燃料とする内燃機関を提供し、その余熱で蒸気タービンを回わし、コンバインサイクル発電をし、発電効率を高めようとするものである。  The present invention is intended to solve the problems of such a conventional configuration, and provides an internal combustion engine that uses, for example, plant dry powder as a fuel, which cannot be used directly in the past. It is intended to increase the efficiency of power generation by turning the steam turbine and generating combined cycle power generation.

そして本発明は上記目的を達成するために、可燃性粉体を燃焼した時に発生する灰や炭化物が内燃機関のシリンダーとピストンの間に詰る事を防ぎ、内燃機関内に溜まった灰や炭化物を効率よく除去しやすくするため、可燃性粉体と空気の混合体の爆発燃焼力で直接ピストンを動かすのでなく、液体を介してピストンを動かしている。  In order to achieve the above object, the present invention prevents the ash and carbide generated when combustible powder is burned from clogging between the cylinder and the piston of the internal combustion engine, and the ash and carbide accumulated in the internal combustion engine. In order to facilitate efficient removal, the piston is not moved directly by the explosive combustion force of the mixture of combustible powder and air, but is moved through the liquid.

そして内燃機関からの排ガスを遠心分離機に導びき、効率よく連続して灰、炭化物を取り除き、蒸気タービンを回わすボイラーに導びいている。  The exhaust gas from the internal combustion engine is led to a centrifugal separator, and the ash and carbides are efficiently and continuously removed, and then led to a boiler that rotates a steam turbine.

本発明内燃機関は上記の様な形態をとっているので、可燃性粉体と空気の混合体をシリンダー内で爆発燃焼さした爆発力を、液体を介することでピストンを詰らせることなくピストン運動として取り出すことができ  Since the internal combustion engine of the present invention takes the above-described form, the piston does not clog the piston by the explosive force obtained by exploding and burning the mixture of combustible powder and air in the cylinder through the liquid. Can be taken out as exercise

シリンダー内で発生した大量の灰と炭化物は、内燃機関内の液体や排ガスを遠心分離機で効率よく連続して取り出している。  A large amount of ash and carbide generated in the cylinder efficiently and continuously extract liquid and exhaust gas in the internal combustion engine with a centrifuge.

太陽エネルギーを電気に変換するに、いつたん太陽エネルギーを植物に蓄えているので、電気への変換効率も、必要な時に発電できる利用効率も直接電気に変換するに比較して向上している。  When converting solar energy into electricity, solar energy is always stored in plants, so the conversion efficiency to electricity and the utilization efficiency that can generate electricity when needed are improved compared to direct conversion to electricity.

植物の硬い幹等は軟化し柔らかい部分はそのままで乾燥粉砕するだけで燃料として利用しているので、エネルギー利用効率と燃料製造効率が向上している。  Since the hard trunks of plants are softened and the soft parts are used as fuel by simply drying and pulverizing them as they are, energy utilization efficiency and fuel production efficiency are improved.

本発明内燃機関を利用した発電は、植物の乾燥粉体を燃料として爆発燃焼力で本発明内燃機関を動かし、その排ガスの余熱を利用して蒸気タービンを回す事ができ、発電効率が高くなっている。  The power generation using the internal combustion engine of the present invention can operate the internal combustion engine of the present invention with explosive combustion power using dry powder of the plant as a fuel, and can turn the steam turbine using the residual heat of the exhaust gas, resulting in high power generation efficiency. ing.

本発明内燃機関のシリンダー内部で、乾燥粉体と空気の混合体が爆発燃焼した時、気体の膨張方向は、液体のある方向すなわち液体の表面に堆積した灰と炭化物の層方向だけであるので、爆発燃焼により生じた灰と炭化物の飛散方向も又同じ方向であり、灰と炭化物の飛散によるシリンダー内壁の損傷はない。  When the mixture of dry powder and air explodes in the cylinder of the internal combustion engine of the present invention, the expansion direction of the gas is only the direction of the liquid, that is, the layer direction of the ash and carbide deposited on the surface of the liquid. The scattering direction of ash and carbide generated by explosion combustion is also the same direction, and the inner wall of the cylinder is not damaged by the scattering of ash and carbide.

本発明内燃機関のシリンダー内に網目状可動性隔壁を設置しているので、その上部に灰や炭化物が堆積してその層が断熱効果が大きく、その下の液体に熱はほとんど伝らない。又その層とシリンダーの間にある蒸気が潤滑剤となって摩擦による抵抗は非常に小さい。  Since the mesh-like movable partition wall is installed in the cylinder of the internal combustion engine of the present invention, ash and carbides are deposited on the upper part of the cylinder, and the layer has a large heat insulating effect, and hardly any heat is transferred to the liquid below it. Also, the steam between the layer and the cylinder becomes a lubricant, and the frictional resistance is very small.

網目状可動性隔壁の各部の孔の大きさを制御すると、灰と炭化物の層が下の液体に流れ込む量がコントールされる。又可燃性粉体と空気の混合比率を変えても、発生する灰と炭化物の量が変化し、シリンダー内の網目状可動性隔壁の上に堆積している灰と炭化物の層の厚さを制御できている。  Controlling the size of the holes in each part of the reticulated movable partition controls the amount of ash and carbide layers flowing into the underlying liquid. Even if the mixing ratio of combustible powder and air is changed, the amount of generated ash and carbide changes, and the thickness of the ash and carbide layer deposited on the mesh-like movable partition wall in the cylinder is changed. I can control it.

本発明内燃機関にあるシリンダー上部周囲をボイラーの水で冷却すれば、余熱の利用効率が向上する。  If the periphery of the upper part of the cylinder in the internal combustion engine of the present invention is cooled with water from the boiler, the utilization efficiency of the residual heat is improved.

本発明内燃機関の動力取り出しピストンの先端に蓋を連結する事で、動力を伝える液体中の灰や炭化物の微粒子や溶けているガス成分の侵入を遅くする効果がある。  By connecting a lid to the tip of the power take-out piston of the internal combustion engine of the present invention, there is an effect of slowing invasion of fine particles of ash and carbides in the liquid that transmits power and dissolved gas components.

本発明内燃機関内の液体を循環さし、遠心分離機で灰と炭化物の固形物を取り除いているので、その時その循環液体を冷却することができる。  Since the liquid in the internal combustion engine of the present invention is circulated and the solid matter of ash and carbide is removed by the centrifugal separator, the circulating liquid can be cooled at that time.

本発明内燃機関を使用した発電は、比較的低温で発電しているので、排気ガス中に窒素酸化物が少なく、燃料が植物であるので、硫黄酸化物も少ない。又比較的小規模発電にも適しているので、都市近郊に設置でき送電ロスが少なく又低温温水も地域暖房に有効利用できる。  Since power generation using the internal combustion engine of the present invention generates power at a relatively low temperature, there is little nitrogen oxide in the exhaust gas, and the fuel is plant, so there is also little sulfur oxide. It is also suitable for relatively small-scale power generation, so it can be installed in the suburbs of the city, has little transmission loss, and low-temperature hot water can be used effectively for district heating.

本発明内燃機関の断面図  Sectional view of the internal combustion engine of the present invention 本発明内燃機関の遠心分離機正面断面図  Front sectional view of a centrifugal separator of the internal combustion engine of the present invention

以下本発明内燃機関の実施例を図に基づいて説明する。  Embodiments of the internal combustion engine of the present invention will be described below with reference to the drawings.

図1に示すように、シリンダー1の内部に網目状可動性隔壁2を設置し、その上に灰と炭化物の層3を作り、網目状可動性隔壁2の下に水4満たす。そして吸気管5から吸気管5内の弁6を開いて可燃性粉体と空気の混合体をシリンダ1内の爆発燃焼空間7に注入する。  As shown in FIG. 1, a mesh-like movable partition wall 2 is installed inside a cylinder 1, an ash and carbide layer 3 is formed thereon, and water 4 is filled under the mesh-like movable partition wall 2. The valve 6 in the intake pipe 5 is opened from the intake pipe 5 to inject a mixture of combustible powder and air into the explosion combustion space 7 in the cylinder 1.

そして複数の点火装置8にて爆発燃焼空間7内で、均等に爆発燃焼さす。この事により灰と炭化物の層3と網目状可動性隔壁2を介して、水4に圧力を及ぼす。  Then, the plurality of ignition devices 8 perform the explosion combustion evenly in the explosion combustion space 7. This exerts pressure on the water 4 through the ash and carbide layer 3 and the reticulated movable partition 2.

この圧力がシリンダー1の爆発燃焼空間7と反対側にあるピストン内蔵シリンダー9に伝播し、ピストン内蔵シリンダー9内にある油10を介して、ピストン11を押しこの運動を、回転体の回転運動として外に取り出す。  This pressure propagates to the piston built-in cylinder 9 on the opposite side of the explosion combustion space 7 of the cylinder 1, pushes the piston 11 through the oil 10 in the piston built-in cylinder 9, and this motion becomes the rotational motion of the rotating body. Take it out.

次に回転体の慣性回転運動によりピストン11が油10に圧力をかけるので、その圧力で、シリンダー1内部の水4を押し上げ、爆発燃焼空間7にある燃焼したガスを排気管12内の弁13を開けて、排気管12から排気させる。  Next, since the piston 11 applies pressure to the oil 10 by the inertial rotation of the rotating body, the pressure pushes up the water 4 inside the cylinder 1, and the burned gas in the explosion combustion space 7 is discharged into the valve 13 in the exhaust pipe 12. And the exhaust pipe 12 is exhausted.

その次に回転体の慣性回転運動により、ピストン11がシリンダー1の外部方向に引いて、弁6を開いた吸気管5から可燃性粉体と空気との混合気体を爆発燃焼空間7に吸引する。  Next, due to the inertial rotational movement of the rotating body, the piston 11 is pulled toward the outside of the cylinder 1, and a mixed gas of combustible powder and air is sucked into the explosion combustion space 7 from the intake pipe 5 in which the valve 6 is opened. .

そして回転体の慣性回転運動により、ピストン11でシリンダー1の上部方向に水4を押すことで、爆発燃焼空間7で可熱性粉体と空気との混合気体を圧縮し、複数の点火装置8により点火する。この圧縮し点火することで、爆発力を増しかつ燃焼効率を上げ、炭化物の発生を減少さしている。  Then, by the inertial rotational movement of the rotating body, the water 4 is pushed by the piston 11 in the upper direction of the cylinder 1, thereby compressing the mixed gas of the heatable powder and air in the explosion combustion space 7. Ignite. By compressing and igniting, the explosion power is increased, the combustion efficiency is increased, and the generation of carbides is reduced.

この作業を繰り返す事により、爆発燃焼空間7における爆発力をピストン11のピストン運動さらに回転体の回転運動に変換して発電している。  By repeating this operation, power is generated by converting the explosive force in the explosive combustion space 7 into the piston motion of the piston 11 and further the rotational motion of the rotating body.

シリンダー1の天井部分に超音波装置14を設置し、網目状可動性隔壁2の上に堆積した灰と炭化物層3の厚さを測定し、網目状可動性隔壁2の孔の大きさを調節している。又可燃性粉体と空気との混合比を変える事により灰と炭化物の発生量を変化させて制御する方法がある。  An ultrasonic device 14 is installed on the ceiling of the cylinder 1, the thickness of the ash and carbide layer 3 deposited on the mesh movable partition 2 is measured, and the size of the holes in the mesh movable partition 2 is adjusted. is doing. There is also a method of controlling by changing the generation amount of ash and carbide by changing the mixing ratio of combustible powder and air.

シリンダー1内の水4は循環用パイプ15で排水し、途中にある遠心分離機16で灰や炭化物を分離して再度ピストン内蔵シリンダー9内に注水することで、シリンダー1内の水4を循環し、灰や炭化物を外部に取り出しかつ水4を冷却している。  The water 4 in the cylinder 1 is drained by a circulation pipe 15, ash and carbides are separated by a centrifuge 16 in the middle, and the water 4 in the cylinder 1 is circulated again by pouring into the cylinder 9 with a built-in piston. Ashes and carbides are taken out and the water 4 is cooled.

排気管12から出た排ガスは、遠心分離機17に導びかれる。この時遠心分離機17の回転翼18に斜めから吹きつけられているので、回転翼18の回転の一助となっている。  The exhaust gas discharged from the exhaust pipe 12 is guided to the centrifuge 17. At this time, since the rotor blades 18 of the centrifugal separator 17 are blown at an angle, the rotor blades 18 are helped to rotate.

この遠心分離機17で灰や炭化物が連続してかつ効率よく取り除かれた排ガスは、ボイラーを暖めて、その蒸気で蒸気タービンを回転し発電している。  The exhaust gas from which ash and carbides are continuously and efficiently removed by the centrifugal separator 17 warms the boiler and rotates the steam turbine with the steam to generate electricity.

ボイラを暖めた排ガスは、再度水の中に吹きつけられて有害成分を取り除かれ、蒸気タービンを回した後冷却された温水と共に前記排ガスを吹きつけられ暖められた温水は、地域暖房に使用される。このためこの可燃性粉体の熱エネルギー利用効率は極めて高くなっている。そして、灰は林業や農業に再利用される。  The exhaust gas that warms the boiler is blown again into the water to remove harmful components, and the warm water that is heated by blowing the exhaust gas together with the hot water cooled after turning the steam turbine is used for district heating. The For this reason, the thermal energy utilization efficiency of this combustible powder is extremely high. Ashes are reused for forestry and agriculture.

ピストン11には蓋18が連結されていて、蓋18とピストン11との間に油10が封入されているので、蓋18が油10の汚染の進行を遅らせている。  A lid 18 is connected to the piston 11, and the oil 10 is sealed between the lid 18 and the piston 11, so that the lid 18 delays the progress of contamination of the oil 10.

可燃性粉体の製造は、植物の幹のごとく硬い部分は腐朽菌でもろくし粉体とし、軟らかい部分はそのまますり潰して乾燥して粉体とする。又その乾燥粉体に少し油を混じてもよい。又この機械的に粉体を製造し、さらに水分を含ませ高温高圧から一気に減圧してさらに細かく砕く方法がある。  In the production of combustible powder, a hard part such as a plant trunk is made into a crushed powder with decaying fungi, and a soft part is ground and dried as it is to obtain a powder. The dry powder may be mixed with a little oil. Further, there is a method in which powder is mechanically produced and further crushed by adding water and reducing the pressure from high temperature and pressure at once.

爆発力を強めかつ均一に爆発さすために、爆発燃焼空間7に数か所よりレーザー光又はフラツシユランプよりの強力パルス発光ビームを照射し点火する方法がある。  In order to intensify the explosion force and uniformly explode, there is a method of igniting by irradiating the explosion combustion space 7 with a laser beam or a strong pulsed light beam from a flash lamp from several places.

水4のかわりにシリコーン油を用いた実施例がある。  There is an embodiment in which silicone oil is used instead of water 4.

本発明は、植物から製造した可燃性粉体を利用した火力発電に利用できる。  INDUSTRIAL APPLICATION This invention can be utilized for the thermal power generation using the combustible powder manufactured from the plant.

1 シリンダー
2 網目状可動性隔壁
3 灰と炭化物層
4 水
5 吸気管
6、13 弁
7 爆発燃空間
8 複数の点火装置
9 ピストン内蔵シリンダー
10 油
11 ピストン
12 排気管
14 超音波装置
15 循環用パイプ
16、17 遠心分離機
18 回転翼
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Reticulated movable partition 3 Ash and carbide layer 4 Water 5 Intake pipe 6, 13 Valve 7 Explosion fuel space 8 Plural ignition devices 9 Piston built-in cylinder 10 Oil 11 Piston 12 Exhaust pipe 14 Ultrasonic device 15 Circulation pipe 16, 17 Centrifuge 18 Rotor blade

Claims (9)

シリンダー内の爆発力を、液体の運動に変換する発電用内燃機関。  An internal combustion engine for power generation that converts the explosive force in the cylinder into liquid motion. シリンダー内に可動性隔壁を持つ請求項1記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 1, wherein the cylinder has a movable partition wall. シリンダー内にある可動隔壁の上に載っている灰と炭化物層とシリンダー天井との距離を測定する機構を有し、灰と炭化物層の厚さを制御する機構を有する請求項2記載の発電用内燃機関。  The power generation device according to claim 2, further comprising a mechanism for measuring a distance between the ash, the carbide layer, and the cylinder ceiling mounted on the movable partition wall in the cylinder, and a mechanism for controlling a thickness of the ash and the carbide layer. Internal combustion engine. 液体の運動をピストンの運動に変換する請求項1記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 1, wherein the motion of the liquid is converted into the motion of a piston. シリンダー内部のピストンに蓋を連結した請求項4記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 4, wherein a lid is connected to a piston inside the cylinder. シリンダー内部にあるピストに連結した蓋の外部に、精製液を注入する請求項5記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 5, wherein the purified liquid is injected into the outside of the lid connected to the piston inside the cylinder. シリンダー内の液体を循環さし遠心分離機を通して、固体成分を除去する請求項1記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 1, wherein the liquid in the cylinder is circulated and the solid component is removed through a centrifuge. 内燃機関からの排ガスを遠心分離機を通すことで固体成分を除去する請求項1記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 1, wherein the solid component is removed by passing the exhaust gas from the internal combustion engine through a centrifugal separator. 複数の点火装置を有する請求項1記載の発電用内燃機関。  The internal combustion engine for power generation according to claim 1, comprising a plurality of ignition devices.
JP2011160332A 2011-06-13 2011-06-13 Internal combustion engine for power generation Withdrawn JP2013002441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160332A JP2013002441A (en) 2011-06-13 2011-06-13 Internal combustion engine for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160332A JP2013002441A (en) 2011-06-13 2011-06-13 Internal combustion engine for power generation

Publications (1)

Publication Number Publication Date
JP2013002441A true JP2013002441A (en) 2013-01-07

Family

ID=47671260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160332A Withdrawn JP2013002441A (en) 2011-06-13 2011-06-13 Internal combustion engine for power generation

Country Status (1)

Country Link
JP (1) JP2013002441A (en)

Similar Documents

Publication Publication Date Title
D’Alessandro et al. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: from concept to demonstration
RU2561636C2 (en) Combustion chamber, burning method, power generation device and method of power generation in such device
US8820080B2 (en) Nonfractionalized biomass-fueled refrigerant-based cogeneration
JP5432302B2 (en) Biomass fuel production machine
CN106468213B (en) Technology and method for generating electricity by explosion of coal dust, gas and air mixture
JP2018031067A (en) Generator of "mixture gas containing pressurized water vapor and hho gas" and utilization method thereof
WO2010003205A1 (en) Combined cycle energy generation system
JP2013002441A (en) Internal combustion engine for power generation
JP2017197706A (en) Biomass fine particle fuel
JP4938903B1 (en) Power generation system
KR101667676B1 (en) Combined heat and power generating apparatus using plastic burner
RU114341U1 (en) MICROGAS TURBINE ENERGY UNIT
JP2013127237A (en) Internal combustion engine for generating electric power
KR200419316Y1 (en) Combustion device using both of mixed oil and solid fuel
JP2009079803A (en) High-temperature and high-pressure gas producing device
RU124080U1 (en) ELECTRICITY GENERATION DEVICE
RU2509956C1 (en) Operation method of thermal power plant for utilisation of associated oil gas, and thermal power plant for its implementation
Simanjuntak et al. Process design and simulation study of an electricity generation plant utilizing low-grade wasted thermal energy using aspen Hysys software
JP2010169336A (en) Boiler and electric power generating device using the boiler
CN203201606U (en) Slow heating power machine
RU139134U1 (en) GAS TURBINE INSTALLATION
RU2482284C2 (en) Steam-gas plant
Duggan et al. P2_5 The Doorway to Hell
RU2482285C2 (en) Steam-gas plant
RU2578725C1 (en) Method for producing heat and fuel gas from finely dispersed fuel (organic) by burning or pyrolysis thereof using fluidised regenerative cells

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902