JP2013001781A - Molded article and method for producing the same - Google Patents

Molded article and method for producing the same Download PDF

Info

Publication number
JP2013001781A
JP2013001781A JP2011133498A JP2011133498A JP2013001781A JP 2013001781 A JP2013001781 A JP 2013001781A JP 2011133498 A JP2011133498 A JP 2011133498A JP 2011133498 A JP2011133498 A JP 2011133498A JP 2013001781 A JP2013001781 A JP 2013001781A
Authority
JP
Japan
Prior art keywords
fine particles
inorganic fine
linear expansion
molded article
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133498A
Other languages
Japanese (ja)
Other versions
JP5738082B2 (en
Inventor
Takeaki Kumagai
竹晃 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011133498A priority Critical patent/JP5738082B2/en
Priority to PCT/JP2012/003455 priority patent/WO2012172736A1/en
Priority to US14/126,406 priority patent/US9376553B2/en
Publication of JP2013001781A publication Critical patent/JP2013001781A/en
Application granted granted Critical
Publication of JP5738082B2 publication Critical patent/JP5738082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a molded article having a low coefficient of linear expansion, and to provide a method for producing the same.SOLUTION: The molded article prepared by molding a mixture material comprising fine inorganic particles surface-modified with at least amino group-having functional groups and polymethyl methacrylate, wherein the content of the fine inorganic particles is ≥30 and ≤80 vol.% is characterized in that the coefficient of linear expansion of the molded article in a range of 20-60°C is ≤10×10/°C (including negative coefficients of linear expansion). The method for producing the molded article is characterized by having a step of mixing the fine inorganic particles surface-modified with at least amino group-having functional groups with the polymethyl methacrylate so as to give a fine inorganic particle content of ≥30 and ≤80 vol.% to obtain the mixture material, and a step of pressure-molding the mixture material under heating.

Description

本発明は低い線膨張係数を有する成形品およびその製造方法に関するものである。   The present invention relates to a molded article having a low linear expansion coefficient and a method for producing the same.

一般的に物質は加熱すると膨張するが、特に有機樹脂材料の線膨張係数は大きいことが知られている。例えば精密光学系などに代表されるデバイスにおいて、有機樹脂材料から成る部材を使用する場合、線膨張係数が大きく、温度変化による部材の寸法変化が大きいと、光学系の位置ずれを引き起こす原因となり得る。   In general, substances expand when heated, but it is known that the coefficient of linear expansion of organic resin materials is particularly large. For example, when a member made of an organic resin material is used in a device typified by a precision optical system or the like, if the linear expansion coefficient is large and the dimensional change of the member due to a temperature change is large, it may cause a displacement of the optical system .

この問題を解決する方法として、有機樹脂材料に無機微粒子を添加して線膨張係数を低下させ、位置ずれを少なくする方法が知られている(特許文献1)。   As a method for solving this problem, a method is known in which inorganic fine particles are added to an organic resin material to reduce the coefficient of linear expansion and reduce positional deviation (Patent Document 1).

また、他の線膨張係数を低減する方法として、負の線膨張(以下、負膨張)性を有する材料を、有機樹脂材料から成る部材の周辺に組み込み寸法変化を補償する方法、あるいは負膨張性を有する材料を有機樹脂材料に混合し線膨張係数を低減する方法がある。   As another method of reducing the linear expansion coefficient, a material having negative linear expansion (hereinafter referred to as negative expansion) is incorporated around a member made of an organic resin material to compensate for dimensional changes, or negative expansion There is a method of reducing the coefficient of linear expansion by mixing a material having an organic resin material.

負膨張性を有する材料として、タングステン酸ジルコニウムやリチウム−アルミニウム−シリコン酸化物、マンガンの窒化物などの無機材料が知られている(特許文献2、特許文献3、非特許文献1)。また有機材料でも液晶ポリマーや超高分子量ポリエチレン繊維などが負膨張性を示すことが知られている(特許文献4、特許文献5)。   As materials having negative expansibility, inorganic materials such as zirconium tungstate, lithium-aluminum-silicon oxide, and manganese nitride are known (Patent Document 2, Patent Document 3, and Non-Patent Document 1). In addition, it is known that liquid crystal polymers, ultrahigh molecular weight polyethylene fibers, and the like exhibit negative expansion properties even in organic materials (Patent Documents 4 and 5).

特開2007−126636号公報JP 2007-126636 A 特開2003−342075号公報JP 2003-342075 A 特開2003−192386号公報JP 2003-192386 A 特開2001−172048号公報JP 2001-172048 A 特開2003−281942号公報JP 2003-281942 A

K.Takenaka and H.Takagi,Appl. Phys. Lett.87(2005)261902K. Takenaka and H.K. Takagi, Appl. Phys. Lett. 87 (2005) 261902

しかしながら、これまでに知られている有機樹脂材料に無機微粒子を加えて線膨張係数を低下させる方法においては、線膨張係数が10×10−6/℃以下を示す成形品を得ることが難しいため、精密光学系などに使用することが困難であった。 However, it is difficult to obtain a molded product having a linear expansion coefficient of 10 × 10 −6 / ° C. or less in the known methods of adding inorganic fine particles to an organic resin material to reduce the linear expansion coefficient. It was difficult to use for precision optical systems.

また有機樹脂材料の膨張分をマンガン窒化物からなる負膨張性材料により補償する場合、上述の負膨張性を有する無機材料は、その線膨張係数の絶対値が最大でも25×10−6/℃と小さい。同様に負膨張性を有する有機材料もその線膨張係数の絶対値が10×10−6/℃よりも小さい。そのため有機樹脂材料の温度変化による膨張を補償するためには、相当の厚みまたは量の負膨張性を有する材料を用いた成形体が必要である。 When the organic resin material is compensated for by the negative expansion material made of manganese nitride, the above-described inorganic material having negative expansion property has an absolute value of the linear expansion coefficient of 25 × 10 −6 / ° C. at the maximum. And small. Similarly, an organic material having negative expansibility also has an absolute value of linear expansion coefficient smaller than 10 × 10 −6 / ° C. Therefore, in order to compensate for the expansion due to the temperature change of the organic resin material, a molded body using a material having a negative expansion property having a considerable thickness or amount is required.

本発明は、この様な背景技術に鑑みてなされたものであり、低い線膨張係数を有する成形品およびその製造方法を提供するものである。   This invention is made | formed in view of such a background art, and provides the molded article which has a low linear expansion coefficient, and its manufacturing method.

上記の課題を解決する成形品は、少なくともアミノ基を有する官能基で表面修飾された無機微粒子とポリメタクリル酸メチルを含み、前記無機微粒子の含有量が30vol%以上80vol%以下である混合材料を成形してなる成形品であり、前記成形品の20℃から60℃の範囲の線膨張係数が10×10−6/℃以下(但し、負の線膨張係数を含む。)であることを特徴とする。 A molded article that solves the above-mentioned problem is a mixed material containing inorganic fine particles surface-modified with at least a functional group having an amino group and polymethyl methacrylate, and the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less. A molded article formed by molding, wherein the molded article has a linear expansion coefficient of 10 × 10 −6 / ° C. or less (including a negative linear expansion coefficient) in a range of 20 ° C. to 60 ° C. And

上記の課題を解決する成形品の製造方法は、少なくともアミノ基を有する官能基で表面修飾された無機微粒子とポリメタクリル酸メチルとを、前記無機微粒子の含有量が30vol%以上80vol%以下になる様に混合して混合材料を得る工程、前記混合材料を加熱下で加圧成形する工程を有することを特徴とする。   In the method for producing a molded article that solves the above problems, the inorganic fine particles surface-modified with at least a functional group having an amino group and polymethyl methacrylate are used, and the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less. It is characterized by having a step of obtaining a mixed material by mixing, and a step of pressure-molding the mixed material under heating.

本発明によれば、低い線膨張係数を有する成形品およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the molded article which has a low linear expansion coefficient, and its manufacturing method can be provided.

本発明の成形品は、低い線膨張係数を有するので、光ファイバーやレンズなどの精密光学系デバイスに使用される低膨張部材や温度補償部材として好適に使用できる。   Since the molded article of the present invention has a low linear expansion coefficient, it can be suitably used as a low expansion member or a temperature compensation member used for precision optical devices such as optical fibers and lenses.

本発明の実施例で得られた成形品の無機微粒子含有量と線膨張係数の関係を示す図である。It is a figure which shows the relationship between inorganic fine particle content and the linear expansion coefficient of the molded article obtained in the Example of this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る成形品は、少なくともアミノ基を有する官能基で表面修飾された無機微粒子とポリメタクリル酸メチルを含み、前記無機微粒子の含有量が30vol%以上80vol%以下である混合材料を成形してなる成形品であり、前記成形品の20℃から60℃の範囲の線膨張係数が10×10−6/℃以下(但し、負の線膨張係数を含む。)であることを特徴とする。 The molded article according to the present invention is formed by molding a mixed material containing inorganic fine particles surface-modified with at least a functional group having an amino group and polymethyl methacrylate, and the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less. The molded article has a linear expansion coefficient of 10 × 10 −6 / ° C. or less (including a negative linear expansion coefficient) in the range of 20 ° C. to 60 ° C. .

本発明は、ポリメタクリル酸メチル(以下、PMMAと記す。)に、アミノ基を有する官能基で表面修飾された無機微粒子を混合した後に成形を行うことで、低い線膨張係数を有する成形品を提供するものである。   In the present invention, polymethyl methacrylate (hereinafter referred to as PMMA) is mixed with inorganic fine particles whose surface is modified with a functional group having an amino group, and then molded, thereby forming a molded product having a low linear expansion coefficient. It is to provide.

本発明における無機微粒子は、アミノ基を有する官能基で表面修飾されている無機微粒子を用いることを特徴とする。従来、有機樹脂材料に無機微粒子を添加すると、有機樹脂材料の線膨張係数を低減する方法はよく知られているが、線膨張係数の低減が十分ではなかった。本発明は、線膨張係数を大きく低減させるために、アミノ基を有する官能基で表面修飾されている無機微粒子を選択して用いたものである。   The inorganic fine particles in the present invention are characterized by using inorganic fine particles whose surface is modified with a functional group having an amino group. Conventionally, when inorganic fine particles are added to an organic resin material, a method for reducing the linear expansion coefficient of the organic resin material is well known, but the linear expansion coefficient has not been sufficiently reduced. In the present invention, in order to greatly reduce the linear expansion coefficient, inorganic fine particles whose surface is modified with a functional group having an amino group are selected and used.

アミノ基を有する官能基としては、4−アミノブチル基、N−(2−アミノエチル)−3−アミノプロピル基、N−(2−アミノエチル)−11−アミノウンデシル基、N−(6−アミノヘキシル)アミノプロピル基、N−フェニル−3−アミノプロピル基、(アミノエチルアミノメチル)フェニチル基、3−(m−アミノフェノキシ)プロピル基、m−アミノフェニル基、p−アミノフェニル基、3−アミノプロピル基、3−ジメチルアミノプロピル基、N,N−ジメチルアミノプロピル基、N−メチルアミノプロピル基、ウレイドプロピル基などが挙げられるが、これらに限定されない。   Examples of the functional group having an amino group include 4-aminobutyl group, N- (2-aminoethyl) -3-aminopropyl group, N- (2-aminoethyl) -11-aminoundecyl group, N- (6 -Aminohexyl) aminopropyl group, N-phenyl-3-aminopropyl group, (aminoethylaminomethyl) phenethyl group, 3- (m-aminophenoxy) propyl group, m-aminophenyl group, p-aminophenyl group, Examples include, but are not limited to, 3-aminopropyl group, 3-dimethylaminopropyl group, N, N-dimethylaminopropyl group, N-methylaminopropyl group, ureidopropyl group, and the like.

無機微粒子は、特に限定されないが、例えば、シリカ、チタニア、ジルコニア、アルミナ、酸化ニオブ、酸化マグネシウム、酸化ベリリウム、酸化テルル、酸化イットリウム、インジウム錫酸化物等の金属酸化物粒子や、金、白金、銀等の金属粒子が挙げられる。特に、無機微粒子がシリカ微粒子であることが好ましい。   The inorganic fine particles are not particularly limited, but for example, metal oxide particles such as silica, titania, zirconia, alumina, niobium oxide, magnesium oxide, beryllium oxide, tellurium oxide, yttrium oxide, indium tin oxide, gold, platinum, Examples thereof include metal particles such as silver. In particular, the inorganic fine particles are preferably silica fine particles.

無機微粒子の粒子径は、特に限定されないが、平均一次粒子径が1nm以上30nm以下、好ましくは7nm以上12nm以下であることが望ましい。粒子径が30nmより大きいと表面積の減少に伴い低線膨張性が失われる可能性がある。   The particle diameter of the inorganic fine particles is not particularly limited, but the average primary particle diameter is 1 nm to 30 nm, preferably 7 nm to 12 nm. If the particle diameter is larger than 30 nm, the low linear expansion property may be lost as the surface area decreases.

アミノ基を有する官能基で表面修飾された無機微粒子には、RA200H(シリカ、日本アエロジル社製)、NA50H(シリカ、日本アエロジル社製)等の市販品を用いることができる。   Commercially available products such as RA200H (silica, manufactured by Nippon Aerosil Co., Ltd.) and NA50H (silica, manufactured by Nippon Aerosil Co., Ltd.) can be used for the inorganic fine particles whose surface is modified with a functional group having an amino group.

本発明の成形品は、上記のアミノ基を有する官能基で表面修飾された無機微粒子と、ポリメタクリル酸メチルを含有する混合材料を成形してなる成形品である。   The molded article of the present invention is a molded article formed by molding a mixed material containing inorganic fine particles whose surface is modified with the above functional group having an amino group and polymethyl methacrylate.

本発明の成形品に含有される無機微粒子の含有量は、30vol%(体積パーセント)以上80vol%以下、好ましくは30vol%(体積パーセント)以上50vol%以下が望ましい。30vol%(体積パーセント)は、およそ42重量パーセントである。無機微粒子の含有量が30vol%以上になると成形品の線膨張係数が急激に低下する。確実に線膨張係数を低減するためには無機微粒子の含有量を多くすることが有効であるが、含有量が増えるにつれて脆くなり成形性が悪化するため、含有量は80vol%以下であることが好ましい。   The content of the inorganic fine particles contained in the molded article of the present invention is 30 vol% (volume percent) to 80 vol%, preferably 30 vol% (volume percent) to 50 vol%. 30 vol% (volume percent) is approximately 42 weight percent. When the content of the inorganic fine particles is 30 vol% or more, the linear expansion coefficient of the molded product is rapidly reduced. In order to reliably reduce the linear expansion coefficient, it is effective to increase the content of inorganic fine particles. However, as the content increases, the content becomes brittle and the formability deteriorates, so the content may be 80 vol% or less. preferable.

また、同じ含有量においても無機微粒子の分散状態によっては異なる線膨張係数を有することがある。なお本発明における無機微粒子の含有量とは、熱重量分析(TGA)装置によって成形品を800℃まで昇温したときの残存重量パーセントを測定し、体積換算した数値を表す。   Even with the same content, it may have a different linear expansion coefficient depending on the dispersion state of the inorganic fine particles. The content of the inorganic fine particles in the present invention represents a numerical value converted into a volume by measuring the residual weight percentage when the molded product is heated to 800 ° C. by a thermogravimetric analysis (TGA) apparatus.

本発明の成形品は、20℃から60℃の範囲の線膨張係数が10×10−6/℃以下(但し、負の線膨張係数を含む。)であることを特徴とする。本発明の成形品の好ましい線膨張係数は、−10×10−6/℃以上10×10−6/℃以下、さらに好ましくは−5×10−6/℃以上5×10−6/℃以下である。−は負の線膨張係数を表す。線膨張係数が10×10−6/℃より大きくなると、温度変化による成形品の寸法変化が大きくなり、部材の位置ずれが発生するので好ましくない。本発明の成形品の20℃から60℃の範囲の線膨張係数が、負の線膨張係数であることが好ましい。 The molded article of the present invention has a linear expansion coefficient in the range of 20 ° C. to 60 ° C. of 10 × 10 −6 / ° C. or less (including a negative linear expansion coefficient). The linear expansion coefficient of the molded article of the present invention is preferably −10 × 10 −6 / ° C. or higher and 10 × 10 −6 / ° C. or lower, more preferably −5 × 10 −6 / ° C. or higher and 5 × 10 −6 / ° C. or lower. It is. -Represents a negative linear expansion coefficient. When the linear expansion coefficient is larger than 10 × 10 −6 / ° C., the dimensional change of the molded product due to the temperature change becomes large, and the position shift of the member occurs. The linear expansion coefficient in the range of 20 ° C. to 60 ° C. of the molded article of the present invention is preferably a negative linear expansion coefficient.

次に、本発明に係る成形品の製造方法について説明する。   Next, the manufacturing method of the molded product according to the present invention will be described.

本発明に係る成形品の製造方法は、少なくともアミノ基を有する官能基で表面修飾された無機微粒子とポリメタクリル酸メチルとを、前記無機微粒子の含有量が30vol%以上80vol%以下になる様に混合して混合材料を得る工程、前記混合材料を加熱下で加圧成形する工程を有することを特徴とする。   In the method for producing a molded article according to the present invention, the inorganic fine particles surface-modified with at least a functional group having an amino group and polymethyl methacrylate are used so that the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less. It has a step of mixing to obtain a mixed material, and a step of pressure-molding the mixed material under heating.

前記混合材料を得る工程は、PMMAを溶媒に溶解した状態で、前記無機微粒子または溶媒に分散した無機微粒子と混合した後、前記溶媒を除去して混合材料を得るのが好ましい。   In the step of obtaining the mixed material, it is preferable that PMMA is dissolved in a solvent and mixed with the inorganic fine particles or the inorganic fine particles dispersed in the solvent, and then the solvent is removed to obtain the mixed material.

PMMAと無機微粒子の混合は、溶媒中にPMMAを溶解させて微粒子と混合し溶媒を除去する方法で行う。   PMMA and inorganic fine particles are mixed by a method in which PMMA is dissolved in a solvent, mixed with the fine particles, and the solvent is removed.

PMMAが溶解する溶媒は、アセトン、トルエン、テトラヒドロフラン、酢酸エチル、酢酸ブチル、キシレン、ジメチルホルムアミドなどが挙げられる。残留溶媒は線膨張係数を悪化させる要因となるため、溶媒の除去は加熱・真空などにより確実に行う必要がある。従って溶媒を除去することを考えると、沸点の比較的低いアセトン、テトラヒドロフラン、酢酸エチルが好適である。   Examples of the solvent in which PMMA is dissolved include acetone, toluene, tetrahydrofuran, ethyl acetate, butyl acetate, xylene, dimethylformamide, and the like. Since the residual solvent causes a deterioration in the linear expansion coefficient, it is necessary to reliably remove the solvent by heating or vacuum. Therefore, in view of removing the solvent, acetone, tetrahydrofuran, and ethyl acetate having a relatively low boiling point are preferable.

無機微粒子は直接PMMAの溶液に混合してもよいし、予め溶媒と混合した無機微粒子の含有液をPMMAの溶液に混合してもよい。溶媒の量は任意であるため、最終的に除去可能であれば適宜追加しても構わない。PMMAと無機微粒子を混合した後、ホモジナイザーや超音波処理などにより混合溶液を均一化することが望ましい。   The inorganic fine particles may be directly mixed with the PMMA solution, or a liquid containing inorganic fine particles previously mixed with a solvent may be mixed with the PMMA solution. Since the amount of the solvent is arbitrary, it may be appropriately added as long as it can be finally removed. After mixing PMMA and inorganic fine particles, it is desirable to homogenize the mixed solution by a homogenizer or ultrasonic treatment.

PMMAと無機微粒子は、無機微粒子の含有量が30vol%以上80vol%以下になるように混合される。   PMMA and inorganic fine particles are mixed so that the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less.

PMMAと無機微粒子を混合した混合材料は、射出成形やヒートプレス成形など、加熱下において加圧成形することで任意の形状に成形される。成形時の温度は低すぎると目的の形状を作製できず、高すぎると線膨張係数が高くなる原因となることから、150から300℃の範囲が適当である。成形圧力は特に限定されないが、形状を転写させるために50MPa以上であることが好ましい。   A mixed material obtained by mixing PMMA and inorganic fine particles is molded into an arbitrary shape by pressure molding under heating, such as injection molding or heat press molding. If the temperature at the time of molding is too low, the desired shape cannot be produced, and if it is too high, the linear expansion coefficient becomes high, so a range of 150 to 300 ° C. is appropriate. The molding pressure is not particularly limited, but is preferably 50 MPa or more in order to transfer the shape.

以下、実施例及び比較例を挙げて本発明を更に具体的に説明をする。本発明は何らこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples.

(実施例1)
<PMMAと無機微粒子の混合>
PMMA(デルペット70NH;旭化成ケミカルズ社製)をアセトンに対して5wt%になるように混合し、超音波処理により常温(25℃)にてPMMAを溶解させ、PMMA/アセトン溶液を作製した。
Example 1
<Mixing of PMMA and inorganic fine particles>
PMMA (Delpet 70NH; manufactured by Asahi Kasei Chemicals Corporation) was mixed so as to be 5 wt% with respect to acetone, and PMMA was dissolved at room temperature (25 ° C.) by ultrasonic treatment to prepare a PMMA / acetone solution.

アミノ基を有する無機微粒子として、RA200H(シリカ、平均一次粒子径12nm、日本アエロジル社製)をアセトンに対して2.5wt%になるように混合し、無機微粒子/アセトン溶液を作製した。   As inorganic fine particles having an amino group, RA200H (silica, average primary particle size 12 nm, manufactured by Nippon Aerosil Co., Ltd.) was mixed at 2.5 wt% with respect to acetone to prepare an inorganic fine particle / acetone solution.

作製したPMMA/アセトン溶液10gに対し、無機微粒子/アセトン溶液を20g滴下し、超音波処理装置を用いてよく混合した。混合溶液中のアセトンをある程度自然乾燥させた後、真空加熱炉で約210℃にておよそ4時間過熱して溶媒の除去を行い、PMMA/無機微粒子の混合材料を得た。   20 g of inorganic fine particles / acetone solution was dropped into 10 g of the prepared PMMA / acetone solution, and well mixed using an ultrasonic treatment apparatus. After the acetone in the mixed solution was naturally dried to some extent, the solvent was removed by heating in a vacuum heating furnace at about 210 ° C. for about 4 hours to obtain a mixed material of PMMA / inorganic fine particles.

<成形>
成形はヒートプレスにて行った。
<Molding>
Molding was performed by a heat press.

φ15mmのプレス成形用金型の面に離型剤としてノベック−1720(住友スリーエム社製)を滴下してよく拭き取る。PMMA/無機微粒子の混合材料をプレス成形用金型に充填し、小型熱プレス機(アズワン社製)にセットしながら250℃まで加熱した。小型熱プレス機の上面と下面の温度が250℃に達した後に110MPaの荷重を付与し、100℃まで風冷しながら荷重を自然開放させた。100℃で完全に荷重を除き、金型からPMMA/無機微粒子の混合材料を離型することでコイン状の成形品を得た。   Novec-1720 (manufactured by Sumitomo 3M) is dropped as a mold release agent onto the surface of the press molding mold with a diameter of 15 mm. A mixed material of PMMA / inorganic fine particles was filled in a press molding die and heated to 250 ° C. while being set in a small heat press (manufactured by ASONE). A load of 110 MPa was applied after the temperature of the upper and lower surfaces of the small hot press machine reached 250 ° C., and the load was naturally released while cooling to 100 ° C. A coin-shaped molded article was obtained by completely removing the load at 100 ° C. and releasing the mixed material of PMMA / inorganic fine particles from the mold.

(実施例2)
実施例1において、無機微粒子/アセトン溶液を5wt%に調整し、PMMA/アセトン溶液9.4gに無機微粒子/アセトン溶液を10.6g加えた以外は実施例1と同様にして、成形品を得た。
(Example 2)
A molded article was obtained in the same manner as in Example 1 except that the inorganic fine particle / acetone solution was adjusted to 5 wt% in Example 1, and 10.6 g of the inorganic fine particle / acetone solution was added to 9.4 g of the PMMA / acetone solution. It was.

(実施例3)
実施例1において、PMMA/無機微粒子の混合材料を作製する際に、2.5wt%無機微粒子/アセトン溶液を17g滴下した他は実施例1と同様にして、成形品を得た。
(Example 3)
In Example 1, a molded product was obtained in the same manner as in Example 1 except that 17 g of 2.5 wt% inorganic fine particles / acetone solution was dropped when a mixed material of PMMA / inorganic fine particles was produced.

(実施例4)
実施例1において、PMMA/無機微粒子の混合材料を作製する際に、2.5wt%無機微粒子/アセトン溶液を14g滴下した他は実施例1と同様にして、成形品を得た。
Example 4
In Example 1, a molded product was obtained in the same manner as in Example 1 except that 14 g of 2.5 wt% inorganic fine particles / acetone solution was dropped when producing the mixed material of PMMA / inorganic fine particles.

(比較例1)
実施例1において、PMMA/無機微粒子の混合材料を作製する際に、2.5wt%無機微粒子/アセトン溶液を10g滴下した他は実施例1と同様にして、成形品を得た。
(Comparative Example 1)
In Example 1, a molded product was obtained in the same manner as in Example 1 except that 10 g of 2.5 wt% inorganic fine particle / acetone solution was dropped when the PMMA / inorganic fine particle mixed material was produced.

(比較例2)
実施例1において、PMMA/無機微粒子の混合材料を作製する際に、2.5wt%無機微粒子/アセトン溶液を5g滴下した他は実施例1と同様にして、成形品を得た。
(Comparative Example 2)
In Example 1, a molded product was obtained in the same manner as in Example 1 except that 5 g of 2.5 wt% inorganic fine particles / acetone solution was dropped when producing the mixed material of PMMA / inorganic fine particles.

(比較例3)
実施例1において、無機微粒子を添加せずにPMMAのみをアセトンに溶解し、その他は実施例1と同様にして成形品を得た。
(Comparative Example 3)
In Example 1, a molded product was obtained in the same manner as in Example 1 except that only PMMA was dissolved in acetone without adding inorganic fine particles.

(実施例5)
<PMMAと無機微粒子の混合>
PMMA(デルペット70NH;旭化成ケミカルズ社製)をアセトンに対して5wt%になるように混合し、超音波処理により常温にてPMMAを溶解させ、PMMA/アセトン溶液を作製した。
(Example 5)
<Mixing of PMMA and inorganic fine particles>
PMMA (Delpet 70NH; manufactured by Asahi Kasei Chemicals Corporation) was mixed so as to be 5 wt% with respect to acetone, and PMMA was dissolved at room temperature by ultrasonic treatment to prepare a PMMA / acetone solution.

PMMA/アセトン溶液40gに対し、RA200Hを5.6g添加し、RA200Hが十分に浸漬するようにアセトンを任意量加え、超音波処理を行いよく混合した。アセトンをある程度自然乾燥させた後、真空加熱炉で約210℃にておよそ4時間加熱して溶媒の除去を行い、PMMA/無機微粒子の混合材料を得た。   5.6 g of RA200H was added to 40 g of the PMMA / acetone solution, an arbitrary amount of acetone was added so that RA200H was sufficiently immersed, and the mixture was subjected to ultrasonic treatment and mixed well. After the acetone was naturally dried to some extent, the solvent was removed by heating at about 210 ° C. for about 4 hours in a vacuum heating furnace to obtain a mixed material of PMMA / inorganic fine particles.

<成形>
成形は実施例1と同様にして行い、成形品を得た。
<Molding>
Molding was performed in the same manner as in Example 1 to obtain a molded product.

(実施例6)
実施例5において、アミノ基を有する無機微粒子をRA200HのかわりにNA50H(シリカ、平均一次粒子径30nm、日本アエロジル社製)を用いて、PMMA/アセトン溶液10gにNA50Hを1.2g添加した以外は実施例5と同様にして成形品を得た。
(Example 6)
In Example 5, except that NA50H (silica, average primary particle size 30 nm, manufactured by Nippon Aerosil Co., Ltd.) was used instead of RA200H for inorganic fine particles having amino groups, and 1.2 g of NA50H was added to 10 g of PMMA / acetone solution. A molded product was obtained in the same manner as in Example 5.

(比較例4)
実施例5において、無機微粒子をR711(シリカ、平均一次粒子径12nm、日本アエロジル社製)に変更し、PMMA/アセトン溶液50gに対してR711を1.8g添加した以外は実施例5と同様にして行い、成形品を得た。R711はメタクリロキシプロピル基で表面修飾されている。
(Comparative Example 4)
In Example 5, the inorganic fine particles were changed to R711 (silica, average primary particle size 12 nm, manufactured by Nippon Aerosil Co., Ltd.), and the same procedure as in Example 5 was performed except that 1.8 g of R711 was added to 50 g of the PMMA / acetone solution. To obtain a molded product. R711 is surface-modified with a methacryloxypropyl group.

(比較例5)
実施例1において、無機微粒子をR805(シリカ、平均一次粒子径12nm、日本アエロジル社製)に変更した以外は実施例1と同様にして行い、成形品を得た。R805はオクチル基で表面修飾されている。
(Comparative Example 5)
A molded product was obtained in the same manner as in Example 1 except that the inorganic fine particles were changed to R805 (silica, average primary particle size 12 nm, manufactured by Nippon Aerosil Co., Ltd.). R805 is surface-modified with an octyl group.

(比較例6)
比較例5において、PMMA/無機微粒子の混合材料を作製する際に、2.5wt%無機微粒子/アセトン溶液を10g滴下した他は比較例5と同様にして、成形品を得た。
(Comparative Example 6)
In Comparative Example 5, a molded product was obtained in the same manner as Comparative Example 5 except that 10 g of 2.5 wt% inorganic fine particle / acetone solution was dropped when a mixed material of PMMA / inorganic fine particles was produced.

<線膨張係数の評価>
TMA(TMA Q400;TAインスツルメント社製)にて、0から80℃で3サイクル温度負荷を与え、厚み方向に対する20から60℃の線膨張係数を算出した。変位の測定には膨張プローブを使用した。
<Evaluation of linear expansion coefficient>
Using TMA (TMA Q400; manufactured by TA Instruments), a three-cycle temperature load was applied at 0 to 80 ° C., and a linear expansion coefficient of 20 to 60 ° C. with respect to the thickness direction was calculated. An expansion probe was used to measure the displacement.

<無機微粒子の含有量の評価>
無機微粒子の含有量は、熱重量分析(TGA)装置によって成形品を800℃まで昇温したときの残存重量パーセントを測定し、体積換算した数値を表す。無機微粒子の含有量の測定はTGA(TGA Q500;TAインスツルメント社製)を用いて行った。無機微粒子の含有量を重量パーセントからvol%(体積パーセント)への換算に際し、PMMAの比重値には1.19、シリカ微粒子の比重値は2.00を使用した。なお評価に際して各成形品は適宜適当な大きさにカットした。
<Evaluation of content of inorganic fine particles>
The content of the inorganic fine particles represents a numerical value converted into a volume by measuring the residual weight percentage when the molded article is heated to 800 ° C. by a thermogravimetric analysis (TGA) apparatus. The content of the inorganic fine particles was measured using TGA (TGA Q500; manufactured by TA Instruments). When converting the content of the inorganic fine particles from weight percent to vol% (volume percent), 1.19 was used as the specific gravity value of PMMA, and 2.00 was used as the specific gravity value of the silica fine particles. In the evaluation, each molded product was appropriately cut into an appropriate size.

表1に実施例および比較例の成形品の評価結果を示した。また、図1に実施例1から4、比較例1から3で得られた成形品の無機微粒子含有量と線膨張係数の関係をプロットしたものを示した。   Table 1 shows the evaluation results of the molded products of Examples and Comparative Examples. FIG. 1 shows a plot of the relationship between the inorganic fine particle content and the linear expansion coefficient of the molded products obtained in Examples 1 to 4 and Comparative Examples 1 to 3.

Figure 2013001781
Figure 2013001781

本発明の成形品は、20から60℃の範囲において低い線膨張係数を示すので、光ファイバーやレンズなどの精密光学系デバイスに使用される低膨張部材や温度補償部材として利用することができる。   Since the molded product of the present invention exhibits a low linear expansion coefficient in the range of 20 to 60 ° C., it can be used as a low expansion member or a temperature compensation member used for precision optical devices such as optical fibers and lenses.

Claims (7)

少なくともアミノ基を有する官能基で表面修飾された無機微粒子とポリメタクリル酸メチルを含み、前記無機微粒子の含有量が30vol%以上80vol%以下である混合材料を成形してなる成形品であり、前記成形品の20℃から60℃の範囲の線膨張係数が10×10−6/℃以下(但し、負の線膨張係数を含む。)であることを特徴とする成形品。 A molded article formed by molding a mixed material containing inorganic fine particles surface-modified with at least a functional group having an amino group and polymethyl methacrylate, wherein the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less, A molded article having a linear expansion coefficient in the range of 20 ° C. to 60 ° C. of 10 × 10 −6 / ° C. or less (including a negative linear expansion coefficient). 前記成形品の20℃から60℃の範囲の線膨張係数が、負の線膨張係数であることを特徴とする請求項1に記載の成形品。   2. The molded product according to claim 1, wherein a linear expansion coefficient in a range of 20 ° C. to 60 ° C. of the molded product is a negative linear expansion coefficient. 前記無機微粒子の平均一次粒子径が1nm以上30nm以下であることを特徴とする請求項1または2に記載の成形品。   The molded article according to claim 1 or 2, wherein an average primary particle diameter of the inorganic fine particles is 1 nm or more and 30 nm or less. 前記無機微粒子がシリカ微粒子であることを特徴とする請求項1乃至3のいずれかの項に記載の成形品。   The molded article according to any one of claims 1 to 3, wherein the inorganic fine particles are silica fine particles. 少なくともアミノ基を有する官能基で表面修飾された無機微粒子とポリメタクリル酸メチルとを、前記無機微粒子の含有量が30vol%以上80vol%以下になる様に混合して混合材料を得る工程、前記混合材料を加熱下で加圧成形する工程を有することを特徴とする請求項1乃至4のいずれかに記載の成形品の製造方法。   Mixing the inorganic fine particles surface-modified with at least a functional group having an amino group and polymethyl methacrylate so that the content of the inorganic fine particles is 30 vol% or more and 80 vol% or less; The method for producing a molded product according to any one of claims 1 to 4, further comprising a step of pressure-molding the material under heating. 前記ポリメタクリル酸メチルを溶媒に溶解した状態で、前記無機微粒子または溶媒に分散した無機微粒子と混合した後、前記溶媒を除去して混合材料を得ることを特徴とする請求項5に記載の成形品の製造方法。   6. The molding according to claim 5, wherein the polymethyl methacrylate is dissolved in a solvent and mixed with the inorganic fine particles or the inorganic fine particles dispersed in the solvent, and then the solvent is removed to obtain a mixed material. Product manufacturing method. 前記溶媒が、少なくともアセトン、テトラヒドロフラン、酢酸エチルのいずれかを含むこと特徴とする請求項6に記載の成形品の製造方法。   The method for producing a molded article according to claim 6, wherein the solvent contains at least one of acetone, tetrahydrofuran, and ethyl acetate.
JP2011133498A 2011-06-15 2011-06-15 Molded product and manufacturing method thereof Active JP5738082B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011133498A JP5738082B2 (en) 2011-06-15 2011-06-15 Molded product and manufacturing method thereof
PCT/JP2012/003455 WO2012172736A1 (en) 2011-06-15 2012-05-28 Organic-inorganic composite molded product and optical element
US14/126,406 US9376553B2 (en) 2011-06-15 2012-05-28 Organic-inorganic composite molded product and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133498A JP5738082B2 (en) 2011-06-15 2011-06-15 Molded product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013001781A true JP2013001781A (en) 2013-01-07
JP5738082B2 JP5738082B2 (en) 2015-06-17

Family

ID=47670695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133498A Active JP5738082B2 (en) 2011-06-15 2011-06-15 Molded product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5738082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577164B2 (en) 2013-08-30 2017-02-21 Asahi Kasei E-Materials Corporation Semiconductor light emitting device and optical film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343349A (en) * 1998-04-01 1999-12-14 Nissan Motor Co Ltd Resinous window and its production
JP2004002612A (en) * 2002-03-29 2004-01-08 Nissan Motor Co Ltd Resin composition, and molded article and component using the same
JP2004051681A (en) * 2002-07-17 2004-02-19 Tama Tlo Kk Nanocomposite transparent resin composition, molded product using the same, automotive part and method for producing the same
JP2004099865A (en) * 2002-03-29 2004-04-02 Tama Tlo Kk Resin composition, molded article and part using the same, and method for producing them
JP2006160991A (en) * 2004-12-10 2006-06-22 Konica Minolta Opto Inc Method for producing thermoplastic composite material, thermoplastic composite material and optical element
JP2006299032A (en) * 2005-04-19 2006-11-02 Konica Minolta Opto Inc Thermoplastic resin composition and optical element
JP2007126636A (en) * 2005-10-03 2007-05-24 Canon Inc Optical composite material and optical element
JP2007206061A (en) * 2006-01-06 2007-08-16 Hitachi Chem Co Ltd Optical sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343349A (en) * 1998-04-01 1999-12-14 Nissan Motor Co Ltd Resinous window and its production
JP2004002612A (en) * 2002-03-29 2004-01-08 Nissan Motor Co Ltd Resin composition, and molded article and component using the same
JP2004099865A (en) * 2002-03-29 2004-04-02 Tama Tlo Kk Resin composition, molded article and part using the same, and method for producing them
JP2004051681A (en) * 2002-07-17 2004-02-19 Tama Tlo Kk Nanocomposite transparent resin composition, molded product using the same, automotive part and method for producing the same
JP2006160991A (en) * 2004-12-10 2006-06-22 Konica Minolta Opto Inc Method for producing thermoplastic composite material, thermoplastic composite material and optical element
JP2006299032A (en) * 2005-04-19 2006-11-02 Konica Minolta Opto Inc Thermoplastic resin composition and optical element
JP2007126636A (en) * 2005-10-03 2007-05-24 Canon Inc Optical composite material and optical element
JP2007206061A (en) * 2006-01-06 2007-08-16 Hitachi Chem Co Ltd Optical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577164B2 (en) 2013-08-30 2017-02-21 Asahi Kasei E-Materials Corporation Semiconductor light emitting device and optical film

Also Published As

Publication number Publication date
JP5738082B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
Jin et al. Study of tetrapodal ZnO-PDMS composites: A comparison of fillers shapes in stiffness and hydrophobicity improvements
Eslami et al. Elongational rheology of biodegradable poly (lactic acid)/poly [(butylene succinate)‐co‐adipate] binary blends and poly (lactic acid)/poly [(butylene succinate)‐co‐adipate]/clay ternary nanocomposites
Roumeli et al. Factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene
KR20100033930A (en) Optical material and optical element
Wang et al. Property reinforcement of silicone dielectric elastomers filled with self‐prepared calcium copper titanate particles
Goodarzi et al. Prediction of long‐term mechanical properties of PVDF/BaTiO3 nanocomposite
Aoyama et al. AFM probing of polymer/nanofiller interfacial adhesion and its correlation with bulk mechanical properties in a poly (ethylene terephthalate) nanocomposite
Rong et al. Poly (styrene‐n‐butyl acrylate‐methyl methacrylate)/silica nanocomposites prepared by emulsion polymerization
JP5738082B2 (en) Molded product and manufacturing method thereof
JP2019508736A (en) Optical film and polarizing plate including the same
Haraguchi et al. Nanocomposite gels by initiator-free photopolymerization: role of plasma-treated clay in the synthesis and network formation
Mahmoudian et al. Effect of in-situ modification of α-alumina nanoparticles on mechanical properties of poly (methyl methacrylate)-based nanocomposites for biomedical applications
JP6261158B2 (en) Molded body and method for producing the same
JP5693925B2 (en) Resin mold, molded body, and method of manufacturing molded body
JP5896628B2 (en) Molding
JP5896637B2 (en) Manufacturing method of composite resin molded product
JP5748573B2 (en) Thermoplastic composite material, method for producing the same, and molded product
Wu et al. Synthesis of high refractive index composites for photonic applications
JP5897772B2 (en) Transparent polyamide resin composition, transparent polyamide resin crosslinked molded article
Chemin et al. Structure and mechanical properties of mesostructured functional hybrid coatings based on anisotropic nanoparticles dispersed in poly (hydroxylethyl methacrylate)
JP5836657B2 (en) Molding
Cheng et al. Highly loaded silicone nanocomposite exhibiting quick thermoresponsive optical behavior
Omar Invesitgation of Thin Film Interactions with Inorganic Surfaces
JP2008163124A (en) Manufacturing method for thermoplastic polymer composition containing inorganic fine particle of nanometer size
US20140142229A1 (en) Organic-inorganic composite molded product and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R151 Written notification of patent or utility model registration

Ref document number: 5738082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151