JP2013001770A - Polyamide sheet - Google Patents

Polyamide sheet Download PDF

Info

Publication number
JP2013001770A
JP2013001770A JP2011132563A JP2011132563A JP2013001770A JP 2013001770 A JP2013001770 A JP 2013001770A JP 2011132563 A JP2011132563 A JP 2011132563A JP 2011132563 A JP2011132563 A JP 2011132563A JP 2013001770 A JP2013001770 A JP 2013001770A
Authority
JP
Japan
Prior art keywords
acid
mol
polyamide
polyamide copolymer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011132563A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Sasaki
幸義 佐々木
Tetsuo Kurihara
哲男 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2011132563A priority Critical patent/JP2013001770A/en
Publication of JP2013001770A publication Critical patent/JP2013001770A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyamide sheet having excellent rigidity after water absorption and high temperature rigidity and further excellent sheet moldability.SOLUTION: The polyamide sheet comprises (A) a polyamide copolymer containing a dicarboxylic acid component unit containing (a-p) an adipic acid unit, (b-p) an isophthalic acid unit and (c-p) a 1,4-cyclohexane dicarboxylic acid unit and a diamine component unit, wherein the relation of the (b-p) content (mol%) and the (c-p) content (mol%) when the total of the dicarboxylic acid component unit containing the (a-p), (b-p) and (c-p) which constitute the polyamide copolymer is 100 mol% satisfies following formula (1):(the content of (c-p))>(the content of (b-p))≥0.1.

Description

本発明は、ポリアミドシートに関する。   The present invention relates to a polyamide sheet.

従来から、ポリアミド樹脂は、成形加工性、機械物性及び耐薬品性に優れていることから、衣料用、産業資材用、自動車、電気・電子用及び工業用等の、様々な部品材料として広く用いられている。   Conventionally, polyamide resins are widely used as various parts materials for clothing, industrial materials, automobiles, electrical / electronics, and industrial use because of their excellent molding processability, mechanical properties and chemical resistance. It has been.

近年、ポリアミド樹脂の使用環境は熱的及び力学的に厳しくなっており、機械物性、特に、吸水後の剛性、及び高温使用下での剛性を向上させた、あらゆる環境下での使用における物性変化が少ないポリアミド樹脂材料、及びあらゆる成形条件下においても安定した製品が得られる、成形条件依存性の少ないポリアミド樹脂材料が要求されている。   In recent years, the use environment of polyamide resins has become severer in terms of heat and dynamics, and changes in physical properties in every environment that have improved mechanical properties, especially the rigidity after water absorption and the rigidity under high temperature use. There is a demand for a polyamide resin material having a low dependence on molding conditions and a polyamide resin material having a low dependence on molding conditions, which can provide a stable product under all molding conditions.

上述したような要求に応えるため、機械物性を向上させる方法として、トランス体/シス体比が50/50〜97/3である1,4−シクロヘキサンジカルボン酸を1〜80モル%含有するポリアミド(例えば、特許文献1参照。)、鎖単位数の1〜40%の1,4−シクロヘキサンジカルボン酸と脂肪族ジアミンからなるポリアミド(例えば、特許文献2参照。)、ジカルボン酸単位の85〜100モル%が1,4−シクロヘキサンジカルボン酸単位からなり、ジアミン単位の60〜100モル%が炭素数6〜18の脂肪族ジアミン単位からなるポリアミド(例えば、特許文献3参照。)が開示されている。また、吸水後の剛性を向上させる方法として、ヘキサメチレンアジパミド単位30〜95質量%、ヘキサメチレンテレフタルアミド単位0〜40質量%、ヘキサメチレンイソフタルアミド単位5〜30質量%から構成されるポリアミドが開示されている(例えば、特許文献4参照。)。   In order to meet the above-described requirements, as a method for improving mechanical properties, polyamide containing 1 to 80 mol% of 1,4-cyclohexanedicarboxylic acid having a trans isomer / cis isomer ratio of 50/50 to 97/3 ( For example, refer to Patent Document 1.), polyamide comprising 1 to 40% of 1,4-cyclohexanedicarboxylic acid and aliphatic diamine (see, for example, Patent Document 2), 85 to 100 mol of dicarboxylic acid units. A polyamide (see, for example, Patent Document 3) in which% is composed of 1,4-cyclohexanedicarboxylic acid units and 60 to 100 mol% of diamine units is composed of aliphatic diamine units having 6 to 18 carbon atoms is disclosed. Further, as a method for improving the rigidity after water absorption, polyamide composed of 30 to 95% by mass of hexamethylene adipamide units, 0 to 40% by mass of hexamethylene terephthalamide units, and 5 to 30% by mass of hexamethylene isophthalamide units. Is disclosed (for example, see Patent Document 4).

国際公開第2002/048239号パンフレットInternational Publication No. 2002/048239 Pamphlet 国際公開第1997/011108号パンフレットInternational Publication No. 1997/011108 Pamphlet 特開平9−12868号公報Japanese Patent Laid-Open No. 9-12868 特開平6−32980号公報JP-A-6-32980

しかしながら、特許文献1、2及び3に開示されている技術では、通常の使用条件下における剛性は改良されるものの、吸水後の剛性、高温使用下での剛性の改良が十分ではなく、使用環境下による物性変化が大きくなってしまうという問題がある。
また、特許文献4に開示されている技術では、吸水後の剛性の改良が十分ではないため、上記同様、使用環境下による物性変化が大きくなってしまうという問題がある。
However, in the techniques disclosed in Patent Documents 1, 2, and 3, although the rigidity under normal use conditions is improved, the rigidity after water absorption and the rigidity under high temperature use are not sufficiently improved, and the use environment There is a problem that the physical property change due to the bottom becomes large.
Moreover, in the technique disclosed in Patent Document 4, since the rigidity after water absorption is not sufficiently improved, there is a problem that the physical property change due to the use environment becomes large as described above.

上述したように、従来開示されている技術によると、吸水後の剛性、及び高温使用下での剛性に優れ、かつ、あらゆる環境下での使用における物性変化が少ないポリアミド共重合体は提案されていないのが実情である。また、ポリアミド共重合体の特徴である、機械強度及び剛性のバランスを保持しつつ、吸水後及び高温使用下での剛性の低下を抑えることは困難であり、このような物性を有するポリアミドシートが要望されている。   As described above, according to the conventionally disclosed technology, a polyamide copolymer has been proposed that has excellent rigidity after water absorption and rigidity under high-temperature use, and has little change in physical properties under use in any environment. There is no actual situation. In addition, it is difficult to suppress a decrease in rigidity after water absorption and under high temperature use while maintaining a balance between mechanical strength and rigidity, which is a characteristic of polyamide copolymers, and a polyamide sheet having such physical properties is obtained. It is requested.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、吸水後の剛性(吸水剛性)、及び高温使用下での剛性(熱時剛性)、更にはシート成形性にも優れたポリアミドシートを提供することを主な目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and has excellent rigidity after water absorption (water absorption rigidity), rigidity under high temperature use (heat rigidity), and sheet formability. The main object is to provide a polyamide sheet.

本発明者らは、前記課題を解決するために鋭意検討した結果、(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位からなるジカルボン酸成分単位と、ジアミン成分単位とからなるポリアミド共重合体であって、当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)の含有量(モル%)の関係が下記式(1)を満たすポリアミド共重合体(A)を含有するポリアミドシートが上記課題を解決できることを見出し、本発明を完成させるに至った。
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
すなわち、本発明は、以下のとおりである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that (ap) adipic acid units, (bp) isophthalic acid units, and (cp) 1,4-cyclohexanedicarboxylic acid units. A polyamide copolymer comprising a dicarboxylic acid component unit comprising: and a diamine component unit, the (ap), (bp), and (cp) constituting the polyamide copolymer. The relationship between the content (mol%) of (bp) and the content (mol%) of (cp) in a total of 100 mol% of the dicarboxylic acid component units containing The present inventors have found that a polyamide sheet containing a polyamide copolymer (A) satisfying the above requirements can solve the above problems, and have completed the present invention.
Content of (cp)> Content of (bp) ≧ 0.1 (1)
That is, the present invention is as follows.

〔1〕
(A):(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位と、ジアミン成分単位と、を含むポリアミド共重合体であって、
当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)との含有量(モル%)の関係が下記式(1)を満たすポリアミド共重合体を含むポリアミドシート。
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
〔2〕
前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%に対して、
前記(a−p)アジピン酸単位の含有量が40〜80モル%であり、
前記(b−p)イソフタル酸単位の含有量が0.1〜25モル%であり、
前記(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が15〜40モル%である、
前記〔1〕に記載のポリアミドシート。
〔3〕
前記ジアミン成分単位が、脂肪族ジアミン成分単位である、前記〔1〕又は〔2〕のいずれか一に記載のポリアミドシート。
〔4〕
前記ジアミン成分単位が、ヘキサメチレンジアミン単位である、前記〔3〕に記載のポリアミドシート。
〔5〕
前記ポリアミド共重合体中における(b−p)イソフタル酸単位の含有量(モル%)と(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量(モル%)との関係が、下記式(2)を満たす請求項1記載のポリアミド共重合体を含むポリアミドシート。
(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量>(b−p)イソフタル酸単位の含有量≧0.1 ・・・(2)
〔6〕
前記(a−m)アジピン酸、前記(b−m)イソフタル酸、及び前記(c−m)1,4−シクロジカルボン酸中のシス異性体(c−2−m)に対するトランス異性体(c−1−m)のモル比率((c−1−m)/(c−2−m))が、50/50〜10/90からなる前記(c−m)1,4−シクロヘキサンジカルボン酸からなるジカルボン酸成分と、ジアミン成分と、を最終到達温度が270℃以上で共重合させることにより得られる請求項5に記載のポリアミド共重合体を用いたポリアミドシートの製造方法。
〔7〕
前記ジアミン成分が、脂肪族ジアミン成分である、前記〔5〕又は〔6〕に記載のポリアミドシートの製造方法。
〔8〕
前記脂肪族ジアミン成分が、ヘキサメチレンジアミンである、前記〔7〕に記載のポリアミドシートの製造方法。
[1]
(A): a dicarboxylic acid component unit comprising (ap) an adipic acid unit, (bp) isophthalic acid unit, and (cp) 1,4-cyclohexanedicarboxylic acid unit; and a diamine component unit. A polyamide copolymer comprising:
The total amount of the dicarboxylic acid component units including the (ap), the (bp), and the (cp) constituting the polyamide copolymer is 100 mol%. A polyamide sheet comprising a polyamide copolymer in which the relationship between the content (mol%) and the content (mol%) of (cp) satisfies the following formula (1).
Content of (cp)> Content of (bp) ≧ 0.1 (1)
[2]
With respect to a total of 100 mol% of the dicarboxylic acid component units including the (ap), the (bp), and the (cp),
The content of the (ap) adipic acid unit is 40 to 80 mol%,
The content of the (bp) isophthalic acid unit is 0.1 to 25 mol%,
The content of the (cp) 1,4-cyclohexanedicarboxylic acid unit is 15 to 40 mol%,
The polyamide sheet according to [1].
[3]
The polyamide sheet according to any one of [1] or [2], wherein the diamine component unit is an aliphatic diamine component unit.
[4]
The polyamide sheet according to [3], wherein the diamine component unit is a hexamethylenediamine unit.
[5]
Content (mol%) of (bp) isophthalic acid unit and content of trans isomer unit of (c-1-p) 1,4-cyclodicarboxylic acid unit in the polyamide copolymer (mol%) The polyamide sheet containing the polyamide copolymer according to claim 1, wherein the relationship with (1) satisfies the following formula (2).
(C-1-p) Content of trans isomer unit of 1,4-cyclodicarboxylic acid unit> (bp) Content of isophthalic acid unit ≧ 0.1 (2)
[6]
Trans isomer (c) to cis isomer (c-2-m) in (am) adipic acid, (bm) isophthalic acid, and (cm) 1,4-cyclodicarboxylic acid −1-m) molar ratio ((c-1-m) / (c-2-m)) is from the above (cm) 1,4-cyclohexanedicarboxylic acid comprising 50/50 to 10/90. The manufacturing method of the polyamide sheet using the polyamide copolymer of Claim 5 obtained by copolymerizing the dicarboxylic acid component and diamine component which become the final ultimate temperature of 270 degreeC or more.
[7]
The method for producing a polyamide sheet according to [5] or [6], wherein the diamine component is an aliphatic diamine component.
[8]
The method for producing a polyamide sheet according to [7], wherein the aliphatic diamine component is hexamethylenediamine.

本発明によれば、吸水後の剛性(吸水剛性)、及び高温使用下での剛性(熱時剛性)、及びシート成形性にも優れたポリアミドシートを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polyamide sheet excellent also in the rigidity (water absorption rigidity) after water absorption, the rigidity under high temperature use (rigidity at the time of heat), and sheet moldability can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

〔ポリアミドシート〕
本実施形態のポリアミドシートは、
(A):(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位と、
ジアミン成分単位と、を含むポリアミド共重合体であって、
当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)との含有量(モル%)の関係が下記式(1)を満たすポリアミド共重合体を含むポリアミドシートである。
[Polyamide sheet]
The polyamide sheet of this embodiment is
(A): a dicarboxylic acid component unit comprising (ap) adipic acid units, (bp) isophthalic acid units, and (cp) 1,4-cyclohexanedicarboxylic acid units;
A diamine component unit, and a polyamide copolymer comprising:
The total amount of the dicarboxylic acid component units including the (ap), the (bp), and the (cp) constituting the polyamide copolymer is 100 mol%. It is a polyamide sheet containing a polyamide copolymer in which the relationship between the content (mol%) and the content (mol%) of (cp) satisfies the following formula (1).

((A)ポリアミド共重合体)
(A)ポリアミド共重合体(本明細書中、(A):ポリアミド共重合体、ポリアミド共重合体(A)と記載することもある。)は、(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位と、ジアミン成分単位とを含むポリアミド共重合体であって、当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)の含有量(モル%)の関係が、下記式(1)を満たすポリアミド共重合体である。
これにより、吸水剛性、熱時剛性に優れるだけでなく、シート成形性にも優れるポリアミドシートとすることができる。
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
((A) polyamide copolymer)
(A) Polyamide copolymer (in this specification, (A): may be described as a polyamide copolymer or a polyamide copolymer (A)) is (ap) an adipic acid unit, (b -P) a polyamide copolymer containing a dicarboxylic acid component unit containing an isophthalic acid unit and a (cp) 1,4-cyclohexanedicarboxylic acid unit, and a diamine component unit, the polyamide copolymer constituting the polyamide copolymer Content (mol%) of (bp) in a total of 100 mol% of the dicarboxylic acid component units including (ap), (bp), and (cp) The relation of the content (mol%) of (cp) is a polyamide copolymer satisfying the following formula (1).
Thereby, it can be set as the polyamide sheet which is not only excellent in water absorption rigidity and the rigidity at the time of heat | fever but is excellent also in sheet moldability.
Content of (cp)> Content of (bp) ≧ 0.1 (1)

<ジカルボン酸成分>
前記(A)ポリアミド共重合体中のジカルボン酸成分単位の組成割合としては、前記(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位の合計100モル%に対して、好ましくは(a−p)アジピン酸単位の含有量が35〜80モル%、(b−p)イソフタル酸単位の含有量が0.1〜25モル%、及び(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が15〜45モル%であり、より好ましい組成割合は(a−p)アジピン酸単位の含有量が40〜80モル%、(b−p)イソフタル酸単位の含有量が1〜25モル%、及び(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が20〜40モル%であり、更に(b−p)と(c−p)の関係が上記式(1)を満たすポリアミド共重合体である。
組成割合を上記範囲内とし、かつ前記式(1)の関係を満たすことにより、シート成形性を損なうことなく、吸水剛性、熱時剛性が更に優れたポリアミド樹脂組成物とすることができる。
なお、ポリアミド共重合体を構成する各組成の割合は核磁気共鳴装置(NMR)によって求めることができる。
<Dicarboxylic acid component>
The composition ratio of the dicarboxylic acid component unit in the (A) polyamide copolymer is the (ap) adipic acid unit, (bp) isophthalic acid unit, and (cp) 1,4-cyclohexane. Preferably, the content of (ap) adipic acid unit is 35 to 80 mol%, and the content of (bp) isophthalic acid unit is 100 mol% in total of dicarboxylic acid component units including dicarboxylic acid units. The content of 0.1 to 25 mol% and (cp) 1,4-cyclohexanedicarboxylic acid unit is 15 to 45 mol%, and a more preferable composition ratio is the content of (ap) adipic acid unit Is 40 to 80 mol%, (bp) the content of isophthalic acid units is 1 to 25 mol%, and (cp) the content of 1,4-cyclohexanedicarboxylic acid units is 20 to 40 mol% And (bp) (C-p) relation is a polyamide copolymer which satisfies the above formula (1).
By setting the composition ratio within the above range and satisfying the relationship of the formula (1), it is possible to obtain a polyamide resin composition having further excellent water absorption rigidity and thermal rigidity without impairing sheet formability.
In addition, the ratio of each composition which comprises a polyamide copolymer can be calculated | required with a nuclear magnetic resonance apparatus (NMR).

<ジアミン成分>
前記(A)ポリアミド共重合体中のジアミン成分単位としては、特に限定されないが、脂肪族ジアミン、芳香族ジアミン、主鎖から分岐した置換基を持つジアミン等が挙げられ、これらの中でも、脂肪族ジアミンが好ましい。
<Diamine component>
The diamine component unit in the (A) polyamide copolymer is not particularly limited, and examples thereof include aliphatic diamines, aromatic diamines, and diamines having substituents branched from the main chain. Among these, aliphatic Diamine is preferred.

脂肪族ジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘプタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、及びトリデカメチレンジアミン等の、炭素数2〜20の直鎖飽和脂肪族ジアミン等が挙げられる。これら脂肪族ジアミン成分の中でも、剛性の観点から、ヘキサメチレンジアミンが好ましい。   Examples of the aliphatic diamine include ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, heptamethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, And straight-chain saturated aliphatic diamines having 2 to 20 carbon atoms such as tridecamethylenediamine. Among these aliphatic diamine components, hexamethylene diamine is preferable from the viewpoint of rigidity.

芳香族ジアミンとしては、例えば、メタキシリレンジアミン等が挙げられる。   Examples of the aromatic diamine include metaxylylenediamine.

主鎖から分岐した置換基を持つジアミンとしては、例えば、2−メチルペンタメチレンジアミン(2−メチル−1,5−ジアミノペンタンとも記される。)、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、2−メチルオクタメチレンジアミン、及び2,4−ジメチルオクタメチレンジアミン等の炭素数3〜20の分岐状飽和脂肪族ジアミン等が挙げられる。   Examples of the diamine having a substituent branched from the main chain include 2-methylpentamethylenediamine (also referred to as 2-methyl-1,5-diaminopentane), 2,2,4-trimethylhexamethylenediamine, Examples thereof include branched saturated aliphatic diamines having 3 to 20 carbon atoms such as 2,4,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, and 2,4-dimethyloctamethylenediamine.

これらのジアミン成分は、それぞれ1種類単独で用いてもよいし、2種類以上を組み合せて用いてもよい。   One of these diamine components may be used alone, or two or more of these diamine components may be used in combination.

<その他の共重合成分>
(A)ポリアミド共重合体には、本実施形態の目的を損なわない範囲で、(a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキサンジカルボン酸以外の脂肪族ジカルボン酸、脂環族ジカルボン酸、芳香族ジカルボン酸、重縮合可能なアミノ酸、ラクタム等を共重合成分として用いることができる。
<Other copolymer components>
(A) The polyamide copolymer has (am) adipic acid, (bm) isophthalic acid, and (cm) 1,4-cyclohexanedicarboxylic acid as long as the object of the present embodiment is not impaired. Other aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, polycondensable amino acids, lactams, and the like can be used as copolymerization components.

(a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキサンジカルボン酸以外の脂肪族ジカルボン酸としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2−ジメチルコハク酸、2,3−ジメチルグルタル酸、2,2−ジエチルコハク酸、2,3−ジエチルグルタル酸、グルタル酸、2,2−ジメチルグルタル酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、及びジグリコール酸等の炭素数3〜20の直鎖又は分岐状飽和脂肪族ジカルボン酸等が挙げられる。   Examples of aliphatic dicarboxylic acids other than (am) adipic acid, (bm) isophthalic acid, and (cm) 1,4-cyclohexanedicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2,2-diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyl C3-C20 straight chain such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid, and diglycolic acid Examples include branched saturated aliphatic dicarboxylic acids.

脂環族ジカルボン酸としては、例えば、1,3−シクロヘキサンジカルボン酸、及び1,3−シクロペンタンジカルボン酸等の、脂環構造の炭素数が3〜10である、好ましくは脂環構造の炭素数が5〜10である、脂環族ジカルボン酸等が挙げられる。脂環族ジカルボン酸は、無置換でもよいし置換基を有していてもよい。   Examples of the alicyclic dicarboxylic acid include 1,3-cyclohexanedicarboxylic acid and 1,3-cyclopentanedicarboxylic acid. An alicyclic dicarboxylic acid etc. whose number is 5-10 are mentioned. The alicyclic dicarboxylic acid may be unsubstituted or may have a substituent.

芳香族ジカルボン酸としては、例えば、テレフタル酸、ナフタレンジカルボン酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、及び5−ナトリウムスルホイソフタル酸等の、無置換又は種々の置換基で置換された炭素数8〜20の芳香族ジカルボン酸等が挙げられる。
前記種々の置換基としては、例えば、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数7〜20のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数3〜10のアルキルシリル基、並びにスルホン酸基及びそのナトリウム塩等のその塩である基等が挙げられる。
Examples of the aromatic dicarboxylic acid include unsubstituted or various substitutions such as terephthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid. And aromatic dicarboxylic acids having 8 to 20 carbon atoms substituted with a group.
Examples of the various substituents include halogen groups such as alkyl groups having 1 to 6 carbon atoms, aryl groups having 6 to 12 carbon atoms, arylalkyl groups having 7 to 20 carbon atoms, chloro groups and bromo groups, and carbon numbers. Examples thereof include 3 to 10 alkylsilyl groups, and sulfonic acid groups and groups such as sodium salts thereof.

重縮合可能なアミノ酸としては、例えば、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸等が挙げられる。   Examples of the polycondensable amino acid include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, paraaminomethylbenzoic acid and the like.

ラクタムとしては、例えば、ブチルラクタム、ピバロラクタム、カプロラクタム、カプリルラクタム、エナントラクタム、ウンデカノラクタム、ドデカノラクタム等が挙げられる。   Examples of the lactam include butyl lactam, pivalolactam, caprolactam, capryl lactam, enantolactam, undecanolactam, dodecanolactam and the like.

これらのジカルボン酸成分、アミノ酸成分、及びラクタム成分は、それぞれ1種類単独で用いてもよいし、2種類以上を組み合せて用いてもよい。   These dicarboxylic acid components, amino acid components, and lactam components may be used alone or in combination of two or more.

前記(A)ポリアミド共重合体は、(a´−p)アジピン酸とヘキサメチレンジアミンとからなる単位、(b´−p)イソフタル酸とヘキサメチレンジアミンとからなる単位、及び(c´−p)1,4−シクロヘキサンジカルボン酸とヘキサメチレンジアミンとからなる単位を含むことが好ましい。かかる単位を含むことで、吸水剛性、及び高温剛性に一層優れるポリアミドシートとすることができる。   The (A) polyamide copolymer comprises (a′-p) a unit composed of adipic acid and hexamethylene diamine, (b′-p) a unit composed of isophthalic acid and hexamethylene diamine, and (c′-p). It is preferable that a unit comprising 1,4-cyclohexanedicarboxylic acid and hexamethylenediamine is included. By including such a unit, it is possible to obtain a polyamide sheet that is further excellent in water absorption rigidity and high-temperature rigidity.

<末端封止剤>
前記(A)ポリアミド共重合体の原料として、分子量調節や耐熱水性向上のために、末端封止剤を更に添加することができる。例えば、前記(A)ポリアミド共重合体を重合する際に、公知の末端封止剤を、さらに添加することができる。
<End sealant>
As a raw material for the (A) polyamide copolymer, an end-capping agent can be further added in order to adjust the molecular weight or improve hot water resistance. For example, when polymerizing the (A) polyamide copolymer, a known end-capping agent can be further added.

末端封止剤としては、特に限定されず、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、及びモノアルコール類等が挙げられる。それらの中でも、製造コストの観点から、モノカルボン酸及びモノアミンが好ましい。これらの末端封止剤は、1種類単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。   The terminal blocking agent is not particularly limited, and examples thereof include acid anhydrides such as monocarboxylic acid, monoamine, and phthalic anhydride, monoisocyanates, monoacid halides, monoesters, and monoalcohols. Among them, monocarboxylic acids and monoamines are preferable from the viewpoint of production cost. These terminal blocking agents may be used alone or in combination of two or more.

末端封止剤として用いられるモノカルボン酸としては、アミノ基との反応性を有するモノカルボン酸であれば特に限定されず、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、及びイソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸;等が挙げられる。これらのモノカルボン酸は、1種類単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。   The monocarboxylic acid used as a terminal blocking agent is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group. For example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, Aliphatic monocarboxylic acids such as lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid; cycloaliphatic monocarboxylic acids such as cyclohexanecarboxylic acid; benzoic acid, toluic acid, α-naphthalene And aromatic monocarboxylic acids such as carboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid. These monocarboxylic acids may be used alone or in combination of two or more.

末端封止剤として用いられるモノアミンとしては、カルボキシル基との反応性を有するモノアミンであれば特に限定されず、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、及びジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン及びジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、及びナフチルアミン等の芳香族モノアミン;等が挙げられる。これらのモノアミンは、1種類単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。   The monoamine used as the end-capping agent is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine Aliphatic monoamines such as dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine; These monoamines may be used alone or in combination of two or more.

<数平均分子量>
前記(A)ポリアミド共重合体の分子量については、特に限定されないが、成形性及び機械物性の観点から、数平均分子量(Mn)は、好ましくは7000〜100000であり、より好ましくは7500〜50000であり、さらに好ましくは10000〜40000である。
数平均分子量(Mn)は、例えば、トリフルオロ酢酸ナトリウムを0.1モル%溶解したヘキサフルオロイソプロパノール(HFIP)を溶媒として用い、標準試料としてポリメタクリル酸メチル(PMMA)を用いて、ゲルパーミエーションクロマトグラフィー(GPC)により求めることができる。
前記(A)ポリアミド共重合体の数平均分子量(Mn)が7000以上の場合には、靱性の低下を一層抑制できる傾向があり、また100000以下の場合には、成形性の低下を一層抑制できる傾向がある。
<Number average molecular weight>
The molecular weight of the (A) polyamide copolymer is not particularly limited, but from the viewpoint of moldability and mechanical properties, the number average molecular weight (Mn) is preferably 7000 to 100,000, more preferably 7500 to 50,000. Yes, more preferably from 10,000 to 40,000.
The number average molecular weight (Mn) is determined by gel permeation using, for example, hexafluoroisopropanol (HFIP) in which 0.1 mol% of sodium trifluoroacetate is dissolved as a solvent and polymethyl methacrylate (PMMA) as a standard sample. It can be determined by chromatography (GPC).
When the number average molecular weight (Mn) of the (A) polyamide copolymer is 7000 or more, there is a tendency that a decrease in toughness can be further suppressed. Tend.

<融点>
前記(A)ポリアミド共重合体の融点は、好ましくは210〜340℃であり、より好ましくは230〜330℃であり、さらに好ましくは240〜320℃であり、よりさらに好ましくは240〜300℃である。
融点の測定は、JIS K7121に準じて行うことができる。より具体的には、例えば、PERKIN−ELMER社製、「DSC−7」を用いて測定することができる。
具体的には、サンプル8mgを用いて、昇温速度20℃/minの条件下、400℃まで昇温して、得られた融解曲線のピーク温度を融点とする。
融点が210℃以上の場合には、耐薬品性や耐熱性の低下を一層抑制できる傾向があり、340℃以下の場合には成形時の熱分解等を一層抑制できる傾向がある。
<Melting point>
The melting point of the (A) polyamide copolymer is preferably 210 to 340 ° C, more preferably 230 to 330 ° C, still more preferably 240 to 320 ° C, and still more preferably 240 to 300 ° C. is there.
The melting point can be measured according to JIS K7121. More specifically, for example, measurement can be performed using “DSC-7” manufactured by PERKIN-ELMER.
Specifically, using 8 mg of the sample, the temperature is raised to 400 ° C. under a temperature rising rate of 20 ° C./min, and the peak temperature of the obtained melting curve is taken as the melting point.
When the melting point is 210 ° C. or higher, the chemical resistance and the heat resistance tend to be further suppressed, and when it is 340 ° C. or lower, the thermal decomposition during molding tends to be further suppressed.

<ガラス転移温度>
前記(A)ポリアミド共重合体のガラス転移温度は、好ましくは50〜110℃であり、より好ましくは50〜100℃であり、さらに好ましくは50〜90℃である。
ガラス転移温度の測定は、JIS K7121に準じて行うことができる。より具体的には、例えば、PERKIN−ELMER社製、「DSC−7」を用いて測定することができる。
まず、試料をホットステージ(例えば、Mettler社製、「EP80」)で溶融させ、溶融状態のサンプルを液体窒素中に急冷し、固化させ、測定サンプルとする。測定サンプル10mgを用いて、昇温速度20℃/minの条件下、30〜300℃の範囲で昇温して、ガラス転移温度を測定することができる。
ガラス転移温度が50℃以上の場合には、耐熱性や耐薬品性の低下を起こし難く、吸水性が増すことを効果的に防止できる。また、ガラス転移温度が110℃以下の場合には、成形外観性が更に優れたものが得られる。
<Glass transition temperature>
The glass transition temperature of said (A) polyamide copolymer becomes like this. Preferably it is 50-110 degreeC, More preferably, it is 50-100 degreeC, More preferably, it is 50-90 degreeC.
The glass transition temperature can be measured according to JIS K7121. More specifically, for example, measurement can be performed using “DSC-7” manufactured by PERKIN-ELMER.
First, the sample is melted on a hot stage (for example, “EP80” manufactured by Mettler Co.), and the molten sample is rapidly cooled in liquid nitrogen and solidified to obtain a measurement sample. Using 10 mg of the measurement sample, the glass transition temperature can be measured by raising the temperature in the range of 30 to 300 ° C. under a temperature rising rate of 20 ° C./min.
When the glass transition temperature is 50 ° C. or higher, it is difficult to cause a decrease in heat resistance and chemical resistance, and an increase in water absorption can be effectively prevented. In addition, when the glass transition temperature is 110 ° C. or lower, a product having a more excellent molded appearance can be obtained.

((A)ポリアミド共重合体の製造方法)
(A)ポリアミド共重合体の製造方法としては、特に限定されず、公知の方法を用いることができる。
例えば、アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(熱溶融重合法);熱溶融重合法で得られたポリアミド共重合体を融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(熱溶融重合・固相重合法);アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融させて重合度を上昇させる方法(プレポリマー・押出重合法);アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(プレポリマー・固相重合法);アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物、固体塩又は重縮合物を、固体状態を維持したまま重合(固相重合法)させる方法等が挙げられる。
((A) Polyamide copolymer production method)
(A) It does not specifically limit as a manufacturing method of a polyamide copolymer, A well-known method can be used.
For example, a solution of adipic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, hexamethylenediamine, and a mixture of other components as necessary, or an aqueous suspension is heated and polymerized while maintaining the molten state. Method (thermal melt polymerization method); Method of increasing the degree of polymerization of the polyamide copolymer obtained by the hot melt polymerization method while maintaining the solid state at a temperature below the melting point (thermal melt polymerization / solid phase polymerization method); An extruder such as a kneader is further heated with an aqueous solution or water suspension of a mixture of acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, hexamethylenediamine, and other components as necessary, and water. Method of increasing the degree of polymerization by re-melting with (a prepolymer / extrusion polymerization method); adipic acid, isophthalic acid, 1,4-cyclohexanedicarbo Heat the aqueous solution of the mixture of acid, hexamethylenediamine, and other components as necessary, or a suspension of water, and the degree of polymerization while maintaining the solid state at a temperature below the melting point of the polyamide. Method of raising (prepolymer / solid phase polymerization method); adipic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, hexamethylenediamine, if necessary, a mixture with other components, solid salt or polycondensate, Examples thereof include a method of polymerizing (solid phase polymerization method) while maintaining a solid state.

(A)ポリアミド共重合体の重合形態としては、特に限定されず、バッチ式でも連続式でもよい。
また、重合装置についても、特に限定されず、公知の装置、例えば、オートクレーブ型の反応器、タンブラー型反応器、ニーダー等の押出機型反応器等を用いることができる。
(A) It does not specifically limit as a polymerization form of a polyamide copolymer, A batch type or a continuous type may be sufficient.
The polymerization apparatus is not particularly limited, and a known apparatus such as an autoclave type reactor, a tumbler type reactor, an extruder type reactor such as a kneader, or the like can be used.

上記の製造方法の中でも、生産性の観点から、熱溶融重合法が好ましい。熱溶融重合法としては、例えば、バッチ式の熱溶融重合法等が挙げられる。バッチ式の熱溶融重合法の重合温度条件としては、特に限定されないが、生産性の観点から、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは170℃以上である。
例えば、アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、及びヘキサメチレンジアミンとの混合物、固体塩、又は水溶液等を、110〜200℃の温度下で攪拌し、約60〜90%まで水蒸気を徐々に抜いて加熱濃縮する。続いて、内部圧力を約1.5〜5.0MPa(ゲージ圧)になるまで加熱を続ける。その後、水及び/又はガス成分を除きながら圧力を約1.5〜5.0MPa(ゲージ圧)に保ち、内部温度が好ましくは250℃以上、より好ましくは260℃以上、さらに好ましくは270℃以上に達した時点で、水及び/又はガス成分を除くとともに、圧力を徐々に抜いて常圧又は減圧下で重縮合を行う熱溶融重合法を用いることができる。
さらには、アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、及びヘキサメチレンジアミンとの混合物、固体塩、又は重縮合物を融点以下の温度で熱重縮合させる固相重合法等も用いることができる。
これらの方法は必要に応じて組み合わせてもよい。
Among the above production methods, the hot melt polymerization method is preferable from the viewpoint of productivity. Examples of the hot melt polymerization method include a batch type hot melt polymerization method. The polymerization temperature condition of the batch-type hot melt polymerization method is not particularly limited, but is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 170 ° C. or higher from the viewpoint of productivity.
For example, a mixture of adipic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, and hexamethylenediamine, a solid salt, an aqueous solution, or the like is stirred at a temperature of 110 to 200 ° C., and water vapor is increased to about 60 to 90%. Is gradually removed and concentrated by heating. Subsequently, heating is continued until the internal pressure becomes about 1.5 to 5.0 MPa (gauge pressure). Thereafter, the pressure is maintained at about 1.5 to 5.0 MPa (gauge pressure) while removing water and / or gas components, and the internal temperature is preferably 250 ° C. or higher, more preferably 260 ° C. or higher, more preferably 270 ° C. or higher. At this point, a hot melt polymerization method can be used in which water and / or gas components are removed and the pressure is gradually released and polycondensation is performed under normal pressure or reduced pressure.
Furthermore, a solid phase polymerization method in which a mixture, a solid salt, or a polycondensate of adipic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, and hexamethylenediamine is subjected to thermal polycondensation at a temperature below the melting point is used. Can do.
These methods may be combined as necessary.

例えば、上記した、(a´−p)アジピン酸とヘキサメチレンジアミンとからなる単位、(b´−p)イソフタル酸とヘキサメチレンジアミンとからなる単位、及び(c´−p)1,4−シクロヘキサンジカルボン酸とヘキサメチレンジアミンとからなる単位を含むポリアミド共重合体は、熱溶融重合法によって製造することができる。
ポリアミド共重合体の構造単位は核磁気共鳴装置(NMR)によって確認することができる。
For example, as described above, (a′-p) a unit composed of adipic acid and hexamethylenediamine, (b′-p) a unit composed of isophthalic acid and hexamethylenediamine, and (c′-p) 1,4- A polyamide copolymer containing units composed of cyclohexanedicarboxylic acid and hexamethylenediamine can be produced by a hot melt polymerization method.
The structural unit of the polyamide copolymer can be confirmed by a nuclear magnetic resonance apparatus (NMR).

(A)ポリアミド共重合体の重合工程においては、(a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキサンジカルボン酸からなるジカルボン酸成分と、ジアミン成分とを共重合させるものとし、前記(c−m)1,4−シクロジカルボン酸、前記(a−m)アジピン酸、及び前記(b−m)イソフタル酸を含む、ジカルボン酸成分それぞれに由来する単位の合計100モル%としたとき、(A)ポリアミド共重合体を構成する前記(b−p)イソフタル酸に由来する単位の含有量(モル%)と(c−1−p)1,4−シクロジカルボン酸に由来する単位のトランス異性体の単位の含有量(モル%)との関係が、下記式(2)を満たすポリアミド共重合体を得ることが好ましい。
(A)ポリアミド共重合体が、下記式(2)を満たすことにより、成形外観性を損なうことなく、吸水剛性及び高温剛性を一層向上させることができる。
(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量>(b−p)イソフタル酸単位の含有量≧0.1 ・・・(2)
なお、(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量と、(b−p)イソフタル酸に由来する単位の含有量は、それぞれNMRによって求められる。
(A) In the polymerization step of the polyamide copolymer, a dicarboxylic acid component consisting of (am) adipic acid, (bm) isophthalic acid, and (cm) 1,4-cyclohexanedicarboxylic acid, and a diamine Derived from each of the dicarboxylic acid components, including (cm) 1,4-cyclodicarboxylic acid, (am) adipic acid, and (bm) isophthalic acid The total content of the units to be 100 mol%, (A) the content (mol%) of units derived from the (bp) isophthalic acid constituting the polyamide copolymer and (c-1-p) 1, It is preferable to obtain a polyamide copolymer satisfying the following formula (2) in relation to the content (mol%) of a trans isomer unit of a unit derived from 4-cyclodicarboxylic acid.
(A) By satisfy | filling following formula (2), a polyamide copolymer can further improve water absorption rigidity and high temperature rigidity, without impairing shaping | molding external appearance property.
(C-1-p) Content of trans isomer unit of 1,4-cyclodicarboxylic acid unit> (bp) Content of isophthalic acid unit ≧ 0.1 (2)
In addition, the content of the unit of the trans isomer of the (c-1-p) 1,4-cyclodicarboxylic acid unit and the content of the unit derived from the (bp) isophthalic acid are respectively determined by NMR.

(A)ポリアミド共重合体の重合工程においては、(a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキサンジカルボン酸を含むジカルボン酸成分と、ジアミン成分との共重合における最終内部温度は、好ましくは270℃以上、より好ましくは280℃以上、さらに好ましくは290℃以上である。これにより、ポリアミド共重合体中の1,4−シクロヘキサンジカルボン酸のトランス異性体単位(c−1)の含有量を増やすことができ、成形外観性を損なうことなく、吸水剛性及び熱時剛性に一層優れるポリアミド樹脂組成物を得ることができる。
例えば、上記した熱溶融重合法を採用する場合、最終内部温度を上記温度範囲としつつ、常圧で又は減圧して重縮合を行うことが好ましい。
(A) In the polymerization step of the polyamide copolymer, a dicarboxylic acid component containing (am) adipic acid, (bm) isophthalic acid, and (cm) 1,4-cyclohexanedicarboxylic acid, and a diamine The final internal temperature in copolymerization with the components is preferably 270 ° C. or higher, more preferably 280 ° C. or higher, and further preferably 290 ° C. or higher. As a result, the content of the trans isomer unit (c-1) of 1,4-cyclohexanedicarboxylic acid in the polyamide copolymer can be increased, and the water absorption rigidity and thermal rigidity can be increased without impairing the molding appearance. A more excellent polyamide resin composition can be obtained.
For example, when employing the above-described hot melt polymerization method, it is preferable to carry out polycondensation at normal pressure or reduced pressure while keeping the final internal temperature within the above temperature range.

(A)ポリアミド共重合体の重合工程において、ニーダー等の押出型反応機を用いる場合、押出の条件は、特に限定されないが、減圧度は0〜0.07MPa程度が好ましい。
押出温度は、JIS K7121に準じた示差走査熱量(DSC)測定で求まる融点よりも1〜100℃程度高い温度であることが好ましい。剪断速度は、100(sec−1)以上程度であることが好ましく、平均滞留時間は、0.1〜15分間程度であることが好ましい。上記の押出条件とすることにより、着色や高分子量化できない等の問題の発生を効果的に抑制できる。
(A) In the polymerization step of the polyamide copolymer, when an extrusion type reactor such as a kneader is used, the conditions for extrusion are not particularly limited, but the degree of vacuum is preferably about 0 to 0.07 MPa.
The extrusion temperature is preferably about 1 to 100 ° C. higher than the melting point determined by differential scanning calorimetry (DSC) measurement according to JIS K7121. The shear rate is preferably about 100 (sec −1 ) or more, and the average residence time is preferably about 0.1 to 15 minutes. By setting it as said extrusion conditions, generation | occurrence | production of problems, such as coloring and high molecular weight being unable to be suppressed, can be suppressed effectively.

(A)ポリアミド共重合体の重合工程においては、所定の重合触媒を用いてもよい。
触媒は、ポリアミドの製造に用いられる公知のものであれば特に限定されず、例えば、リン酸、亜リン酸、次亜リン酸、オルト亜リン酸、ピロ亜リン酸、フェニルホスフィン酸、フェニルホスホン酸、2−メトキシフェニルホスホン酸、2−(2’−ピリジル)エチルホスホン酸、及びそれらの金属塩等が挙げられる。
金属塩の金属としては、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属塩やアンモニウム塩等が挙げられる。
また、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、デシルエステル、イソデシルエステル、オクタデシルエステル、ステアリルエステル、フェニルエステル等のリン酸エステル類も用いることができる。
(A) In the polymerization step of the polyamide copolymer, a predetermined polymerization catalyst may be used.
The catalyst is not particularly limited as long as it is a known one used for the production of polyamide. For example, phosphoric acid, phosphorous acid, hypophosphorous acid, orthophosphorous acid, pyrophosphorous acid, phenylphosphinic acid, phenylphosphonic acid. Examples include acid, 2-methoxyphenylphosphonic acid, 2- (2′-pyridyl) ethylphosphonic acid, and metal salts thereof.
Examples of the metal of the metal salt include metal salts such as potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony, and ammonium salts.
Further, phosphate esters such as ethyl ester, isopropyl ester, butyl ester, hexyl ester, decyl ester, isodecyl ester, octadecyl ester, stearyl ester, and phenyl ester can also be used.

上記のように、(A)ポリアミド共重合体の重合工程において、原料モノマーとして用いられる(c−m)1,4−シクロヘキサンジカルボン酸には、トランス体とシス体の幾何異性体が存在する。
原料モノマーとして用いられる(c−m)1,4−シクロヘキサンジカルボン酸は、トランス体とシス体のどちらか一方を用いてもよいし、トランス体とシス体の種々の比率の混合物として用いてもよい。
(c−m)1,4−シクロジカルボン酸は高温で異性化し一定の比率になることや、シス体が、トランス体よりも、ジアミンとの当量塩の水溶性が高いことから、原料モノマーとして用いる(c−m)1,4−シクロジカルボン酸中のシス異性体(c−2−m)に対するトランス異性体(c−1−m)のモル比率((c−1−m)/(c−2−m))は、好ましくは50/50〜10/90であり、より好ましくは40/60〜10/90であり、さらに好ましくは35/65〜15/85である。
トランス体/シス体比を上記範囲とすることにより、成形外観性を損なうことなく、吸水剛性及び熱時剛性に一層優れるポリアミド樹脂組成物とすることができる。トランス体/シス体比は、核磁気共鳴装置(NMR)を用いて測定することができる。
As described above, (cm) 1,4-cyclohexanedicarboxylic acid used as a raw material monomer in the polymerization step of the (A) polyamide copolymer has a trans isomer and a cis geometric isomer.
(Cm) 1,4-cyclohexanedicarboxylic acid used as a raw material monomer may use either the trans isomer or the cis isomer, or may be used as a mixture in various ratios of the trans isomer and the cis isomer. Good.
(Cm) 1,4-cyclodicarboxylic acid is isomerized at a high temperature to have a certain ratio, and the cis isomer is higher in water solubility of an equivalent salt with diamine than the trans isomer. The molar ratio of the trans isomer (c-1-m) to the cis isomer (c-2-m) in the (cm) 1,4-cyclodicarboxylic acid used ((c-1-m) / (c -2-m)) is preferably 50/50 to 10/90, more preferably 40/60 to 10/90, and even more preferably 35/65 to 15/85.
By setting the trans isomer / cis isomer ratio in the above range, it is possible to obtain a polyamide resin composition that is further excellent in water absorption rigidity and thermal rigidity without impairing the molding appearance. The trans isomer / cis isomer ratio can be measured using a nuclear magnetic resonance apparatus (NMR).

本実施の形態のシート(フィルム)の材料には、本実施の形態の目的を損なわない範囲で、ポリアミドに慣用的に用いられる添加剤、例えば、顔料及び染料などの着色剤(着色マスターバッチ含む)、難燃剤、フィブリル化剤、潤滑剤、蛍光漂白剤、可塑化剤、酸化防止剤、安定剤、紫外線吸収剤、帯電防止剤、流動性改良剤、充填剤、補強剤、展着剤、核剤、ゴム、強化剤並びに他のポリマーなどを含有することもできる。
本実施の形態のシート(フィルム)は、ポリアミド共重合体を含むものであるが、シート中のポリアミドの含有量は、70〜100質量%が好ましく、90〜100質量%がより好ましく、95〜100質量%がさらに好ましく、98〜100質量%がさらにより好ましい。
The material of the sheet (film) of the present embodiment includes additives commonly used for polyamides, for example, colorants such as pigments and dyes (colored master batches), as long as the object of the present embodiment is not impaired. ), Flame retardant, fibrillating agent, lubricant, fluorescent bleaching agent, plasticizer, antioxidant, stabilizer, UV absorber, antistatic agent, fluidity improver, filler, reinforcing agent, spreading agent, It can also contain nucleating agents, rubber, reinforcing agents as well as other polymers.
The sheet (film) of the present embodiment contains a polyamide copolymer, but the content of polyamide in the sheet is preferably 70 to 100% by mass, more preferably 90 to 100% by mass, and 95 to 100% by mass. % Is more preferable, and 98 to 100% by mass is even more preferable.

[無機充填材]
例えば、無機充填材などの充填材としては、以下に制限されないが、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ガラスフレーク、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、雲母、モンモリロナイト、膨潤性フッ素雲母及びアパタイトなどが挙げられる。
上記の無機充填材を、シランカップリング剤などにより表面処理してもよい。前記シランカップリング剤としては、特に制限されないが、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシランやN−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のアミノシラン類;γ−メルカプトプロピルトリメトキシシランやγ−メルカプトプロピルトリエトキシシラン等のメルカプトシラン類;エポキシシラン類;ビニルシラン類が挙げられる。中でも、上記の列挙成分から選択される1種以上であることが好ましく、アミノシラン類がより好ましい。
[Inorganic filler]
For example, the filler such as inorganic filler is not limited to the following, for example, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, aluminum borate fiber, glass flake, talc, kaolin, mica, Hydrotalcite, calcium carbonate, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, titanium oxide, silicon oxide, magnesium oxide, calcium silicate, aluminosilicate Sodium, magnesium silicate, ketjen black, acetylene black, furnace black, carbon nanotube, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, mica, montmorillonite, swellable fluorine mica and Apatite, and the like.
The inorganic filler may be surface treated with a silane coupling agent or the like. Although it does not restrict | limit especially as said silane coupling agent, For example, aminosilanes, such as (gamma) -aminopropyl triethoxysilane, (gamma) -aminopropyl trimethoxysilane, and N- (beta)-(aminoethyl) -gamma-aminopropylmethyldimethoxysilane. And the like; mercaptosilanes such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane; epoxysilanes; vinylsilanes. Especially, it is preferable that it is 1 or more types selected from said enumeration component, and aminosilanes are more preferable.

[熱安定剤]
例えば、熱安定剤などの安定剤としては、例えば、フェノール系熱安定剤、リン系熱安定剤、アミン系熱安定剤、周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族及び第IVb族の元素の金属塩、並びにアルカリ及びアルカリ土類金属のハロゲン化物などが挙げられる。
これらの中でも、熱エージング性の観点から周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族及び第IVb族の元素の金属塩、並びにアルカリ及びアルカリ土類金属のハロゲン化物が好ましい。上記した熱安定剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[Thermal stabilizer]
For example, as a stabilizer such as a heat stabilizer, for example, a phenol-based heat stabilizer, a phosphorus-based heat stabilizer, an amine-based heat stabilizer, Group Ib, Group IIb, Group IIIa, Group IIIb of the periodic table Group, Group IVa and Group IVb element metal salts, and alkali and alkaline earth metal halides.
Among these, from the viewpoint of thermal aging properties, metal salts of elements of Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa and Group IVb of the periodic table, and alkali and alkaline earth metals The halides are preferred. The above-mentioned heat stabilizers may be used alone or in combination of two or more.

[フェノール系熱安定剤]
フェノール系熱安定剤としては、以下に制限されないが、例えば、ヒンダートフェノール化合物が挙げられる。フェノール系熱安定剤、中でもヒンダードフェノール化合物は、ポリアミド等の樹脂や繊維に耐熱性や耐光性を付与する性質を有する。
ヒンダードフェノール化合物としては、以下に制限されないが、例えば、N,N'−へキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオンアミド)、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N'−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス{2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピニロキシ]−1,1−ジメチルエチル}−2,4,8,10−テトラオキサピロ[5,5]ウンデカン、3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、及び1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸が挙げられる。本実施の形態では、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、耐熱エージング性向上の観点から、好ましくはN,N'−へキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオンアミド)]である。
フェノール系熱安定剤を用いる場合、ポリアミド共重合体中のフェノール系熱安定剤の配合量は、ポリアミド共重合体100質量部に対して、好ましくは0.01〜1質量部であり、より好ましくは0.1〜1質量部である。上記の範囲内の場合、耐熱エージング性を一層向上させ、さらに発生ガス量を低減させることができる。
[Phenolic heat stabilizer]
Although it does not restrict | limit as a phenol type heat stabilizer below, For example, a hindered phenol compound is mentioned. Phenol-based heat stabilizers, particularly hindered phenol compounds, have the property of imparting heat resistance and light resistance to resins such as polyamide and fibers.
Examples of the hindered phenol compound include, but are not limited to, for example, N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide), Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-) Hydrocinnamamide), triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis {2- [3- (3-t-butyl) -4-hydroxy-5-methylphenyl) propynyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxapyro [5,5] undecane, 3,5-di t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, and 1,3 , 5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid. In this Embodiment, these may be used individually by 1 type and may be used in combination of 2 or more type. Among these, N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide)] is preferable from the viewpoint of improving heat aging resistance.
When using a phenol-based heat stabilizer, the blending amount of the phenol-based heat stabilizer in the polyamide copolymer is preferably 0.01 to 1 part by weight, more preferably 100 parts by weight of the polyamide copolymer. Is 0.1 to 1 part by mass. When it is within the above range, the heat aging resistance can be further improved and the amount of generated gas can be further reduced.

[リン系熱安定剤]
リン系熱安定剤としては、以下に制限されないが、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチル−5−メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4'−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−テトラ−トリデシル)ジホスファイト、テトラ(C12〜C15混合アルキル)−4,4'−イソプロピリデンジフェニルジホスファイト、4,4'−イソプロピリデンビス(2−t−ブチルフェニル)・ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)−1,1,3−トリス(2−メチル−5−t−ブチル−4−ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)−4,4'−ブチリデンビス(3−メチル−6−t−ブチルフェニル)ジホスファイト、テトラ(C1〜C15混合アルキル)−4,4'−イソプロピリデンジフェニルジホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、4,4'−イソプロピリデンビス(2−t−ブチルフェニル)・ジ(ノニルフェニル)ホスファイト、9,10−ジ−ヒドロ−9−オキサ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、トリス(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)ホスファイト、水素化−4,4'−イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)・ビス(4,4'−ブチリデンビス(3−メチル−6−t−ブチルフェニル))・1,6−ヘキサノールジホスファイト、ヘキサトリデシル−1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ジホスファイト、トリス(4、4'−イソプロピリデンビス(2−t−ブチルフェニル))ホスファイト、トリス(1,3−ステアロイルオキシイソプロピル)ホスファイト、2、2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、2,2−メチレンビス(3−メチル−4,6−ジ−t−ブチルフェニル)2−エチルヘキシルホスファイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4'−ビフェニレンジホスファイト、及びテトラキス(2,4−ジ−t−ブチルフェニル)−4,4'−ビフェニレンジホスファイトが挙げられる。本実施の形態では、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Phosphorus heat stabilizer]
Examples of the phosphorus-based heat stabilizer include, but are not limited to, for example, pentaerythritol type phosphite compound, trioctyl phosphite, trilauryl phosphite, tridecyl phosphite, octyl diphenyl phosphite, trisisodecyl phosphite, phenyl Diisodecyl phosphite, phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl (tridecyl) phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di -T-butylphenyl) phosphite, tris (2,4-di-t-butyl-5-methylphenyl) phosphite, tris (butoxyethyl) phosphite, 4,4'-butylidene-bis (3- Til-6-tert-butylphenyl-tetra-tridecyl) diphosphite, tetra (C12-C15 mixed alkyl) -4,4′-isopropylidene diphenyldiphosphite, 4,4′-isopropylidenebis (2-tert-butyl) Phenyl) .di (nonylphenyl) phosphite, tris (biphenyl) phosphite, tetra (tridecyl) -1,1,3-tris (2-methyl-5-tert-butyl-4-hydroxyphenyl) butanediphosphite , Tetra (tridecyl) -4,4′-butylidenebis (3-methyl-6-tert-butylphenyl) diphosphite, tetra (C1-C15 mixed alkyl) -4,4′-isopropylidene diphenyldiphosphite, tris (mono , Dimixed nonylphenyl) phosphite, 4,4′-isopropylidenebis (2- -Butylphenyl) .di (nonylphenyl) phosphite, 9,10-di-hydro-9-oxa-9-oxa-10-phosphaphenanthrene-10-oxide, tris (3,5-di-t -Butyl-4-hydroxyphenyl) phosphite, hydrogenated-4,4'-isopropylidenediphenyl polyphosphite, bis (octylphenyl) bis (4,4'-butylidenebis (3-methyl-6-tert-butyl) Phenyl)) · 1,6-hexanol diphosphite, hexatridecyl-1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) diphosphite, tris (4,4′-isopropyl Redenbis (2-t-butylphenyl)) phosphite, tris (1,3-stearoyloxyisopropyl) phosphite, 2, 2 Methylene bis (4,6-di-t-butylphenyl) octyl phosphite, 2,2-methylene bis (3-methyl-4,6-di-t-butylphenyl) 2-ethylhexyl phosphite, tetrakis (2,4- And di-t-butyl-5-methylphenyl) -4,4′-biphenylene diphosphite and tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylene diphosphite. In this Embodiment, these may be used individually by 1 type and may be used in combination of 2 or more type.

上記の列挙したものの中でも、耐熱エージング性の一層の向上及び発生ガスの低減という観点から、ペンタエリスリトール型ホスファイト化合物、トリス(2,4−ジ−t−ブチルフェニル)ホスファイトが好ましい。前記ペンタエリスリトール型ホスファイト化合物としては、以下に制限されないが、例えば、2,6−ジ−t−ブチル−4−メチルフェニル・フェニル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・メチル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・2−エチルヘキシル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・イソデシル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・ラウリル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・イソトリデシル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・ステアリル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・シクロヘキシル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・ベンジル・ペンタエリスリトールジホスファイト、2,_6−ジ−t−ブチル−4−メチルフェニル・エチルセロソルブ・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・ブチルカルビトール・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・オクチルフェニル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・ノニルフェニル・ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・2,6−ジ−t−ブチルフェニル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・2,4−ジ−t−ブチルフェニル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・2,4−ジ−t−オクチルフェニル・ペンタエリスリトールジホスファイト、2,6−ジ−t−ブチル−4−メチルフェニル・2−シクロヘキシルフェニル・ペンタエリスリトールジホスファイト、2,6−ジ−t−アミル−4−メチルフェニル・フェニル・ペンタエリストリトールジホスファイト、ビス(2,6−ジ−t−アミル−4−メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2,6−ジ−t−オクチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが挙げられる。本実施の形態では、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Among those listed above, pentaerythritol phosphite compounds and tris (2,4-di-t-butylphenyl) phosphite are preferable from the viewpoint of further improving the heat aging resistance and reducing the generated gas. Examples of the pentaerythritol phosphite compound include, but are not limited to, for example, 2,6-di-t-butyl-4-methylphenyl phenyl pentaerythritol diphosphite, 2,6-di-t-butyl. -4-methylphenyl methyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl 2-ethylhexyl pentaerythritol diphosphite, 2,6-di-t-butyl-4 -Methylphenyl isodecyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl lauryl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl Isotridecyl pentaerythritol diphosphite, 2,6-di-t-butyl-4 Methylphenyl stearyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl cyclohexyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl benzyl Pentaerythritol diphosphite, 2, _6-di-t-butyl-4-methylphenyl ethyl cellosolve Pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl butyl carbitol Pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl octylphenyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl nonylphenyl pentaerythritol Diphosphite, bis (2,6-di-t- Til-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl 2,6-di-t-butylphenyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl, 2,4-di-t-butylphenyl pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl · 2,4-di-t-octylphenyl · pentaerythritol diphosphite, 2,6-di-t-butyl-4-methylphenyl · 2-cyclohexyl Phenyl pentaerythritol diphosphite, 2,6-di-t-amyl-4-methylphenyl phenyl pentaerythritol Diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis (2,6-di-t-octyl-4-methylphenyl) pentaerythritol diphos Fight is mentioned. In this Embodiment, these may be used individually by 1 type and may be used in combination of 2 or more type.

上記で列挙したペンタエリスリトール型ホスファイト化合物の中でも、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−アミル−4−メチルフェニル)ペンタエリスリトールジホスファイト、及びビス(2、6−ジ−t−オクチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトがより好ましい。   Among the pentaerythritol type phosphite compounds listed above, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-) Ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis (2,6-di-t-octyl-4-methylphenyl) Pentaerythritol diphosphite is preferred, and bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite is more preferred.

リン系熱安定剤を用いる場合、ポリアミド共重合体中のリン系熱安定剤の配合量は、ポリアミド共重合体100質量部に対して、0.01〜1質量部であり、より好ましくは0.1〜1質量部である。上記の範囲内の場合、耐熱エージング性を一層向上させ、さらに発生ガス量を低減させることができる。   When using a phosphorus heat stabilizer, the compounding quantity of the phosphorus heat stabilizer in a polyamide copolymer is 0.01-1 mass part with respect to 100 mass parts of polyamide copolymers, More preferably, it is 0. .1 to 1 part by mass. When it is within the above range, the heat aging resistance can be further improved and the amount of generated gas can be further reduced.

[アミン系熱安定剤]
アミン系熱安定剤としては、以下に制限されないが、例えば、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアリルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−オキサレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−テレフタレート、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリ__ジルオキシ)−エタン、α,α'−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジルトリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}ブチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6−テトラメチルピペリジン、及び1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β',β'−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物が挙げられる。本実施の形態では、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Amine heat stabilizer]
Examples of amine heat stabilizers include, but are not limited to, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4 -Acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethyl Piperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethyl Piperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2, 2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) -carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) -oxalate, Bis (2,2,6,6-tetramethyl-4-piperidyl) -malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) -sebacate, bis (2,2,6,6- Tetramethyl-4-piperidyl) -adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) -terephthalate, 1,2-bis (2,2,6,6) Tetramethyl-4-piperyl__dioxy) -ethane, α, α′-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6) -Tetramethyl-4-piperidyltolylene-2,4-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2 , 6,6-tetramethyl-4-piperidyl) -benzene-1,3,5-tricarboxylate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,4 -Tricarboxylate, 1- [2- {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy} butyl] -4- [3- (3,5-di-t-butyl) -4-hydroxyphenyl) Pionyloxy] 2,2,6,6-tetramethylpiperidine, 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinol and β, β, β ′ , Β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethanol. In this Embodiment, these may be used individually by 1 type and may be used in combination of 2 or more type.

アミン系熱安定剤を用いる場合、ポリアミド共重合体中のアミン系熱安定剤の配合量は、ポリアミド共重合体100質量部に対して、好ましくは0.01〜1質量部であり、より好ましくは0.1〜1質量部である。上記の範囲内の場合、耐熱エージング性を一層向上させることができ、さらに発生ガス量を低減させることができる。   When an amine heat stabilizer is used, the compounding amount of the amine heat stabilizer in the polyamide copolymer is preferably 0.01 to 1 part by mass, more preferably 100 parts by mass of the polyamide copolymer. Is 0.1 to 1 part by mass. When it is within the above range, the heat aging resistance can be further improved, and the amount of generated gas can be further reduced.

[周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族及び第IVb族の元素の金属塩]
周期律表の第Ib族、第IIb族、第IIIa族、第IIIb族、第IVa族及び第IVb族の元素の金属塩としては、特に制限はされることはないが、好ましくは銅塩である。かかる銅塩としては、以下に制限されないが、例えば、ハロゲン化銅(ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅など)、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅及びステアリン酸銅、並びにエチレンジアミン、エチレンジアミン四酢酸などのキレート剤に銅の配位した銅錯塩が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Metal salts of elements of Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa, and Group IVb of the periodic table]
The metal salt of the elements of Group Ib, Group IIb, Group IIIa, Group IIIb, Group IVa and Group IVb of the periodic table is not particularly limited, but is preferably a copper salt. is there. Examples of such copper salts include, but are not limited to, copper halides (copper iodide, cuprous bromide, cupric bromide, cuprous chloride, etc.), copper acetate, copper propionate, benzoic acid. Examples thereof include copper, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate and copper stearate, and a copper complex in which copper is coordinated to a chelating agent such as ethylenediamine and ethylenediaminetetraacetic acid. These may be used alone or in combination of two or more.

上記列挙した銅塩の中でも、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅及び酢酸銅よりなる群から選択される1種以上が好ましく、より好ましくはヨウ化銅及び/又は酢酸銅である。かかる好ましい銅塩を用いた場合、耐熱エージング性に優れ、かつ押出時のスクリューやシリンダー部の金属腐食(以下、単に「金属腐食」ともいう)を抑制可能なポリアミドが得られる。
銅塩を用いる場合、ポリアミド共重合体中の銅塩の配合量は、ポリアミド共重合体100質量部に対して、好ましくは0.01〜0.2質量部であり、より好ましくは0.02〜0.15質量部である。上記範囲内の場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を抑制することができる。
また、耐熱エージング性を向上させる観点から、ポリアミド共重合体全量に対し、銅元素の含有濃度として、好ましくは10〜500ppmであり、より好ましくは30〜500ppmあり、さらに好ましくは50〜300ppmである。
Among the copper salts listed above, one or more selected from the group consisting of copper iodide, cuprous bromide, cupric bromide, cuprous chloride and copper acetate are preferred, and copper iodide is more preferred. And / or copper acetate. When such a preferable copper salt is used, a polyamide having excellent heat aging resistance and capable of suppressing metal corrosion (hereinafter also simply referred to as “metal corrosion”) of a screw or a cylinder during extrusion is obtained.
When using a copper salt, the compounding amount of the copper salt in the polyamide copolymer is preferably 0.01 to 0.2 parts by mass, more preferably 0.02 parts per 100 parts by mass of the polyamide copolymer. It is -0.15 mass part. When it is within the above range, the heat aging resistance is further improved, and copper precipitation and metal corrosion can be suppressed.
Further, from the viewpoint of improving the heat aging resistance, the content of copper element is preferably 10 to 500 ppm, more preferably 30 to 500 ppm, still more preferably 50 to 300 ppm, based on the total amount of the polyamide copolymer. .

[アルカリ金属及びアルカリ土類金属のハロゲン化物]
アルカリ金属及びアルカリ土類金属のハロゲン化物としては、以下の例に限定されるもではないが、例えば、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム及び塩化ナトリウム、並びにこれらの混合物が挙げられる。特に、耐熱エージング性の向上及び金属腐食の抑制という観点から、好ましくはヨウ化カリウム及び臭化カリウム、並びにこれらの混合物であり、より好ましくはヨウ化カリウムである。
アルカリ金属及びアルカリ土類金属のハロゲン化物を用いる場合、ポリアミド共重合体中のアルカリ金属及びアルカリ土類金属のハロゲン化物の配合量は、ポリアミド共重合体100質量部に対して、好ましくは0.05〜5質量部であり、より好ましくは0.2〜2質量部である。上記の範囲内の場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を抑制できる。
[Alkali metal and alkaline earth metal halides]
Examples of alkali metal and alkaline earth metal halides include, but are not limited to, potassium iodide, potassium bromide, potassium chloride, sodium iodide and sodium chloride, and mixtures thereof. Can be mentioned. In particular, from the viewpoint of improvement in heat aging resistance and suppression of metal corrosion, potassium iodide and potassium bromide, and a mixture thereof are preferable, and potassium iodide is more preferable.
When alkali metal and alkaline earth metal halides are used, the blending amount of the alkali metal and alkaline earth metal halides in the polyamide copolymer is preferably 0.000 with respect to 100 parts by mass of the polyamide copolymer. It is 05-5 mass parts, More preferably, it is 0.2-2 mass parts. Within the above range, the heat aging resistance is further improved, and copper precipitation and metal corrosion can be suppressed.

上述した熱安定剤の成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。特に、銅塩とアルカリ金属及びアルカリ土類金属のハロゲン化物との混合物が好適である。
銅塩とアルカリ金属及びアルカリ土類金属のハロゲン化物との割合は、ハロゲンと銅とのモル比(ハロゲン/銅)が2/1〜40/1となるように、ポリアミド共重合体に含有させることが好ましく、より好ましくは5/1〜30/1である。上記した範囲内の場合、耐熱エージング性を一層向上させることができる。
上記ハロゲン/銅が2/1以上である場合、銅の析出及び金属腐食を抑制することができるため好適である。
一方、上記のハロゲン/銅が40/1以下である場合、靭性等の機械的な物性を殆ど損
なうことなく、成形機のスクリュー等の腐食を防止できるため好適である。
The component of the heat stabilizer mentioned above may be used individually by 1 type, and may be used in combination of 2 or more type. Particularly preferred are mixtures of copper salts with alkali metal and alkaline earth metal halides.
The ratio of the copper salt to the alkali metal and alkaline earth metal halide is included in the polyamide copolymer so that the molar ratio of halogen to copper (halogen / copper) is 2/1 to 40/1. It is preferably 5/1 to 30/1. In the above range, the heat aging resistance can be further improved.
When the halogen / copper is 2/1 or more, it is preferable because copper precipitation and metal corrosion can be suppressed.
On the other hand, when the halogen / copper is 40/1 or less, corrosion of the screw of the molding machine can be prevented without substantially impairing mechanical properties such as toughness.

(A)ポリアミド共重合体に他の成分を含有させる場合の本実施の形態のシート(フィルム)の材料の製造方法としては、(A)ポリアミド共重合体、他の成分を混合する方法であれば、特に限定されるものではない。
ポリアミドと無機充填材の混合方法として、例えば、ポリアミドと他の成分とをヘンシェルミキサーなどを用いて混合し溶融混練機に供給し混練する方法や、単軸又は2軸押出機で溶融状態にしたポリアミドに、サイドフィダーから他の成分を配合する方法などが挙げられる。また、他の成分をマスターバッチ化したもの及び/又は原体のまま、ペレットブレンドをする方法もあげられる。
(A) As a manufacturing method of the material of the sheet | seat (film) of this Embodiment in the case of making a polyamide copolymer contain another component, what is the method of mixing a (A) polyamide copolymer and another component? For example, there is no particular limitation.
As a method for mixing the polyamide and the inorganic filler, for example, a method in which the polyamide and other components are mixed using a Henschel mixer, and supplied to a melt kneader and kneaded, or in a molten state with a single or twin screw extruder. The method of mix | blending other components with polyamide from a side feeder is mentioned. Moreover, the method of pellet-blending the thing which made the other component the masterbatch and / or a raw material is mention | raise | lifted.

ポリアミド、他の成分を溶融混練機に供給する方法は、すべての構成成分を同一の供給口に一度に供給してもよいし、構成成分をそれぞれ異なる供給口から供給してもよい。溶融混練温度は、樹脂温度にして250〜375℃程度であることが好ましい。溶融混練時間は、0.25〜5分程度であることが好ましい。溶融混練を行う装置としては、特に限定されるものではなく、公知の装置、例えば、単軸又は2軸押出機、バンバリーミキサー、及びミキシングロールなどの溶融混練機を用いることができる。   In the method of supplying polyamide and other components to the melt-kneader, all the components may be supplied to the same supply port at once, or the components may be supplied from different supply ports. The melt kneading temperature is preferably about 250 to 375 ° C. as the resin temperature. The melt kneading time is preferably about 0.25 to 5 minutes. The apparatus for performing the melt kneading is not particularly limited, and a known apparatus such as a single or twin screw extruder, a Banbury mixer, a mixing roll, or the like can be used.

本実施の形態のポリアミドシートは、厚みが0.01〜2.0mmのものであり、好ましくは0.01〜0.5mmであり、より好ましくは0.01〜0.2mmである。本実施の形態のポリアミドシートは、上述した(A)ポリアミドを用い、また所定の上記その他の材料と混合し、これを原料として従来公知の方法によって製造できる。   The polyamide sheet of the present embodiment has a thickness of 0.01 to 2.0 mm, preferably 0.01 to 0.5 mm, and more preferably 0.01 to 0.2 mm. The polyamide sheet of the present embodiment can be manufactured by a conventionally known method using the above-mentioned (A) polyamide, mixing with the above-mentioned other materials, and using this as a raw material.

本実施の形態のポリアミドシートは、予め構成材料を混合しておき、これを押出シート成形することにより作製でき、また、構成成分を押出シート成形機に直接投入し、ブレンドとシート成形とを同時に実施して作製することもできる。また、本実施の形態のポリアミドシートは、押出しチューブラー法(インフレーション法とも呼ばれる方法)により製造してもよい。さらに、本実施の形態のポリアミドシートは、Tダイ押出成形法によっても製造できる。この場合、無延伸のまま用いてもよいし、1軸延伸してもよいし、2軸延伸してもよい。シートの強度を高めたい場合は、延伸することにより達成することができる。   The polyamide sheet of the present embodiment can be prepared by mixing constituent materials in advance and molding the extruded sheet. In addition, the constituent components are directly fed into an extruded sheet molding machine, and blending and sheet molding are performed simultaneously. It can also be made. Moreover, you may manufacture the polyamide sheet of this Embodiment by the extrusion tubular method (method also called the inflation method). Furthermore, the polyamide sheet of the present embodiment can also be manufactured by a T-die extrusion method. In this case, it may be used without stretching, may be uniaxially stretched, or may be biaxially stretched. When it is desired to increase the strength of the sheet, it can be achieved by stretching.

本実施の形態のポリアミドシートは、表面を塗料、金属層、多種ポリマー等により積層したものとしてもよい。   The polyamide sheet of the present embodiment may have a surface laminated with a paint, a metal layer, various polymers, or the like.

〔用途〕
本実施の形態のポリアミドシートは、耐熱性、強度、靭性、低吸水性、成形性に優れ、さらに優れた色調を有しているものであるため、自動車用、電気及び電子用、産業資材用、及び日用及び家庭品用等の各種部品材料として、好適に用いることができる。電気及び電子用としては、特に限定されるものではなく、例えば、モーター、トランス、ケーブル等の電気絶縁材料、コンデンサ等の誘電体材料、プリント回路基盤、フラットケーブルなど電子基盤材料等に用いられる。
産業機器用としては、特に限定されるものではなく、例えば、シート状マグネット等の磁性材料に用いられる。
日用及び家庭品用としては、特に限定されるものではなく、例えば、ボタン、食品容器、及びオフィス家具等に用いられる。
[Use]
The polyamide sheet of the present embodiment is excellent in heat resistance, strength, toughness, low water absorption, moldability, and has an excellent color tone, so it is for automobiles, electric and electronic, industrial materials It can be suitably used as various parts materials for daily use and household goods. There are no particular limitations on the electrical and electronic use, and for example, it is used for electrical insulating materials such as motors, transformers, and cables, dielectric materials such as capacitors, printed circuit boards, and electronic board materials such as flat cables.
There is no particular limitation for industrial equipment, and for example, it is used for magnetic materials such as sheet magnets.
It is not specifically limited as for daily use and household goods, for example, it is used for buttons, food containers, office furniture and the like.

以下、実施例によって本実施形態をより具体的に説明するが、本実施形態は、これらの実施例に限定されるものではない。
実施例及び比較例に用いた材料の構造、物性の測定方法、成形方法、評価方法を以下に示す。
Hereinafter, the present embodiment will be described more specifically by way of examples. However, the present embodiment is not limited to these examples.
The structures of the materials used in the examples and comparative examples, the methods for measuring physical properties, the molding methods, and the evaluation methods are shown below.

〔材料の構造、物性の測定方法〕
(ポリアミド共重合体の数平均分子量(Mn))
ポリアミド共重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により求めた。
装置は東ソー(株)製、「HLC−8020」を、検出器は示差屈折計(RI)を、溶媒はトリフルオロ酢酸ナトリウムを0.1モル%溶解させたヘキサフルオロイソプロパノール(HFIP)を、カラムは東ソー(株)製、「TSKgel−GMHHR−H」2本と「G1000HHR」1本を用いた。
溶媒流量は0.6mL/min、サンプル濃度は1〜3(mgサンプル)/1(mL溶媒)であり、フィルターでろ過し、不溶分を除去し、測定試料とした。
得られた溶出曲線をもとに、ポリメタクリル酸メチル(PMMA)換算により、数平均分子量(Mn)を算出した。
[Measuring method of material structure and physical properties]
(Number average molecular weight (Mn) of polyamide copolymer)
The number average molecular weight of the polyamide copolymer was determined by gel permeation chromatography (GPC).
The apparatus is “HLC-8020” manufactured by Tosoh Corporation, the detector is a differential refractometer (RI), the solvent is hexafluoroisopropanol (HFIP) in which 0.1 mol% of sodium trifluoroacetate is dissolved, the column Used 2 pieces of “TSKgel-GMHHR-H” and 1 piece of “G1000HHR” manufactured by Tosoh Corporation.
The solvent flow rate was 0.6 mL / min, and the sample concentration was 1 to 3 (mg sample) / 1 (mL solvent), which was filtered through a filter to remove insolubles, thereby obtaining a measurement sample.
Based on the obtained elution curve, the number average molecular weight (Mn) was calculated in terms of polymethyl methacrylate (PMMA).

(ポリアミド共重合体中の1,4−シクロヘキサンジカルボン酸単位のトランス異性体比率、及びポリアミド共重合体中の構成単位)
ポリアミド共重合体中の1,4−シクロヘキサンジカルボン酸単位のトランス異性体比率は、ポリアミド共重合体30〜40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、H−NMRで測定した。
装置は日本電子(株)製、「JNM ECA−500」を用いた。1,4−シクロヘキサンジカルボン酸の場合、トランス異性体に由来するピーク面積とシス異性体に由来するピーク面積との比率からトランス異性体比率(トランス異性体/シス異性体)を求めた。
また、ポリアミド共重合体中の構成単位の割合は、H−NMRで測定し、各成分に由来するピーク面積の比率から求めた。
比率計算に用いたピークを下記に示す。
(Trans isomer ratio of 1,4-cyclohexanedicarboxylic acid unit in polyamide copolymer, and constitutional unit in polyamide copolymer)
The trans isomer ratio of 1,4-cyclohexanedicarboxylic acid units in the polyamide copolymer was measured by 1 H-NMR after dissolving 30 to 40 mg of the polyamide copolymer in 1.2 g of hexafluoroisopropanol deuteride.
As a device, “JNM ECA-500” manufactured by JEOL Ltd. was used. In the case of 1,4-cyclohexanedicarboxylic acid, the trans isomer ratio (trans isomer / cis isomer) was determined from the ratio between the peak area derived from the trans isomer and the peak area derived from the cis isomer.
Moreover, the ratio of the structural unit in a polyamide copolymer was measured by < 1 > H-NMR, and it calculated | required from the ratio of the peak area originating in each component.
The peaks used for the ratio calculation are shown below.

<ポリアミド共重合体中の1,4−シクロヘキサンジカルボン酸のトランス/シス比>
トランスピーク:1.98ppm
シスピーク:1.77ppm、1.86ppm
<ポリアミド共重合体中の構成単位の割合>
1,4−シクロヘキサンジカルボン酸:上記トランス/シス比に用いたピーク
アジピン酸 :2.3ppm、2.4ppm
イソフタル酸 :3.5ppm
ヘキサメチレンジアミン :3.28ppm、3.5ppm
<Trans / cis ratio of 1,4-cyclohexanedicarboxylic acid in polyamide copolymer>
Transpeak: 1.98 ppm
Cis peak: 1.77 ppm, 1.86 ppm
<Ratio of structural units in polyamide copolymer>
1,4-cyclohexanedicarboxylic acid: peak used for the above trans / cis ratio Adipic acid: 2.3 ppm, 2.4 ppm
Isophthalic acid: 3.5ppm
Hexamethylenediamine: 3.28 ppm, 3.5 ppm

(原料1,4−シクロヘキサンジカルボン酸のトランス/シスのモル比)
HPLC(高速液体クロマトグラフィー)装置を用いて、原料モノマーである1,4−シクロヘキサンジカルボン酸におけるトランス/シスのモル比を測定した。
HPLC装置としては、島津製作所(株)製 LC−10Aを用いた。1,4−シクロヘキサンジカルボン酸モノマーを、逆相カラムを用いたグレジェント溶離法により、トランス成分(溶出時間約11分)と、シス成分(溶出時間約14.5分)とに分離し、それぞれのピーク面積の比により求めた。
HPLC分析条件の詳細を以下に示す。
(Mole ratio of trans / cis of raw material 1,4-cyclohexanedicarboxylic acid)
Using a HPLC (high performance liquid chromatography) apparatus, the molar ratio of trans / cis in 1,4-cyclohexanedicarboxylic acid as a raw material monomer was measured.
As an HPLC apparatus, LC-10A manufactured by Shimadzu Corporation was used. The 1,4-cyclohexanedicarboxylic acid monomer is separated into a trans component (elution time of about 11 minutes) and a cis component (elution time of about 14.5 minutes) by a gradient elution method using a reverse phase column. It calculated | required by ratio of peak area.
Details of the HPLC analysis conditions are shown below.

装置:島津製作所(株)LC−10A vp
逆相(C30)カラム:野村化学(株)Develosil PRAQUOUS
温度:40℃
流速:1.0mL/min
検出:UV214nm
移動相A:水(0.1質量% トリフルオロ酢酸含有))
移動相B:水/アセトニトリル=10/90(0.1質量%トリフルオロ酢酸含有)
移動相混合比:B=0→100%(15分間)
試料濃度:10mg/mL
(溶媒:(水/アセトニトリル=50/50)
試料溶液注入量:20mL
Equipment: Shimadzu Corporation LC-10A vp
Reversed phase (C30) column: Nomura Chemical Co., Ltd. Develosil PRAQUEUS
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Detection: UV214nm
Mobile phase A: water (containing 0.1% by mass of trifluoroacetic acid)
Mobile phase B: water / acetonitrile = 10/90 (containing 0.1% by mass of trifluoroacetic acid)
Mobile phase mixing ratio: B = 0 → 100% (15 minutes)
Sample concentration: 10 mg / mL
(Solvent: (water / acetonitrile = 50/50)
Sample solution injection volume: 20 mL

(融点(℃))
融点は、JIS K7121に準じて、PERKIN−ELMER社製、「DSC−7」を用いて測定した。
測定条件は、窒素雰囲気下、試料約10mgを昇温速度20℃/minで昇温したときに現れる吸熱ピーク(融解ピーク)の温度をTm1(℃)とし、Tm1+40℃の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温、2分間保持した後、昇温速度20℃/minで昇温したときに現れる吸熱ピーク(融解ピーク)のピーク温度を融点(Tm2(℃))とした。
(Melting point (℃))
The melting point was measured using “DSC-7” manufactured by PERKIN-ELMER according to JIS K7121.
The measurement conditions are as follows. The temperature of an endothermic peak (melting peak) that appears when about 10 mg of a sample is heated at a rate of temperature increase of 20 ° C./min in a nitrogen atmosphere is Tm 1 (° C.). The temperature is lowered to 30 ° C. at a temperature drop rate of 20 ° C./min, held for 2 minutes, held for 2 minutes, and then the peak temperature of the endothermic peak (melting peak) that appears when the temperature is raised at a temperature rise rate of 20 ° C./min (° C.)).

(ガラス転移温度(℃))
ガラス転移温度は、JIS K7121に準じて、PERKIN−ELMER社製、「DSC−7」を用いて測定した。
まず、サンプルをホットステージ(Mettler社製、「EP80」)で溶融させ、溶融状態のサンプルを液体窒素中で急冷し、固化させ、測定用サンプルとした。
測定用サンプル10mgを、昇温速度20℃/minの条件下、30〜300℃の範囲で昇温して、そのガラス転移温度を測定した。
(Glass transition temperature (℃))
The glass transition temperature was measured using “DSC-7” manufactured by PERKIN-ELMER according to JIS K7121.
First, the sample was melted on a hot stage (“EP80” manufactured by Mettler), and the molten sample was quenched in liquid nitrogen and solidified to obtain a measurement sample.
A 10 mg sample for measurement was heated in the range of 30 to 300 ° C. under a temperature rising rate of 20 ° C./min, and the glass transition temperature was measured.

(シート成形性)
下記に示すシート状成形体を作製した際の「成形性」を厚みムラで評価した。シート中央部の厚みを流れ方向に対し、30秒毎に20点測定し、その厚さムラの発生状況を基に評価した。
○:20点測定の厚さムラが、全て設定厚みの10%未満でシートの厚みがかなり安定している。
△:20点測定の厚さムラが、全て設定厚みの20%未満でシートが少し波打つ感じはあるが厚みが安定している。
×:20点測定の厚さムラで、設定厚みの20%以上の点があり、シートがかなり波打つ。または、厚みが安定したフィルムは得られない。
(Sheet formability)
“Formability” when the sheet-like molded body shown below was produced was evaluated by thickness unevenness. The thickness of the central part of the sheet was measured at 30 points every 30 seconds in the flow direction, and evaluated based on the occurrence of thickness unevenness.
A: The thickness unevenness measured at 20 points is less than 10% of the set thickness, and the thickness of the sheet is fairly stable.
Δ: The thickness unevenness of the 20-point measurement is less than 20% of the set thickness, but the sheet feels slightly wavy, but the thickness is stable.
X: Thickness unevenness measured at 20 points, there are 20% or more of the set thickness, and the sheet is considerably wavy. Or, a film having a stable thickness cannot be obtained.

(引張弾性率の測定)
下記に示すシート状成形体を用いて、ISO527に準じて、引張弾性率を測定した。
(Measurement of tensile modulus)
The tensile elastic modulus was measured according to ISO527 using the sheet-like molded body shown below.

(吸水後引張弾性率の測定)
下記に示すシート状成形体用いて、80℃の温水中で24時間浸漬後、ISO527に準じて引張弾性率を測定した。
Wet保持率は下記式を用いて求めた。
Wet保持率(%)=吸水後(Wet)引張弾性率/吸水前(Dry)引張弾性率×100
(Measurement of tensile modulus after water absorption)
Using the sheet-like molded body shown below, after being immersed in warm water at 80 ° C. for 24 hours, the tensile elastic modulus was measured according to ISO 527.
Wet retention was determined using the following formula.
Wet retention (%) = after water absorption (Wet) tensile modulus / before water absorption (Dry) tensile modulus × 100

(100℃引張弾性率の測定)
下記に示すシート状成形体、100℃雰囲気下でISO527に準じて引張弾性率を測定した。100℃保持率は下記式を用いて求めた。
100℃保持率(%)=100℃引張弾性率/吸水前(Dry)引張弾性率×100
(Measurement of tensile modulus at 100 ° C)
The tensile modulus of elasticity was measured according to ISO 527 in an atmosphere of 100 ° C. as shown below. The 100 ° C. retention was determined using the following formula.
100 ° C. retention (%) = 100 ° C. tensile modulus / before water absorption (Dry) tensile modulus × 100

〔ポリアミドシート〕
(材料)
実施例、及び比較例におけるポリアミド共重合体の製造において、下記化合物を用いた。
(1)アジピン酸 和光純薬工業(株)製 商品名:アジピン酸
(2)1,4−シクロヘキサンジカルボン酸 イーストマンケミカル製 商品名:1,4−CHDA HPグレード(トランス体/シス体(モル比)=25/75)
(3)イソフタル酸 和光純薬工業(株)製 商品名:イソフタル酸
(4)ヘキサメチレンジアミン 和光純薬工業(株)製 商品名:ヘキサメチレンジアミン
[Polyamide sheet]
(material)
The following compounds were used in the production of polyamide copolymers in Examples and Comparative Examples.
(1) Adipic acid Wako Pure Chemical Industries, Ltd. Product name: Adipic acid (2) 1,4-cyclohexanedicarboxylic acid, Eastman Chemical product name: 1,4-CHDA HP grade (trans isomer / cis isomer (mol) Ratio) = 25/75)
(3) Isophthalic acid Product name: Isophthalic acid, manufactured by Wako Pure Chemical Industries, Ltd.
(4) Hexamethylenediamine Product name: Hexamethylenediamine, manufactured by Wako Pure Chemical Industries, Ltd.

<製造例1:ポリアミド共重合体(A1)の製造>
アジピン酸517.0g(3.54モル)、イソフタル酸55.1g(0.33モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸285.5g(1.66モル)、ヘキサメチレンジアミン642.3g(5.53モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を準備した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で撹拌しながら、水蒸気を徐々に抜いて、溶液濃度70質量%まで濃縮した。その後、内部温度を218℃まで昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そして、内部温度が270℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけて圧力を1MPaまで下げ、更に15分、窒素をオートクレーブ内部に流しながら重合を進めて、ポリアミド共重合体を得た。このとき、重合の最終内部温度は290℃であった。
得られたポリアミド共重合体を2mm以下の大きさまで粉砕し、100℃、窒素雰囲気下で12時間乾燥した。得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は69.8モル%であった。
得られたポリアミド共重合体(A1)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A1)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 1: Production of polyamide copolymer (A1)>
Adipic acid 517.0 g (3.54 mol), isophthalic acid 55.1 g (0.33 mol), and trans-cis / cis-isomer molar ratio 25/75 285.5 g (1 .66 mol) and 642.3 g (5.53 mol) of hexamethylenediamine were dissolved in 1500 g of distilled water to prepare an equimolar 50 mass% homogeneous aqueous solution of the raw material monomer.
This aqueous solution was charged into an autoclave having an internal volume of 5.4 L and purged with nitrogen.
While stirring at a temperature of 110 to 150 ° C., water vapor was gradually removed to concentrate the solution concentration to 70% by mass. Thereafter, the internal temperature was raised to 218 ° C. At this time, the autoclave was pressurized to 1.8 MPa. Then, until the internal temperature reached 270 ° C., the reaction was continued for 1 hour while gradually removing water vapor and maintaining the pressure at 1.8 MPa.
Next, the pressure was reduced to 1 MPa over 1 hour, and the polymerization was further continued for 15 minutes while flowing nitrogen into the autoclave to obtain a polyamide copolymer. At this time, the final internal temperature of the polymerization was 290 ° C.
The obtained polyamide copolymer was pulverized to a size of 2 mm or less and dried at 100 ° C. in a nitrogen atmosphere for 12 hours. The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 69.8 mol%.
The composition of the obtained polyamide copolymer (A1) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A1) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<製造例2:ポリアミド共重合体(A2)の製造>
アジピン酸440.9g(3.02モル)、イソフタル酸91.1g(0.55モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸330.6g(1.92モル)、ヘキサメチレンジアミン637.4g(5.49モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。
このとき、重合の最終内部温度は291℃であった。得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は71.4モル%であった。
得られたポリアミド共重合体(A2)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A2)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 2: Production of polyamide copolymer (A2)>
440.6 g (3.02 mol) of adipic acid, 91.1 g (0.55 mol) of isophthalic acid, 330.6 g (1) of 1,4-cyclohexanedicarboxylic acid having a trans / cis molar ratio of 25/75 .92 mol), and the polyamide copolymer was polymerized by the method described in Production Example 1 except that 637.4 g (5.49 mol) of hexamethylenediamine was used.
At this time, the final internal temperature of the polymerization was 291 ° C. The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 71.4 mol%.
The composition of the obtained polyamide copolymer (A2) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A2) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<製造例3:ポリアミド共重合体(A3)の製造>
アジピン酸509.4g(3.49モル)、イソフタル酸128.7g(0.77モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸219.1g(1.27モル)、ヘキサメチレンジアミン642.9g(5.53モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は292℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は71.8モル%であった。
得られたポリアミド共重合体(A3)の組成を下記表1に示す。表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A3)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 3: Production of polyamide copolymer (A3)>
Adipic acid 509.4 g (3.49 mole), isophthalic acid 128.7 g (0.77 mole), and trans-cis / cis mole ratio 25/75, 219.1 g (1 .27 mol) and 642.9 g (5.53 mol) of hexamethylenediamine were used to polymerize the polyamide copolymer by the method described in Production Example 1. At this time, the final internal temperature of the polymerization was 292 ° C.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 71.8 mol%.
The composition of the obtained polyamide copolymer (A3) is shown in Table 1 below. The proportion of the structural unit of the polyamide copolymer shown in Table 1, the obtained copolymer was determined by analyzing by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A3) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<製造例4:ポリアミド共重合体(A4)の製造>
アジピン酸433.3g(2.97モル)、イソフタル酸173.3g(1.04モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸255.3g(1.48モル)、ヘキサメチレンジアミン638.1g(5.49モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は293℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.0モル%であった。
得られたポリアミド共重合体(A4)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A4)分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 4: Production of polyamide copolymer (A4)>
Adipic acid 433.3 g (2.97 mol), isophthalic acid 173.3 g (1.04 mol), and trans-cis / cis-isomer molar ratio 25/75 255.3 g (1 .48 mol), and a polyamide copolymer was polymerized by the method described in Production Example 1 except that 638.1 g (5.49 mol) of hexamethylenediamine was used. At this time, the final internal temperature of the polymerization was 293 ° C.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 72.0 mol%.
The composition of the obtained polyamide copolymer (A4) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The obtained polyamide copolymer (A4) was evaluated for molecular weight, melting point, and glass transition temperature by the methods described above. The evaluation results are shown in Table 1 below.

<製造例5:ポリアミド共重合体(A5)の製造>
アジピン酸595.3g(4.07モル)、イソフタル酸83.4g(0.50モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸172.9g(1.00モル)、ヘキサメチレンジアミン648.4g(5.58モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は290℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.2モル%であった。
得られたポリアミド共重合体(A5)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A5)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 5: Production of polyamide copolymer (A5)>
Adipic acid 595.3 g (4.07 mol), isophthalic acid 83.4 g (0.50 mol), 172.9 g (1 mol) of 1,4-cyclohexanedicarboxylic acid having a trans / cis molar ratio of 25/75 0.0000 mol) and 648.4 g (5.58 mol) of hexamethylenediamine, the polyamide copolymer was polymerized by the method described in Production Example 1. At this time, the final internal temperature of the polymerization was 290 ° C.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 72.2 mol%.
The composition of the obtained polyamide copolymer (A5) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A5) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<製造例6:ポリアミド共重合体(A6)の製造>
アジピン酸333.5g(2.28モル)、イソフタル酸207.6g(1.25モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸327.5g(1.90モル)、ヘキサメチレンジアミン631.4g(5.43モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は290℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は70.2モル%であった。
得られたポリアミド共重合体(A6)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A6)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 6: Production of polyamide copolymer (A6)>
337.5 g (2.28 mol) of adipic acid, 207.6 g (1.25 mol) of isophthalic acid, 327.5 g of 1,4-cyclohexanedicarboxylic acid having a trans / cis molar ratio of 25/75 (1 .90 mol), and a polyamide copolymer was polymerized by the method described in Production Example 1 except that 631.4 g (5.43 mol) of hexamethylenediamine was used. At this time, the final internal temperature of the polymerization was 290 ° C.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 70.2 mol%.
The composition of the obtained polyamide copolymer (A6) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A6) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<製造例7:ポリアミド共重合体(A7)の製造>
アジピン酸332.9g(2.28モル)、イソフタル酸135.2g(0.81モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸401.6g(2.33モル)、ヘキサメチレンジアミン630.3g(5.42モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は292℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.1モル%であった。
得られたポリアミド共重合体(A7)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A7)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 7: Production of polyamide copolymer (A7)>
331.6 g (2.28 mol) of adipic acid, 135.2 g (0.81 mol) of isophthalic acid, 401.6 g (2 of 1,4-cyclohexanedicarboxylic acid having a trans / cis molar ratio of 25/75 .33 mol), and a polyamide copolymer was polymerized by the method described in Production Example 1 except that 630.3 g (5.42 mol) of hexamethylenediamine was used. At this time, the final internal temperature of the polymerization was 292 ° C.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 72.1 mol%.
The composition of the obtained polyamide copolymer (A7) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The obtained polyamide copolymer (A7) was evaluated for the molecular weight, melting point, and glass transition temperature by the methods described above. The evaluation results are shown in Table 1 below.

<製造例8:ポリアミド共重合体(A8)の製造>
アジピン酸268.1g(1.83モル)、イソフタル酸233.1g(1.40モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸371.7g(2.16モル)、ヘキサメチレンジアミン627.1g(5.40モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は291℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.3モル%であった。
得られたポリアミド共重合体(A8)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A8)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 8: Production of polyamide copolymer (A8)>
Adipic acid 268.1g (1.83mol), isophthalic acid 233.1g (1.40mol), 1,4-cyclohexanedicarboxylic acid 371.7g (2 .16 mol), and a polyamide copolymer was polymerized by the method described in Production Example 1 except that 627.1 g (5.40 mol) of hexamethylenediamine was used. At this time, the final internal temperature of the polymerization was 291 ° C.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 72.3 mol%.
The composition of the obtained polyamide copolymer (A8) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The obtained polyamide copolymer (A8) was evaluated for the molecular weight, melting point, and glass transition temperature by the methods described above. The evaluation results are shown in Table 1 below.

<比較製造例1:ポリアミド共重合体(A9)>
アジピン酸692.2g(4.74モル)、イソフタル酸74.9g(0.45モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸77.7g(0.45モル)、ヘキサメチレンジアミン655.2g(5.64モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を準備した。この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。110〜150℃の温度下で撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。その後、内部温度を218℃に昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そのまま1時間、253℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけて圧力を1MPaまで下げ、更に15分間、窒素をオートクレーブ内部に流しながら重合を進めて、ポリアミド共重合体を得た。
これを2mm以下の大きさまで粉砕し、100℃、窒素雰囲気下で12時間乾燥した。
得られたポリアミド共重合体(A9)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A9)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Comparative Production Example 1: Polyamide copolymer (A9)>
692.2 g (4.74 mol) of adipic acid, 74.9 g (0.45 mol) of isophthalic acid, 77.7 g of 1,4-cyclohexanedicarboxylic acid having a trans / cis molar ratio of 80/20 (0 .45 mol) and 655.2 g (5.64 mol) of hexamethylenediamine were dissolved in 1500 g of distilled water to prepare an equimolar 50 mass% homogeneous aqueous solution of the raw material monomer. This aqueous solution was charged into an autoclave having an internal volume of 5.4 L and purged with nitrogen. While stirring at a temperature of 110 to 150 ° C., water vapor was gradually removed to a solution concentration of 70% by mass and concentrated. Thereafter, the internal temperature was raised to 218 ° C. At this time, the autoclave was pressurized to 1.8 MPa. The reaction was continued for 1 hour while gradually removing water vapor and maintaining the pressure at 1.8 MPa until the temperature reached 253 ° C. for 1 hour.
Next, the pressure was reduced to 1 MPa over 1 hour, and the polymerization was further continued for 15 minutes while flowing nitrogen into the autoclave to obtain a polyamide copolymer.
This was pulverized to a size of 2 mm or less and dried in a nitrogen atmosphere at 100 ° C. for 12 hours.
The composition of the obtained polyamide copolymer (A9) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The obtained polyamide copolymer (A9) was evaluated for the molecular weight, melting point, and glass transition temperature by the methods described above. The evaluation results are shown in Table 1 below.

<比較製造例2:ポリアミド共重合体(A10)>
アジピン酸595.9g(4.08モル)、イソフタル酸129.9g(0.78モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸125.0g(0.73モル)、ヘキサメチレンジアミン649.1g(5.59モル)とした以外は、比較製造例1に記載した方法で、ポリアミド共重合体を重合した。
得られたポリアミド共重合体(A10)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A10)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Comparative Production Example 2: Polyamide copolymer (A10)>
Adipic acid 595.9 g (4.08 mol), isophthalic acid 129.9 g (0.78 mol), 125.0 g of 1,4-cyclohexanedicarboxylic acid having a trans / cis molar ratio of 80/20 (0 .73 mol), and the polyamide copolymer was polymerized by the method described in Comparative Production Example 1 except that the hexamethylenediamine was 649.1 g (5.59 mol).
The composition of the obtained polyamide copolymer (A10) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The obtained polyamide copolymer (A10) was evaluated for the molecular weight, melting point, and glass transition temperature by the methods described above. The evaluation results are shown in Table 1 below.

<比較製造例3:ポリアミド共重合体(A11)>
アジピン酸317.5g(2.17モル)、イソフタル酸270.7g(1.63モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸280.6g(1.63モル)、ヘキサメチレンジアミン631.2g(5.43モル)とした以外は、比較製造例1に記載した方法で、ポリアミド共重合体を重合した。
得られたポリアミド共重合体(A11)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A11)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Comparative Production Example 3: Polyamide copolymer (A11)>
Adipic acid 317.5 g (2.17 mol), isophthalic acid 270.7 g (1.63 mol), 1,4-cyclohexanedicarboxylic acid 280.6 g (1 mole ratio of trans / cis isomer) is 80/20 0.663 mol), and a polyamide copolymer was polymerized by the method described in Comparative Production Example 1 except that 631.2 g (5.43 mol) of hexamethylenediamine was used.
The composition of the obtained polyamide copolymer (A11) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A11) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<比較製造例4:ポリアミド共重合体(A12)>
アジピン酸509.9g(3.49モル)、イソフタル酸174.8g(1.05モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸171.7g(1.00モル)、ヘキサメチレンジアミン643.6g(5.54モル)とした以外は比較製造例1に記載した方法で、ポリアミド共重合体を重合した。
得られたポリアミド共重合体(A12)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A12)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Comparative Production Example 4: Polyamide copolymer (A12)>
Adipic acid 509.9 g (3.49 mol), isophthalic acid 174.8 g (1.05 mol), 1,4-cyclohexanedicarboxylic acid 171.7 g (1 mole ratio of trans / cis isomer) is 80/20 (1 0.0000 mole) and 643.6 g (5.54 mole) of hexamethylenediamine, the polyamide copolymer was polymerized by the method described in Comparative Production Example 1.
The composition of the obtained polyamide copolymer (A12) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A12) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

<製造例9:ポリアミド共重合体(A13)>
アジピン酸509.4g(3.49モル)、イソフタル酸128.7g(0.77モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸219.1g(1.27モル)、ヘキサメチレンジアミン642.9g(5.53モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作った。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。110〜150℃の温度下で撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。その後、内部温度を218℃に昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そのまま1時間、253℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけて圧力を1MPaまで下げ、更に15分間、窒素をオートクレーブ内部に流しながら重合を進めて、ポリアミド共重合体を得た。このとき、重合の最終内部温度は275℃であった。
これを2mm以下の大きさまで粉砕し、100℃、窒素雰囲気下で12時間乾燥した。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は56.7モル%であった。
得られたポリアミド共重合体(A13)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体をH−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A13)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
<Production Example 9: Polyamide copolymer (A13)>
Adipic acid 509.4 g (3.49 mole), isophthalic acid 128.7 g (0.77 mole), and trans-cis / cis mole ratio 25/75, 219.1 g (1 .27 mol) and 642.9 g (5.53 mol) of hexamethylenediamine were dissolved in 1500 g of distilled water to prepare an equimolar 50% by mass aqueous solution of the raw material monomer.
This aqueous solution was charged into an autoclave having an internal volume of 5.4 L and purged with nitrogen. While stirring at a temperature of 110 to 150 ° C., water vapor was gradually removed to a solution concentration of 70% by mass and concentrated. Thereafter, the internal temperature was raised to 218 ° C. At this time, the autoclave was pressurized to 1.8 MPa. The reaction was continued for 1 hour while gradually removing water vapor and maintaining the pressure at 1.8 MPa until the temperature reached 253 ° C. for 1 hour.
Next, the pressure was reduced to 1 MPa over 1 hour, and the polymerization was further continued for 15 minutes while flowing nitrogen into the autoclave to obtain a polyamide copolymer. At this time, the final internal temperature of the polymerization was 275 ° C.
This was pulverized to a size of 2 mm or less and dried in a nitrogen atmosphere at 100 ° C. for 12 hours.
The trans isomer ratio of the 1,4-cyclodicarboxylic acid component contained in the obtained polyamide copolymer was 56.7 mol%.
The composition of the obtained polyamide copolymer (A13) is shown in Table 1 below. The proportion of structural units of the polyamide copolymer shown in Table 1 below was determined by analyzing the obtained copolymer by 1 H-NMR.
The molecular weight, melting point, and glass transition temperature of the obtained polyamide copolymer (A13) were evaluated by the methods described above. The evaluation results are shown in Table 1 below.

〔ポリアミドシートの製造例〕
<実施例1〜9、比較例1〜4>
上記製造例1〜8、13比較製造例9〜12のポリアミドを、窒素気流中でさらに乾燥し、水分率を0.05質量%以下に調整した。シリンダーの温度並びにTダイス(幅:40cm)の温度を、融点Tm2+20℃に設定したスクリュー径40mmの単軸押出機を用いて、スクリュー回転数30rpm、吐出量6kg/hで押出しシート成形を行った。
このときシートが0.10mmの厚さになるようにTダイスのクリアランス、シートの引き取り速度を調整した。
作製したシートを用いて、上述の引っ張り弾性率、シート成形性を評価した。評価及び測定結果を下記表1に示す。
[Production example of polyamide sheet]
<Examples 1-9, Comparative Examples 1-4>
The polyamides of Production Examples 1 to 8 and 13 Comparative Production Examples 9 to 12 were further dried in a nitrogen stream, and the moisture content was adjusted to 0.05% by mass or less. Extrusion sheet molding was performed at a screw rotation speed of 30 rpm and a discharge rate of 6 kg / h using a single-screw extruder with a screw diameter of 40 mm, in which the temperature of the cylinder and the temperature of the T dice (width: 40 cm) were set to melting point Tm2 + 20 ° C. .
At this time, the clearance of the T dice and the sheet take-up speed were adjusted so that the sheet had a thickness of 0.10 mm.
Using the prepared sheet, the above-described tensile elastic modulus and sheet formability were evaluated. The evaluation and measurement results are shown in Table 1 below.

Figure 2013001770
Figure 2013001770

表1に示すように、各実施例のポリアミシートは、いずれも優れた吸水剛性、熱時剛性を有し、さらにはシート成形性が優れることが確認された。
一方、(b−p)イソフタル酸単位の含有量(モル%)と(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量(モル%)の関係が、(b−p)=(c−p)である比較例1、3、及び(b−p)と(c−p)の関係が(b−p)>(c−p)である比較例2、4のポリアミド共重合体から得られた成形品は、吸水剛性、100℃での熱時剛性が大きく低下したことが確認された。
さらに、(b−p)イソフタル酸単位と(c−p)1,4−シクロヘキサンジカルボン酸単位との関係が(c−p)>(b−p)であり、かつ(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量>(b−p)イソフタル酸単位の含有量≧0.1である実施例3のポリアミド共重合体から得られた成形品は、実施例9の成形品に比較して、吸水剛性、熱時剛性、シート成形性が一層優れていることが確認された。
As shown in Table 1, it was confirmed that the polyami sheet of each example had excellent water absorption rigidity and hot rigidity, and further excellent sheet formability.
On the other hand, the relationship between the content (mol%) of (bp) isophthalic acid units and the content (mol%) of (cp) 1,4-cyclohexanedicarboxylic acid units is (b−p) = (c -P) from Comparative Examples 1 and 3, and the polyamide copolymer of Comparative Examples 2 and 4 in which the relationship between (bp) and (cp) is (bp)> (cp) It was confirmed that the obtained molded product was greatly reduced in water absorption rigidity and heat rigidity at 100 ° C.
Furthermore, the relationship between the (bp) isophthalic acid unit and the (cp) 1,4-cyclohexanedicarboxylic acid unit is (cp)> (bp), and (c-1-p) Content of trans isomer unit of 1,4-cyclodicarboxylic acid unit> (bp) Content of isophthalic acid unit ≧ 0.1 Molded article obtained from the polyamide copolymer of Example 3 As compared with the molded product of Example 9, it was confirmed that the water absorption rigidity, the thermal rigidity, and the sheet formability were further excellent.

本発明のポリアミドシートは、自動車分野、電気・電子分野、携帯機器分野、機械・工業分野、事務機器分野、航空・宇宙分野の各種部品の成形材料として産業上の利用可能性を有している。   The polyamide sheet of the present invention has industrial applicability as a molding material for various parts in the automotive field, electrical / electronic field, portable device field, machine / industrial field, office equipment field, aerospace field. .

Claims (8)

(A):(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位をからなるジカルボン酸成分単位と、ジアミン成分単位と、からなるポリアミド共重合体であって、
当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)との含有量(モル%)の関係が下記式(1)を満たすポリアミド共重合体を含むポリアミドシート。
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
(A): a dicarboxylic acid component unit comprising (ap) adipic acid units, (bp) isophthalic acid units, and (cp) 1,4-cyclohexanedicarboxylic acid units, a diamine component unit, A polyamide copolymer comprising:
The total amount of the dicarboxylic acid component units including the (ap), the (bp), and the (cp) constituting the polyamide copolymer is 100 mol%. A polyamide sheet comprising a polyamide copolymer in which the relationship between the content (mol%) and the content (mol%) of (cp) satisfies the following formula (1).
Content of (cp)> Content of (bp) ≧ 0.1 (1)
前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%に対して、
前記(a−p)アジピン酸単位の含有量が40〜80モル%であり、
前記(b−p)イソフタル酸単位の含有量が0.1〜25モル%であり、
前記(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が15〜40モル%である、請求項1に記載のポリアミドシート。
With respect to a total of 100 mol% of the dicarboxylic acid component units including the (ap), the (bp), and the (cp),
The content of the (ap) adipic acid unit is 40 to 80 mol%,
The content of the (bp) isophthalic acid unit is 0.1 to 25 mol%,
The polyamide sheet according to claim 1, wherein the content of the (cp) 1,4-cyclohexanedicarboxylic acid unit is 15 to 40 mol%.
前記ジアミン成分単位が、脂肪族ジアミン成分単位である、請求項1又は2のいずれか一に記載のポリアミドシート。   The polyamide sheet according to claim 1, wherein the diamine component unit is an aliphatic diamine component unit. 前記脂肪族ジアミン成分単位が、ヘキサメチレンジアミン単位である、請求項3に記載のポリアミドシート。   The polyamide sheet according to claim 3, wherein the aliphatic diamine component unit is a hexamethylenediamine unit. 前記ポリアミド共重合体中における(b−p)イソフタル酸単位の含有量(モル%)と(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量(モル%)との関係が、下記式(2)を満たす請求項1記載のポリアミド共重合体を含むポリアミドシート。
(c−1−p)1,4−シクロジカルボン酸単位のトランス異性体の単位の含有量>(b−p)イソフタル酸単位の含有量≧0.1 ・・・(2)
Content (mol%) of (bp) isophthalic acid unit and content of trans isomer unit of (c-1-p) 1,4-cyclodicarboxylic acid unit in the polyamide copolymer (mol%) The polyamide sheet containing the polyamide copolymer according to claim 1, wherein the relationship with (1) satisfies the following formula (2).
(C-1-p) Content of trans isomer unit of 1,4-cyclodicarboxylic acid unit> (bp) Content of isophthalic acid unit ≧ 0.1 (2)
前記(a−m)アジピン酸、前記(b−m)イソフタル酸、及び前記(c−m)1,4−シクロジカルボン酸中のシス異性体(c−2−m)に対するトランス異性体(c−1−m)のモル比率((c−1−m)/(c−2−m))が、50/50〜10/90からなる前記(c−m)1,4−シクロヘキサンジカルボン酸からなるジカルボン酸成分と、ジアミン成分と、を最終到達温度が270℃以上で共重合させることにより得られる請求項5に記載のポリアミド共重合体を用いたポリアミドシートの製造方法。   Trans isomer (c) to cis isomer (c-2-m) in (am) adipic acid, (bm) isophthalic acid, and (cm) 1,4-cyclodicarboxylic acid −1-m) molar ratio ((c-1-m) / (c-2-m)) is from the above (cm) 1,4-cyclohexanedicarboxylic acid comprising 50/50 to 10/90. The manufacturing method of the polyamide sheet using the polyamide copolymer of Claim 5 obtained by copolymerizing the dicarboxylic acid component and diamine component which become the final ultimate temperature of 270 degreeC or more. 前記ジアミン成分が、脂肪族ジアミン成分である、請求項5又は6に記載のポリアミドシートの製造方法。   The method for producing a polyamide sheet according to claim 5 or 6, wherein the diamine component is an aliphatic diamine component. 前記脂肪族ジアミン成分が、ヘキサメチレンジアミンである、請求項7に記載のポリアミドシートの製造方法。   The method for producing a polyamide sheet according to claim 7, wherein the aliphatic diamine component is hexamethylenediamine.
JP2011132563A 2011-06-14 2011-06-14 Polyamide sheet Withdrawn JP2013001770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132563A JP2013001770A (en) 2011-06-14 2011-06-14 Polyamide sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132563A JP2013001770A (en) 2011-06-14 2011-06-14 Polyamide sheet

Publications (1)

Publication Number Publication Date
JP2013001770A true JP2013001770A (en) 2013-01-07

Family

ID=47670688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132563A Withdrawn JP2013001770A (en) 2011-06-14 2011-06-14 Polyamide sheet

Country Status (1)

Country Link
JP (1) JP2013001770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001671B2 (en) 2017-11-15 2021-05-11 Industrial Technology Research Institute Diamine-diacid salt, copolymer and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001671B2 (en) 2017-11-15 2021-05-11 Industrial Technology Research Institute Diamine-diacid salt, copolymer and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6035066B2 (en) Polyamide composition and molded article
KR101821512B1 (en) Polyamide composition, molded article, reflective board for leds, and method for preventing heat-induced reflectivity reduction
JP5942229B2 (en) Polyamide and polyamide composition
WO2014109300A1 (en) Polyamide composition and molded article
JP5636220B2 (en) Polyamide composition and molded body obtained by molding polyamide composition
JP5667983B2 (en) Polyamide copolymer and molded product
JP2012172086A (en) Long-fiber reinforced polyamide resin composition and molded body
JP5669627B2 (en) Polyamide resin composition and molded product
JP5959325B2 (en) Polyamide composition and molded body obtained by molding polyamide composition
JP5669626B2 (en) Polyamide resin composition and molded product
JP5669623B2 (en) Polyamide resin composition and molded product
JP6034074B2 (en) Copolyamide
JP5524538B2 (en) Polyamide sheet
JP2013001770A (en) Polyamide sheet
JP2011068876A (en) Polyamide composition and molded product
JP2011063795A (en) Polyamide fusion-molded article
JP5972088B2 (en) Polyamide resin composition and molded body
JP2018012761A (en) Polyamide molded article
JP2013001836A (en) Polyamide welded molding
JP6042110B2 (en) Copolyamide
JP5718101B2 (en) Polyamide composition and molded article
JP2018012780A (en) Polyamide, polyamide composition, polyamide composition molding, and method for producing polyamide
JP2017078092A (en) Polyamide, polyamide composition, polyamide composition molded article, and method for producing polyamide
WO2016031257A1 (en) Polyamide, polyamide production method, polyamide composition, polyamide composition molded article and production method for same
JP2012184277A (en) Polyamide resin composition and molding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902