JP2013001759A - Resin reinforcing organic fiber and fiber reinforced thermoplastic resin - Google Patents

Resin reinforcing organic fiber and fiber reinforced thermoplastic resin Download PDF

Info

Publication number
JP2013001759A
JP2013001759A JP2011132308A JP2011132308A JP2013001759A JP 2013001759 A JP2013001759 A JP 2013001759A JP 2011132308 A JP2011132308 A JP 2011132308A JP 2011132308 A JP2011132308 A JP 2011132308A JP 2013001759 A JP2013001759 A JP 2013001759A
Authority
JP
Japan
Prior art keywords
fiber
resin
thermoplastic resin
organic fiber
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011132308A
Other languages
Japanese (ja)
Inventor
Teru Toki
輝 土岐
Shintaro Shimada
慎太郎 嶋田
Yoko Hayashi
陽子 林
Kumiko Chatani
久美子 茶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2011132308A priority Critical patent/JP2013001759A/en
Publication of JP2013001759A publication Critical patent/JP2013001759A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber reinforced thermoplastic resin excellent in mechanical properties such as tensile strength and flexural rigidity, thermal dimensional stability, surface external appearance, durability, and impact resistance of thermoplastic molded articles by versatilely and inexpensively improving the adhesion and the dispersibility of a resin reinforcing fiber.SOLUTION: The resin reinforcing organic fiber is obtained by imparting 1-20 wt.% in terms of solid content a treating agent including (A) a polyfunctional epoxy compound having at least three or more epoxy groups in the molecule, (B) a polyurethane resin emulsion, and (C) a rubber latex to the surface of an organic fiber and (A)/(B) (solid content weight ratio) is in the range of 1/99 to 30/70 and {[(A)+(B)]/(C)} (solid content weight ratio) is in the range of 80/20 to 95/5. The fiber reinforced thermoplastic resin has (a) the resin reinforcing organic fiber and (b) a thermoplastic resin as the main components at a mixing weight ratio of (a) to (b) of 1/99 to 70/30.

Description

本発明は、樹脂補強用有機繊維、さらにこの樹脂補強用有機繊維を熱可塑性樹脂中に配合してなる繊維補強熱可塑性樹脂に関する。   The present invention relates to a resin-reinforced organic fiber, and further to a fiber-reinforced thermoplastic resin obtained by blending this resin-reinforced organic fiber in a thermoplastic resin.

近年、自動車、家電・OA機器など軽量化、薄型化などによる省エネルギー化を図ることが、環境負荷低減の面から材料技術革新の大きなテーマとなっていることは周知の通りである。これらの自動車や家電・OA機器などの軽量化を図る大きな要素の一つとして、金属材料から軽量な有機樹脂へ材料代替が進んでいる。これらの樹脂材料は、剛性や耐衝撃性、熱寸法安定性などの向上を図るためにガラス繊維などの補強材で補強することが一般的である。しかしながら、ガラス繊維は、マトリックス樹脂に比べて高比重であり、さらに軽量化を図るためにこれに代わる有機繊維補強による樹脂複合体の軽量化が注目されている。また、ガラス繊維は、硬くて脆いため樹脂複合体成型時にガラス繊維が粉々に割れて補強効果を発現するに充分なアスペクト比が得られないといった課題や、高炉において溶融ガラスが残ってしまうためサーマルリサイクルが難しいなどリサイクル面においても課題を有する。   It is well known that in recent years, energy saving by reducing the weight and thickness of automobiles, home appliances and office automation equipment has become a major theme of material technology innovation in terms of reducing environmental impact. As one of the major elements to reduce the weight of these automobiles, home appliances and office automation equipment, material substitution is progressing from metal materials to lightweight organic resins. These resin materials are generally reinforced with a reinforcing material such as glass fiber in order to improve rigidity, impact resistance, thermal dimensional stability, and the like. However, the glass fiber has a higher specific gravity than the matrix resin, and in order to further reduce the weight, attention has been paid to reducing the weight of the resin composite by reinforcing the organic fiber. In addition, glass fiber is hard and brittle, so the glass fiber breaks into pieces during molding of the resin composite, and there is a problem that a sufficient aspect ratio is not obtained to express the reinforcing effect. There are also issues in recycling, such as difficulty in recycling.

このような背景のもと、汎用性、生産性の高いオレフィン樹脂やポリアミド樹脂など熱可塑性樹脂に対する有機繊維による補強が図られてきている。力学特性、耐衝撃性、熱寸法安定性などを向上させるのにより高い補強効果を得るためには、繊維とマトリックス樹脂間の界面接着性が高く、かつ樹脂成型時も安定な繊維表面の皮膜層であり、さらに繊維の凝集欠点すなわち分散性を両立させることが重要である。この繊維表面の活性化、安定な皮膜形成のために、安価で取扱いやすく汎用性の高いエポキシ樹脂で繊維表層を被覆させて有機繊維による補強効果を高めることが試みられていることがよく知られている。   Against this background, reinforcement with organic fibers for thermoplastic resins such as olefin resins and polyamide resins with high versatility and high productivity has been attempted. In order to obtain higher reinforcement effects by improving mechanical properties, impact resistance, thermal dimensional stability, etc., the coating layer on the fiber surface has high interfacial adhesion between the fiber and matrix resin and is stable during resin molding. Furthermore, it is important to satisfy both the cohesion defect of the fibers, that is, the dispersibility. It is well known that, for the activation of the fiber surface and the formation of a stable film, attempts have been made to enhance the reinforcing effect of organic fibers by covering the fiber surface layer with an inexpensive, easy-to-handle and highly versatile epoxy resin. ing.

例えば、特許文献1では、芳香族ポリアミド繊維に2個以上のエポキシ基を有するエポキシ化合物と水溶性ナイロン化合物と水溶性ポリエステル樹脂とが付着されている樹脂補強用芳香族ポリアミド短繊維が開示されている。この方法では、複合樹脂の耐摩耗性、引張強度、曲げ弾性率を向上することができるが、樹脂との接着力が不充分であり、耐久性、耐衝撃性面での課題があるとともに、処理作業が煩雑かつ高価であることが課題であった。また、特許文献2、3には、ポリオレフィン系樹脂成形体補強用アラミド繊維として、エポキシ化合物とアイオノマー樹脂からなる処理剤で処理する技術が開示されている。この方法ではポリオレフィン系樹脂に対するアラミド繊維の接着力が大幅に向上するが、イオン性結合で界面接着を担っているため、耐久性、耐衝撃性の面で更なる改良が必要であった。   For example, Patent Document 1 discloses a resin-reinforced aromatic polyamide short fiber in which an epoxy compound having two or more epoxy groups, a water-soluble nylon compound, and a water-soluble polyester resin are attached to an aromatic polyamide fiber. Yes. In this method, the wear resistance, tensile strength, and flexural modulus of the composite resin can be improved, but the adhesive strength with the resin is insufficient, and there are problems in terms of durability and impact resistance. The problem is that the processing work is complicated and expensive. Patent Documents 2 and 3 disclose techniques for treating a polyolefin resin molded body reinforcing aramid fiber with a treatment agent composed of an epoxy compound and an ionomer resin. In this method, the adhesive strength of the aramid fiber to the polyolefin-based resin is greatly improved, but since the interfacial adhesion is carried out by ionic bonding, further improvement in terms of durability and impact resistance is necessary.

特開平6−235170号公報JP-A-6-235170 特許第3167514号公報Japanese Patent No. 3167514 特許第3179262号公報Japanese Patent No. 3179262

本発明は、上記従来技術に鑑みなされたもので、その目的は、樹脂補強用繊維の接着性、分散性を汎用かつ安価に向上させることによって、熱可塑性樹脂成型品の引張強度、曲げ剛性などの力学物性、熱寸法安定性、表面外観、耐久性および耐衝撃性に優れた繊維補強熱可塑性樹脂を提供することにある。   The present invention has been made in view of the above-described prior art, and its purpose is to improve the adhesiveness and dispersibility of resin reinforcing fibers in a general-purpose and inexpensive manner, thereby making it possible to obtain tensile strength, bending rigidity, etc. of a thermoplastic resin molded product. An object of the present invention is to provide a fiber-reinforced thermoplastic resin having excellent mechanical properties, thermal dimensional stability, surface appearance, durability and impact resistance.

本発明は、有機繊維の表面に、(A)1分子に少なくとも3つ以上のエポキシ基を有する多官能性エポキシ化合物、(B)ポリウレタン樹脂系エマルション、および(C)ゴムラテックスを含む処理剤が固形分換算で1〜20重量%付与されてなり、かつ(A)/(B)(固形分重量比)=1/99〜30/70、《〔(A)+(B)〕/(C)》(固形分重量比)=80/20〜95/5の範囲である、樹脂補強用有機繊維に関する。
次に、本発明は、上記の(イ)樹脂補強用有機繊維と、(ロ)熱可塑性樹脂を主成分とし、(イ)と(ロ)との混合重量比が1/99〜70/30であることを特徴とする繊維補強熱可塑性樹脂に関する。
The present invention provides a treatment agent comprising (A) a polyfunctional epoxy compound having at least three epoxy groups per molecule, (B) a polyurethane resin emulsion, and (C) a rubber latex on the surface of an organic fiber. 1 to 20% by weight in terms of solid content, and (A) / (B) (solid content weight ratio) = 1/99 to 30/70, << [(A) + (B)] / (C ) >> (weight ratio of solid content) = 80/20 to 95/5.
Next, the present invention is based on (b) a resin reinforcing organic fiber and (b) a thermoplastic resin, and the mixing weight ratio of (b) and (b) is 1/99 to 70/30. The present invention relates to a fiber-reinforced thermoplastic resin.

本発明によれば、樹脂補強用有機繊維の接着性、分散性を汎用かつ安価に向上させることによって、得られる熱可塑性樹脂成型品の引張強度、曲げ剛性などの力学物性、熱寸法安定性、表面外観、耐久性および耐衝撃性に優れた繊維補強熱可塑性樹脂を提供することができる。   According to the present invention, by improving the adhesiveness and dispersibility of organic fibers for resin reinforcement in a general and inexpensive manner, mechanical properties such as tensile strength and bending rigidity of the obtained thermoplastic resin molded product, thermal dimensional stability, A fiber-reinforced thermoplastic resin excellent in surface appearance, durability, and impact resistance can be provided.

<樹脂補強用有機繊維>
本発明の樹脂補強用有機繊維は、有機繊維の表面に、(A)1分子に少なくとも3つ以上のエポキシ基を有する多官能性エポキシ化合物、(B)ポリウレタン樹脂系エマルション、および(C)ゴムラテックスを含む処理剤が付与されてなるものである。
<Organic fibers for resin reinforcement>
The organic fiber for resin reinforcement of the present invention comprises (A) a polyfunctional epoxy compound having at least three epoxy groups per molecule, (B) a polyurethane resin emulsion, and (C) rubber on the surface of the organic fiber. A treatment agent containing latex is added.

〔有機繊維〕
有機繊維としては、例えば、ポリアミド系繊維(ポリアミド5、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド612、ポリアミド6/66、ポリアミド6/11などの脂肪族ポリアミド系繊維;ポリアミド6T、ポリアミド9T、ポリアミドMXDなどの芳香族ポリアミド系繊維;脂環族ポリアミド系繊維など、全芳香族ポリアミド系繊維;ポリパラフェニレンテレフタラミド、ポリパラアミノベンズアミド、ポリテレフタル酸ヒドラジド、ポリメタフェニレンイソフタラミド等もしくはこれらの共重合体からなる繊維、例えばコポリフェニレン-3,4’-オキシジフェニレンテレフタラミド繊維など)、ポリイミド系繊維(ポリエーテルイミド繊維、ポリアミドイミド繊維、ポリアミノビスマレイミド繊維、ビスマレイミドトリアジン繊維など)、ポリエステル系繊維(ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリC2−4アルキレンテレフタレート、ポリC2−4アルキレンナフタレート、これらのコポリエステルなどの芳香族ポリエステル系繊維、ポリアリレート系繊維、液晶性ポリエステル繊維、グリコール酸、乳酸、3−ヒドロキシ酪酸、6−ヒドロキシカプロン酸などのような脂肪族ヒドロキシカルボン酸や、グリコリド、ラクチド、ブチロラクトン、カプロラクトンなどの脂肪族ラクトンなど、単一のモノマーから重合されてなるもしくはエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコールなどのような脂肪族ジオール、またはジエチレングリコール、トリエチレングリコール、エチルプロピルエーテルグリコール、ビスヒドロキシエチルプロパン、ビスヒドロキシプロピルブタン、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレンエーテルなどのような脂肪族ポリアルキレンエーテルグリコールと、コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの脂肪族ジカルボン酸とからなる、すなわち、ジオール(グリコール)モノマーとジカルボン酸モノマーとからなる脂肪族ポリエステルなど)、ポリカーボネート系繊維(ビスフェノールA型ポリカーボネートなどのビスフェノール型ポリカーボネート繊維、水添ビスフェノール型ポリカーボネート繊維など)、オレフィン系繊維[ポリエチレン繊維(低密度ポリエチレン繊維、高密度ポリエチレン繊維など)、ポリプロピレン繊維など]、アクリル系繊維(ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸アルキルエステル繊維、ポリアクリロニトリルやアクリロニトリル−塩化ビニル共重合体などのアクリロニトリル系繊維など)、ビニル系繊維(ポリビニルアルコール系繊維、塩化ビニル系繊維、酢酸ビニル系繊維など)、ポリフェニレンオキシド系繊維[ポリフェニレンオキシド繊維、変性ポリフェニレンオキシド(ポリスチレンとのブレンドなど)繊維など]、ポリフェニレンスルフィド系繊維(ポリフェニレンスルフィド繊維、ポリビフェニレンスルフィド繊維、ポリフェニレンスルフィドケトン繊維、ポリビフェニレンスルフィドスルホン繊維など)、ポリスルホン系繊維(ポリスルホン繊維、ポリエーテルスルホン繊維など)、ポリアセタール系繊維(ポリアセタール繊維など)、ポリエーテルケトン系繊維(ポリエーテルケトン繊維、ポリエーテルエーテルケトン繊維など)、ポリベンゾオキサゾール系繊維(ポリパラフェニレンベンズオキサゾール系繊維など)、ケナフ、セルロース(レーヨン)系繊維などが挙げられる。これらの有機樹脂繊維は、単独で又は二種以上組み合わせて使用してもよい。
これらの繊維のうち、本発明においては汎用性、機械的特性と耐熱性のバランスから、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、レーヨン、ナイロン66、ポリビニルアルコール、ポリフェニレンサルファイドが好ましい。
[Organic fiber]
Examples of organic fibers include polyamide fibers (polyamide 5, polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 612, polyamide 6/66, polyamide 6/11, and other aliphatic polyamide fibers; polyamide Aromatic polyamide fibers such as 6T, polyamide 9T, and polyamide MXD; fully aromatic polyamide fibers such as alicyclic polyamide fibers; polyparaphenylene terephthalamide, polyparaaminobenzamide, polyterephthalic acid hydrazide, polymetaphenylene iso Fibers such as phthalamide or copolymers thereof, such as copolyphenylene-3,4'-oxydiphenylene terephthalamide fiber, polyimide fibers (polyetherimide fiber, polyamideimide fiber, polyamino) Sumareimido fibers, such as bismaleimide triazine fibers), polyester fibers (polyethylene terephthalate or polybutylene terephthalate such as poly C 2-4 alkylene terephthalate, poly C 2-4 alkylene naphthalate, aromatic polyester fibers such as these copolyesters , Polyarylate fibers, liquid crystalline polyester fibers, aliphatic hydroxycarboxylic acids such as glycolic acid, lactic acid, 3-hydroxybutyric acid, 6-hydroxycaproic acid, and aliphatic lactones such as glycolide, lactide, butyrolactone, caprolactone, etc. Fats such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, neopentyl glycol, etc., polymerized from a single monomer Aliphatic diols or aliphatic polyalkylene ether glycols such as diethylene glycol, triethylene glycol, ethylpropyl ether glycol, bishydroxyethylpropane, bishydroxypropylbutane, polyethylene glycol, polypropylene glycol, polybutylene ether, and the like, succinic acid, adipine It consists of aliphatic dicarboxylic acids such as acid, suberic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, that is, aliphatic polyester consisting of diol (glycol) monomer and dicarboxylic acid monomer), polycarbonate fiber (bisphenol A) Bisphenol-type polycarbonate fibers such as polycarbonate, hydrogenated bisphenol-type polycarbonate fibers), olefin fibers [poly Tylene fiber (low density polyethylene fiber, high density polyethylene fiber, etc.), polypropylene fiber, etc.], acrylic fiber (poly (meth) acrylic acid alkyl ester fiber such as polymethyl methacrylate, polyacrylonitrile, acrylonitrile-vinyl chloride copolymer) Acrylonitrile fiber), vinyl fiber (polyvinyl alcohol fiber, vinyl chloride fiber, vinyl acetate fiber, etc.), polyphenylene oxide fiber (polyphenylene oxide fiber, modified polyphenylene oxide (blend with polystyrene, etc.) fiber, etc. ], Polyphenylene sulfide fiber (polyphenylene sulfide fiber, polybiphenylene sulfide fiber, polyphenylene sulfide ketone fiber, polybiphenylene sulfide sulfone fiber, etc.), poly Sulfone fibers (polysulfone fibers, polyethersulfone fibers, etc.), polyacetal fibers (polyacetal fibers, etc.), polyether ketone fibers (polyether ketone fibers, polyether ether ketone fibers, etc.), polybenzoxazole fibers (polyparaffin fibers, etc.) Phenylene benzoxazole-based fibers), kenaf, cellulose (rayon) -based fibers, and the like. These organic resin fibers may be used alone or in combination of two or more.
Among these fibers, polyethylene terephthalate, polyethylene naphthalate, polyarylate, rayon, nylon 66, polyvinyl alcohol, and polyphenylene sulfide are preferable from the viewpoint of versatility, mechanical properties, and heat resistance in the present invention.

〔(A)多官能性エポキシ化合物〕
本発明において、有機繊維の表面に付与される処理剤のうち、(A)多官能性エポキシ化合物としては、1分子に少なくとも3つ以上のエポキシ基を有する多官能性エポキシ化合物が用いられる。繊維表層に熱可塑性樹脂の混練、成型工程においても安定な皮膜を形成するために、架橋密度が高く強固な皮膜を繊維表層に形成し、かつ繊維表面をエポキシ基あるいはエポキシ基が開環した水酸基によって極性官能基をもたせて表面活性化することができる。この(A)多官能性エポキシ化合物としては、ポリエポキシ化合物、例えばグリセリン、プロピレングリコール、エチレングリコール、ヘキサントリオール、ソルビトール、トリメチロールプロパン、ポリエチレングリコール、ポリグリセリンなどの脂肪族多価アルコール類とエピクロルヒドリンとの反応生成物、レゾルシン、カテコール、ハイドロキノン、1,3,5−トリヒドロキシベンゼン、ビス(4−ヒドロキシフェニル)メタンなどのフェノール類とエピクロルヒドリンとの反応生成物から得られるポリグリシジルエーテル、ビニルシクロヘキセンジエポキシド、3’,4’−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート等の過酢酸等で不飽和結合部を酸化して得られるエポキシ化合物等があげられ、本発明においては特に汎用性の高いグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルのうち少なくとも1種以上から選ばれる多官能性脂肪族エポキシ化合物が好ましく用いられる。
[(A) polyfunctional epoxy compound]
In the present invention, among the treatment agents applied to the surface of the organic fiber, as the (A) polyfunctional epoxy compound, a polyfunctional epoxy compound having at least three epoxy groups per molecule is used. In order to form a stable film even in the kneading and molding process of thermoplastic resin on the fiber surface layer, a strong film with a high crosslinking density is formed on the fiber surface layer, and the surface of the fiber is an epoxy group or a hydroxyl group with an epoxy group opened. The surface can be activated with a polar functional group. Examples of the polyfunctional epoxy compound (A) include polyepoxy compounds such as glycerin, propylene glycol, ethylene glycol, hexanetriol, sorbitol, trimethylolpropane, polyethylene glycol, polyglycerin and other aliphatic polyhydric alcohols and epichlorohydrin. Reaction products, resorcinol, catechol, hydroquinone, 1,3,5-trihydroxybenzene, polyglycidyl ether obtained from the reaction product of phenols such as bis (4-hydroxyphenyl) methane and epichlorohydrin, vinylcyclohexene di It is obtained by oxidizing the unsaturated bond with peracetic acid such as epoxide, 3 ′, 4′-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, etc. In the present invention, at least one of glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, and sorbitol polyglycidyl ether, which are particularly versatile, is used in the present invention. A polyfunctional aliphatic epoxy compound selected from is preferably used.

〔(B)ポリウレタン樹脂系エマルジョン〕
本発明では、(B)ポリウレタン樹脂系エマルションを用いることが重要である。
(B)ポリウレタン樹脂系エマルジョンを構成するポリウレタン樹脂は、公知の方法、たとえば有機ポリイソシアネート、高分子ポリオールおよび必要により鎖伸長剤をワンショット法または多段法により反応せしめることにより製造することができる。
[(B) Polyurethane resin emulsion]
In the present invention, it is important to use (B) polyurethane resin emulsion.
(B) The polyurethane resin constituting the polyurethane resin-based emulsion can be produced by reacting a known method, for example, an organic polyisocyanate, a polymer polyol, and, if necessary, a chain extender by a one-shot method or a multistage method.

有機ポリイソシアネートとしては、脂肪(脂環)族系ポリイソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネートなど);芳香族系ポリイソシアネート(キシリレンジイソシアネート、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネートなど);これらの変性体(カービジイミド、ウレチジオン、ビューレットおよびイソシアヌレート変性体);およびこれらの2種以上の混合物が挙げられる。   Organic polyisocyanates include aliphatic (alicyclic) group polyisocyanates (tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, etc.); aromatic polyisocyanates (xylylene diisocyanate, tolylene diene) Isocyanates, 4,4′-diphenylmethane diisocyanate, etc.); modified products thereof (carbidiimide, uretidione, burette and isocyanurate modified products); and mixtures of two or more of these.

高分子ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオールなどがあげられる。
このうち、ポリエーテルポリオールとしては低分子ポリオール[多価アルコール(エチレングリコール、プロピレングリコール、1,4−ブタンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオール、N−メチルジエタノールアミンなど);多価フェノール(ビスフェノールA、ビスフェノールSなど)]およびアミン類(ポリアミン類、アルカノールアミン類)のアルキレンオキシド(炭素数2〜4のアルキレンオキシドたとえばエチレンオキシド、プロピレンオキシド、ブチレンオキシド)付加物および該アルキレンオキシドの開環重合物(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなど)が挙げられる。
ポリエステルポリオールとしては、ポリカルボン酸[脂肪族ポリカルボン酸(アジピン酸、マレイン酸、二量化リノール酸など)および/または芳香族ポリカルボン酸(テレフタル酸、イソフタル酸、ソジウムスルホイソフタル酸など)と低分子ポリオールまたはポリエーテルポリオールとの反応で得られるポリエステルポリオール、ポリカプロラクトンポリオールおよびポリカーボネートポリオールなどが挙げられる。
高分子ポリオールの平均分子量は通常500〜4,000、好ましくは1,000〜3,000である。
Examples of the polymer polyol include polyether polyol and polyester polyol.
Of these, low molecular weight polyols such as polyhydric alcohols (ethylene glycol, propylene glycol, 1,4-butanediol, glycerin, trimethylolpropane, hexanetriol, N-methyldiethanolamine, etc.); polyhydric phenol (bisphenol) A, bisphenol S, etc.)] and amine oxides (polyamines, alkanolamines) alkylene oxides (C2-C4 alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide) adducts and ring-opening polymers of the alkylene oxides (Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc.).
Polyester polyols include polycarboxylic acids [aliphatic polycarboxylic acids (such as adipic acid, maleic acid, dimerized linoleic acid) and / or aromatic polycarboxylic acids (such as terephthalic acid, isophthalic acid, and sodium sulfoisophthalic acid). Examples thereof include polyester polyol, polycaprolactone polyol, and polycarbonate polyol obtained by a reaction with a low molecular polyol or a polyether polyol.
The average molecular weight of the polymer polyol is usually 500 to 4,000, preferably 1,000 to 3,000.

必要により用いられる鎖伸長剤としては、低分子ジオール[エチレングリコール、ジ−,トリ−およびテトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−および1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジメチロールプロピオン酸、グリセリン酸、ビスフェノール類のアルキレンオキシド低モル付加物(分子量500未満)など];アルカノールアミン(エタノールアミン、プロパノールアミン、ジエタノーアミン、ジプロパノールアミンなど);脂肪族ジアミン(エチレンジアミン、ヘキサメチレンジアミンなど);脂環式ジアミン(イソホロンジアミンなど);芳香脂肪族ジアミン(キシリレンジアミンなど);芳香族ジアミン(ジアミノジフェニルメタンなど);ヒドラジン;ピペラジン;水などのイソシアネート基と反応性を持つ活性水素原子を分子内に2個以上有する化合物が挙げられる。   The chain extender used as necessary includes low molecular diols [ethylene glycol, di-, tri- and tetraethylene glycol, propylene glycol, dipropylene glycol, 1,3- and 1,4-butanediol, 1,6- Hexanediol, neopentyl glycol, dimethylolpropionic acid, glyceric acid, alkylene oxide low molar adducts of bisphenols (molecular weight less than 500), etc .; alkanolamines (ethanolamine, propanolamine, diethanolamine, dipropanolamine, etc.) Aliphatic diamines (ethylenediamine, hexamethylenediamine, etc.); alicyclic diamines (isophoronediamine, etc.); araliphatic diamines (xylylenediamine, etc.); aromatic diamines (diaminodiphenylmethane, etc.) ); Hydrazine; piperazine; compound having at least two active hydrogen atoms in a molecule reactive with isocyanate groups and water.

本発明に用いられる(B)ポリウレタン樹脂エマルジョンは、例えば以上のようなポリウレタン樹脂の有機溶剤溶液、または有機溶剤分散液に、必要に応じて界面活性剤を含む水溶液を混合してエマルジョンを得る方法などにより調製することができ、その固形分濃度は、通常、20〜60重量%程度である。   The polyurethane resin emulsion (B) used in the present invention is, for example, a method of obtaining an emulsion by mixing an aqueous solution containing a surfactant as necessary with an organic solvent solution or an organic solvent dispersion of the polyurethane resin as described above. The solid content concentration is usually about 20 to 60% by weight.

〔(C)ゴムラテックス〕
さらに、本発明では、(C)ゴムラテックスを用いることが重要である。
(C)ゴムラテックスとは、エマルジョンを構成するポリマーのガラス転移点が−10℃以下、室温においてはゴム弾性を有する化合物であって、固形分が5〜90重量%の濃度で水分散しているエマルジョンを指す。一般的にはラテックスと呼ばれ、例として、天然ゴムラテックス、スチレン・ブタジエン・コポリマーラテックス、ビニルピリジン・スチレン・ブタジエンターポリマーラテックス(以下Vpラテックスとする)、ニトリルゴムラテックス、クロロブレンゴムラテックス、エチレン・プロピレン・ジエンモノマーラテックス等があり、これらを単独、又は、併用して使用することが出来る。
この(C)ゴムラテックスは、ラテックスを構成するポリマーの伸度(JIS K-6251に準拠して測定)が100%以上あることが好ましい。伸度100%未満であると、耐衝撃性において、有機繊維とマトリックス樹脂である熱可塑性樹脂との間の応力分散が十分でなく、良好な性能を得ることができない。
[(C) rubber latex]
Furthermore, in the present invention, it is important to use (C) rubber latex.
(C) A rubber latex is a compound having a glass transition point of -10 ° C. or less at room temperature and a rubber elasticity at room temperature, in which a solid content is dispersed in water at a concentration of 5 to 90 wt%. Refers to an emulsion. Generally called latex, examples include natural rubber latex, styrene-butadiene copolymer latex, vinylpyridine-styrene-butadiene terpolymer latex (hereinafter referred to as Vp latex), nitrile rubber latex, chlorobrene rubber latex, ethylene There are propylene and diene monomer latexes, and these can be used alone or in combination.
This (C) rubber latex preferably has an elongation (measured according to JIS K-6251) of the polymer constituting the latex of 100% or more. When the elongation is less than 100%, the stress distribution between the organic fiber and the thermoplastic resin as the matrix resin is not sufficient in impact resistance, and good performance cannot be obtained.

〔有機繊維表面における処理剤の付与〕
本発明における有機繊維の表面への処理剤とは、繊維表面を覆い、繊維と熱可塑性樹脂双方への接着性を発現させる機能がある。加えて、接着性が良好であった場合、繊維・熱可塑性樹脂複合体の引張強度、曲げ剛性は、繊維物性に起因し、向上する。しかし、有機繊維で補強されてなる繊維補強熱可塑性樹脂(複合体)の変形により早期に繊維破断が発生するため、むしろ耐衝撃性は低下する傾向が見られる。
本発明の処理剤用いることにより、これらを両立し、しかも目的に応じた物性のコントロールが可能となる。
すなわち、有機繊維の表面の(A)多官能性エポキシ化合物は、得られる樹脂補強用有機繊維への接着性をもたらす。
また、(A)多官能性エポキシ化合物は、ポリアミド系繊維などの活性水素を有する繊維との共有結合を形成による接着だけでなく、ポリイミド系繊維やポリエステル系繊維、アクリル系繊維など幅広い有機繊維が持つ部分的な電荷の偏りを持った構造との高い親和性により接着性がもたらされる。
[Granting of treatment agent on organic fiber surface]
The treating agent on the surface of the organic fiber in the present invention has a function of covering the fiber surface and developing adhesiveness to both the fiber and the thermoplastic resin. In addition, when the adhesiveness is good, the tensile strength and bending rigidity of the fiber / thermoplastic resin composite are improved due to the physical properties of the fiber. However, since the fiber breakage occurs early due to the deformation of the fiber reinforced thermoplastic resin (composite) reinforced with organic fibers, the impact resistance tends to be lowered.
By using the treatment agent of the present invention, both of these can be achieved and the physical properties can be controlled according to the purpose.
That is, the (A) polyfunctional epoxy compound on the surface of the organic fiber provides adhesion to the resulting organic fiber for resin reinforcement.
In addition, (A) polyfunctional epoxy compounds are not only bonded by forming covalent bonds with fibers having active hydrogen such as polyamide fibers, but also a wide range of organic fibers such as polyimide fibers, polyester fibers and acrylic fibers. Adhesion is provided by the high affinity with the partial charge bias structure.

また、同時に塗布される(B)ポリウレタン樹脂系エマルジョンとも同様の機構により高い相容性・接着性を持つ。
(B)ポリウレタン樹脂系エマルジョンは、有機ポリイソシアネートに起因するハードセグメントと、高分子ポリオールに起因するソフトセグメントからなる有機素材であり、適度な硬さと素材としての伸度を発現することが出来る。また、様々な構造を有する成分を共重合させることが可能であり、多くの熱可塑性樹脂に対する相容・接着性を実現することが可能である。
これにより有機繊維ならびに熱可塑性樹脂の双方に対する接着性を有し、有機繊維・熱可塑性樹脂の複合体において界面に生じた歪エネルギーを吸収することにより、引張強度、曲げ剛性と耐久性および耐衝撃性を両立することが可能である。
The (B) polyurethane resin emulsion applied simultaneously has high compatibility and adhesiveness by the same mechanism.
(B) The polyurethane resin emulsion is an organic material composed of a hard segment caused by an organic polyisocyanate and a soft segment caused by a polymer polyol, and can exhibit appropriate hardness and elongation as a material. In addition, it is possible to copolymerize components having various structures, and it is possible to realize compatibility and adhesion to many thermoplastic resins.
As a result, it has adhesiveness to both organic fibers and thermoplastic resins, and absorbs the strain energy generated at the interface in the composite of organic fibers and thermoplastic resins, resulting in tensile strength, bending rigidity and durability, and impact resistance. It is possible to achieve compatibility.

さらに、本発明での(C)ゴムラテックスは、更に耐久性および耐衝撃性の改善を目指したものである。(C)ゴムラテックスは、室温に置いて高い伸び特性を有し、同時に高いtanδを有するため、外力として加えられたエネルギーを熱エネルギーとして放出することが可能である。このような成分を、被覆膜中に分散させることにより、耐久性および耐衝撃性を更に向上させることが可能となった。   Furthermore, the rubber latex (C) in the present invention aims to further improve durability and impact resistance. (C) Since the rubber latex has a high elongation property at room temperature and at the same time has a high tan δ, it is possible to release the energy applied as an external force as thermal energy. It was possible to further improve the durability and impact resistance by dispersing such components in the coating film.

かくして、本発明の樹脂補強用有機繊維は、有機繊維表面に、(A)多官能性エポキシ化合物、(B)ポリウレタン系樹脂エマルジョン、および(C)ゴムラテックスを含む処理剤が、有機繊維表面に固形分換算で1〜20重量%、好ましくは3〜20重量%付与されている。処理剤の付着量が上記範囲より少ないと、繊維表層に均一な皮膜を形成できず樹脂との充分な接着が得られないばかりか、繊維と樹脂間の界面に欠陥を形成しまうため成型樹脂の物性低下を引き起こす。一方、上記範囲を超える場合は、繊維同士の膠着による分散不良を引き起こし、複合体として十分な特性をもたらすことが出来ない。   Thus, the organic fiber for resin reinforcement of the present invention has (A) a polyfunctional epoxy compound, (B) a polyurethane resin emulsion, and (C) a treatment agent containing a rubber latex on the surface of the organic fiber. It is added in an amount of 1 to 20% by weight, preferably 3 to 20% by weight in terms of solid content. If the amount of treatment agent attached is less than the above range, a uniform film cannot be formed on the fiber surface layer, and sufficient adhesion with the resin cannot be obtained, and defects will be formed at the interface between the fiber and the resin. Causes deterioration of physical properties. On the other hand, when the above range is exceeded, poor dispersion due to sticking of fibers is caused, and sufficient properties as a composite cannot be brought about.

本発明における(A)〜(C)成分を含む処理剤において、(A)多官能性エポキシ化合物と(B)ポリウレタン樹脂系エマルジョンの割合としては、(A)/(B)〔固形分重量比〕=1/99〜30/70、好ましくは5/95〜30/70、更に好ましくは5/95〜20/80が用いられる。(A)多官能性エポキシ化合物の割合が上記範囲より少ないと、繊維表面に対する接着性が不十分であり、特に引張強度、曲げ剛性の面で十分な特性を出すことが出来ない。逆に、上記範囲より多かった場合、有機繊維の硬さが硬くなりすぎて加工が困難になると共に、耐久性および耐衝撃性の低下が見られる。   In the treatment agent containing the components (A) to (C) in the present invention, the ratio of the (A) polyfunctional epoxy compound and the (B) polyurethane resin emulsion is (A) / (B) [solid content weight ratio. ] = 1/99 to 30/70, preferably 5/95 to 30/70, more preferably 5/95 to 20/80. (A) If the ratio of the polyfunctional epoxy compound is less than the above range, the adhesion to the fiber surface is insufficient, and in particular, sufficient properties cannot be obtained in terms of tensile strength and bending rigidity. On the other hand, when the amount is larger than the above range, the hardness of the organic fiber becomes too hard and the processing becomes difficult, and the durability and impact resistance are reduced.

また、(A)多官能性エポキシ化合物、(B)ポリウレタン樹脂系エマルション、および(C)ゴムラテックスを含む処理剤において、(《〔(A)+(B)〕/(C)》(固形分重量比)は、50/50〜99/1、好ましくは70/30〜98/2、さらに好ましくは80/20〜95/5である。(C)ゴムラテックスの割合が上記範囲より少ないと、耐久性および耐衝撃性の改善効果が不十分で有り、一方上記範囲より多いと、(B)ポリウレタン樹脂エマルジョンと熱可塑性樹脂の相容性を阻害し、引張強度、曲げ剛性の面での性能の低下が見られる。   In the treatment agent containing (A) a polyfunctional epoxy compound, (B) polyurethane resin emulsion, and (C) rubber latex, (<< [(A) + (B)] / (C) >> (solid content (Weight ratio) is 50/50 to 99/1, preferably 70/30 to 98/2, more preferably 80/20 to 95/5. (C) When the ratio of the rubber latex is less than the above range, The effect of improving durability and impact resistance is insufficient. On the other hand, if it exceeds the above range, (B) the compatibility between polyurethane resin emulsion and thermoplastic resin is impaired, and the performance in terms of tensile strength and bending rigidity Decrease is observed.

有機繊維への処理剤の付与は、(A)多官能性エポキシ化合物、(B)ポリウレタン樹脂系エマルション、および(C)ゴムラテックスを含む処理剤を、有機繊維に対し、製糸工程あるいはディップ加工、スプレー、オイリングローラー等公知の方法によって付与、熱処理することによって得られる。熱処理温度としては、有機繊維の物性を損なわない範囲であれば特に制約はないが、250℃以下かつ有機繊維の融点より20℃以上低い温度で熱セット、エージングを行う。   Application of the treating agent to the organic fiber is performed by applying a treating agent containing (A) a polyfunctional epoxy compound, (B) a polyurethane resin emulsion, and (C) a rubber latex to the organic fiber. It is obtained by applying and heat-treating by a known method such as spraying or oiling roller. The heat treatment temperature is not particularly limited as long as the physical properties of the organic fiber are not impaired, but heat setting and aging are performed at a temperature of 250 ° C. or lower and 20 ° C. or lower than the melting point of the organic fiber.

有機繊維への(A)〜(C)成分を含む処理剤の付与は、通常、有機繊維がマルチフィラメント(あるいはトウ)の状態で行われるが、その後、用途に応じて、適宜の長さにカットされて、樹脂補強用として用いられる。   Application of the treatment agent containing the components (A) to (C) to the organic fiber is usually performed in a state where the organic fiber is multifilament (or tow). It is cut and used for resin reinforcement.

<繊維補強熱可塑性樹脂>
本発明の繊維補強熱可塑性樹脂は、以上の(イ)樹脂補強用有機繊維をマトリックス成分である(ロ)熱可塑性樹脂に配合してなるものである。
<Fiber-reinforced thermoplastic resin>
The fiber-reinforced thermoplastic resin of the present invention is obtained by blending the above-mentioned (a) resin reinforcing organic fibers with the (b) thermoplastic resin as a matrix component.

〔熱可塑性樹脂〕
本発明で用いられる熱可塑性樹脂としては、繊維による補強効果が得られるものであれば特に制限は無いが、中でもポリオレフィン、ポリアクリロニトリル、ポリブタジエン、ポリ塩化ビニル、ポリスチレン系樹脂、ポリアセタール、ポリエステル、ポリアミドの群から選ばれるいずれか一つであることが好ましい。
〔Thermoplastic resin〕
The thermoplastic resin used in the present invention is not particularly limited as long as a reinforcing effect by fibers can be obtained, but among them, polyolefin, polyacrylonitrile, polybutadiene, polyvinyl chloride, polystyrene resin, polyacetal, polyester, polyamide It is preferably any one selected from the group.

より具体的に例示するとすれば、例えば熱可塑性樹脂がポリエステルである場合には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)またはポリブチレンナフタレート(PBN)あるいはそれらの共重合体からなるものであることが好ましい。また、熱可塑性樹脂がポリアミドである場合には、ナイロン6、ナイロン66、ナイロン610、ナイロン11またはナイロン12あるいはそれらの共重合体からなるものであることが好ましい。そして熱可塑性樹脂がポリオレフィンである場合には、ポリエチレン、ポリプロピレン、またはそれらの共重合体からなるものであることが好ましい。より詳細な好ましいポリオレフィン樹脂としては、ポリプロピレン(PP)、高密度ポリエチレン(HDPE)、直鎖低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレン(PE−UHMW)あるいはブテン−1、ヘキセン−1、オクテン−1、4−メチルペンテン−1などのα−オレフィンやそれらの共重合体などのポリオレフィン系樹脂、あるいは不飽和カルボン酸やその誘導体で変性した変性ポリオレフィン系樹脂、またはそれらの2種類以上のブレンド物を例示することができる。さらにはポリエチレン、ポリプロピレン、あるいはそれらの共重合体からなるポリオレフィンを主とするものであることが、物性と価格のバランスの点では好ましい。
また、ポリスチレン系樹脂としては、アタクチックポリスチレン(APS)、イソタクチックポリスチレン(IPS)、シンジオタクチックポリスチレン(SPS)やそれらの共重合体、あるいはそれらの2種類以上のブレンド物などが挙げられる。
More specifically, for example, when the thermoplastic resin is polyester, it is made of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN) or a copolymer thereof. It is preferable that When the thermoplastic resin is polyamide, it is preferably made of nylon 6, nylon 66, nylon 610, nylon 11 or nylon 12, or a copolymer thereof. And when a thermoplastic resin is polyolefin, it is preferable that it consists of polyethylene, a polypropylene, or those copolymers. More preferred preferred polyolefin resins include polypropylene (PP), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), ultra high molecular weight polyethylene (PE-UHMW) or butene-1. , Polyolefin resins such as α-olefins such as hexene-1, octene-1, 4-methylpentene-1, copolymers thereof, modified polyolefin resins modified with unsaturated carboxylic acids or derivatives thereof, or the like Two or more types of blends can be exemplified. Furthermore, it is preferable from the viewpoint of the balance between physical properties and price that the main component is polyolefin made of polyethylene, polypropylene, or a copolymer thereof.
Examples of polystyrene resins include atactic polystyrene (APS), isotactic polystyrene (IPS), syndiotactic polystyrene (SPS), copolymers thereof, and blends of two or more thereof. .

また、本発明で使用する熱可塑性樹脂には、用途に応じて分散剤、滑剤、難燃剤、酸化防止剤、帯電防止剤、光安定剤、紫外線吸収剤、カーボンブラック、結晶化促進剤(増核剤)、可塑剤、顔料や染料のごとき着色剤などを含有させることが可能であることはいうまでも無い。さらに本発明では、必要に応じて適量の無機フィラー、例えばタルク、クレー、マイカ、ウォラストナイトなどを熱可塑性樹脂に添加しても良い。   In addition, the thermoplastic resin used in the present invention includes a dispersant, a lubricant, a flame retardant, an antioxidant, an antistatic agent, a light stabilizer, an ultraviolet absorber, carbon black, a crystallization accelerator (increase depending on the application). Needless to say, a nucleating agent), a plasticizer, a coloring agent such as a pigment or a dye can be contained. Furthermore, in the present invention, an appropriate amount of an inorganic filler such as talc, clay, mica, wollastonite and the like may be added to the thermoplastic resin as necessary.

本発明において、上記(イ)樹脂補強用有機繊維と(ロ)熱可塑性樹脂の混合重量比は、1/99〜70/30.好ましくは3/97〜50/50である。有機繊維の熱可塑性樹脂に対する混合重量比が上記範囲未満の場合、補強すべき繊維量が少ないため熱可塑性の補強効果を得ることができない。一方、有機繊維の熱可塑性樹脂に対する混合重量比が上記範囲を超える場合、熱可塑性樹脂の混練、成型時に繊維の凝集、交絡が多発しやすく成型樹脂物性の著しい低下を招く。   In the present invention, the mixing weight ratio of (b) the resin reinforcing organic fiber and (b) the thermoplastic resin is 1/99 to 70/30. Preferably it is 3 / 97-50 / 50. When the mixing weight ratio of the organic fiber to the thermoplastic resin is less than the above range, the amount of fibers to be reinforced is small, so that the thermoplastic reinforcing effect cannot be obtained. On the other hand, when the mixing weight ratio of the organic fiber to the thermoplastic resin exceeds the above range, fiber aggregation and entanglement tend to occur frequently during the kneading and molding of the thermoplastic resin, and the physical properties of the molded resin are significantly lowered.

本発明の繊維補強熱可塑性樹脂は、公知の方法、たとえば長繊維引抜成型、短繊維で混練したペレットを溶融射出成型する方法や、短繊維、織編物を用いたプレス成型、ブロー成型などによって樹脂成形品を得ることができる。また、得られた樹脂成型品は車両、電機・電子機器、機械、建築・土木用の樹脂成形部品として好適に用いることができる。
成型時の溶融温度は。通常、マトリクス樹脂である(ロ)熱可塑性樹脂の融点以上であり、補強繊維の融点以下、好ましくはマトリクス樹脂の融点+5℃〜補強繊維の融点-10℃程度である。
The fiber-reinforced thermoplastic resin of the present invention is obtained by a known method, for example, long fiber pultrusion, melt injection molding of pellets kneaded with short fibers, press molding using short fibers or woven or knitted fabric, blow molding, or the like. A molded product can be obtained. Moreover, the obtained resin molded product can be suitably used as a resin molded part for vehicles, electrical / electronic devices, machines, and construction / civil engineering.
What is the melting temperature during molding? Usually, it is not lower than the melting point of the thermoplastic resin (b), which is the matrix resin, and not higher than the melting point of the reinforcing fiber, preferably about + 5 ° C. of the matrix resin to about −10 ° C. of the reinforcing fiber.

以下、実施例及び比較例によって本発明を詳細に説明するが、本発明はこれによって限定されるものではない。また、各種特性は以下の方法により測定した。
(1)樹脂成形品の引張強度、弾性率
ASTM−D−638法に準拠し、試料厚み3.2mm、試験速度10mm/分、23℃で測定した。
(2)樹脂成形品の曲げ弾性率
ASTM−D−790法に準拠し、試料厚み3.2mm、試験速度2mm/分、支点間距離50mm、23℃で測定した。
(3)樹脂成形品のIZOD衝撃強度(ノッチ付き)
ASTM−D−256法に準拠し、試料厚み3.2mm、23℃で測定した。
(4)樹脂成形品の荷重たわみ温度
ASTM−D−648法に準拠し、18.5kgf/cm負荷で測定した。
(5)樹脂成形品の表面外観
樹脂成形品の平板の表面を目視にて観察した。繊維分散が良好で平板表面が平滑な場合は○、繊維が開繊していない繊維束がごく一部に見られるものは△、繊維が開繊していない繊維束が多数見られるものは×をして3段階で評価した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by this. Various characteristics were measured by the following methods.
(1) Tensile strength and elastic modulus of resin molded product Based on the ASTM-D-638 method, measurement was performed at a sample thickness of 3.2 mm, a test speed of 10 mm / min, and 23 ° C.
(2) Flexural Modulus of Resin Molded Product According to ASTM-D-790 method, measurement was performed at a sample thickness of 3.2 mm, a test speed of 2 mm / min, a fulcrum distance of 50 mm, and 23 ° C.
(3) IZOD impact strength of resin molded products (notched)
Based on the ASTM-D-256 method, the sample thickness was measured at 3.2 mm and 23 ° C.
(4) Deflection temperature under load of resin molded product Based on the ASTM-D-648 method, it was measured at 18.5 kgf / cm 2 load.
(5) Surface appearance of resin molded product The surface of the flat plate of the resin molded product was visually observed. ○ when the fiber dispersion is good and the flat plate surface is smooth, △ when a few fiber bundles where the fibers are not opened are seen, △ when many fiber bundles where the fibers are not opened are seen And evaluated in three stages.

実施例1〜3、比較例1〜7
(A)多官能性エポキシ化合物としてソルビトールポリグリシジルエーテル(ナガセケムテックス社製 デナコールEX−614B)、(B)ポリウレタン樹脂系エマルションとして黄変イソシアネートとポリエステル系ポリオールの重合物(第一工業製薬製 スーパーフレックス700、固形分濃度25重量%の水系エマルジョン)、(C)ゴムラテックスとしてSBRラテックス(日本ゼオン製 ニッポール LX112、固形分濃度40重量%、ラテックスを構成するポリマーのガラス転移温度:−47℃、同ポリマーの20℃での伸度が400%)を用いた。
これらを表1に示す重量比で混合し、次いで軟化水で希釈したのちにエポキシ総量に対して1/30量の水酸化ナトリウムを加えた溶液を調製したのち、ポリエチレンナフタレート繊維(帝人ファイバー(株)製 テオネックス; BHT 1670T250 Q904N、総繊度1,670dtx、フィラメント数250)にディップ付与し、150℃で2分間、240℃で1分間の定長熱処理を行ってエポキシ処理ポリエチレンナフタレート繊維とした。なお、繊維へのエポキシ付着量はエポキシ水溶液の濃度調整により行い、表1に示すエポキシ付着量に調整した。得られた繊維をギロチン式カッターで3mm長にカットしたのち、ポリプロピレン樹脂チップ〔(株)プライムポリマー プライムポリプロJ106〕と2軸押出成型機(テクノベル社製 KZW31-42MG-01R)で表1に示す繊維添加量で200℃の温度で混練、ペレタイズ化したのち、200℃で射出成型(東洋機械金属(株)PLASTAR Si-80IV)を行って所定の繊維補強樹脂成形品を得た。評価結果はまとめて表1に示す。
Examples 1-3, Comparative Examples 1-7
(A) Sorbitol polyglycidyl ether (Denacol EX-614B manufactured by Nagase ChemteX Corp.) as a polyfunctional epoxy compound, (B) Polymer of yellowed isocyanate and polyester polyol as a polyurethane resin emulsion (Daiichi Kogyo Seiyaku super) Flex 700, aqueous emulsion with a solid concentration of 25% by weight), (C) SBR latex as a rubber latex (Nippol NX LX112 made by Nippon Zeon Co., Ltd., solid content concentration 40% by weight, glass transition temperature of the polymer constituting the latex: −47 ° C., The elongation of the same polymer at 20 ° C. was 400%).
These were mixed at a weight ratio shown in Table 1, and then diluted with softened water, and then a solution in which 1/30 amount of sodium hydroxide was added to the total amount of epoxy was prepared, and then polyethylene naphthalate fiber (Teijin Fiber ( Teonex Co., Ltd .; BHT 1670T250 Q904N, total fineness 1,670 dtx, filament number 250) and dip-treated, and subjected to constant length heat treatment at 150 ° C. for 2 minutes and 240 ° C. for 1 minute to obtain an epoxy-treated polyethylene naphthalate fiber . In addition, the epoxy adhesion amount to the fiber was adjusted by adjusting the concentration of the aqueous epoxy solution, and adjusted to the epoxy adhesion amount shown in Table 1. The obtained fiber was cut into a 3 mm length with a guillotine cutter, and then shown in Table 1 using a polypropylene resin chip [Prime Polymer Prime Polypro J106] and a twin screw extrusion molding machine (KZW31-42MG-01R manufactured by Technobel). After kneading and pelletizing at a temperature of 200 ° C. with the amount of fibers added, injection molding (Toyo Machine Metal Co., Ltd. PLASTAR Si-80IV) was performed at 200 ° C. to obtain a predetermined fiber-reinforced resin molded product. The evaluation results are collectively shown in Table 1.

Figure 2013001759
Figure 2013001759

本発明の樹脂補強用有機繊維、さらにこれを用いて得られる繊維補強熱可塑性樹脂は、車両、電機・電子機器、機械、建築・土木用の樹脂成形部品用として好適に用いることができる。   The organic fiber for resin reinforcement of the present invention and the fiber reinforced thermoplastic resin obtained by using the same can be suitably used for resin molded parts for vehicles, electric machines / electronic devices, machines, and construction / civil engineering.

Claims (12)

有機繊維の表面に、(A)1分子に少なくとも3つ以上のエポキシ基を有する多官能性エポキシ化合物、(B)ポリウレタン樹脂系エマルション、および(C)ゴムラテックスを含む処理剤が固形分換算で1〜20重量%付与されてなり、かつ(A)/(B)(固形分重量比)=1/99〜30/70、《〔(A)+(B)〕/(C)》(固形分重量比)=80/20〜95/5の範囲である、樹脂補強用有機繊維。   On the surface of the organic fiber, a treatment agent containing (A) a polyfunctional epoxy compound having at least three epoxy groups per molecule, (B) a polyurethane resin emulsion, and (C) a rubber latex is converted into a solid content. 1 to 20% by weight, and (A) / (B) (solid content weight ratio) = 1/99 to 30/70, << [(A) + (B)] / (C) >> (solid Organic weight fiber for resin reinforcement in a range of 80/20 to 95/5. 有機繊維が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、レーヨン、ナイロン66、ポリビニルアルコール、およびポリフェニレンサルファイドの群から選ばれた少なくとも1種である、樹脂補強用有機繊維。   An organic fiber for resin reinforcement, wherein the organic fiber is at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyarylate, rayon, nylon 66, polyvinyl alcohol, and polyphenylene sulfide. (A)多官能性エポキシ化合物が、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、およびソルビトールポリグリシジルエーテルの群から選ばれた少なくとも1種である、請求項1または2記載の樹脂補強用有機繊維。   (A) The polyfunctional epoxy compound is at least one selected from the group of glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, and sorbitol polyglycidyl ether, The organic fiber for resin reinforcement according to claim 1 or 2. (B)ポリウレタン樹脂系エマルジョンが、ポリイソシアネートと高分子ポリオールの重合物である、請求項1〜3いずれかに記載の樹脂補強用有機繊維。   (B) The organic fiber for resin reinforcement according to any one of claims 1 to 3, wherein the polyurethane resin emulsion is a polymer of polyisocyanate and polymer polyol. (C)ゴムラテックスが、ラテックスを構成するポリマーのガラス転移温度が−10℃以下であり、かつ該ポリマーの20℃での伸度(JIS K-6251に準拠して測定)が100%以上である、請求項1〜4いずれかに記載の樹脂補強用有機繊維。   (C) The rubber latex has a glass transition temperature of the polymer constituting the latex of −10 ° C. or lower, and the elongation at 20 ° C. (measured in accordance with JIS K-6251) of the polymer is 100% or higher. The organic fiber for resin reinforcement according to any one of claims 1 to 4. 請求項1〜5いずれかに記載の(イ)樹脂補強用有機繊維と、(ロ)熱可塑性樹脂を主成分とし、(イ)と(ロ)との混合重量比が1/99〜70/30であることを特徴とする繊維補強熱可塑性樹脂。   The (a) resin reinforcing organic fiber according to any one of claims 1 to 5 and (b) a thermoplastic resin as a main component, wherein the mixing weight ratio of (a) and (b) is 1/99 to 70 /. A fiber-reinforced thermoplastic resin characterized by being 30. (ロ)熱可塑性樹脂が、ポリオレフィン、ポリアクリロニトリル、ポリブタジエン、ポリ塩化ビニル、ポリスチレン系樹脂、ポリアセタール、ポリエステル、およびポリアミドの群から選ばれた少なくとも1種である請求項6記載の繊維補強熱可塑性樹脂。   (B) The fiber-reinforced thermoplastic resin according to claim 6, wherein the thermoplastic resin is at least one selected from the group consisting of polyolefin, polyacrylonitrile, polybutadiene, polyvinyl chloride, polystyrene resin, polyacetal, polyester, and polyamide. . ポリオレフィンが、ポリエチレン、またはポリプロピレン、あるいはそれらの共重合体からなるものである請求項7記載の有機繊維補強熱可塑性樹脂。   The organic fiber-reinforced thermoplastic resin according to claim 7, wherein the polyolefin is made of polyethylene, polypropylene, or a copolymer thereof. ポリエステルが、ポリエチレンテレフタレート、ポリブチレンテレフタレートまたはポリブチレンナフタレートあるいはそれらの共重合体からなる芳香族ポリエステル、あるいはポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネートあるいはそれらの共重合体からなる脂肪族ポリエステルである請求項7に記載の繊維補強熱可塑性樹脂。   Polyester is an aromatic polyester made of polyethylene terephthalate, polybutylene terephthalate or polybutylene naphthalate or a copolymer thereof, or an aliphatic polyester made of polylactic acid, polybutylene succinate, polyethylene succinate or a copolymer thereof. The fiber-reinforced thermoplastic resin according to claim 7. ポリアミドが、ナイロン6、ナイロン66、ナイロン610、ナイロン11またはナイロン12あるいはそれらの共重合体からなるものである請求項7の有機繊維補強熱可塑性樹脂。   8. The organic fiber-reinforced thermoplastic resin according to claim 7, wherein the polyamide is made of nylon 6, nylon 66, nylon 610, nylon 11 or nylon 12, or a copolymer thereof. 請求項6〜10のいずれか1項に記載された繊維補強熱可塑性樹脂を溶融、成形して得られることを特徴とする樹脂成形体。   A resin molded body obtained by melting and molding the fiber-reinforced thermoplastic resin according to any one of claims 6 to 10. 車両、電機・電子機器、機械、または建築・土木用の樹脂成形部品である、請求項11記載の樹脂成形体。   The resin molded body according to claim 11, which is a resin molded part for a vehicle, an electric / electronic device, a machine, or a building / civil engineering.
JP2011132308A 2011-06-14 2011-06-14 Resin reinforcing organic fiber and fiber reinforced thermoplastic resin Withdrawn JP2013001759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132308A JP2013001759A (en) 2011-06-14 2011-06-14 Resin reinforcing organic fiber and fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132308A JP2013001759A (en) 2011-06-14 2011-06-14 Resin reinforcing organic fiber and fiber reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JP2013001759A true JP2013001759A (en) 2013-01-07

Family

ID=47670680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132308A Withdrawn JP2013001759A (en) 2011-06-14 2011-06-14 Resin reinforcing organic fiber and fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2013001759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467757A (en) * 2013-09-30 2013-12-25 金发科技股份有限公司 Fiber-reinforced thermoplastic composite and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467757A (en) * 2013-09-30 2013-12-25 金发科技股份有限公司 Fiber-reinforced thermoplastic composite and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6747517B2 (en) Fiber reinforced thermoplastic resin molded product
TWI591233B (en) Method for producing carbon fiber coating sizing agent, carbon fiber coating sizing agent, method for producing carbon fiber reinforced composite material and carbon fiber reinforced composite material
EP2096134B1 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
WO1999002586A1 (en) Prepreg fabric and honeycomb sandwich panel
JP2007016121A (en) Prepreg for composite material and composite material
TWI598380B (en) Carbon fiber bundle coated with sizing agent, manufacturing method thereof, prepreg and carbon fiber reinforced composite material
KR20090033440A (en) Molded article and method for producing the same
CN1590084A (en) Adhesive sheet for steel plate
TWI791582B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molded material
KR20100112553A (en) Surface-treated fiber, resin composition, and molded article of the composition
JPH1143546A (en) Cloth prepreg and honeycomb structure
JP5683379B2 (en) Resin composition
JP2012251037A (en) Organic fiber for resin reinforcement, and fiber reinforced thermoplastic resin
JPWO2018101022A1 (en) COMPOSITION FOR FIBER-REINFORCED RESIN, PROCESS FOR PRODUCING THE SAME, FIBER-REINFORCED RESIN, AND MOLDED BODY
JP7018692B2 (en) Fiber reinforced material and fiber reinforced polypropylene resin composite material
JP2009203594A (en) Polyester fiber cord for reinforcing rubber
WO2023140043A1 (en) Polyamide resin composition, molded article obtained by molding same, and methods for producing those
JP2013001759A (en) Resin reinforcing organic fiber and fiber reinforced thermoplastic resin
JP2016020446A (en) Resin composition, fiber-reinforced composite material and molded article
JP2013252642A (en) Organic fiber for reinforcing resin and organic fiber reinforced thermoplastic resin
JP2013010863A (en) Organic fiber for resin reinforcement and fiber-reinforced thermoplastic resin
JP2013253331A (en) Organic fiber for reinforcing resin and organic fiber-reinforced thermoplastic resin
JP5584050B2 (en) Hybrid cord for reinforcing rubber and method for manufacturing the same
JP2013253332A (en) Organic fiber for reinforcing resin and organic fiber-reinforced thermoplastic resin
JP5519401B2 (en) Method for producing rubber reinforcing fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130220

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902