JP2013000646A - Method for accelerating decomposition of hydrogen peroxide - Google Patents

Method for accelerating decomposition of hydrogen peroxide Download PDF

Info

Publication number
JP2013000646A
JP2013000646A JP2011133372A JP2011133372A JP2013000646A JP 2013000646 A JP2013000646 A JP 2013000646A JP 2011133372 A JP2011133372 A JP 2011133372A JP 2011133372 A JP2011133372 A JP 2011133372A JP 2013000646 A JP2013000646 A JP 2013000646A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
decomposition
water
promoting
metal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011133372A
Other languages
Japanese (ja)
Inventor
Toshisato Iwai
稔諭 岩井
Takashi Mizumori
隆司 水盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Katayama Chemical Inc
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Katayama Chemical Inc
Priority to JP2011133372A priority Critical patent/JP2013000646A/en
Publication of JP2013000646A publication Critical patent/JP2013000646A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for quickly, safely and certainly accelerating decomposition of hydrogen peroxide to a natural level by a simple operation, the hydrogen peroxide being contained in water, especially in seawater, brackish water, fresh water or industrial water to which the hydrogen peroxide is added for various treatments and in which the hydrogen peroxide remains after the treatments.SOLUTION: The method for accelerating decomposition of hydrogen peroxide is characterized in that the water containing the hydrogen peroxide is brought into contact with a metal structure on which a palladium nitrate powder is thermally sprayed and at the same time a dc voltage is applied between an anode and a cathode arranged in an optional position in contact with the water containing the hydrogen peroxide.

Description

本発明は、過酸化水素の分解促進方法に関する。さらに詳しくは、本発明は、過酸化水素を添加した海水、汽水もしくは淡水または工業用水に残存する過酸化水素を早期に安全かつ確実に分解させる方法に関する。   The present invention relates to a method for promoting the decomposition of hydrogen peroxide. More specifically, the present invention relates to a method for quickly and safely decomposing hydrogen peroxide remaining in seawater, brackish water or fresh water or industrial water to which hydrogen peroxide has been added.

過酸化水素は、水の殺菌や洗浄用の薬剤として、各種分野において幅広く用いられている。その用途としては、例えば、海水冷却水系における海生生物の付着防止剤、養殖魚類の寄生虫駆除剤および赤潮駆除剤、船舶バラスト水の処理剤、循環冷却水系のスライム処理剤、食品容器の洗浄剤、半導体材料のウエハの洗浄剤およびその洗浄に用いられる装置における超純水配管の洗浄殺菌剤、織物工業や製紙工業における漂白剤ならびに廃水処理剤などが挙げられる。   Hydrogen peroxide is widely used in various fields as a sterilizing and cleaning agent for water. Applications include, for example, antifouling agents for marine organisms in seawater cooling water systems, parasite and red tide control agents for cultured fish, ship ballast water treatment agents, circulating cooling water system slime treatment agents, and food container cleaning. And cleaning agents for semiconductor material wafers, cleaning and disinfecting agents for ultrapure water piping in apparatuses used for the cleaning, bleaching agents and wastewater treatment agents in the textile and paper industries.

これらの過酸化水素を含有する水を自然界に放出する際には、水中に残存する過酸化水素を分解させることが望まれる。例えば、海生生物駆除のために過酸化水素で処理された船舶バラスト水を海に排出する場合には、周辺海域の環境破壊を起こさないレベルにまで過酸化水素を分解させる必要があり、その基準は国際条約で定められている。
しかしながら、水中の過酸化水素は、各種の要因により毒性のない酸素と水に容易に分解されるが、自然界レベル(0.001〜10mg/L)まで分解するには非常に長い時間を要する。
When releasing water containing these hydrogen peroxides into the natural world, it is desired to decompose the hydrogen peroxide remaining in the water. For example, when ship ballast water treated with hydrogen peroxide for marine organism control is discharged into the sea, it is necessary to decompose hydrogen peroxide to a level that does not cause environmental destruction in the surrounding sea area. Standards are stipulated in international treaties.
However, although hydrogen peroxide in water is easily decomposed into non-toxic oxygen and water due to various factors, it takes a very long time to decompose to a natural level (0.001 to 10 mg / L).

そこで、過酸化水素を添加した海水、汽水もしくは淡水または工業用水に残存する過酸化水素を分解させる方法として、例えば、チオ硫酸ナトリウムおよび亜硫酸ナトリウムなどの還元剤を用いる方法、カタラ−ゼおよびペルオキシダ−ゼなどの酵素触媒を用いる方法、活性炭を用いる方法、電気分解による方法および固体の金属または貴金属触媒(固体触媒)を用いる方法などが提案され、一部では実用化されている。   Therefore, as a method for decomposing hydrogen peroxide remaining in seawater, brackish water or fresh water or industrial water to which hydrogen peroxide has been added, for example, a method using a reducing agent such as sodium thiosulfate and sodium sulfite, a catalase and a peroxidase A method using an enzyme catalyst such as ze, a method using activated carbon, a method using electrolysis, a method using a solid metal or noble metal catalyst (solid catalyst), and the like have been proposed, and some have been put into practical use.

このような観点から、本出願人は、金属換算で特定割合のマンガンとビスマスとを含有する過酸化水素分解用固体触媒およびこれを用いる過酸化水素の分解方法を提案した(特開2000−308828号公報(特許文献1)および特開2002−59003号公報(特許文献2)参照)。
また、過酸化水素を含有する液を白金族触媒、活性炭などの触媒と接触させつつ、この系に超音波を印加する過酸化水素の分解方法も提案されている(特開2001−276619号公報(特許文献3)参照)。
From such a viewpoint, the present applicant has proposed a solid catalyst for decomposing hydrogen peroxide containing a specific ratio of manganese and bismuth in terms of metal and a method for decomposing hydrogen peroxide using the same (Japanese Patent Laid-Open No. 2000-308828). No. (Patent Document 1) and JP-A-2002-59003 (Patent Document 2)).
In addition, a method for decomposing hydrogen peroxide in which an ultrasonic wave is applied to this system while bringing a liquid containing hydrogen peroxide into contact with a catalyst such as a platinum group catalyst or activated carbon has been proposed (Japanese Patent Laid-Open No. 2001-276619). (See Patent Document 3).

特開2000−308828号公報JP 2000-308828 A 特開2002−59003号公報JP 2002-59003 A 特開2001−276619号公報JP 2001-276619 A

本発明は、過酸化水素を含有する水、特に各種処理のために過酸化水素が添加され、その処理後に過酸化水素が残存する海水、汽水もしくは淡水または工業用水中の過酸化水素を、簡便な操作で、早期に安全かつ確実に自然界レベルにまで過酸化水素の分解を促進する方法を提供することを課題とする。   In the present invention, water containing hydrogen peroxide, in particular, hydrogen peroxide is added for various treatments, and hydrogen peroxide remains in the sea water, brackish water or fresh water or industrial water in which hydrogen peroxide remains after the treatment. It is an object of the present invention to provide a method for promptly and safely promoting the decomposition of hydrogen peroxide to the natural level by a simple operation.

本発明の発明者らは、上記の課題を解決すべく鋭意研究を行なった結果、過酸化水素を含有する水に、表面に硝酸パラジウム粉末が溶射された金属構造物を接触させ、それと同時にその水に直流電圧を印加することにより、水中の過酸化水素を効率よく分解できることを見出し、本発明を完成するに到った。   The inventors of the present invention have conducted extensive research to solve the above-mentioned problems. As a result, the metal structure having palladium nitrate powder sprayed on its surface is brought into contact with water containing hydrogen peroxide, and at the same time, It has been found that by applying a DC voltage to water, hydrogen peroxide in water can be efficiently decomposed, and the present invention has been completed.

かくして、本発明によれば、過酸化水素を含む水に、表面に硝酸パラジウム粉末が溶射された金属構造物を接触させ、かつ前記接触と同時に、前記過酸化水素を含む水に接触可能な任意の位置に設けた陽極および陰極の間に直流電圧を印加することにより、前記水中の過酸化水素の分解を促進することを特徴とする過酸化水素の分解促進方法が提供される。   Thus, according to the present invention, the metal structure having palladium nitrate powder sprayed on the surface thereof is brought into contact with water containing hydrogen peroxide, and at the same time as the contact, the metal structure can be contacted with water containing hydrogen peroxide. There is provided a method for promoting the decomposition of hydrogen peroxide, which comprises promoting the decomposition of hydrogen peroxide in the water by applying a DC voltage between an anode and a cathode provided at the position.

本発明によれば、過酸化水素を含有する水、特に各種処理のために過酸化水素が添加され、その処理後に過酸化水素が残存する海水、汽水もしくは淡水または工業用水中の過酸化水素を、簡便な操作で、早期に安全かつ確実に自然界レベルにまで過酸化水素の分解を促進する方法を提供することができる。
例えば、海生生物駆除のために過酸化水素で処理された船舶バラスト水を海に排出する際には、残存する過酸化水素を国際条約で定められたレベルにまで分解させる必要があり、通常、中和剤で処理しているが、本発明を予め適用することで中和剤の添加量を低減でき、本発明は産業上極めて有用である。
According to the present invention, water containing hydrogen peroxide, particularly hydrogen peroxide is added for various treatments, and hydrogen peroxide remains in the seawater, brackish water or fresh water or industrial water in which hydrogen peroxide remains after the treatment. Thus, it is possible to provide a method for promoting the decomposition of hydrogen peroxide to a natural level at an early stage safely and reliably by a simple operation.
For example, when discharging ship's ballast water treated with hydrogen peroxide for marine organism control to the sea, it is necessary to decompose the remaining hydrogen peroxide to the level stipulated by international conventions. Although it is treated with a neutralizing agent, the addition amount of the neutralizing agent can be reduced by applying the present invention in advance, and the present invention is extremely useful industrially.

また、本発明において、金属構造物が重量比100:1〜10の粒子径10〜40μmのニッケル粉末と粒子径10〜40μmの硝酸パラジウム粉末との混合材料をプラズマ溶射されてなる場合に、金属構造物が鉄、ニッケル、銅およびこれらの合金から選択される基材の表面に前記硝酸パラジウム粉末が溶射されてなる場合に、特にその合金がステンレス鋼である場合に、金属構造物がJIS Z8801における10〜100メッシュの多孔体である場合に、金属構造物が複数である場合に、本発明の効果がさらに発揮される。
さらに、本発明において、直流電圧が0.75〜1.25Vである場合に、本発明の効果がさらに発揮される。
Further, in the present invention, when the metal structure is formed by plasma spraying a mixed material of nickel powder having a particle size of 10 to 40 μm in a weight ratio of 100: 1 to 10 and palladium nitrate powder having a particle size of 10 to 40 μm, When the structure is formed by spraying the palladium nitrate powder on the surface of a substrate selected from iron, nickel, copper and alloys thereof, the metal structure is JIS Z8801 particularly when the alloy is stainless steel. In the case of a porous body of 10 to 100 mesh, the effect of the present invention is further exhibited when there are a plurality of metal structures.
Furthermore, in the present invention, when the DC voltage is 0.75 to 1.25 V, the effect of the present invention is further exhibited.

また、本発明において、金属構造物が過酸化水素を含む水の流通経路に設けられた、電気導電性の複数のフィルタであり、フィルタの2つが陽極および陰極を兼ねる場合に、そのフィルタがJIS Z8801における10〜100メッシュの複数枚の金網を、天然または合成の樹脂による枠を介して挟持したものである場合に、そのフィルタが100〜5000リットル/時間のろ過能力を有する場合に、本発明の効果がさらに発揮される。
また、本発明において、過酸化水素を含む水が過酸化水素を用いて処理された船舶バラスト水である場合に、本発明の効果がさらに発揮される。
In the present invention, when the metal structure is a plurality of electrically conductive filters provided in the flow path of water containing hydrogen peroxide, and two of the filters serve as an anode and a cathode, the filters are JIS In the case where a plurality of 10-100 mesh nets in Z8801 are sandwiched through a frame made of natural or synthetic resin, the filter has a filtration capacity of 100-5000 liters / hour, and the present invention. The effect of is further demonstrated.
In the present invention, the effect of the present invention is further exhibited when the water containing hydrogen peroxide is marine ballast water treated with hydrogen peroxide.

本発明の過酸化水素の分解促進方法に用いられる金属構造物の一形態を示す模式図である。It is a schematic diagram which shows one form of the metal structure used for the decomposition promotion method of hydrogen peroxide of this invention. 試験例(過酸化水素の分解促進効果確認試験)で用いた装置の模式図である。It is a schematic diagram of the apparatus used in the test example (degradation promotion effect confirmation test of hydrogen peroxide). 本発明の過酸化水素の分解促進方法を船舶バラスト水に適用する場合の模式図である。It is a schematic diagram in the case of applying the decomposition promotion method of hydrogen peroxide of the present invention to ship ballast water. 図3のフィルタの部分拡大図である。FIG. 4 is a partially enlarged view of the filter of FIG. 3.

本発明の過酸化水素の分解促進方法は、過酸化水素を含む水に、表面に硝酸パラジウム粉末が溶射された金属構造物を接触させ、かつ前記接触と同時に、前記過酸化水素を含む水に接触可能な任意の位置に設けた陽極および陰極の間に直流電圧を印加することにより、前記水中の過酸化水素の分解を促進することを特徴とする。   In the method for promoting the decomposition of hydrogen peroxide according to the present invention, the metal structure having palladium nitrate powder sprayed on the surface is brought into contact with water containing hydrogen peroxide, and simultaneously with the contact, the water containing hydrogen peroxide is brought into contact with the water. It is characterized in that decomposition of hydrogen peroxide in the water is promoted by applying a DC voltage between an anode and a cathode provided at any position where they can be contacted.

本発明において処理の対象となる過酸化水素を含む水は、各種処理のために過酸化水素が添加され、その処理後に過酸化水素が残存する海水、汽水もしくは淡水または工業用水であれば特に限定されない。
このような過酸化水素を含む水としては、例えば、
海生生物の付着防止のために過酸化水素を添加した海水冷却水、
スライム処理またはスライム洗浄のために過酸化水素を添加した淡水冷却水、
テトラパックまたはPET(ポリエチレンテレフタレート)容器などの食品容器の洗浄のために過酸化水素を添加した水(過酸化水素濃度:0.1〜10,000mg/L程度)、
半導体基板ウエハなどの電子部品の洗浄用に過酸化水素を添加した水、
半導体基板ウエハなどの電子部品の製造装置(例えば、半導体装置など)の洗浄(超純水の送水配管に沈着するスライムや微生物などの洗浄・殺菌)のために過酸化水素を添加した水(過酸化水素濃度:0.1〜10,000mg/L程度)、
織物工業または製紙工業の製品漂白のために過酸化水素を添加した水、
織物工業または製紙工業の染色廃水の脱色のために過酸化水素を添加した廃水
養殖魚類の寄生虫駆除または赤潮駆除のために過酸化水素を添加した水(過酸化水素濃度:0.1〜1,000mg/L程度)、
プランクトン・シスト・細菌などの殺滅のために過酸化水素を添加した船舶バラスト水
などが挙げられる。
Water containing hydrogen peroxide to be treated in the present invention is particularly limited as long as it is seawater, brackish water, fresh water or industrial water to which hydrogen peroxide is added for various treatments, and hydrogen peroxide remains after the treatment. Not.
As water containing such hydrogen peroxide, for example,
Seawater cooling water added with hydrogen peroxide to prevent the attachment of marine organisms,
Fresh water cooling water added with hydrogen peroxide for slime treatment or slime cleaning,
Water added with hydrogen peroxide for cleaning food containers such as Tetra Pak or PET (polyethylene terephthalate) containers (hydrogen peroxide concentration: about 0.1 to 10,000 mg / L),
Water containing hydrogen peroxide for cleaning electronic components such as semiconductor substrate wafers,
Water containing hydrogen peroxide (excess water for cleaning (disinfection and sterilization of slime, microorganisms, etc.) deposited on the water supply piping of ultrapure water) for the manufacturing of electronic parts such as semiconductor substrate wafers (for example, semiconductor devices) Hydrogen oxide concentration: about 0.1 to 10,000 mg / L),
Hydrogenated water for product bleaching in the textile or paper industry,
Wastewater added with hydrogen peroxide for decolorization of dyeing wastewater in textile industry or paper industry Water added with hydrogen peroxide for parasite control or red tide control of cultured fish (hydrogen peroxide concentration: 0.1 to 1) About 000 mg / L),
Ship ballast water with hydrogen peroxide added to kill plankton, cysts and bacteria.

過酸化水素を含む水における過酸化水素濃度は、過酸化水素の使用された目的やその使用条件により異なるが、上記のように、通常0.1〜10,000mg/L程度である。
本発明の方法で分解促進が可能な水中の過酸化水素濃度は特に限定されないが、通常、0.1mg/L以上が好ましい。過酸化水素濃度が0.1mg/L未満であれば、自然界レベルの濃度に近くなるため、本発明の方法を用いて処理しても得られる効果が小さく、また経済的な面からも好ましくない。
The concentration of hydrogen peroxide in water containing hydrogen peroxide varies depending on the purpose of use of the hydrogen peroxide and the conditions under which it is used, but is usually about 0.1 to 10,000 mg / L as described above.
The concentration of hydrogen peroxide in water that can be accelerated by the method of the present invention is not particularly limited, but it is usually preferably 0.1 mg / L or more. If the hydrogen peroxide concentration is less than 0.1 mg / L, the concentration is close to the natural level, so that the effect obtained by the treatment using the method of the present invention is small, and this is not preferable from the economical viewpoint. .

本発明の方法において、過酸化水素を含む水の水温は、過酸化水素の分解効率の点で、0〜100℃が好ましく、10〜50℃が特に好ましい。   In the method of the present invention, the temperature of water containing hydrogen peroxide is preferably from 0 to 100 ° C, particularly preferably from 10 to 50 ° C, from the viewpoint of the decomposition efficiency of hydrogen peroxide.

本発明の方法における第1の手段は、過酸化水素を含む水に、表面に硝酸パラジウム粉末が溶射された金属構造物を接触させることである。
本発明における過酸化水素の分解促進のメカニズムは明らかではないが、パラジウム成分が何らかの触媒的な機能をしているものと考えられる。
したがって、表面に硝酸パラジウム粉末が溶射された金属構造物(以下「金属構造物」ともいう)は、対象となる水に効率よく接触するような形態であれば特に限定されない。
The first means in the method of the present invention is to contact a metal structure having palladium nitrate powder sprayed on the surface thereof with water containing hydrogen peroxide.
Although the mechanism for promoting the decomposition of hydrogen peroxide in the present invention is not clear, it is considered that the palladium component has some catalytic function.
Therefore, the metal structure (hereinafter also referred to as “metal structure”) having the surface coated with palladium nitrate powder is not particularly limited as long as it is in a form that can efficiently contact the target water.

本発明の金属構造物としては、基材表面に硝酸パラジウム粉末が溶射されたものが挙げられ、その基材としては、用時にその形状を維持し得る強度および耐食性を有する金属材料が挙げられる。
金属材料としては、鉄、ニッケル、銅およびこれらの合金が挙げられ、合金としてはJIS SUS316などのステンレス鋼などが挙げられる。
Examples of the metal structure of the present invention include those in which palladium nitrate powder is sprayed on the surface of the base material, and examples of the base material include metal materials having strength and corrosion resistance capable of maintaining the shape during use.
Examples of the metal material include iron, nickel, copper, and alloys thereof, and examples of the alloy include stainless steel such as JIS SUS316.

本発明の金属構造物の形状は、対象となる過酸化水素を含む水に効率よく接触するような形状であれば特に限定されず、ハニカム形状のような、また表面に凹凸を有する形状であってもよい。例えば、複数枚の金網を積層した素材を焼結した多孔体が挙げられる。
また、対象となる過酸化水素を含む水に効率よく接触させるために、本発明の金属構造物は複数であるのが好ましい。
The shape of the metal structure of the present invention is not particularly limited as long as it is a shape that can efficiently contact water containing hydrogen peroxide as a target, and it is a honeycomb shape or a shape having irregularities on the surface. May be. For example, the porous body which sintered the raw material which laminated | stacked the metal sheet | seat of several sheets is mentioned.
Moreover, in order to make it contact efficiently with the water containing the hydrogen peroxide used as object, it is preferable that there are two or more metal structures of this invention.

また、過酸化水素を含む水の通水経路に設ける場合には、本発明の金属構造物は通水可能な多孔体であるのが好ましく、JIS Z8801における10〜100メッシュの多孔体であるのが好ましい。そのような基材としては、金属材料からなる金網(フィルタ)が挙げられる。   Moreover, when providing in the water flow path of the water containing hydrogen peroxide, it is preferable that the metal structure of the present invention is a porous body capable of passing water, and is a 10-100 mesh porous body according to JIS Z8801. Is preferred. An example of such a substrate is a metal mesh (filter) made of a metal material.

フィルタは、JIS Z8801における目開き10〜100メッシュの複数枚の金網を、天然または合成の樹脂による枠を介して挟持したものであるのが好ましく、100〜5000リットル/時間のろ過能力を有するのが好ましい。
天然または合成の樹脂としては、通常、シール材料として用いられる材料であれば特に限定されず、使用条件により適宜選択すればよい。このような樹脂としては、天然ゴム、ニトリルゴム、シリコーンゴム、アクリルゴム、スチレンブタジエンゴム、フッ素ゴム、エチレンプロピレンゴムなどの合成ゴム、四フッ化エチレンゴム(テフロン(登録商標))樹脂などが挙げられる。
It is preferable that the filter is obtained by sandwiching a plurality of wire nets having an opening of 10 to 100 mesh according to JIS Z8801 through a frame made of natural or synthetic resin, and has a filtration capacity of 100 to 5000 liters / hour. Is preferred.
The natural or synthetic resin is not particularly limited as long as it is a material usually used as a sealing material, and may be appropriately selected depending on the use conditions. Examples of such resins include natural rubber, nitrile rubber, silicone rubber, acrylic rubber, styrene butadiene rubber, fluoro rubber, ethylene propylene rubber and other synthetic rubber, and tetrafluoroethylene rubber (Teflon (registered trademark)) resin. It is done.

フィルタの目開きが10メッシュ未満もしくはフィルタのろ過能力が100リットル/時間未満では、対象となる過酸化水素を含む水と金属構造物との接触が過剰になり、処理効率が低下することがある。一方、フィルタの目開きが100メッシュを超えるもしくはフィルタのろ過能力が5000リットル/時間を超えると、対象となる過酸化水素を含む水と金属構造物との接触が不足になり、本発明の効果が十分に得られないことがある。   When the opening of the filter is less than 10 mesh or the filtration capacity of the filter is less than 100 liters / hour, the contact between the target water containing hydrogen peroxide and the metal structure may be excessive, and the processing efficiency may be reduced. . On the other hand, when the opening of the filter exceeds 100 mesh or the filtering capacity of the filter exceeds 5000 liters / hour, the contact between the water containing the target hydrogen peroxide and the metal structure becomes insufficient, and the effect of the present invention. May not be sufficiently obtained.

本発明の金属構造物は、例えば、重量比100:1〜10の粒子径10〜40μmのニッケル粉末と粒子径10〜40μmの硝酸パラジウム粉末との混合材料をプラズマ溶射されてなるのが好ましい。
これらの粉末の粒子径が10μm未満では、溶射時の損失が大きくなり、また粉末自体がコスト高になることがある。一方、これらの粉末の粒子径が40μmを超えると、高い溶射出力が必要になり、通常の溶射装置が使用できないことがある。
The metal structure of the present invention is preferably formed by plasma spraying, for example, a mixed material of nickel powder having a particle size of 10 to 40 μm in a weight ratio of 100: 1 to 10 and palladium nitrate powder having a particle size of 10 to 40 μm.
When the particle diameter of these powders is less than 10 μm, the loss during thermal spraying becomes large, and the powder itself may be expensive. On the other hand, when the particle diameter of these powders exceeds 40 μm, a high thermal spray output is required, and a normal thermal spray apparatus may not be used.

上記の粉末の混合材料を基材にプラズマ溶射することにより、これらの材料がナノレベルにまで微細化し基材に分散担持されるものと考えられ、ニッケル成分がパラジウム成分の結合を防止して、触媒性能の劣化を防止するものと考えられる。
したがって、上記のようにニッケル粉末と硝酸パラジウム粉末との好ましい重量比は100:1〜10である。ニッケル粉末の重量100に対して硝酸パラジウム粉末の重量が1未満では、パラジウム成分の触媒能力、すなわち本発明の効果が得られないことがある。一方、ニッケル粉末の重量100に対して硝酸パラジウム粉末の重量が10を超えてもそれに見合う本発明の効果が得られないことがある。
By plasma spraying the mixed material of the above powder on the base material, it is considered that these materials are refined to the nano level and dispersed and supported on the base material, the nickel component prevents the binding of the palladium component, This is considered to prevent deterioration of catalyst performance.
Therefore, the preferable weight ratio of nickel powder and palladium nitrate powder is 100: 1 to 10 as described above. When the weight of the palladium nitrate powder is less than 1 with respect to the weight of the nickel powder, the catalytic ability of the palladium component, that is, the effect of the present invention may not be obtained. On the other hand, even if the weight of the palladium nitrate powder exceeds 10 with respect to the weight of the nickel powder, the effects of the present invention may not be obtained.

溶射された膜厚は、上記のようにパラジウム成分が触媒的に機能するに足る厚さであればよく、0.1〜10μm程度であればよい。
膜厚が0.1μm未満では、パラジウム成分が削れて基材が表面に出ることがある。一方、膜厚が10μmを超えると、メッシュ幅が狭くなり効果が低下することがある。
The sprayed film thickness may be a thickness sufficient for the palladium component to function as a catalyst as described above, and may be about 0.1 to 10 μm.
If the film thickness is less than 0.1 μm, the palladium component may be shaved and the substrate may come out on the surface. On the other hand, when the film thickness exceeds 10 μm, the mesh width becomes narrow and the effect may be lowered.

上記の好ましい条件を満足し得るフィルタとして、株式会社ニチダイフィルタ製のオゾン分解フィルタが挙げられ、これを好適に用いることができる。このオゾン分解フィルタは、ステンレス製金網にパラジウム成分を含む触媒が加工されている。   As a filter that can satisfy the above preferable conditions, an ozone decomposing filter manufactured by Nichidai Filter Co., Ltd. can be mentioned, and this can be suitably used. In this ozonolysis filter, a catalyst containing a palladium component is processed on a stainless steel wire mesh.

本発明の方法における第2の手段は、第1の手段と同時に、過酸化水素を含む水に接触可能な任意の位置に設けた陽極および陰極の間に直流電圧を印加することである。   The 2nd means in the method of this invention is applying a DC voltage between the anode and cathode which were provided in the arbitrary positions which can contact the water containing hydrogen peroxide simultaneously with the 1st means.

陽極および陰極としては、過酸化水素を含む水に侵されない電極材料であれば特に限定されない。例えば、炭素鋼、鉛合金(Pb−2%Ag、Pb−6%Sb−1%Agなど)、高珪素鉄(例えば、Fe−14.5%Si)、高珪素クロム鉄(例えば、Fe−14.5%Si−4.5%Cr)、黒鉛、酸化鉄、チタン、ステンレス鋼、白金、金、銀、白金めっきチタン、白金めっきニオブ、白金めっきタンタル、カーボンブラック混合物などが挙げられる。   The anode and the cathode are not particularly limited as long as they are electrode materials that are not affected by water containing hydrogen peroxide. For example, carbon steel, lead alloys (Pb-2% Ag, Pb-6% Sb-1% Ag, etc.), high silicon iron (for example, Fe-14.5% Si), high silicon chrome iron (for example, Fe- 14.5% Si-4.5% Cr), graphite, iron oxide, titanium, stainless steel, platinum, gold, silver, platinum-plated titanium, platinum-plated niobium, platinum-plated tantalum, carbon black mixture, and the like.

陽極および陰極を設ける過酸化水素を含む水に接触可能な任意の位置は、第1の手段によって金属構造物に接触する過酸化水素を含む水が印加された直流電圧の影響を受ける範囲であれば特に限定されない。例えば、金属構造物に近接して陽極および陰極を設けてもよく、また過酸化水素を含む水が導電性材料からなる配管もしくは容器内を流れる場合には、配管もしくは内壁自体を陽極もしくは陰極とし、それに近接して対極(陰極もしくは陽極)を設けてもよい。配管もしくは容器が非導電性材料からなる場合には、その過酸化水素を含む水との接触面を上記電極材料でコーテングしてもよい。
さらに、金属構造物が過酸化水素を含む水の流通経路に設けられた、電気導電性の複数のフィルタであれば、これらフィルタの2つが陽極および陰極を兼ねてもよい。この場合、実施例に記載のように、少なくとも一方のフィルタが表面に硝酸パラジウム粉末が溶射された金属構造物であればよい。
Arbitrary positions where the anode and the cathode can be contacted with water containing hydrogen peroxide are within the range affected by the DC voltage to which the water containing hydrogen peroxide contacting the metal structure is applied by the first means. If it does not specifically limit. For example, an anode and a cathode may be provided close to the metal structure, and when water containing hydrogen peroxide flows through a pipe or container made of a conductive material, the pipe or inner wall itself is used as the anode or cathode. A counter electrode (cathode or anode) may be provided in the vicinity thereof. When the pipe or container is made of a non-conductive material, the contact surface with water containing hydrogen peroxide may be coated with the electrode material.
Furthermore, if the metal structure is a plurality of electrically conductive filters provided in the flow path of water containing hydrogen peroxide, two of these filters may serve as the anode and the cathode. In this case, as described in the examples, at least one of the filters may be a metal structure whose surface is sprayed with palladium nitrate powder.

本発明の方法において、陰極近傍に参照電極(照合電極)を設け、直流電圧を制御してもよい。参照電極としては、過酸化水素を含む水に侵されない電極材料であれば特に限定されない。具体的には、塩化銀電極、亜鉛電極、飽和甘こう電極等が挙げられ、これらの中でも比較的安価である点で亜鉛電極が特に好ましい。   In the method of the present invention, a reference electrode (reference electrode) may be provided near the cathode to control the DC voltage. The reference electrode is not particularly limited as long as it is an electrode material that is not affected by water containing hydrogen peroxide. Specific examples include a silver chloride electrode, a zinc electrode, and a saturated gypsum electrode. Among these, a zinc electrode is particularly preferable because it is relatively inexpensive.

本発明の方法において、陽極および陰極の両電極間に印加する直流電圧は、過酸化水素を含む水の種類および条件により適宜設定すればよく、通常0.75〜1.25Vであるのが好ましく、1.00〜1.25Vであるのがより好ましい。
直流電圧が0.75V未満では、本発明の過酸化水素の分解効果が十分に得られないことがある。一方、直流電圧が1.25Vを超えると、過剰電圧になるだけでなく、特に過酸化水素を含む水が海水である場合に電気化学的作用(電気分解)により塩素イオンが発生し、海水中のブロムイオンと反応して、発ガン性の高いトリハロメタンやハロゲン化フェノールなどの有害物質が生成することがある。
In the method of the present invention, the DC voltage applied between both the anode and the cathode may be appropriately set depending on the type and conditions of water containing hydrogen peroxide, and is usually preferably 0.75 to 1.25V. 1.00 to 1.25V is more preferable.
When the DC voltage is less than 0.75 V, the decomposition effect of hydrogen peroxide of the present invention may not be sufficiently obtained. On the other hand, when the DC voltage exceeds 1.25 V, not only is the excess voltage generated, but particularly when water containing hydrogen peroxide is seawater, chlorine ions are generated by electrochemical action (electrolysis), and the seawater May react with bromine ions to produce harmful substances such as trihalomethanes and halogenated phenols that are highly carcinogenic.

また、本発明の方法は、公知の過酸化水素の分解方法、例えば、還元剤を用いる方法、酵素触媒を用いる方法、活性炭を用いる方法、電気分解による方法、固体の金属または貴金属触媒(固体触媒)を用いる方法などと適宜組み合わせて実施することもできる。   In addition, the method of the present invention is a known decomposition method of hydrogen peroxide, such as a method using a reducing agent, a method using an enzyme catalyst, a method using activated carbon, a method using electrolysis, a solid metal or noble metal catalyst (solid catalyst). ) Can be used in appropriate combination with the method using the method.

本発明の方法を船舶バラスト水中の過酸化水素の分解促進に適用する場合について説明するが、本発明はこれに限定されるものではない。
図3は、本発明の過酸化水素の分解促進方法を船舶バラスト水に適用する場合の模式図であり、外枠は船体を示し、それぞれ図番1はバラストタンク、2はフィルタ(本発明の金属構造物)、3は中和剤タンク、4はバラストポンプ、9は配管、矢符は船舶バラスト水の流れを示す。また図4は、図3のフィルタ2の部分拡大図であり、それぞれ図番5aはパラジウム塗装フィルタ、5bはステンレスフィルタ、7は直流電源、9は配管、矢符は船舶バラスト水の流れを示す。図4に示すように、パラジウム塗装フィルタ5aおよびステンレスフィルタ5bの電気導電性の部分がそれぞれ陽極および陰極の電極を兼ねている。
The case where the method of the present invention is applied to promote the decomposition of hydrogen peroxide in ship ballast water will be described, but the present invention is not limited to this.
FIG. 3 is a schematic diagram when the method for promoting the decomposition of hydrogen peroxide according to the present invention is applied to ship ballast water. The outer frame shows a hull, and number 1 is a ballast tank, and 2 is a filter (of the present invention). (Metal structure) 3 is a neutralizer tank, 4 is a ballast pump, 9 is piping, and arrows indicate the flow of ship ballast water. FIG. 4 is a partially enlarged view of the filter 2 of FIG. 3, in which the number 5a is a palladium-coated filter, 5b is a stainless steel filter, 7 is a DC power supply, 9 is piping, and arrows indicate the flow of ship ballast water. . As shown in FIG. 4, the electrically conductive portions of the palladium-coated filter 5a and the stainless steel filter 5b also function as anode and cathode electrodes, respectively.

バラストタンク1内の過酸化水素を含む船舶バラスト水は、送液用のバラストポンプ4により配管9を経て船外の海に排出される。その間、フィルタ2において本発明の方法により船舶バラスト水内の過酸化水素の分解が促進され、中和剤タンク3からの亜硫酸ナトリウムなどの中和剤の添加により補助的に船舶バラスト水内の過酸化水素の分解が促進される。
このように過酸化水素を用いて処理された船舶バラスト水中の過酸化水素の分解促進処理は、本発明の方法の好ましい一形態である。
Ship ballast water containing hydrogen peroxide in the ballast tank 1 is discharged to the sea outside the ship through a pipe 9 by a ballast pump 4 for liquid feeding. Meanwhile, the decomposition of hydrogen peroxide in the ship ballast water is promoted in the filter 2 by the method of the present invention, and the excess in the ship ballast water is supplemented by the addition of a neutralizing agent such as sodium sulfite from the neutralizer tank 3. Hydrogen oxide decomposition is promoted.
Thus, the decomposition promotion treatment of hydrogen peroxide in ship ballast water treated with hydrogen peroxide is a preferred embodiment of the method of the present invention.

本発明を試験例によりさらに具体的に説明するが、本発明はこれらの試験例により限定されるものではない。   The present invention will be described more specifically with test examples, but the present invention is not limited to these test examples.

(フィルタAの作製)
図1に示すように、ステンレス鋼(SUS316)製の基材上に硝酸パラジウム粉末が溶射されたフィルタ(パラジウム塗装フィルタ)5a(直径100mm、厚さ2mm、100μmメッシュ、ニチダイフィルタ株式会社製)と、ステンレス鋼(SUS316)製のフィルタ(ステンレスフィルタ)5b(直径100mm、厚さ2mm、100μmメッシュ)との間にゴム状(材質:ニトリルゴム)の輪6(内径75mm、外径100mm、厚さ3mm)を挟み込むように接着剤で貼り付けてフィルタAを得た。
(Preparation of filter A)
As shown in FIG. 1, a filter (palladium-coated filter) 5a (diameter 100 mm, thickness 2 mm, 100 μm mesh, manufactured by Nichidai Filter Co., Ltd.) in which palladium nitrate powder is sprayed on a stainless steel (SUS316) base material; A rubber-like (material: nitrile rubber) ring 6 (inner diameter: 75 mm, outer diameter: 100 mm, thickness) between stainless steel (SUS316) filter (stainless steel filter) 5b (diameter: 100 mm, thickness: 2 mm, 100 μm mesh) 3 mm) was attached with an adhesive so that a filter A was obtained.

(フィルタBの作製)
フィルタ5aの代わりにフィルタ5bを用いること以外は、フィルタAと同様にして、2枚のステンレス鋼製のフィルタ5bの間にゴム状の輪6を挟み込むように接着剤で貼り付けてフィルタBを得た。
(Preparation of filter B)
Except for using the filter 5b instead of the filter 5a, like the filter A, the filter B is affixed with an adhesive so that the rubber ring 6 is sandwiched between the two stainless steel filters 5b. Obtained.

(試験例1:過酸化水素の分解促進効果確認試験)
図2に示すように、容量1リットルのビーカー9に、和歌山県某所で採取した海水1リットルを入れ、過酸化水素濃度が22.5mg/リットルになるように過酸化水素系製剤(PERACLEAN(登録商標)Ocean、Evonik Degussa社製)を添加して試験液を調製し、ゴム状の輪6を挟持するフィルタ5aとフィルタ5bに直流電源7(株式会社高砂製作所製、型式:LX−035−1A)を接続したフィルタAを浸水させた。また、フィルタAに接触しないように、参照電極として白金電極(図示せず)を試験液に浸水させた。
次いで、攪拌子(外径7〜8mm、長さ25mm)およびマグネチックスターラー8(株式会社三商(SANSYO)製、型式:SR−100 60Hz)を用いて、回転数450rpmで試験液を撹拌しながら、直流電源(株式会社高砂製作所製、型式:LX035−1A)を用いて、フィルタ5aとフィルタ5bとの間に0.5Vの電圧を印加して、印加直後から10分毎に30分後まで、試験水中の過酸化水素の分解率(%)を測定した。各電極にテスター(三和電気計器株式会社製、型式:153−BX)を接続して、印加電圧をモニターした。
試験水中の過酸化水素の濃度測定に関しては、特許第3997265号公報に記載されている過酸化水素濃度の測定方法に準拠して行い、予め測定しておいた初期濃度との差異から過酸化水素の分解率(%)を算出した。
得られた結果を表1に示す。
(Test Example 1: Hydrogen peroxide decomposition promoting effect confirmation test)
As shown in FIG. 2, a 1-liter beaker 9 is charged with 1 liter of seawater collected at a certain place in Wakayama Prefecture, and a hydrogen peroxide preparation (PERRACEAN (registered) is registered so that the hydrogen peroxide concentration is 22.5 mg / liter. (Trademark) Ocean, manufactured by Evonik Degussa) to prepare a test solution, and a DC power source 7 (manufactured by Takasago Manufacturing Co., Ltd., model: LX-035-1A) is added to the filter 5a and the filter 5b sandwiching the rubber ring 6 ) Was connected to the filter A. Further, a platinum electrode (not shown) as a reference electrode was immersed in the test solution so as not to contact the filter A.
Next, the test liquid was stirred at a rotation speed of 450 rpm using a stirrer (outer diameter 7 to 8 mm, length 25 mm) and a magnetic stirrer 8 (manufactured by Sansho Corporation, model: SR-100 60 Hz). However, using a DC power source (manufactured by Takasago Manufacturing Co., Ltd., model: LX035-1A), a voltage of 0.5 V was applied between the filter 5a and the filter 5b, and every 10 minutes immediately after the application, 30 minutes later Until then, the decomposition rate (%) of hydrogen peroxide in the test water was measured. A tester (manufactured by Sanwa Denki Keiki Co., Ltd., model: 153-BX) was connected to each electrode, and the applied voltage was monitored.
The hydrogen peroxide concentration in the test water was measured according to the method for measuring the hydrogen peroxide concentration described in Japanese Patent No. 3997265, and the hydrogen peroxide concentration was determined from the difference from the initial concentration measured in advance. The decomposition rate (%) of was calculated.
The obtained results are shown in Table 1.

(試験例2〜4)
印加電圧をそれぞれ0.75V、1.0Vおよび1.25Vとすること以外は試験例1と同様にして、経時的に試験水中の過酸化水素の分解率(%)を測定した。
得られた結果を表1に示す。
(Test Examples 2 to 4)
The decomposition rate (%) of hydrogen peroxide in the test water was measured over time in the same manner as in Test Example 1 except that the applied voltages were 0.75 V, 1.0 V, and 1.25 V, respectively.
The obtained results are shown in Table 1.

(試験例5:比較)
電圧を印加しないこと以外は試験例1と同様にして、経時的に試験水中の過酸化水素の分解率(%)を測定した。
得られた結果を表1に示す。
(Test Example 5: Comparison)
The decomposition rate (%) of hydrogen peroxide in the test water was measured over time in the same manner as in Test Example 1 except that no voltage was applied.
The obtained results are shown in Table 1.

(試験例6:比較)
フィルタAの代わりにフィルタBを用い、印加電圧を1.0Vとすること以外は試験例1と同様にして、電圧印加直後と印加直後から30分後における試験水中の過酸化水素の分解率(%)を測定した。
得られた結果を表1に示す。
(Test Example 6: Comparison)
In the same manner as in Test Example 1 except that the filter B is used instead of the filter A, and the applied voltage is 1.0 V, the decomposition rate of hydrogen peroxide in the test water immediately after the voltage application and 30 minutes after the voltage application ( %).
The obtained results are shown in Table 1.

(試験例7:ブランク)
フィルタを用いず、電圧を印加しないこと以外は試験例1と同様にして、電圧印加直後と印加直後から30分後における試験水中の過酸化水素の分解率(%)を測定した。
得られた結果を表1に示す。
(Test Example 7: Blank)
The decomposition rate (%) of hydrogen peroxide in the test water was measured immediately after the voltage application and 30 minutes after the voltage application in the same manner as in Test Example 1 except that no filter was used and no voltage was applied.
The obtained results are shown in Table 1.

Figure 2013000646
Figure 2013000646

表1の結果から、硝酸パラジウム粉末が溶射されたフィルタの浸漬と電圧の印加とを組み合わせることにより、過酸化水素の分解が促進されることがわかる。具体的には、最低電圧0.50Vであっても30分間で65%以上、0.75Vでは70%以上、1.25Vでは85%以上の過酸化水素の分解が促進されることがわかる。   From the results in Table 1, it can be seen that the decomposition of hydrogen peroxide is accelerated by combining the immersion of the filter sprayed with palladium nitrate powder and the application of voltage. Specifically, it can be seen that even at a minimum voltage of 0.50 V, decomposition of hydrogen peroxide is accelerated by 65% or more in 30 minutes, 70% or more at 0.75V, and 85% or more at 1.25V.

1 バラストタンク
2 フィルタ
3 中和剤タンク
4 バラストポンプ
5a パラジウム塗装フィルタ
5b ステンレスフィルタ
6 ゴム状の輪
7 直流電源
8 マグネチックスターラー
9 配管
矢符 船舶バラスト水の流れ
DESCRIPTION OF SYMBOLS 1 Ballast tank 2 Filter 3 Neutralizing agent tank 4 Ballast pump 5a Palladium painting filter 5b Stainless steel filter 6 Rubber ring 7 DC power supply 8 Magnetic stirrer 9 Piping Arrow Flow of ship ballast water

Claims (11)

過酸化水素を含む水に、表面に硝酸パラジウム粉末が溶射された金属構造物を接触させ、かつ前記接触と同時に、前記過酸化水素を含む水に接触可能な任意の位置に設けた陽極および陰極の間に直流電圧を印加することにより、前記水中の過酸化水素の分解を促進することを特徴とする過酸化水素の分解促進方法。   An anode and a cathode provided in contact with a metal structure having a surface sprayed with palladium nitrate powder in water containing hydrogen peroxide, and at the same time as the contact, the metal structure having contact with the water containing hydrogen peroxide. A method for accelerating the decomposition of hydrogen peroxide by applying a DC voltage between the two to promote the decomposition of hydrogen peroxide in the water. 前記金属構造物が、重量比100:1〜10の粒子径10〜40μmのニッケル粉末と粒子径10〜40μmの硝酸パラジウム粉末との混合材料をプラズマ溶射されてなる請求項1に記載の過酸化水素の分解促進方法。   2. The peroxidation according to claim 1, wherein the metal structure is obtained by plasma spraying a mixed material of nickel powder having a particle size of 10 to 40 μm in a weight ratio of 100: 1 to 10 and palladium nitrate powder having a particle size of 10 to 40 μm. Hydrogen decomposition promotion method. 前記金属構造物が、鉄、ニッケル、銅およびこれらの合金から選択される基材の表面に前記硝酸パラジウム粉末が溶射されてなる請求項1または2に記載の過酸化水素の分解促進方法。   The method for promoting the decomposition of hydrogen peroxide according to claim 1 or 2, wherein the metal structure is obtained by spraying the palladium nitrate powder on the surface of a substrate selected from iron, nickel, copper and alloys thereof. 前記合金が、ステンレス鋼である請求項3に記載の過酸化水素の分解促進方法。   The method for promoting decomposition of hydrogen peroxide according to claim 3, wherein the alloy is stainless steel. 前記金属構造物が、JIS Z8801における10〜100メッシュの多孔体である請求項1〜4のいずれか1つに記載の過酸化水素の分解促進方法。   The method for promoting decomposition of hydrogen peroxide according to any one of claims 1 to 4, wherein the metal structure is a porous body of 10 to 100 mesh according to JIS Z8801. 前記金属構造物が、複数である請求項1〜5のいずれか1つに記載の過酸化水素の分解促進方法。   The method for promoting decomposition of hydrogen peroxide according to any one of claims 1 to 5, wherein the number of the metal structures is plural. 前記直流電圧が、0.75〜1.25Vである請求項1〜6のいずれか1つに記載の過酸化水素の分解促進方法。   The method for promoting the decomposition of hydrogen peroxide according to any one of claims 1 to 6, wherein the DC voltage is 0.75 to 1.25V. 前記金属構造物が、前記過酸化水素を含む水の流通経路に設けられた、電気導電性の複数のフィルタであり、前記フィルタの2つが陽極および陰極を兼ねる請求項1〜7のいずれか1つに記載の過酸化水素の分解促進方法。   The metal structure is a plurality of electrically conductive filters provided in a flow path of the water containing the hydrogen peroxide, and two of the filters serve as an anode and a cathode. The method for promoting the decomposition of hydrogen peroxide as described in 1. 前記フィルタが、JIS Z8801における10〜100メッシュの複数枚の金網を、天然または合成の樹脂による枠を介して挟持したものである請求項8に記載の過酸化水素の分解促進方法。   The method for promoting the decomposition of hydrogen peroxide according to claim 8, wherein the filter is obtained by sandwiching a plurality of 10 to 100 mesh metal meshes according to JIS Z8801 through a frame made of natural or synthetic resin. 前記フィルタが、100〜5000リットル/時間のろ過能力を有する請求項8または9に記載の過酸化水素の分解促進方法。   The method for promoting the decomposition of hydrogen peroxide according to claim 8 or 9, wherein the filter has a filtration capacity of 100 to 5000 liters / hour. 前記過酸化水素を含む水が、過酸化水素を用いて処理された船舶バラスト水である請求項1〜10のいずれか1つに記載の過酸化水素の分解促進方法。   The method for promoting decomposition of hydrogen peroxide according to any one of claims 1 to 10, wherein the water containing hydrogen peroxide is marine ballast water treated with hydrogen peroxide.
JP2011133372A 2011-06-15 2011-06-15 Method for accelerating decomposition of hydrogen peroxide Withdrawn JP2013000646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133372A JP2013000646A (en) 2011-06-15 2011-06-15 Method for accelerating decomposition of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133372A JP2013000646A (en) 2011-06-15 2011-06-15 Method for accelerating decomposition of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JP2013000646A true JP2013000646A (en) 2013-01-07

Family

ID=47669800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133372A Withdrawn JP2013000646A (en) 2011-06-15 2011-06-15 Method for accelerating decomposition of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP2013000646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383205A (en) * 2018-01-30 2018-08-10 大连民族大学 A kind of plasma-activated water preparation apparatus
WO2020013135A1 (en) 2018-07-10 2020-01-16 日本製鉄株式会社 Method for producing carbonate esters, and catalytic structure for producing carbonate esters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383205A (en) * 2018-01-30 2018-08-10 大连民族大学 A kind of plasma-activated water preparation apparatus
WO2020013135A1 (en) 2018-07-10 2020-01-16 日本製鉄株式会社 Method for producing carbonate esters, and catalytic structure for producing carbonate esters
KR20210030376A (en) 2018-07-10 2021-03-17 닛폰세이테츠 가부시키가이샤 Method for producing carbonic acid ester and catalyst structure for producing carbonic acid ester

Similar Documents

Publication Publication Date Title
Särkkä et al. Recent developments of electro-oxidation in water treatment—A review
KR101450993B1 (en) Method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
KR101812008B1 (en) An electrolyzer having a porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
KR101450992B1 (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP4116949B2 (en) Electrochemical sterilization and sterilization method
JP3913923B2 (en) Water treatment method and water treatment apparatus
KR101220891B1 (en) A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode
JP2002317287A (en) Electrolytic cell for preparation of hydrogen peroxide and method for producing hydrogen peroxide
Yaqub et al. Applications of sonoelectrochemistry in wastewater treatment system
JP2011246799A5 (en)
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
WO2009129670A1 (en) A micro-current electrolysis sterilization algaecide device and method
JP6439908B2 (en) Microbial killing device in ballast water
KR20120015298A (en) Electrolytic apparatus for treating ballast water and treatment system using same
AU2009298257A1 (en) Device and process for removing microbial impurities in water based liquids as well as the use of the device
JP2004143519A (en) Water treatment method and water treatment device
JP2013525091A (en) Ballast water treatment system using high efficiency electrolyzer
CN101746857A (en) Method and equipment of electrochemical disinfection for water
JP2013000646A (en) Method for accelerating decomposition of hydrogen peroxide
KR101148145B1 (en) Device for sterilization and removal of microorganism underwater
JP2013193000A (en) Ballast water treating system and ballast water treating method
JP2003190954A (en) Method for sterilizing seawater and apparatus therefor
JP2004313780A (en) Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash
Qing et al. Disinfection of irrigation water using titanium electrodes
Kropp et al. A device that converts aqueous ammonia into nitrogen gas

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902