JP2013000619A - Method for producing porous hollow fiber membrane - Google Patents

Method for producing porous hollow fiber membrane Download PDF

Info

Publication number
JP2013000619A
JP2013000619A JP2011131361A JP2011131361A JP2013000619A JP 2013000619 A JP2013000619 A JP 2013000619A JP 2011131361 A JP2011131361 A JP 2011131361A JP 2011131361 A JP2011131361 A JP 2011131361A JP 2013000619 A JP2013000619 A JP 2013000619A
Authority
JP
Japan
Prior art keywords
stock solution
film
porous
forming stock
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011131361A
Other languages
Japanese (ja)
Other versions
JP5790180B2 (en
Inventor
Katsuhiko Shinada
勝彦 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011131361A priority Critical patent/JP5790180B2/en
Publication of JP2013000619A publication Critical patent/JP2013000619A/en
Application granted granted Critical
Publication of JP5790180B2 publication Critical patent/JP5790180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous hollow fiber membrane, by which a film production stock solution ejected from a spinning nozzle is prevented from attaching onto the outside of a reinforcement support in a lump shape and a porous hollow fiber membrane of high quality can be produced with excellent process stability when the porous hollow fiber membrane in which a porous membrane layer is formed outside the hollow reinforcement support.SOLUTION: The method for producing the porous hollow fiber membrane has a spinning coagulation process for imparting the film production stock solution outside the reinforcement support and then coagulating the film production stock solution by coagulation liquid. When spinning starts, a set value Wa of supply amount of the film production stock solution supplied to stock solution channels 15, 16 from the spinning nozzle 1 is made larger than a set value Wb in a stationary state and then supply amount of the film production stock solution is used as the set value Wb.

Description

本発明は、多孔質中空糸膜の製造方法に関する。   The present invention relates to a method for producing a porous hollow fiber membrane.

環境汚染に対する関心の高まりや、規制の強化により、分離性、コンパクト性などに優れた濾過膜を用いた水処理が注目を集めている。水処理における濾過膜としては、中空状の多孔質膜層を有する中空糸膜が好適に使用されている(例えば、特許文献1)。このような中空糸膜の製造には、例えば、図12〜14に例示した紡糸ノズル101が用いられる。   Due to increasing interest in environmental pollution and stricter regulations, water treatment using filtration membranes with excellent separability and compactness has attracted attention. As a filtration membrane in water treatment, a hollow fiber membrane having a hollow porous membrane layer is suitably used (for example, Patent Document 1). For the production of such a hollow fiber membrane, for example, a spinning nozzle 101 illustrated in FIGS. 12 to 14 is used.

紡糸ノズル101は、第1のノズル111と第2のノズル112とを有している。また、紡糸ノズル101は、内部に、中空状の補強支持体(以下、単に「補強支持体」と記すこともある。)を通過させる支持体通路113と、多孔質膜層を形成する製膜原液を流通させる原液流路114とを有している。原液流路114は、製膜原液が導入される導入部115と、製膜原液を断面円環状として貯液する貯液部116と、製膜原液を円筒状に賦形する賦形部117とを有している。紡糸ノズル101は、中空状の補強支持体が支持体供給口113aから供給されて支持体導出口113bから導出され、製膜原液が原液供給口114aから供給されて吐出口114bから前記補強支持体の周りに円筒状に吐出されるようになっている。
紡糸ノズル101による多孔質中空糸膜の紡糸では、紡糸ノズル101の吐出口114bから吐出した製膜原液が、支持体導出口113bから同時に導出される中空状の補強支持体の外側に付与される。その後、凝固浴で製膜原液が凝固されて多孔質膜層が形成され、洗浄、乾燥などの工程を経て多孔質中空糸膜が製造される。
The spinning nozzle 101 has a first nozzle 111 and a second nozzle 112. In addition, the spinning nozzle 101 has a support passage 113 through which a hollow reinforcing support (hereinafter sometimes simply referred to as “reinforcing support”) passes, and film formation for forming a porous membrane layer. And a stock channel 114 for circulating the stock solution. The stock solution flow path 114 includes an introduction unit 115 into which a film-forming stock solution is introduced, a liquid storage unit 116 that stores the film-forming stock solution in an annular cross-section, and a shaping unit 117 that shapes the film-forming stock solution in a cylindrical shape. have. In the spinning nozzle 101, a hollow reinforcing support body is supplied from the support body supply port 113a and led out from the support body outlet port 113b, and a film-forming stock solution is supplied from the stock solution supply port 114a and the reinforcing support body from the discharge port 114b. It is designed to be discharged in a cylindrical shape.
In the spinning of the porous hollow fiber membrane by the spinning nozzle 101, the raw film forming solution discharged from the discharge port 114b of the spinning nozzle 101 is applied to the outside of the hollow reinforcing support body that is simultaneously led out from the support body outlet port 113b. . Thereafter, the membrane-forming stock solution is coagulated in a coagulation bath to form a porous membrane layer, and a porous hollow fiber membrane is produced through steps such as washing and drying.

特開2009−50766号公報JP 2009-50766 A

しかし、紡糸ノズル101を使用する多孔質中空糸膜の製造では、紡糸ノズルから吐出された製膜原液が補強支持体の外側にコブ状に付与されることで、工程安定性の低下および品質の低下を招くことがある。   However, in the production of the porous hollow fiber membrane using the spinning nozzle 101, the membrane forming stock solution discharged from the spinning nozzle is applied in the form of a hump on the outside of the reinforcing support, thereby reducing the process stability and quality. May cause a drop.

本発明は、中空状の補強支持体の外側に多孔質膜層が形成された多孔質中空糸膜を製造する際に、紡糸ノズルから吐出された製膜原液が補強支持体の外側にコブ状に付与されることを抑制でき、優れた工程安定性で高品質な多孔質中空糸膜を製造できる多孔質中空糸膜の製造方法の提供を目的とする。   When producing a porous hollow fiber membrane in which a porous membrane layer is formed on the outer side of a hollow reinforcing support, the present invention provides a membrane-forming stock solution discharged from a spinning nozzle on the outer side of the reinforcing support. It is an object of the present invention to provide a method for producing a porous hollow fiber membrane that can suppress the impartation of the porous hollow fiber membrane and can produce a high-quality porous hollow fiber membrane with excellent process stability.

本発明の多孔質中空糸膜の製造方法は、中空状の補強支持体の外側に多孔質膜層が形成された多孔質中空糸膜の製造方法であって、
紡糸ノズルによる紡糸によって、前記多孔質膜層を形成する製膜原液を前記補強支持体の外側に付与し、該製膜原液を凝固液で凝固させる紡糸凝固工程を有し、
紡糸開始時に前記紡糸ノズルに供給する前記製膜原液の供給量の設定値Waを、定常状態における設定値Wbよりも多くして紡糸を開始した後、前記製膜原液の供給量を前記設定値Wbにする方法である。
また、本発明の多孔質中空糸膜の製造方法は、前記設定値Waと設定値Wbの比Wa/Wbを1.2〜3.0とすることが好ましい。
The method for producing a porous hollow fiber membrane of the present invention is a method for producing a porous hollow fiber membrane in which a porous membrane layer is formed on the outside of a hollow reinforcing support,
A spinning coagulation step in which a film-forming stock solution for forming the porous membrane layer is applied to the outside of the reinforcing support by spinning with a spinning nozzle, and the film-forming stock solution is coagulated with a coagulating liquid;
After starting the spinning with the set value Wa of the supply amount of the film-forming stock solution supplied to the spinning nozzle at the start of spinning being larger than the set value Wb in the steady state, the supply amount of the film-forming stock solution is set to the set value. This is a method of making Wb.
In the method for producing a porous hollow fiber membrane of the present invention, the ratio Wa / Wb between the set value Wa and the set value Wb is preferably 1.2 to 3.0.

本発明の多孔質中空糸膜の製造方法によれば、中空状の補強支持体の外側に多孔質膜層が形成された多孔質中空糸膜を製造する際に、紡糸ノズルから吐出された製膜原液が補強支持体の外側にコブ状に付与されることを抑制でき、優れた工程安定性で高品質な多孔質中空糸膜を製造できる。   According to the method for producing a porous hollow fiber membrane of the present invention, when producing a porous hollow fiber membrane in which a porous membrane layer is formed on the outside of a hollow reinforcing support, a product discharged from a spinning nozzle is produced. It is possible to suppress the membrane stock solution from being applied to the outside of the reinforcing support in the form of a bump, and it is possible to produce a high-quality porous hollow fiber membrane with excellent process stability.

紡糸ノズルの一例を示した平面図である。It is the top view which showed an example of the spinning nozzle. 図1の紡糸ノズルを直線I−I’で切断したときの断面図である。It is sectional drawing when the spinning nozzle of FIG. 1 is cut | disconnected by the straight line I-I '. 図2の紡糸ノズルを直線II−II’で切断したときの断面図である。It is sectional drawing when the spinning nozzle of FIG. 2 is cut | disconnected by the straight line II-II '. 紡糸初期の不具合を説明する断面図である。It is sectional drawing explaining the malfunction at the initial stage of spinning. 紡糸ノズルの他の例を示した断面図である。It is sectional drawing which showed the other example of the spinning nozzle. 紡糸ノズルの他の例を示した断面図である。It is sectional drawing which showed the other example of the spinning nozzle. 紡糸ノズルの他の例を示した断面図である。It is sectional drawing which showed the other example of the spinning nozzle. 支持体製造装置の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the support body manufacturing apparatus. 中空状編紐の構造を示した図である。It is the figure which showed the structure of the hollow knitted string. 中空状編紐の網目を示した拡大図である。It is the enlarged view which showed the mesh of the hollow knitted string. 多孔質中空糸膜製造装置の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the porous hollow fiber membrane manufacturing apparatus. 紡糸ノズルの一例を示した平面図である。It is the top view which showed an example of the spinning nozzle. 図12の紡糸ノズルを直線III−III’で切断したときの断面図である。It is sectional drawing when the spinning nozzle of FIG. 12 is cut | disconnected by the straight line III-III '. 図13の紡糸ノズルを直線IV−IV’で切断したときの断面図である。It is sectional drawing when the spinning nozzle of FIG. 13 is cut | disconnected by straight line IV-IV '.

本発明の多孔質中空糸膜の製造方法は、後述する紡糸ノズルを使用して、中空状の補強支持体の外側に多孔質膜層が形成された多孔質中空糸膜を製造する方法である。
本発明の多孔質中空糸膜の製造方法により製造する多孔質中空糸膜は、補強支持体の外側に単層の多孔質膜層が形成された多孔質中空糸膜であってもよく、補強支持体の外側に複数の多孔質膜層が積層された多孔質中空糸膜であってもよい。
The method for producing a porous hollow fiber membrane of the present invention is a method for producing a porous hollow fiber membrane in which a porous membrane layer is formed on the outside of a hollow reinforcing support using a spinning nozzle described later. .
The porous hollow fiber membrane produced by the method for producing a porous hollow fiber membrane of the present invention may be a porous hollow fiber membrane in which a single porous membrane layer is formed on the outside of a reinforcing support. It may be a porous hollow fiber membrane in which a plurality of porous membrane layers are laminated outside the support.

補強支持体としては、例えば、各種の繊維で製紐された中空状の編紐、組紐などが挙げられる。また、各種素材を単独で使用したものであってもよく、組み合わせたものであってもよい。中空状の編紐や組紐に使用される繊維としては、合成繊維、半合成繊維、再生繊維、天然繊維などが挙げられる。繊維の形態としては、モノフィラメント、マルチフィラメント、紡績糸のいずれであってもよい。   Examples of the reinforcing support include hollow knitted cords and braids made of various fibers. Moreover, what used various raw materials independently may be used, and what combined may be sufficient. Examples of the fiber used for the hollow knitted string and braided string include synthetic fiber, semi-synthetic fiber, regenerated fiber, and natural fiber. The form of the fiber may be any of monofilament, multifilament, and spun yarn.

多孔質膜層の形成には製膜原液を使用する。製膜原液は、膜形成性樹脂、及び相分離の制御を目的とした開孔剤を両者の良溶媒となる有機溶媒に溶解した溶液である。
膜形成性樹脂としては、多孔質中空糸膜の形成に使用される通常の樹脂が使用でき、例えば、ポリスルホン樹脂、ポリエーテルスルホン樹脂、スルホン化ポリスルホン樹脂、ポリフッ化ビニリデン樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂などが挙げられる。これらは必要に応じて適宜選択して使用することができ、中でも耐薬品性に優れることから、ポリフッ化ビニリデン樹脂が好ましい。
開孔剤としては、例えば、ポリエチレングリコールによって代表されるモノオール系、ジオール系、トリオール系、ポリビニルピロリドンなどの親水性高分子樹脂を使用することができる。これらは必要に応じて適宜選択して使用することができ、中でも増粘効果に優れることから、ポリビニルピロリドンが好ましい。
有機溶媒としては、上述の膜形成性樹脂及び開孔剤をいずれも溶解できるものであれば特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミドなどを用いることができる。
なお、ここで用いる製膜原液には、相分離の制御を阻害しない範囲で、任意成分として開孔剤以外のその他の添加剤を用いることもできる。
A membrane-forming stock solution is used to form the porous membrane layer. The film-forming stock solution is a solution in which a film-forming resin and a pore-opening agent for the purpose of controlling phase separation are dissolved in an organic solvent serving as a good solvent for both.
As the film-forming resin, ordinary resins used for forming porous hollow fiber membranes can be used. For example, polysulfone resin, polyethersulfone resin, sulfonated polysulfone resin, polyvinylidene fluoride resin, polyacrylonitrile resin, polyimide Resin, polyamide imide resin, polyester imide resin, etc. are mentioned. These can be appropriately selected and used as necessary, and among them, polyvinylidene fluoride resin is preferable because of excellent chemical resistance.
As the pore-opening agent, for example, a hydrophilic polymer resin such as monool-based, diol-based, triol-based, or polyvinylpyrrolidone represented by polyethylene glycol can be used. These can be appropriately selected and used as necessary. Among them, polyvinylpyrrolidone is preferable because of its excellent thickening effect.
The organic solvent is not particularly limited as long as it can dissolve both the film-forming resin and the pore-opening agent, and for example, dimethyl sulfoxide, dimethylacetamide, dimethylformamide and the like can be used.
It should be noted that other additives other than the pore-opening agent can be used as an optional component in the film-forming stock solution used here as long as the control of phase separation is not hindered.

以下、本発明の多孔質中空糸膜の製造方法に使用する紡糸ノズルの一例を示して説明する。
図1〜3は、本発明の多孔質中空糸膜の製造方法に使用する紡糸ノズルの一例である紡糸ノズル1を示した概略図である。紡糸ノズル1は、中空状の補強支持体の外側に2層の多孔質膜層が積層された多孔質中空糸膜を製造する紡糸ノズルである。
以下、紡糸ノズル1を用いて製造する多孔質中空糸膜における内側の多孔質膜層を第1の多孔質膜層、外側の多孔質膜層を第2の多孔質膜層という。また、第1の多孔質膜層を形成する製膜原液を第1の製膜原液、第2の多孔質膜層を形成する製膜原液を第2の製膜原液という。
Hereinafter, an example of a spinning nozzle used in the method for producing a porous hollow fiber membrane of the present invention will be described.
1 to 3 are schematic views showing a spinning nozzle 1 which is an example of a spinning nozzle used in the method for producing a porous hollow fiber membrane of the present invention. The spinning nozzle 1 is a spinning nozzle for producing a porous hollow fiber membrane in which two porous membrane layers are laminated on the outside of a hollow reinforcing support.
Hereinafter, the inner porous membrane layer in the porous hollow fiber membrane manufactured using the spinning nozzle 1 is referred to as a first porous membrane layer, and the outer porous membrane layer is referred to as a second porous membrane layer. Further, the film-forming stock solution for forming the first porous membrane layer is referred to as a first film-forming stock solution, and the film-forming stock solution for forming the second porous membrane layer is referred to as a second film-forming stock solution.

紡糸ノズル1は、図1〜3に示すように、第1のノズル11と第2のノズル12と第3のノズル13を有している。紡糸ノズル1の内部には、図2に示すように、中空状の補強支持体を通過させる支持体通路14と、第1の製膜原液を流通させる原液流路15と、第2の製膜原液を流通させる原液流路16が形成されている。
原液流路15は、図2及び図3に示すように、第1のノズル11と第2のノズル12の部分に、第1の製膜原液が導入される導入部17と、支持体通路14の外周で第1の製膜原液を断面円環状にして貯液する第1の貯液部18と、支持体通路14の外周で第1の製膜原液を円筒状に賦形する第1の賦形部19とを有している。また、原液流路16は、第2の製膜原液が導入される導入部20と、支持体通路14の外周で第2の製膜原液を断面円環状にして貯液する第2の貯液部21と、支持体通路14の外周で第2の製膜原液を円筒状に賦形する第2の賦形部22とを有している。また、この例では、第2の賦形部22と第1の賦形部19により複合部23が形成されている。つまり、第2の賦形部22で第2の製膜原液を円筒状に賦形すると同時に、その第2の製膜原液を、第1の賦形部19を流通してきた第1の製膜原液の外側に積層複合するようになっている。支持体通路14、第1の貯液部18、第1の賦形部19、第2の貯液部21、第2の賦形部22及び複合部23は、それぞれ中心軸が一致している。
また、紡糸ノズル1は、第1の貯液部18の内部と、第2の貯液部21の内部のそれぞれに、第1の製膜原液と第2の製膜原液が各々、側面から通過する多孔エレメント31、32が設けられている。
The spinning nozzle 1 has a first nozzle 11, a second nozzle 12, and a third nozzle 13 as shown in FIGS. In the spinning nozzle 1, as shown in FIG. 2, a support passage 14 through which a hollow reinforcing support is passed, a stock flow path 15 through which the first film-forming stock solution is circulated, and a second film-formation A stock solution flow path 16 through which the stock solution is circulated is formed.
As shown in FIG. 2 and FIG. 3, the stock solution flow path 15 includes an introduction portion 17 into which the first film-forming stock solution is introduced into the first nozzle 11 and the second nozzle 12, and a support passage 14. A first liquid storage unit 18 for storing the first film-forming stock solution in an annular cross-section at the outer periphery of the first and a first film-forming solution cylindrically shaped at the outer periphery of the support passage 14 And a shaping portion 19. The stock solution flow path 16 includes an introduction portion 20 into which the second film-forming stock solution is introduced, and a second storage solution that stores the second film-forming stock solution in a circular cross-section on the outer periphery of the support passage 14. Part 21 and a second shaping part 22 for shaping the second film-forming stock solution in a cylindrical shape on the outer periphery of the support passage 14. Further, in this example, a composite portion 23 is formed by the second shaping portion 22 and the first shaping portion 19. That is, the second film-forming stock solution is shaped into a cylindrical shape by the second shaping unit 22 and at the same time, the second film-forming stock solution has been circulated through the first shaping unit 19. It is designed to be laminated and compounded outside the stock solution. The center axis | shaft of the support body channel | path 14, the 1st liquid storage part 18, the 1st shaping part 19, the 2nd liquid storage part 21, the 2nd shaping part 22, and the composite part 23 each corresponds. .
Further, in the spinning nozzle 1, the first film-forming stock solution and the second film-forming stock solution respectively pass from the side into the inside of the first liquid storage unit 18 and the inside of the second liquid storage unit 21. Porous elements 31, 32 are provided.

第1のノズル11、第2のノズル12及び第3のノズル13の材質は、多孔質中空糸膜の紡糸ノズルとして通常使用されるものが使用でき、耐熱性、耐食性、強度などの点から、ステンレス鋼材(SUS)が好ましい。   As the material of the first nozzle 11, the second nozzle 12 and the third nozzle 13, those normally used as spinning nozzles for porous hollow fiber membranes can be used. From the viewpoint of heat resistance, corrosion resistance, strength, etc. Stainless steel (SUS) is preferred.

支持体通路14の断面形状は、円形状である。
支持体通路14の内径は、使用する中空状の補強支持体の外径に応じて適宜設定すればよい。
原液流路15の導入部17、及び原液流路16の導入部20の断面形状は、この例のように円形状が好ましい。ただし、導入部17と導入部20の断面形状は、円形状には限定されない。
導入部17と導入部20の直径は、特に限定されない。
The cross-sectional shape of the support passage 14 is circular.
What is necessary is just to set the internal diameter of the support body channel | path 14 suitably according to the outer diameter of the hollow-shaped reinforcement support body to be used.
The cross-sectional shape of the introduction part 17 of the stock solution channel 15 and the introduction part 20 of the stock solution channel 16 is preferably circular as in this example. However, the cross-sectional shape of the introduction part 17 and the introduction part 20 is not limited to a circular shape.
The diameters of the introduction part 17 and the introduction part 20 are not particularly limited.

第1の貯液部18は、導入部17を流通してきた第1の製膜原液を断面円環状にして貯液する部分である。
第1の貯液部18の断面形状は、図3に示すように円環状であり、第1の貯液部18の中心と支持体通路14の中心が一致している。第1の貯液部18においては、第1の製膜原液が導入部17側から二手に分岐して円弧状に流通し、導入部17と反対側の合流部分18aで合流するようになっている。
また、図2に示すように、第1の貯液部18における第1の賦形部19近傍には、スリット部18bを設けてもよい。特に、第1の製膜原液が後述する多孔エレメント31の外周面から内周面に向かって通過するだけでは、周方向の吐出均一性が所望のレベルとならない場合、スリット部18bで流動抵抗を付与することは、周方向における吐出の均一性向上の面から好ましい。
The first liquid storage unit 18 is a part that stores the first film-forming stock solution that has circulated through the introduction unit 17 in an annular cross-section.
The cross-sectional shape of the first liquid storage unit 18 is annular as shown in FIG. 3, and the center of the first liquid storage unit 18 and the center of the support passage 14 are coincident. In the first liquid storage unit 18, the first film-forming stock solution is bifurcated from the introduction unit 17 side and circulates in an arc shape, and merges at the junction 18 a on the side opposite to the introduction unit 17. Yes.
Further, as shown in FIG. 2, a slit portion 18 b may be provided in the vicinity of the first shaping portion 19 in the first liquid storage portion 18. In particular, when the first film-forming solution only passes from the outer peripheral surface of the porous element 31 described later toward the inner peripheral surface, the discharge uniformity in the circumferential direction does not reach a desired level, the flow resistance is reduced by the slit portion 18b. The imparting is preferable from the viewpoint of improving the uniformity of ejection in the circumferential direction.

第1の賦形部19は、第1の貯液部18内の第1の製膜原液を、支持体通路14を通過させる補強支持体と同心円状の円筒状に賦形する部分である。
第1の賦形部19の幅(内壁と外壁の距離)は、形成する第1の多孔質膜層の厚みに応じて適宜設定できる。
The first shaping part 19 is a part for shaping the first film-forming stock solution in the first liquid storage part 18 into a cylindrical shape concentric with the reinforcing support that allows the support passage 14 to pass therethrough.
The width (distance between the inner wall and the outer wall) of the first shaping portion 19 can be appropriately set according to the thickness of the first porous membrane layer to be formed.

第2の貯液部21は、導入部20を流通してきた第2の製膜原液を断面円環状にして貯液する部分である。
第2の貯液部21の断面形状は、第1の貯液部18と同様に円環状であり、第2の貯液部21の中心と支持体通路14の中心が一致している。第2の貯液部21においては、第2の製膜原液が導入部20の側から二手に分岐して円弧状に流通し、導入部20と反対側の合流部分21aで合流するようになっている。
また、図2に示すように、第2の貯液部21における第2の賦形部22近傍には、スリット部21bを設けてもよい。特に、第2の製膜原液が後述する多孔エレメント32の外側面から内側面に向かって通過するだけでは、周方向の吐出均一性が所望のレベルとならない場合、スリット部21bで流動抵抗を付与することは、周方向における吐出の均一性向上の面から好ましい。
The second liquid storage unit 21 is a part that stores the second film-forming stock solution that has circulated through the introduction unit 20 in an annular cross-section.
The cross-sectional shape of the second liquid storage unit 21 is an annular shape like the first liquid storage unit 18, and the center of the second liquid storage unit 21 and the center of the support passage 14 are aligned. In the second liquid storage part 21, the second film-forming stock solution is bifurcated from the introduction part 20 side and circulates in an arc shape, and joins at the joining part 21 a opposite to the introduction part 20. ing.
Further, as shown in FIG. 2, a slit portion 21 b may be provided in the vicinity of the second shaping portion 22 in the second liquid storage portion 21. In particular, when the second film-forming solution only passes from the outer surface to the inner surface of the porous element 32, which will be described later, when the circumferential discharge uniformity does not reach a desired level, the slit portion 21b provides flow resistance. It is preferable to improve the uniformity of discharge in the circumferential direction.

第2の賦形部22は、第2の貯液部21内の第2の製膜原液を、支持体通路14を通過させる補強支持体と同心円状の円筒状に賦形する部分である。また、この例では、第1の賦形部19と第2の賦形部22により複合部23が形成されている。つまり、第2の賦形部22において円筒状に賦形する第2の製膜原液は、同時に、第1の賦形部19を流通してきた第1の製膜原液の外側に同心円状に積層複合されるようになっている。複合部23において、各々の製膜原液をノズル内部で積層複合させることで、それらをノズル外部で積層複合させる場合に比べて、形成される各多孔質膜層の接合強度が向上する。また、ノズル構造の簡素化、加工簡易化の点でも有利である。また、各々の製膜原液を複合部23で積層複合させても、それら溶液における溶媒相互拡散による各多孔質膜層の構造への悪影響はほとんどない。
複合部23の幅(内壁と外壁の距離)は、形成する第2の多孔質膜層の厚みに応じて適宜設定できる。
The second shaping portion 22 is a portion that shapes the second film-forming stock solution in the second liquid storage portion 21 into a cylindrical shape concentric with the reinforcing support that allows the support passage 14 to pass therethrough. In this example, a composite portion 23 is formed by the first shaping portion 19 and the second shaping portion 22. That is, the second film-forming stock solution that is shaped cylindrically in the second shaping part 22 is simultaneously concentrically laminated on the outside of the first film-forming stock solution that has circulated through the first shaping part 19. It has come to be combined. In the composite part 23, each film-forming stock solution is laminated and combined inside the nozzle, so that the bonding strength of each formed porous membrane layer is improved as compared with the case where they are laminated and combined outside the nozzle. Moreover, it is advantageous also in terms of simplification of the nozzle structure and simplification of processing. Further, even if the respective film-forming stock solutions are laminated and combined in the composite part 23, there is almost no adverse effect on the structure of each porous film layer due to solvent mutual diffusion in these solutions.
The width (distance between the inner wall and the outer wall) of the composite portion 23 can be set as appropriate according to the thickness of the second porous film layer to be formed.

紡糸ノズル1では、第1の貯液部18と第2の貯液部21のそれぞれの内部に、製膜原液が側面から通過する多孔エレメント31、32が設けられている。この例の多孔エレメント31、32は円筒状であり、第1の貯液部18と第2の貯液部21内において、製膜原液は多孔エレメント31、32の外周面から内周面に向かって通過する。   In the spinning nozzle 1, porous elements 31 and 32 through which the raw film forming solution passes from the side surfaces are provided inside the first liquid storage unit 18 and the second liquid storage unit 21, respectively. The porous elements 31 and 32 in this example are cylindrical, and in the first liquid storage part 18 and the second liquid storage part 21, the film-forming stock solution moves from the outer peripheral surface of the porous elements 31 and 32 toward the inner peripheral surface. Pass through.

多孔エレメント31、32としては、製膜原液が外周面から内周面に向かって通過する微小孔を有するものが使用でき、例えば、製膜原液を濾過するフィルタなどが使用される。なかでも、強度、熱伝導性、耐薬品性、構造均一性の点から、金属微粒子の焼結体が好ましい。ただし、多孔エレメント31、32は金属微粒子の焼結体には限定されず、金属繊維の焼結体、金属メッシュの積層体や焼結積層体、セラミック多孔体、多孔板の積層体や焼結積層体、金属微粒子の充填体などであってもよい。   As the porous elements 31, 32, one having micropores through which the film-forming stock solution passes from the outer peripheral surface toward the inner peripheral surface can be used. For example, a filter for filtering the film-forming stock solution is used. Among these, a sintered body of metal fine particles is preferable from the viewpoint of strength, thermal conductivity, chemical resistance, and structural uniformity. However, the porous elements 31 and 32 are not limited to metal fine particle sintered bodies, but are sintered metal fibers, metal mesh laminates and sintered laminates, ceramic porous bodies, porous plate laminates and sintered bodies. It may be a laminate or a filler of metal fine particles.

紡糸ノズル1では、多孔エレメント31、32を設けることで、製膜原液により形成される多孔質膜層に、軸方向に沿った割れの起点が形成されることが抑制される。多孔エレメント31、32によって前記効果が得られる理由は明らかではないが、以下のように考えられる。
図12〜14に例示した紡糸ノズル101のように、多孔エレメントを設けない場合、紡糸速度を高めると、多孔質膜層に軸方向に沿った割れの起点が形成され、多孔質中空糸膜が扁平状に変形した際などに割れが発生することがある。この割れの起点は、貯液部116の内部において二手に分かれた製膜原液が合流する合流部分116a(図14)に相当する位置に形成される。この合流部分116aでは、合流部分116a以外の部分に比べて膜形成性樹脂同士の絡み合いが小さくなる傾向があり、これが扁平などの負荷発生時に応力集中点となって軸方向に沿った割れの起点が形成される要因になっていると考えられる。
これに対し紡糸ノズル1は、第1の貯液部18に多孔エレメント31が設けられていることで、第1の製膜原液により形成される第1の多孔質膜層に、軸方向に沿った割れの起点が形成されることが抑制される。これは、第1の製膜原液が多孔エレメント31を外周面から内周面に向かって通過するとき、第1の製膜原液が全体的に微視的に撹拌され、第1の製膜原液の膜形成性樹脂同士の絡み合いが均一化され、応力分散されるためであると考えられる。また、同様の理由から、第2の貯液部21に多孔エレメント32が設けられていることで、第2の製膜原液により形成される第2の多孔質膜層に、軸方向に沿った割れの起点が形成されることが抑制される。
In the spinning nozzle 1, the provision of the porous elements 31 and 32 suppresses the formation of crack initiation points along the axial direction in the porous film layer formed by the film-forming stock solution. The reason why the effect is obtained by the porous elements 31 and 32 is not clear, but is considered as follows.
In the case where the porous element is not provided as in the spinning nozzle 101 illustrated in FIGS. 12 to 14, when the spinning speed is increased, a crack starting point along the axial direction is formed in the porous membrane layer, and the porous hollow fiber membrane is formed. Cracks may occur when deformed into a flat shape. The starting point of the crack is formed at a position corresponding to the merged portion 116a (FIG. 14) where the two separate film-forming stock solutions are merged inside the liquid storage unit 116. In this merging portion 116a, the entanglement between the film-forming resins tends to be smaller than in portions other than the merging portion 116a, and this becomes a stress concentration point when a load such as a flattening occurs, and the origin of cracks along the axial direction It is thought that this is a factor that forms.
On the other hand, the spinning nozzle 1 is provided with the porous element 31 in the first liquid storage section 18, so that the first porous film layer formed by the first film-forming stock solution extends along the axial direction. The formation of a crack starting point is suppressed. This is because when the first film-forming stock solution passes through the porous element 31 from the outer peripheral surface toward the inner peripheral surface, the first film-forming stock solution is totally microscopically stirred, and the first film-forming stock solution This is considered to be because the entanglement between the film-forming resins is uniformized and the stress is dispersed. For the same reason, the porous element 32 is provided in the second liquid storage part 21, so that the second porous film layer formed by the second film-forming stock solution is aligned along the axial direction. It is suppressed that the starting point of a crack is formed.

多孔エレメント31、32は、割れが発生し難い多孔質中空糸膜を得やすい点から、三次元網目構造を有する多孔質体であることが好ましい。三次元網目構造を有する多孔質体とは、製膜原液が外周面から内周面に向かって多孔エレメントの内部を通過する際に直線的には流れず、上下方向や周方向にも移動しながら内側へと通過するような三次元的な流路が形成された構造の多孔質体である。多孔エレメント31、32として、三次元網目構造を有する多孔質体を使用することで、製膜原液が全体的に微細な分岐合流を繰り返して均一化されやすくなり、紡糸速度を高めた場合でも多孔質膜層に軸方向に沿った割れの起点が形成され難くなると考えられる。また、同じ孔径で同じ厚みの多孔エレメントでは、圧力損失も小さくなる点で有利である。さらに、製膜原液中の異物除去やゲル細分化の点でも好ましい。
三次元網目構造を有する多孔エレメントとしては、ファイバーワインディング構造の多孔エレメント、樹脂又は金属微粒子を焼結一体化した構造の多孔エレメントなどが挙げられる。
The porous elements 31 and 32 are preferably porous bodies having a three-dimensional network structure from the viewpoint of easily obtaining a porous hollow fiber membrane in which cracking is unlikely to occur. A porous body having a three-dimensional network structure means that the film-forming stock solution does not flow linearly when passing through the inside of the porous element from the outer peripheral surface toward the inner peripheral surface, but also moves in the vertical and circumferential directions. However, it is a porous body having a structure in which a three-dimensional channel that passes inward is formed. By using a porous body having a three-dimensional network structure as the porous elements 31 and 32, the film-forming stock solution is easily made uniform by repeating fine branching and joining as a whole, and even when the spinning speed is increased, it is porous. It is considered that the starting point of the crack along the axial direction is hardly formed in the membrane layer. Moreover, a porous element having the same pore diameter and the same thickness is advantageous in that the pressure loss is reduced. Furthermore, it is preferable also in terms of removing foreign matters in the film-forming stock solution and gel fragmentation.
Examples of the porous element having a three-dimensional network structure include a porous element having a fiber winding structure and a porous element having a structure in which resin or metal fine particles are sintered and integrated.

多孔エレメント31、32の形状は、製膜原液が外周面から内周面に向かって流れるものであればよく、環状のものが好ましい。なかでも、多孔エレメント31、32の形状としては、製膜原液を通過させる面積を大きくしやすく、紡糸速度の高速化が容易な点から、この例のように円筒状であることが好ましい。   The shape of the porous elements 31 and 32 is not particularly limited as long as the raw film forming solution flows from the outer peripheral surface toward the inner peripheral surface, and an annular shape is preferable. In particular, the shape of the porous elements 31 and 32 is preferably cylindrical as in this example from the viewpoint of easily increasing the area through which the film-forming stock solution passes and easy to increase the spinning speed.

また、多孔エレメント31、32は、例えば一般的なキャンドルフィルタが有するような、平板状のエレメントを円筒状に巻いて接合部を溶接したような継目がないものが好ましい。このような継目を有さない多孔エレメントを使用することで、製膜原液の通過特性を均一にしやすくなる。このような継目のない多孔エレメントの構造としては、例えば、円筒型ファイバーワインディング構造、金属管のエッチング加工構造、金属管のレーザー孔加工構造、立体型ハニカム構造、外周と内周を連通する複数の微小孔を有する複数のドーナツ状円板を同心円状に積層一体化した構造、樹脂又は金属微粒子を円筒状に焼結一体化した構造などが挙げられる。   Further, the porous elements 31 and 32 are preferably seamless elements such as a flat candle-shaped element wound in a cylindrical shape and welded at the joint as in a general candle filter. By using a porous element that does not have such a seam, it becomes easy to make the passage characteristics of the film-forming stock solution uniform. As a structure of such a seamless porous element, for example, a cylindrical fiber winding structure, a metal tube etching processing structure, a metal tube laser hole processing structure, a three-dimensional honeycomb structure, and a plurality of outer peripheral and inner peripheral communication Examples include a structure in which a plurality of donut-shaped discs having minute holes are stacked and integrated concentrically, and a structure in which resin or metal fine particles are sintered and integrated in a cylindrical shape.

第1の製膜原液が多孔エレメント31を通過する際の圧力損失は、第1の製膜原液が多孔エレメント31に到達するまでの圧力損失、及び第1の製膜原液が多孔エレメント31を通過した後から吐出口23aに到達するまでの圧力圧損よりも大きいことが好ましい。これにより、多孔エレメント31を通過する際の第1の製膜原液の流れが周方向に均一化されやすくなり、形成される第1の多孔質膜層の厚みの均一化が容易になる。同様に、第2の製膜原液が多孔エレメント32を通過する際の圧力損失は、第2の製膜原液が多孔エレメント32に到達するまでの圧力損失、及び第2の製膜原液が多孔エレメント32を通過した後から吐出口23aに到達するまでの圧力圧損よりも大きいことが好ましい。
製膜原液が多孔エレメント31、32を通過する際の圧力損失は、多孔エレメント31、32の構造、孔径などを調節することで調節できる。
The pressure loss when the first film-forming stock solution passes through the porous element 31 is the pressure loss until the first film-forming stock solution reaches the porous element 31, and the first film-forming stock solution passes through the porous element 31. It is preferable that the pressure pressure loss after reaching the discharge port 23a is larger. Thereby, the flow of the 1st film forming undiluted solution at the time of passing through porous element 31 becomes easy to make uniform in the peripheral direction, and the thickness of the 1st porous film layer formed becomes easy. Similarly, the pressure loss when the second film-forming stock solution passes through the porous element 32 is the pressure loss until the second film-forming stock solution reaches the porous element 32, and the second film-forming stock solution is the porous element. It is preferable that the pressure loss is larger than the pressure loss until the discharge port 23a is reached after passing through the nozzle 32.
The pressure loss when the film-forming stock solution passes through the porous elements 31 and 32 can be adjusted by adjusting the structure and pore diameter of the porous elements 31 and 32.

紡糸ノズル1による紡糸では、中空状の補強支持体が支持体供給口14aから支持体通路14に供給され、また製膜原液を定量供給する各原液供給装置によって第1の製膜原液と第2の製膜原液が原液供給口15a、16aから原液流路15、16にそれぞれ供給される。第1の製膜原液は、導入部17から第1の貯液部18内に流入し、第1の貯液部18において、多孔エレメント31の外側を二手に分岐して円弧状に流通して反対側の合流部分18aで合流し、多孔エレメント31を外周面から内周面に向かって通過し、第1の賦形部19に流入して円筒状に賦形される。第2の製膜原液は、導入部20から第2の貯液部21内に流入し、第2の貯液部21において、多孔エレメント32の外側を二手に分岐して円弧状に流通して反対側の合流部分21aで合流し、多孔エレメント32を外周面から内周面に向かって通過し、第2の賦形部22に流入して円筒状に賦形される。また、この例では、第1の賦形部19と第2の賦形部22とで複合部23が形成されているため、第2の製膜原液が円筒状に賦形されつつ、第1の賦形部19を流通してきた第1の製膜原液の外側に同心円状に積層複合される。そして、第1の製膜原液と第2の製膜原液が同心円状に積層複合された状態で吐出口23aから吐出され、同時に支持体導出口14bから導出されてきた補強支持体の外側に付与される。   In spinning by the spinning nozzle 1, a hollow reinforcing support is supplied to the support passage 14 from the support supply port 14a, and the first film-forming stock solution and the second film-forming solution are supplied by each stock-solution supply device that quantitatively supplies the film-forming stock solution. The film-forming stock solution is supplied from the stock solution supply ports 15a and 16a to the stock solution channels 15 and 16, respectively. The first film-forming stock solution flows into the first liquid storage part 18 from the introduction part 17, and in the first liquid storage part 18, the outside of the porous element 31 is bifurcated and circulated in an arc shape. It merges at the opposite merging portion 18a, passes through the porous element 31 from the outer peripheral surface toward the inner peripheral surface, flows into the first shaping portion 19 and is shaped into a cylindrical shape. The second film-forming stock solution flows from the introduction part 20 into the second liquid storage part 21, and in the second liquid storage part 21, the outside of the porous element 32 is bifurcated and flows in an arc shape. It merges at the opposite merging portion 21a, passes through the porous element 32 from the outer peripheral surface toward the inner peripheral surface, flows into the second shaping portion 22, and is shaped into a cylindrical shape. Moreover, in this example, since the composite part 23 is formed by the 1st shaping part 19 and the 2nd shaping part 22, the 1st shaping | molding liquid solution is shape | molded by the 1st while forming the 2nd film forming undiluted | stock solution. The first film-forming stock solution that has circulated through the shaping portion 19 is concentrically laminated and composited. Then, the first film-forming stock solution and the second film-forming stock solution are discharged from the discharge port 23a in a state where they are laminated and combined concentrically, and are simultaneously applied to the outside of the reinforcing support that has been led out from the support-outlet outlet 14b. Is done.

次に、本発明の多孔質中空糸膜の製造方法の一例として、前記紡糸ノズル1を使用した多孔質中空糸膜の製造方法を説明する。該製造方法としては、例えば、下記の紡糸凝固工程、洗浄工程、除去工程、乾燥工程及び巻き取り工程を有する方法が挙げられる。
紡糸凝固工程:紡糸ノズル1により、製膜原液を中空状の補強支持体の外側に付与し、前記製膜原液を凝固液中で凝固させ、多孔質中空糸膜前駆体を形成する工程。
洗浄工程:前記紡糸凝固工程後の多孔質中空糸膜前駆体を洗浄して該多孔質中空糸膜前駆体に残留する溶媒を除去する工程。
除去工程:前記洗浄工程後の多孔質中空糸膜前駆体に残留する開孔剤を除去し、多孔質中空糸膜を形成する工程。
乾燥工程:前記除去工程後の多孔質中空糸膜を乾燥する工程。
巻き取り工程:乾燥後の多孔質中空糸膜を巻き取る工程。
Next, as an example of the method for producing a porous hollow fiber membrane of the present invention, a method for producing a porous hollow fiber membrane using the spinning nozzle 1 will be described. Examples of the production method include a method having the following spinning and coagulating step, washing step, removing step, drying step and winding step.
Spinning coagulation step: a step of forming a porous hollow fiber membrane precursor by applying a membrane-forming stock solution to the outside of the hollow reinforcing support by the spinning nozzle 1 and coagulating the membrane-forming stock solution in the coagulating solution.
Washing step: a step of washing the porous hollow fiber membrane precursor after the spinning and coagulating step to remove the solvent remaining in the porous hollow fiber membrane precursor.
Removal step: a step of removing the pore-opening agent remaining in the porous hollow fiber membrane precursor after the washing step to form a porous hollow fiber membrane.
Drying step: a step of drying the porous hollow fiber membrane after the removing step.
Winding step: A step of winding the porous hollow fiber membrane after drying.

紡糸凝固工程:
各原液供給装置によって第1の製膜原液と第2の製膜原液を紡糸ノズル1の原液流路15、16に供給し、補強支持体を紡糸ノズル1の支持体通路14に供給することで、第1の製膜原液と第2の製膜原液を積層複合して円筒状に吐出させ、支持体通路14を通過した前記補強支持体の外側に付与して、それら製膜原液を凝固液で凝固させて多孔質中空糸膜前駆体を形成する。このとき、補強支持体の外側に塗布された製膜原液中に凝固液が拡散し、膜形成性樹脂と開孔剤がそれぞれ相分離を起こしつつ凝固して、膜形成性樹脂と開孔剤とが相互に入り組んだ三次元網目構造の凝固膜層を形成する。前記凝固膜層の開孔剤が、後述する除去工程で除去されることで、該開孔剤が残存していた部分に孔が形成されて多孔質膜層が形成される。
Spinning and coagulation process:
Each stock solution supply device supplies the first film forming stock solution and the second film forming stock solution to the stock solution flow paths 15 and 16 of the spinning nozzle 1, and supplies the reinforcing support to the support passage 14 of the spinning nozzle 1. The first film-forming stock solution and the second film-forming stock solution are laminated and combined to be discharged in a cylindrical shape, and are applied to the outside of the reinforcing support that has passed through the support passage 14, so that these film-forming stock solutions are coagulated. To form a porous hollow fiber membrane precursor. At this time, the coagulating liquid diffuses into the film-forming stock solution applied to the outside of the reinforcing support, and the film-forming resin and the pore-opening agent coagulate while causing phase separation, respectively. Forms a solidified film layer having a three-dimensional network structure. By removing the pore-opening agent of the solidified membrane layer in a removing step described later, pores are formed in the portion where the pore-opening agent remains, and a porous membrane layer is formed.

本実施形態の製造方法は、紡糸凝固工程において、紡糸開始時に紡糸ノズル1に供給する製膜原液の供給量(第1の製膜原液と第2の製膜原液を合計した供給量)の設定値Waを、定常状態において紡糸ノズル1に供給する製膜原液の供給量(第1の製膜原液と第2の製膜原液を合計した供給量)の設定値Wbよりも多くして紡糸を開始した後、前記製膜原液の供給量を前記設定値Wbにすることを特徴とする。
本発明において「定常状態」とは、紡糸ノズルの支持体通路を通過させる補強支持体の外側に、製膜原液が均一な厚みで連続的に付与され、外径が均一な多孔質中空糸膜前駆体が連続的に得られている状態を言う。つまり、前記設定値Wbは、紡糸ノズルへの製膜原液の供給量を、定常状態における補強支持体の走行速度と、製膜原液の吐出線速度とが同じになるように設定した値である。設定値Wbは、予め試験することにより決定できる。
In the production method of the present embodiment, in the spinning coagulation step, the supply amount of the film-forming stock solution supplied to the spinning nozzle 1 at the start of spinning (the supply amount of the first film-forming stock solution and the second film-forming stock solution) is set. Spinning with the value Wa larger than the set value Wb of the supply amount of the film-forming stock solution supplied to the spinning nozzle 1 in the steady state (the total supply amount of the first film-forming stock solution and the second film-forming stock solution) After starting, the supply amount of the film-forming stock solution is set to the set value Wb.
In the present invention, the “steady state” means a porous hollow fiber membrane in which the membrane-forming stock solution is continuously applied with a uniform thickness to the outside of the reinforcing support that passes through the support passage of the spinning nozzle, and the outer diameter is uniform. The state where the precursor is obtained continuously is said. That is, the set value Wb is a value obtained by setting the supply amount of the film-forming stock solution to the spinning nozzle so that the running speed of the reinforcing support in the steady state and the discharge linear speed of the film-forming stock solution are the same. . The set value Wb can be determined by testing in advance.

紡糸ノズルによる紡糸について検討したところ、紡糸ノズルに供給する製膜原液の供給量を、定常状態において製膜原液の吐出線速度と補強支持体の走行速度を対応させた設定値Wbに設定して紡糸を開始すると、紡糸初期において、補強支持体の外側への製膜原液の付与が不均一になることがあるのが判明した。具体的には、紡糸初期において、製膜原液の吐出線速度が補強支持体の走行速度よりも遅くなることで、図4に示すように、紡糸ノズル1の吐出口23aから吐出される製膜原液Yが補強支持体Xによって引っ張られて分断され、製膜原液Yが補強支持体Xに断続的に付与されてコブ状部分Zが複数形成されることがわかった。また、紡糸ノズル1のように貯液部に多孔エレメントを設けた場合、該多孔エレメントによる抵抗によって、紡糸開始時の製膜原液の吐出線速度がより遅くなりやすく、コブ状部分Zがさらに形成されやすいことがわかった。このようなコブ状部分Zは、後の工程において膜のガイド外れや合糸の要因となり得る。
本発明では、紡糸開始時に紡糸ノズルに供給する製膜原液の供給量の設定値Waを、定常状態における製膜原液の供給量の設定値Wbよりも多くして紡糸を開始することで、製膜原液の供給量を設定値Wbとして紡糸を開始する場合に比べて、紡糸初期における製膜原液の吐出線速度が補強支持体の走行速度により近くなる。そのため、ノズルから吐出される製膜原液が補強支持体によって引っ張られて分断されることを抑制でき、結果的に補強支持体の外側に製膜原液がコブ状に付与される頻度を低減できる。よって、より高い工程安定性で、高品質な多孔質中空糸膜を製造できる。
As a result of examining the spinning by the spinning nozzle, the supply amount of the film-forming stock solution supplied to the spinning nozzle is set to a set value Wb that corresponds to the discharge linear speed of the film-forming stock solution and the running speed of the reinforcing support in a steady state. It has been found that when spinning is started, the application of the film-forming stock solution to the outside of the reinforcing support may become uneven in the initial stage of spinning. Specifically, at the initial stage of spinning, the discharge linear speed of the raw film forming solution becomes slower than the running speed of the reinforcing support, so that the film is discharged from the discharge port 23a of the spinning nozzle 1 as shown in FIG. It was found that the stock solution Y was pulled and divided by the reinforcing support X, and the film-forming stock solution Y was intermittently applied to the reinforcing support X to form a plurality of bump-shaped portions Z. In addition, when a porous element is provided in the liquid storage part like the spinning nozzle 1, the discharge linear velocity of the raw film forming solution at the start of spinning tends to be slower due to the resistance of the porous element, and a hump-like portion Z is further formed. I found it easy to do. Such a hump-shaped portion Z can cause a film to become unguided or a yarn in a later step.
In the present invention, the spinning is started by setting the set value Wa of the film-forming stock solution supplied to the spinning nozzle at the start of spinning to be larger than the set value Wb of the film-forming stock solution in the steady state. Compared to the case where spinning is started with the supply amount of the membrane stock solution set value Wb, the discharge linear velocity of the membrane forming stock solution in the initial stage of spinning becomes closer to the traveling speed of the reinforcing support. Therefore, it can suppress that the film forming stock solution discharged from a nozzle is pulled and divided | segmented by the reinforcement support body, and can reduce the frequency with which the film formation stock solution is provided in the shape of a hump on the outer side of a reinforcement support body as a result. Therefore, a high-quality porous hollow fiber membrane can be manufactured with higher process stability.

具体的な操作としては、第1の製膜原液を原液流路15に供給する原液供給装置と、第2の製膜原液を原液流路16に供給する原液供給装置において、紡糸開始時における第1の製膜原液と第2の製膜原液の紡糸ノズル1への供給量の設定値Waを、定常状態における設定値Wbよりも多くして紡糸を開始した後、それらの供給量を設定値Wbにして紡糸を続ける。   Specifically, in the stock solution supply device that supplies the first film-forming stock solution to the stock solution flow path 15 and the stock solution supply device that supplies the second film-forming stock solution to the stock solution flow path 16, The set value Wa of the supply amount of the first film-forming stock solution and the second film-forming stock solution to the spinning nozzle 1 is set to be larger than the set value Wb in the steady state, and spinning is started. Continue spinning with Wb.

紡糸開始時における紡糸ノズル1への製膜原液の供給量(第1の製膜原液と第2の製膜原液の合計量)の設定値Waと、定常状態における紡糸ノズル1への製膜原液の供給量(第1の製膜原液と第2の製膜原液の合計量)の設定値Wbの比Wa/Wbは、1.2〜3.0が好ましく、1.5〜2.5がより好ましい。前記比Wa/Wbが下限値以上であれば、補強支持体の外側に製膜原液がコブ状に付与される頻度をより低減できる。前記比Wa/Wbが上限値以下であれば、使用される製膜原液量が過剰になり難く、膜厚が過剰に厚くなって原料を無駄にすることを抑制しやすくなるため、コストをより低減でき、工業的に有利である。   The set value Wa of the supply amount of the film-forming stock solution to the spinning nozzle 1 at the start of spinning (the total amount of the first film-forming stock solution and the second film-forming stock solution), and the film-forming stock solution to the spinning nozzle 1 in the steady state The ratio Wa / Wb of the set value Wb of the supply amount (total amount of the first film-forming stock solution and the second film-forming stock solution) is preferably 1.2 to 3.0, and more preferably 1.5 to 2.5. More preferred. If the ratio Wa / Wb is equal to or higher than the lower limit value, the frequency at which the film-forming stock solution is applied in the form of a bump on the outside of the reinforcing support can be further reduced. If the ratio Wa / Wb is less than or equal to the upper limit value, the amount of the stock solution to be used is hardly excessive, and the film thickness becomes excessively thick and it is easy to suppress waste of raw materials. This is industrially advantageous.

紡糸開始後は、補強支持体の外側に付与される製膜原液の厚みが一定になった後に、紡糸ノズル1に供給する製膜原液の供給量の設定値を設定値Wbにする。つまり、製膜原液の吐出線速度が一定になった後に、紡糸ノズル1に供給する製膜原液の供給量の設定値を設定値Wbにする。
補強支持体の外側に付与される製膜原液の厚みが一定になったという判断基準は、紡糸速度等によっても異なるが、例えば、外径が均一な多孔質中空糸膜前駆体の形成が20m連続して形成された時点を製膜原液の厚みが一定になった時点とする基準などが挙げられる。前記判断は、多孔質中空糸膜前駆体の外径を測定することで行ってもよく、製膜原液の吐出線速度を測定することで行ってもよい。
なお、ここでは多孔質膜層(凝固膜層)と補強支持体との位置関係を明確にするために補強支持体の外側と表現しているが、多孔質膜層(凝固膜層)が補強支持体の空隙を通じて支持体内部に合浸している場合も含まれる。この場合も、製膜原液の厚みが一定になったという判断基準は外径の均一性によって判断する。
After the start of spinning, after the thickness of the film-forming stock solution applied to the outside of the reinforcing support becomes constant, the set value of the amount of film-forming stock solution supplied to the spinning nozzle 1 is set to the set value Wb. That is, after the discharge linear velocity of the film forming raw solution becomes constant, the set value of the supply amount of the film forming raw solution supplied to the spinning nozzle 1 is set to the set value Wb.
The criteria for determining that the thickness of the membrane-forming stock solution applied to the outside of the reinforcing support has become constant varies depending on the spinning speed and the like. For example, the formation of a porous hollow fiber membrane precursor with a uniform outer diameter is 20 m. For example, there may be a standard in which the time point when the film is continuously formed becomes the time point when the thickness of the film forming stock solution becomes constant. The determination may be made by measuring the outer diameter of the porous hollow fiber membrane precursor or by measuring the discharge linear velocity of the membrane forming stock solution.
Here, in order to clarify the positional relationship between the porous membrane layer (coagulated membrane layer) and the reinforcing support, it is expressed as the outside of the reinforcing support, but the porous membrane layer (coagulated membrane layer) is reinforced. The case where it is immersed in the inside of the support through the gap of the support is also included. In this case as well, the determination criterion that the thickness of the film forming stock solution is constant is determined by the uniformity of the outer diameter.

紡糸ノズル1に供給する製膜原液の供給量は、工程安定性がより向上する点から、補強支持体の外側に付与される製膜原液の厚みが一定になったと判断した時点で設定値Wbにすることが好ましい。
紡糸ノズル1に供給する製膜原液の供給量の設定値を設定値Wbにするタイミングについては、予め試験して決定しておいてもよく、工程中に多孔質中空糸膜の外径又は製膜原液の吐出線速度を測定しながら紡糸を行って決定してもよい。
The supply amount of the film-forming stock solution supplied to the spinning nozzle 1 is a set value Wb when it is determined that the thickness of the film-forming stock solution applied to the outside of the reinforcing support has become constant from the viewpoint of improving process stability. It is preferable to make it.
The timing at which the set value of the amount of the membrane-forming stock solution supplied to the spinning nozzle 1 is set to the set value Wb may be determined by testing in advance, and the outer diameter or the manufacturing of the porous hollow fiber membrane may be determined during the process. It may be determined by performing spinning while measuring the discharge linear velocity of the membrane stock solution.

また、紡糸凝固工程においては、紡糸開始時に紡糸ノズル1の支持体通路14を通過させる補強支持体の走行速度Vaを、定常状態における走行速度Vbよりも遅くして紡糸を開始した後、補強支持体の走行速度を定常状態における走行速度Vbにすることが好ましい。これにより、製膜原液が補強支持体の外側にコブ状に塗布されることをさらに低減できる。
紡糸開始時における補強支持体の走行速度Vaと、定常状態における補強支持体の走行速度Vbとの比Va/Vbは、0.3〜0.8が好ましく、0.4〜0.6がより好ましい。前記比Va/Vbが下限値以上であれば、補強支持体の外側に製膜原液がコブ状に付与される頻度をより低減できる。前記比Va/Vbが上限値以下であれば、補強支持体の外側に製膜原液が均一に塗布されない、いわゆる塗り斑の発生を低減しやすい。
Further, in the spinning coagulation step, the spinning speed Va of the reinforcing support that passes through the support passage 14 of the spinning nozzle 1 at the start of spinning is set slower than the running speed Vb in the steady state, and then spinning is started. It is preferable to set the traveling speed of the body to the traveling speed Vb in the steady state. Thereby, it can further reduce that the membrane forming undiluted solution is applied to the outside of the reinforcing support in the form of a bump.
The ratio Va / Vb between the running speed Va of the reinforcing support at the start of spinning and the running speed Vb of the reinforcing support in the steady state is preferably 0.3 to 0.8, more preferably 0.4 to 0.6. preferable. If the ratio Va / Vb is equal to or greater than the lower limit value, the frequency at which the film-forming stock solution is applied to the outer side of the reinforcing support can be further reduced. If the ratio Va / Vb is equal to or less than the upper limit value, it is easy to reduce the occurrence of so-called smears in which the film-forming solution is not uniformly applied to the outside of the reinforcing support.

洗浄工程:
紡糸凝固工程で形成された多孔質中空糸膜前駆体には、溶液状態の開孔剤や溶媒が残存している。多孔質中空糸膜前駆体の洗浄方法は、多孔質中空糸膜前駆体に残存する溶媒を除去する方法として通常使用される方法を採用できる。例えば、水などの洗浄液中に多孔質中空糸膜前駆体を走行させて洗浄することで、多孔質中空糸膜前駆体中に残存している溶媒を除去する方法などが挙げられる。
Cleaning process:
In the porous hollow fiber membrane precursor formed in the spinning and coagulation step, a solution-like pore opening agent or solvent remains. As a method for washing the porous hollow fiber membrane precursor, a method usually used as a method for removing the solvent remaining in the porous hollow fiber membrane precursor can be adopted. For example, there is a method of removing the solvent remaining in the porous hollow fiber membrane precursor by running the porous hollow fiber membrane precursor in a cleaning liquid such as water and washing it.

除去工程:
開孔剤を除去する方法は、多孔質中空糸膜前駆体に残存する開孔剤を除去する方法として通常使用される方法を採用できる。例えば、次亜塩素酸塩などの酸化剤を含む薬液中に多孔質中空糸膜を走行させて、多孔質中空糸膜に薬液を保持させた後、気相中で加熱して開孔剤の酸化分解を行い、その後に多孔質中空糸膜を洗浄することで、低分子量化された開孔剤を除去する方法などが挙げられる。
多孔質中空糸膜前駆体の凝固膜層に残存する開孔剤を除去することで、該開孔剤が残存していた部分に孔が形成されて多孔質膜層が形成され、多孔質中空糸膜が得られる。
Removal process:
As a method for removing the pore opening agent, a method usually used as a method for removing the pore opening agent remaining in the porous hollow fiber membrane precursor can be adopted. For example, a porous hollow fiber membrane is run in a chemical solution containing an oxidizing agent such as hypochlorite, and the porous hollow fiber membrane is held in the chemical solution, and then heated in a gas phase to form a pore-opening agent. Examples include a method of removing the pore-opening agent reduced in molecular weight by performing oxidative decomposition and then washing the porous hollow fiber membrane.
By removing the pore-opening agent remaining in the coagulation membrane layer of the porous hollow fiber membrane precursor, pores are formed in the portion where the pore-opening agent has remained to form a porous membrane layer. A yarn membrane is obtained.

乾燥工程、巻き取り工程:
多孔質中空糸膜の乾燥方法は、多孔質中空糸膜の乾燥に通常使用される方法を採用できる。例えば、熱風乾燥機などの乾燥機を用いて多孔質中空糸膜を乾燥する方法などが挙げられる。
乾燥後の多孔質中空糸膜は、ボビンなどの巻き取り手段によって巻き取る。
Drying and winding processes:
As a method for drying the porous hollow fiber membrane, a method usually used for drying the porous hollow fiber membrane can be adopted. For example, the method of drying a porous hollow fiber membrane using dryers, such as a hot air dryer, is mentioned.
The porous hollow fiber membrane after drying is wound up by a winding means such as a bobbin.

以上説明した本発明の多孔質中空糸膜の製造方法によれば、紡糸開始時に紡糸ノズルに供給する製膜原液の供給量の設定値Waを、定常状態における設定値Wbよりも多くして紡糸を開始することで、紡糸初期において、補強支持体の外側に製膜原液がコブ状に付与されることを低減できる。そのため、高品質な多孔質中空糸膜を優れた工程安定性で製造できる。また、貯液部内に多孔エレメントを設けた紡糸ノズルを用いれば、補強支持体の外側に製膜原液がコブ状に付与されることを低減しつつ、さらに形成する多孔質膜層に軸方向に沿った割れの起点が形成されることも抑制でき、より高品質な多孔質中空糸膜を優れた工程安定性で製造できる。   According to the method for producing a porous hollow fiber membrane of the present invention described above, the set value Wa of the amount of the raw film forming solution supplied to the spinning nozzle at the start of spinning is set to be larger than the set value Wb in the steady state to perform spinning. By starting the process, it is possible to reduce the film-forming stock solution being applied to the outer side of the reinforcing support at the initial stage of spinning. Therefore, a high-quality porous hollow fiber membrane can be produced with excellent process stability. In addition, if a spinning nozzle having a porous element in the liquid storage part is used, the film-forming stock solution is reduced from being applied to the outer side of the reinforcing support in the form of a hump, and the porous film layer to be formed is further axially The formation of the starting point of the crack along the line can also be suppressed, and a higher quality porous hollow fiber membrane can be produced with excellent process stability.

なお、本発明の多孔質中空糸膜の製造方法は、前述した製造方法には限定されない。例えば、本発明の多孔質中空糸膜の製造方法は、補強支持体の外側に1層の多孔質膜層を形成する方法であってもよい。
また、本発明の多孔質中空糸膜の製造方法は、紡糸ノズル1のような紡糸ノズルを用いて、紡糸開始時に紡糸ノズルに供給する前記製膜原液の供給量の設定値Waを、定常状態における設定値Wbよりも多くして紡糸を開始した後、前記製膜原液の供給量を前記設定値Wbにする紡糸凝固工程を有するものであればよく、他の工程は特に限定されない。
In addition, the manufacturing method of the porous hollow fiber membrane of this invention is not limited to the manufacturing method mentioned above. For example, the method for producing a porous hollow fiber membrane of the present invention may be a method of forming a single porous membrane layer outside the reinforcing support.
The method for producing a porous hollow fiber membrane of the present invention uses a spinning nozzle such as the spinning nozzle 1 to set the supply value Wa of the membrane-forming stock solution supplied to the spinning nozzle at the start of spinning. After the spinning is started with a value larger than the set value Wb in the above, any process may be used as long as it has a spinning coagulation step in which the supply amount of the film-forming stock solution is set to the set value Wb, and the other steps are not particularly limited.

また、本発明の多孔質中空糸膜の製造方法は、紡糸ノズル1を使用する方法には限定されない。ノズル内部に複合部を有さず、複数の多孔質膜層を形成する各々の製膜原液が、それぞれ別々に円筒状に吐出され、ノズル外部で積層複合されて補強支持体の外側に付与される紡糸ノズルを使用する方法であってもよい。具体的には、図5に例示した紡糸ノズル2を使用する方法であってもよい。紡糸ノズル2において紡糸ノズル1と同じ部分は同符号を付して説明を省略する。
紡糸ノズル2は、第1のノズル11、第2のノズル12A、第3のノズル13Aを有しており、第1の貯液部18から流入する第1の製膜原液を支持体通路14と同心円状の円筒状に賦形する第1の賦形部19Aと、第2の貯液部21から流入する第2の製膜原液を支持体通路14と同心円状の円筒状に賦形する第2の賦形部22Aを有している。第1の製膜原液は、原液供給口15aから原液流路15に供給され、第1の賦形部19Aで賦形された後に吐出口15bから吐出される。第2の製膜原液は、原液供給口16aから原液流路16に供給され、第2の賦形部22Aで賦形された後に吐出口16bから吐出される。吐出口15b、16bからそれぞれ吐出された第1の製膜原液と第2の製膜原液は、ノズル外部で積層複合され、支持体導出口14bから導出された補強支持体の外部に付与される。
The method for producing the porous hollow fiber membrane of the present invention is not limited to the method using the spinning nozzle 1. Each film-forming stock solution that does not have a composite part inside the nozzle and forms a plurality of porous film layers is separately ejected into a cylindrical shape, laminated and combined outside the nozzle, and applied to the outside of the reinforcing support Alternatively, a method using a spinning nozzle may be used. Specifically, a method using the spinning nozzle 2 illustrated in FIG. 5 may be used. In the spinning nozzle 2, the same parts as those of the spinning nozzle 1 are denoted by the same reference numerals and description thereof is omitted.
The spinning nozzle 2 includes a first nozzle 11, a second nozzle 12 </ b> A, and a third nozzle 13 </ b> A. The first film-forming stock solution flowing from the first liquid storage unit 18 is used as the support passage 14. A first shaping part 19A shaped into a concentric cylindrical shape and a second film-forming stock solution flowing in from the second liquid storage part 21 are shaped into a concentric cylindrical shape with the support passage 14. It has two shaping portions 22A. The first film-forming stock solution is supplied from the stock solution supply port 15a to the stock solution flow path 15, and after being shaped by the first shaping unit 19A, is discharged from the discharge port 15b. The second film-forming stock solution is supplied to the stock solution channel 16 from the stock solution supply port 16a, and after being shaped by the second shaping unit 22A, is discharged from the discharge port 16b. The first film-forming stock solution and the second film-forming stock solution discharged from the discharge ports 15b and 16b, respectively, are laminated and combined outside the nozzle, and are applied to the outside of the reinforcing support derived from the support outlet 14b. .

また、紡糸ノズル1は、製膜原液が外周面から内周面に向かって通過する多孔エレメント31、32を有していたが、本発明の製造方法に用いる紡糸ノズルにおける多孔エレメントは、製膜原液が側面から通過するものであればよい。例えば、図6に例示した紡糸ノズル3を使用する方法であってもよい。紡糸ノズル3は、単層の多孔質膜層を有する多孔質中空糸膜を紡糸するノズルである。
紡糸ノズル3は、第1のノズル41、第2のノズル42を有しており、中空状の補強支持体を通過させる支持体通路43と、多孔質膜層を形成する製膜原液を流通させる原液流路44を有している。また、原液流路44は、製膜原液を導入する導入部45と、製膜原液を断面円環状にして貯液する貯液部46と、貯液部46から流入する製膜原液を、支持体通路43を通過させる補強支持体と同心円状の円筒状に賦形する賦形部47とを有している。また、貯液部46の内部には、製膜原液が内周面から外周面に向かって通過する多孔エレメント51が設けられている。多孔エレメント51としては、多孔エレメント31、32で挙げたものと同じものが使用できる。
紡糸ノズル3による紡糸における製膜原液は、原液供給口44aから原液流路44に供給され、貯液部46における多孔エレメント51の内側に供給されて、二手に分岐して円弧状に流通して反対側で合流する。そして、その製膜原液が、多孔エレメント51を内周面から外周面に向かって通過し、賦形部47で円筒状に賦形されて吐出口44bから吐出され、同時に支持体導出口43aから導出されてきた補強支持体の外側に付与される。このように、製膜原液が内周面から外周面に向かって通過する多孔エレメント51を設けるようにしても、得られる多孔質中空糸膜の多孔質膜層に割れの起点が発生することを抑制できる。
The spinning nozzle 1 has porous elements 31 and 32 through which the film-forming stock solution passes from the outer peripheral surface toward the inner peripheral surface. However, the porous element in the spinning nozzle used in the manufacturing method of the present invention is a film-forming device. It is sufficient if the stock solution passes from the side. For example, a method using the spinning nozzle 3 illustrated in FIG. 6 may be used. The spinning nozzle 3 is a nozzle for spinning a porous hollow fiber membrane having a single porous membrane layer.
The spinning nozzle 3 has a first nozzle 41 and a second nozzle 42, and circulates a support passage 43 through which a hollow reinforcing support passes and a film-forming stock solution for forming a porous membrane layer. A stock solution channel 44 is provided. The stock solution flow path 44 supports an introduction part 45 for introducing the film-forming stock solution, a liquid storage part 46 for storing the film-forming stock solution in a circular cross section, and a film-forming stock solution flowing from the liquid storage part 46. It has a reinforcing support that passes through the body passage 43 and a shaping portion 47 that is shaped into a concentric cylindrical shape. In addition, a porous element 51 through which the film-forming stock solution passes from the inner peripheral surface toward the outer peripheral surface is provided inside the liquid storage unit 46. As the porous element 51, the same elements as those mentioned for the porous elements 31 and 32 can be used.
The film-forming stock solution in spinning by the spinning nozzle 3 is supplied from the stock solution supply port 44a to the stock solution flow path 44, is supplied to the inside of the porous element 51 in the liquid storage section 46, is bifurcated, and circulates in an arc shape. Merge on the other side. Then, the raw film forming solution passes through the porous element 51 from the inner peripheral surface toward the outer peripheral surface, is shaped into a cylindrical shape by the shaping portion 47 and is discharged from the discharge port 44b, and simultaneously from the support outlet port 43a. It is applied to the outside of the reinforcing support that has been derived. As described above, even when the porous element 51 through which the membrane-forming stock solution passes from the inner peripheral surface toward the outer peripheral surface is provided, a crack starting point is generated in the porous membrane layer of the obtained porous hollow fiber membrane. Can be suppressed.

また、本発明の多孔質中空糸膜の製造方法は、図7に例示した紡糸ノズル4を使用する方法であってもよい。紡糸ノズル4は、単層の多孔質膜層を有する多孔質中空糸膜を紡糸するノズルである。
紡糸ノズル4は、図7に示すように、第1のノズル81と第2のノズル82を有しており、内部に、中空状の支持体を通過させる支持体通路83と、多孔質膜層を形成する製膜原液を流通させる原液流路84とを有している。原液流路84は、製膜原液が導入される導入部85と、製膜原液を断面円環状にして貯液する貯液部86と、製膜原液を円筒状に賦形する賦形部87とを有している。貯液部86の内部には、粒子88が充填された充填層89が設けられている。紡糸ノズル4を用いることで、得られる多孔質中空糸膜の多孔質膜層に、軸方向に沿った割れの起点が形成されることが抑制されやすくなる。これは、充填層89における粒子88の隙間を通過する製膜原液が、三次元的な細かい分岐と合流を繰り返すので、製膜原液における膜形成性樹脂の絡み合いが結果的に全体的に小さくなって均一化され、応力分散されるためであると考えられる。
Further, the method for producing the porous hollow fiber membrane of the present invention may be a method using the spinning nozzle 4 illustrated in FIG. The spinning nozzle 4 is a nozzle for spinning a porous hollow fiber membrane having a single porous membrane layer.
As shown in FIG. 7, the spinning nozzle 4 has a first nozzle 81 and a second nozzle 82, a support passage 83 through which a hollow support passes, and a porous membrane layer. And a stock solution channel 84 through which the film-forming stock solution for forming the liquid is circulated. The stock solution flow path 84 includes an introduction part 85 into which the film-forming stock solution is introduced, a liquid storage part 86 that stores the film-forming stock solution in an annular cross section, and a shaping part 87 that shapes the film-forming stock solution into a cylindrical shape. And have. Inside the liquid reservoir 86, a packed bed 89 filled with particles 88 is provided. By using the spinning nozzle 4, it is easy to suppress the formation of crack starting points along the axial direction in the porous membrane layer of the porous hollow fiber membrane to be obtained. This is because the film-forming stock solution passing through the gaps of the particles 88 in the packed bed 89 repeats three-dimensional fine branching and merging, so that the entanglement of the film-forming resin in the film-forming stock solution is reduced overall. This is considered to be because the stress is evenly distributed.

また、本発明の多孔質中空糸膜の製造方法は、多孔エレメントが設けられていない紡糸ノズルを使用する方法であってもよい。つまり、紡糸ノズル101を使用する方法であってもよい。   Further, the method for producing a porous hollow fiber membrane of the present invention may be a method using a spinning nozzle not provided with a porous element. That is, a method using the spinning nozzle 101 may be used.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[実施例1]
補強支持体の製造工程:
図8に示す支持体製造装置60を用いて、中空状編紐からなる補強支持体を製造した。支持体製造装置60は、ボビン61と、ボビン61から引き出された糸62を丸編する丸編機63と、丸編機63によって編成された中空状編紐64を一定の張力で引っ張る紐供給装置65と、中空状編紐64を熱処理する加熱ダイス66と、中空状編紐64が熱処理されて得られる補強支持体Xを引き取る引取り装置67と、補強支持体Xをボビンに巻き取る巻き取り機68とを具備する。
原糸としては、ポリエステル繊維(繊度:84dtex、フィラメント数:36)を用いた。ボビン61としては、前記ポリエステル繊維の5kgを巻いたものを5つ用意した。丸編機63としては、卓上型組編機(圓井繊維機械社製、メリヤス針数:12本、針サイズ116ゲージ、スピンドルの円周直径:8mm)を用いた。紐供給装置65及び引取り装置67としてはネルソンロールを用いた。加熱ダイス66としては、加熱手段を有するステンレス製のダイス(内径D(入口側):5mm、内径d(出口側):2.2mm、長さ:300mm)を用いた。
ボビン61から引き出されたポリエステル繊維を1つにまとめて糸62(合計繊度は420dtex)とした後、丸編機63によって丸編して中空状編紐64を編成し、前記中空状編紐64を195℃の加熱ダイス66に通し、熱処理された中空状編紐64を補強支持体Xとして巻き取り速度100m/hrで巻き取り装置68に巻き取った。ボビン61のポリエステル繊維がなくなるまで補強支持体Xの製造を続けた。
得られた補強支持体Xの外径は約2.1mmであり、内径は1.3mmであった。補強支持体Xを構成する中空状編紐64は、図9及び図10に示すように、糸62を湾曲させたループ62a(図10中の黒い部分)を螺旋状に連続して形成し、これらループ62aを上下につなげたものであり、図10に示すように、ループ62a内及びループ62a同士の接続部に網目64aを有する。ループ62aの数は、1周あたり12個、網目64aの最大開口幅Lは約0.05mmであった。補強支持体Xの長さは12000mであった。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Example 1]
Manufacturing process of reinforced support:
A reinforcing support made of a hollow knitted string was manufactured using the support manufacturing apparatus 60 shown in FIG. The support manufacturing apparatus 60 supplies a string that pulls a bobbin 61, a circular knitting machine 63 that circularly knits the yarn 62 drawn from the bobbin 61, and a hollow knitted string 64 knitted by the circular knitting machine 63 with a constant tension. A device 65, a heating die 66 for heat-treating the hollow knitted string 64, a take-up device 67 for picking up the reinforcing support X obtained by heat-treating the hollow knitted string 64, and a winding for winding the reinforcing support X around the bobbin And a take-off machine 68.
As the raw yarn, polyester fiber (fineness: 84 dtex, number of filaments: 36) was used. As the bobbin 61, five pieces of the polyester fiber wound with 5 kg were prepared. As the circular knitting machine 63, a table type knitting machine (manufactured by Sakurai Textile Machinery Co., Ltd., number of knitted needles: 12, needle size 116 gauge, spindle circumferential diameter: 8 mm) was used. A Nelson roll was used as the string supply device 65 and the take-up device 67. As the heating die 66, a stainless steel die having a heating means (inner diameter D (inlet side): 5 mm, inner diameter d (outlet side): 2.2 mm, length: 300 mm) was used.
The polyester fibers drawn from the bobbin 61 are combined into one yarn 62 (total fineness is 420 dtex), and then circular knitted by a circular knitting machine 63 to form a hollow knitted string 64. The hollow knitted string 64 Was passed through a heating die 66 at 195 ° C., and the heat-treated hollow knitted string 64 was wound around the winding device 68 at a winding speed of 100 m / hr as the reinforcing support X. The production of the reinforcing support X was continued until the polyester fiber of the bobbin 61 was exhausted.
The obtained reinforcing support X had an outer diameter of about 2.1 mm and an inner diameter of 1.3 mm. As shown in FIGS. 9 and 10, the hollow knitted string 64 constituting the reinforcing support X is formed by continuously forming a loop 62a (black portion in FIG. 10) in which a thread 62 is curved in a spiral shape, These loops 62a are connected vertically, and as shown in FIG. 10, a mesh 64a is provided in the loop 62a and at the connecting portion between the loops 62a. The number of loops 62a was 12 per round, and the maximum opening width L of the mesh 64a was about 0.05 mm. The length of the reinforcing support X was 12000 m.

製膜原液の調製工程:
膜形成性樹脂(疎水性ポリマー)としてポリフッ化ビニリデン(PVDF)(アルケマ製、商品名カイナー301F)、及び開孔剤(親水性ポリマー)としてポリビニルピロリドン(PVP)(日本触媒製、商品名PVP−K79)を、N,N−ジメチルアセトアミド(DMAc)中に投入して混錬溶解することにより、PVDFが20質量%、PVPが10質量%、DMAcが70質量%の質量比からなる第1の製膜原液を調製した。
また、第1のPVDF(アルケマ製、商品名カイナー301F)と第2のPVDF(アルケマ製、商品名カイナー9000HD)とを質量比1.1:1で混合したPVDFと、PVP(日本触媒製、商品名PVP−K79)とを、DMAc中に投入して混錬溶解することにより、PVDFが39質量%、PVPが19質量%、DMAcが42質量%の質量比からなる第2の製膜原液を調製した。
Preparation process of film forming stock solution:
Polyvinylidene fluoride (PVDF) (made by Arkema, trade name Kyner 301F) as a film-forming resin (hydrophobic polymer), and polyvinylpyrrolidone (PVP) (made by Nippon Shokubai, trade name PVP- as a pore opening agent (hydrophilic polymer)) K79) is introduced into N, N-dimethylacetamide (DMAc) and kneaded and dissolved, whereby the first PVDF is 20% by mass, PVP is 10% by mass, and DMAc is 70% by mass. A film-forming stock solution was prepared.
Moreover, PVDF which mixed 1st PVDF (made by Arkema, brand name Kyner 301F) and 2nd PVDF (made by Arkema, brand name Kyner 9000HD) by mass ratio 1.1: 1, and PVP (made by Nippon Shokubai Co., Ltd., The product name PVP-K79) is introduced into DMAc and kneaded and dissolved, whereby a second film-forming stock solution having a mass ratio of 39% by mass of PVDF, 19% by mass of PVP and 42% by mass of DMAc. Was prepared.

紡糸凝固工程:
ついで、図11に示す多孔質中空糸膜製造装置70を用いて中空状多孔質膜Mを製造した。多孔質中空糸膜製造装置70は、巻き出し装置(図示略)から連続的に供給される補強支持体Xに連続的に製膜原液を塗布する紡糸ノズル1と、紡糸ノズル1に製膜原液を供給する原液供給装置71と、補強支持体Xに塗布された製膜原液を凝固させる凝固液が収容された凝固浴槽72と、製膜原液が塗布された補強支持体Xを凝固浴槽72に連続的に導入するガイドロール73と、を具備する。
30℃に保温した紡糸ノズル1の支持体通路14に補強支持体X、原液流路15に第1の製膜原液、原液流路16に第2の製膜原液をそれぞれ供給し、補強支持体Xの外周面に第1の製膜原液を塗布し、さらにその外側に第2の製膜原液を塗布した。この紡糸では、補強支持体Xの紡糸開始時の走行速度Vaは、定常状態における補強支持体Xの走行速度Vbの1/2(すなわちVa/Vb=0.5)となるように決定した。また、紡糸開始時における紡糸ノズル1への製膜原液の供給量(第1の製膜原液と第2の製膜原液の供給量の合計)の設定値Waが、定常状態において紡糸ノズル1に供給する製膜原液の供給量(第1の製膜原液と第2の製膜原液の供給量の合計)の設定値Wbの2倍(Wa/Wb=2.0)となるように、紡糸初期(約1分)において製膜原液の供給量の設定値の調整を定常状態になるまで順次行った。
ついで、第1の製膜原液及び第2の製膜原液が塗布された補強支持体Xを、80℃に保温した8質量%のDMAc水溶液が収容された凝固浴槽72内に通し、製膜原液を凝固させて多孔質中空糸膜前駆体Mを形成し、ガイドロール73にて方向転換して凝固浴槽72から引き上げた。
得られた多孔質中空糸膜前駆体について、形成されたコブ状部分の数を計測したところ1錘につき2個であった。
Spinning and coagulation process:
Subsequently, the hollow porous membrane M was manufactured using the porous hollow fiber membrane manufacturing apparatus 70 shown in FIG. The porous hollow fiber membrane production apparatus 70 includes a spinning nozzle 1 that continuously applies a film-forming stock solution to a reinforcing support X that is continuously supplied from an unwinding device (not shown), and a film-forming stock solution that is applied to the spinning nozzle 1. A coagulating bath 72 containing a coagulating liquid for coagulating the film-forming stock solution applied to the reinforcing support X, and a reinforcing support X applied with the film-forming stock solution to the coagulating bath 72. And a guide roll 73 that is continuously introduced.
The reinforcing support X is supplied to the support passage 14 of the spinning nozzle 1 maintained at 30 ° C., the first film-forming stock solution is supplied to the stock solution channel 15, and the second film-forming stock solution is supplied to the stock solution channel 16. The first film-forming stock solution was applied to the outer peripheral surface of X, and the second film-forming stock solution was applied to the outside thereof. In this spinning, the running speed Va at the start of spinning of the reinforcing support X was determined to be 1/2 of the running speed Vb of the reinforcing support X in a steady state (that is, Va / Vb = 0.5). Further, the set value Wa of the supply amount of the film-forming stock solution to the spinning nozzle 1 at the start of spinning (the sum of the supply amounts of the first film-forming stock solution and the second film-forming stock solution) is set to the spinning nozzle 1 in a steady state. Spinning so as to be twice the set value Wb (Wa / Wb = 2.0) of the supply amount of the film-forming stock solution to be supplied (the sum of the supply amounts of the first film-forming stock solution and the second film-forming stock solution) In the initial stage (about 1 minute), adjustment of the set value of the supply amount of the film-forming stock solution was sequentially performed until a steady state was reached.
Next, the reinforcing support X coated with the first film-forming stock solution and the second film-forming stock solution is passed through a coagulation bath 72 containing an 8% by mass DMAc aqueous solution kept at 80 ° C. Was solidified to form a porous hollow fiber membrane precursor M, and the direction was changed by the guide roll 73 and pulled up from the coagulation bath 72.
With respect to the obtained porous hollow fiber membrane precursor, the number of humps formed was measured and found to be 2 per spindle.

[比較例1]
紡糸開始時の製膜原液の供給量の設定値Waを、定常状態における製膜原液の供給量の設定値Wbと同じ(Wa/Wb=1.0)にし、紡糸ノズル1への製膜原液の供給量を紡糸当初よりそのまま変化させなかった以外は、実施例1と同様にして多孔質中空糸膜前駆体を得た。
得られた多孔質中空糸膜前駆体について、形成されたコブ状部分の数を計測したところ1錘につき100個であった。
[Comparative Example 1]
The set value Wa of the film-forming stock solution supply amount at the start of spinning is set to be the same as the set value Wb of the film-forming stock solution supply amount in a steady state (Wa / Wb = 1.0), and the film-forming stock solution to the spinning nozzle 1 is set. A porous hollow fiber membrane precursor was obtained in the same manner as in Example 1 except that the supply amount was not changed as it was from the beginning of spinning.
With respect to the obtained porous hollow fiber membrane precursor, the number of bump-shaped portions formed was measured and found to be 100 per spindle.

1 紡糸ノズル
11 第1のノズル
12 第2のノズル
13 第3のノズル
14 支持体通路
15 原液流路
16 原液流路
18 第1の貯液部
19 第1の賦形部
21 第2の貯液部
22 第2の賦形部
31、32 多孔エレメント
X 補強支持体
Y 製膜原液
DESCRIPTION OF SYMBOLS 1 Spinning nozzle 11 1st nozzle 12 2nd nozzle 13 3rd nozzle 14 Support body channel | path 15 Stock solution flow path 16 Stock solution flow path 18 1st liquid storage part 19 1st shaping part 21 2nd liquid storage Part 22 Second shaping part 31, 32 Porous element X Reinforcement support Y Film-forming stock solution

Claims (2)

中空状の補強支持体の外側に多孔質膜層が形成された多孔質中空糸膜の製造方法であって、
紡糸ノズルによる紡糸によって、前記多孔質膜層を形成する製膜原液を前記補強支持体の外側に付与し、該製膜原液を凝固液で凝固させる紡糸凝固工程を有し、
紡糸開始時に前記紡糸ノズルに供給する前記製膜原液の供給量の設定値Waを、定常状態における設定値Wbよりも多くして紡糸を開始した後、前記製膜原液の供給量を前記設定値Wbにする、多孔質中空糸膜の製造方法。
A method for producing a porous hollow fiber membrane in which a porous membrane layer is formed on the outside of a hollow reinforcing support,
A spinning coagulation step in which a film-forming stock solution for forming the porous membrane layer is applied to the outside of the reinforcing support by spinning with a spinning nozzle, and the film-forming stock solution is coagulated with a coagulating liquid;
After starting the spinning with the set value Wa of the supply amount of the film-forming stock solution supplied to the spinning nozzle at the start of spinning being larger than the set value Wb in the steady state, the supply amount of the film-forming stock solution is set to the set value. A method for producing a porous hollow fiber membrane, wherein Wb is used.
前記設定値Waと設定値Wbの比Wa/Wbを1.2〜3.0とする請求項1に記載の多孔質中空糸膜の製造方法。   The method for producing a porous hollow fiber membrane according to claim 1, wherein a ratio Wa / Wb between the set value Wa and the set value Wb is set to 1.2 to 3.0.
JP2011131361A 2011-06-13 2011-06-13 Method for producing porous hollow fiber membrane Expired - Fee Related JP5790180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131361A JP5790180B2 (en) 2011-06-13 2011-06-13 Method for producing porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131361A JP5790180B2 (en) 2011-06-13 2011-06-13 Method for producing porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2013000619A true JP2013000619A (en) 2013-01-07
JP5790180B2 JP5790180B2 (en) 2015-10-07

Family

ID=47669775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131361A Expired - Fee Related JP5790180B2 (en) 2011-06-13 2011-06-13 Method for producing porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP5790180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016228A1 (en) * 2013-07-29 2015-02-05 三菱レイヨン株式会社 Device and method for producing hollow porous membrane
JP6004120B1 (en) * 2015-09-03 2016-10-05 三菱レイヨン株式会社 Hollow fiber membrane production method and hollow fiber membrane spinning nozzle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003222A (en) * 1999-06-18 2001-01-09 Mitsubishi Rayon Co Ltd Apparatus for spinning polymer fiber and its spinning
JP2007126783A (en) * 2005-11-04 2007-05-24 Mitsubishi Rayon Co Ltd Composite nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003222A (en) * 1999-06-18 2001-01-09 Mitsubishi Rayon Co Ltd Apparatus for spinning polymer fiber and its spinning
JP2007126783A (en) * 2005-11-04 2007-05-24 Mitsubishi Rayon Co Ltd Composite nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016228A1 (en) * 2013-07-29 2015-02-05 三菱レイヨン株式会社 Device and method for producing hollow porous membrane
CN105579627A (en) * 2013-07-29 2016-05-11 三菱丽阳株式会社 Device and method for producing hollow porous membrane
JPWO2015016228A1 (en) * 2013-07-29 2017-03-02 三菱レイヨン株式会社 Hollow porous membrane manufacturing apparatus and manufacturing method
JP6004120B1 (en) * 2015-09-03 2016-10-05 三菱レイヨン株式会社 Hollow fiber membrane production method and hollow fiber membrane spinning nozzle
WO2017037912A1 (en) * 2015-09-03 2017-03-09 三菱レイヨン株式会社 Method for manufacturing hollow fiber membrane and nozzle for hollow fiber membrane spinning

Also Published As

Publication number Publication date
JP5790180B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
US8752713B2 (en) Hollow porous membrane and process for producing the same
JP5958625B2 (en) Hollow fiber membrane spinning nozzle and method for producing hollow fiber membrane
KR101340121B1 (en) Method for manufacturing composite porous film
KR101985552B1 (en) Method to make a yarn-reinforced hollow fibre membranes around a soluble core
JP5834507B2 (en) Method and apparatus for producing porous hollow fiber membrane
JP2008114180A (en) Support for hollow porous membrane, hollow porous membrane and manufacturing method of them
CN108883374B (en) Method, spinneret and system for making multilayer membranes
CN113842786A (en) Method for producing hollow fiber membrane and nozzle for spinning hollow fiber membrane
JP6004120B1 (en) Hollow fiber membrane production method and hollow fiber membrane spinning nozzle
JP5903780B2 (en) Method and apparatus for producing porous hollow fiber membrane
JP5790180B2 (en) Method for producing porous hollow fiber membrane
JP5790181B2 (en) Method for producing porous hollow fiber membrane
CN108211815A (en) A kind of composite enhanced hollow-fibre membrane and its preparation method and application
KR100844043B1 (en) Method for manufacturing of hollow fiber membrane module
JP2012192407A (en) Support for hollow porous membrane, hollow porous membrane and methods of producing them
JP2016043319A (en) Manufacturing device of hollow porous membrane
KR20170014719A (en) Composite Hollow Fiber Membrane and Method for Manufacturing The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees