JP2012529616A5 - - Google Patents

Download PDF

Info

Publication number
JP2012529616A5
JP2012529616A5 JP2012514517A JP2012514517A JP2012529616A5 JP 2012529616 A5 JP2012529616 A5 JP 2012529616A5 JP 2012514517 A JP2012514517 A JP 2012514517A JP 2012514517 A JP2012514517 A JP 2012514517A JP 2012529616 A5 JP2012529616 A5 JP 2012529616A5
Authority
JP
Japan
Prior art keywords
column
tower
condenser
evaporator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012514517A
Other languages
Japanese (ja)
Other versions
JP5823385B2 (en
JP2012529616A (en
Filing date
Publication date
Priority claimed from FR0953935A external-priority patent/FR2946735B1/en
Application filed filed Critical
Publication of JP2012529616A publication Critical patent/JP2012529616A/en
Publication of JP2012529616A5 publication Critical patent/JP2012529616A5/ja
Application granted granted Critical
Publication of JP5823385B2 publication Critical patent/JP5823385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

低温蒸留による空気分離のための装置及び方法Apparatus and method for air separation by cryogenic distillation

本発明は、低温蒸留による空気分離のための装置及び方法に関する。   The present invention relates to an apparatus and method for air separation by cryogenic distillation.

空気分離のための通常の(「門」型(”double column” type)の)装置は:
・蒸発器によって熱交換が行われる低圧を、中圧塔の上に設置し;
・低圧および中圧塔を、液体返還(液体酸素を低圧から蒸発−凝縮器へ、もしくは液体窒素を蒸発−凝縮器から中圧塔へ)ポンプおよびガスの輸送(蒸発−凝縮器から低圧へガス状酸素を返還し、中圧塔から蒸発−凝縮器にガス状窒素を送る)のためのパイプと併設することが知られる。
The usual ("gate" type) device for air separation is:
-A low-pressure column where heat is exchanged by the evaporator is installed above the medium- pressure column ;
• Low pressure and medium pressure towers with liquid return (liquid oxygen from low pressure column to evaporation-condenser, or liquid nitrogen from evaporation-condenser to medium pressure tower ) pump and gas transport (evaporation-condenser to low pressure It is known to be provided with a pipe for returning gaseous oxygen to the tower and sending gaseous nitrogen from the medium pressure tower to the evaporator-condenser.

ガス返還パイプにおける圧力の損失を減じ(優れた効果)、液体返還ポンプからのエネルギーの損失を減ずるため、最初の配置がエネルギー効率の向上を可能にすることが知られる。   It is known that the initial arrangement allows for increased energy efficiency in order to reduce the pressure loss in the gas return pipe (excellent effect) and reduce the loss of energy from the liquid return pump.

低圧において二つの蒸発−凝縮器を有する空気分離のための装置は、以下のような設備として知られる:
・配置1:低圧(二つの蒸発器を備える)を中圧塔の上に設置する(仏国特許出願公開第2724011号明細書、図1および4)。
An apparatus for air separation with two evaporation-condensers in a low-pressure column is known as the following equipment:
Arrangement 1: A low-pressure column (with two evaporators) is installed on top of a medium- pressure column (French Patent Application No. 2724011, FIGS. 1 and 4).

・配置2:中圧塔の頭上の蒸発器を直接的に介して熱交換を行うように、低圧の底部を床面上に、そして低圧の頂部を中圧塔の上に設置する(仏国特許出願公開第2724011号明細書、図2および3)。 -Arrangement 2: the bottom of the low pressure column is placed on the floor and the top of the low pressure column is placed on the medium pressure column so that heat exchange is performed directly through the evaporator above the medium pressure tower ( French Patent Application No. 2724011, FIGS. 2 and 3).

・配置3:低圧(二つの蒸発器を備える)を中圧塔の隣に設置する(米国特許第6134915号公報、欧州特許出願公開第0195065号公報)。 Arrangement 3: A low-pressure column (with two evaporators) is installed next to a medium- pressure column (US Pat. No. 6,134,915, European Patent Application Publication No. 0195065).

配置1および2は、同等のエネルギー効率が得られ得ることが知られる。これら二つの場合において、ガスパイプにおける圧力の損失が存在するが、液体返還ポンプはない。   It is known that arrangements 1 and 2 can achieve comparable energy efficiency. In these two cases, there is a pressure loss in the gas pipe, but there is no liquid return pump.

低圧の上流部を床面上に、また凝縮−再沸器を含まない低圧の上流部についてですら配置することを提案した文献はない。 The upstream portion of the lower pressure column on the floor, also condensation - no documents even proposed to place in the upstream of the low pressure column without the reboiler.

驚くことに、低圧において少なくとも二つの蒸発器を持つ二つの塔を用いる非常に低エネルギーの方法のために、エネルギー消費の期間における最良の実行配置は:
中圧塔を床面上に配置し、
− 低圧の上流部を床板上に配置し、
− 低圧の下流部を床板上に配置する、ということになる。
Surprisingly, for a very low energy process using two columns with at least two evaporators in the low pressure column , the best performing arrangement during the period of energy consumption is:
-Place the medium pressure tower on the floor,
-The upstream part of the low pressure column is placed on the floorboard,
-The downstream part of the low-pressure column will be placed on the floorboard.

主な理由は、低圧の一部が中圧塔の上に設備された場合に液体を上げるためのポンプの設置を要する、中圧塔および低圧の間の圧力差が、一般的に絶対圧力で2バールより少ないためである。 The main reason is that requires installation of a pump for raising the liquid when a part of the lower pressure column is equipment on a medium pressure column, the pressure difference between the medium pressure column and low pressure column is generally absolute This is because the pressure is less than 2 bar.

本発明の趣旨によれば、装置は空気分離のために設けられ、中圧で運転し得る第1の蒸留塔と、低圧で運転し得る第2の蒸留塔と、低圧で、または前記低圧で運転し得る第3の蒸留塔と、第1の凝縮−蒸発器と、前記第2のの底部に配置された第2の凝縮−蒸発器と、少なくとも前記第1のに空気を供給するパイプと、前記第1のの上部から前記第3のの上部に窒素豊富な液体を供給するパイプと、前記第3のの底部から前記第1の凝縮−蒸発器に液体を供給する少なくとも一つのパイプと、前記第1のの底部から前記第3のに液体を供給するパイプと、前記第1の凝縮−蒸発器から前記第2のに液体を供給するパイプと、前記第2のから前記第3のの底部に頂部ガス(overhead gas)を供給するパイプと、を具備し、前記第1、第2、および第3のは、隣り合って配置され、できれば全て床面の上に配置される。 In accordance with the spirit of the invention, the apparatus is provided for air separation, a first distillation column that can be operated at medium pressure , a second distillation column that can be operated at low pressure, and at low pressure or at said low pressure. supplying an evaporator, the air in at least said first column - the third distillation column may be operated, first condenser - evaporator, the second condensing located at the bottom of the second column A pipe for supplying a nitrogen-rich liquid from the top of the first column to the top of the third column , and a liquid for supplying the liquid to the first condenser-evaporator from the bottom of the third column At least one pipe, a pipe for supplying liquid from the bottom of the first tower to the third tower , a pipe for supplying liquid from the first condenser-evaporator to the second tower , and pipe supplying top gas (overhead gas) from the second column to the bottom of the third column, comprising a said first , Second, and third columns are arranged adjacent, are all arranged on the floor surface if possible.

好ましくは、前記第2のは少なくとも、前記第2の凝縮−蒸発器の上に配置された第3の凝縮−蒸発器を含む。 Preferably, the second column includes at least a third condensing-evaporator disposed on the second condensing-evaporator.

極低温で運転し得る装置の要素、例えば液体酸素蒸発器は、一つの前記の下に配置されても良く、他の二つの前記塔および当該要素は、前記床面上に直接置かれる。 Elements of the apparatus that can operate at cryogenic temperatures, such as a liquid oxygen evaporator, may be placed under one of the towers , the other two towers and the elements being placed directly on the floor.

加圧手段が前記第2のの底および前記液体酸素蒸発器に接続されても良い。 A pressurizing means may be connected to the bottom of the second column and the liquid oxygen evaporator.

前記第1の凝縮−蒸発器は、前記第1のから来るガスによって再沸騰できるように、前記第1のの上にあって、前記第1のの上部に接続されても良い。 It said first condenser - evaporator, so that it can be reboiled by gas coming from the first column, in the top of the first column, may be connected to the upper portion of the first column.

好ましくは、当該装置は二つの前記塔に接続されたただ一つのポンプを備える。   Preferably, the apparatus comprises a single pump connected to the two towers.

前記ポンプは、前記第2のの底部から前記第1の凝縮−再沸器に液体を供給する二つの前記パイプに接続されても良い。 The pump may be connected to two pipes that supply liquid from the bottom of the second column to the first condenser-reboiler.

ガスパイプが前記第1の凝縮器を前記第3のの底部に接続しても良い。 A gas pipe may connect the first condenser to the bottom of the third column .

前記第2のおよび/または前記第3のの上部は、前記第1の凝縮−再沸器より低い高さにあっても良く、好ましくは前記第1のの上部よりも低い。 The upper portion of the second column and / or the third column may be at a lower height than the first condenser-reboiler, and is preferably lower than the upper portion of the first column .

前記第1のにおける嵩密度(packing densities)は、前記第2のおよび/または前記第3のにおける嵩密度より低くても良い。 The packing density in the first tower may be lower than the bulk density in the second tower and / or the third tower .

好ましくは、前記第3のは凝縮−再沸器を含まない。 Preferably, the third column does not include a condenser-reboiler.

前記第2のは、熱交換手段に加えて、第3の凝縮−再沸器および前記第3の凝縮−再沸器の上に配置された物をも含んでも良い。 In addition to the heat exchange means, the second column may also include a third condenser-reboiler and an object disposed on the third condenser-reboiler.

頂部ガスを前記第2のから前記第3のの底部に供給するための前記パイプは、前記第1の凝縮−再沸器で蒸発したガス用のパイプに接続しても良い。 The pipe for supplying top gas from the second column to the bottom of the third column may be connected to a pipe for gas evaporated in the first condenser-reboiler.

前記第3のの下に配置された前記装置の要素は、好ましくは液体酸素蒸発器である。 The element of the device arranged under the third tower is preferably a liquid oxygen evaporator.

前記第1のの運転圧力と前記第2および第3ののうち少なくとも一つの圧力との間の圧力差は、好ましくは3バールより少なく、好ましくは2.5バールであり、さらに好ましくは2バールである。 The pressure difference between the operating pressure of the first column and the pressure of at least one of the second and third columns is preferably less than 3 bar, preferably 2.5 bar, more preferably 2 bar.

前記第2のの上部と前記第3のの底部との運転圧力の圧力差は、1バールより少なくても良く、好ましくは0.5バールよりも少なく、さらに好ましくは0.2バールよりも少ない。 Pressure differential operating pressure between the bottom of the upper and the third column of the second column may be less than 1 bar, more preferably less than 0.5 bar, more preferably 0.2 bar There are few.

本発明は、本発明に係る空気分離のための装置を示す図面を参照することでさらに詳細に開示されるだろう。   The invention will be disclosed in more detail with reference to the drawings showing an apparatus for air separation according to the invention.

図1において、装置は中圧で運転する第1の1、低圧で運転する第2の2、および第2の2よりわずかに低い低圧で運転する第3の3を備え、当該低圧は、好ましくは3の底部と2の上部との間で測定される圧力差が500ミリバール(好ましくは200ミリバール)より少なくなるように運転する。それぞれのの中央で測定される中圧塔1および低圧2または3の間の圧力差は、3バールより少なく、好ましくは2.5バール、さらに好ましくは2バールである。 In Figure 1, the apparatus includes a first column 1, third column 3 operating at the second column 2, and a second slightly lower lower pressure than column 2 operating at low pressure for operating at medium pressure, the The low pressure column is preferably operated so that the pressure difference measured between the bottom of column 3 and the top of column 2 is less than 500 mbar (preferably 200 mbar). The pressure difference between the pressure column 1 and lower pressure column 2 or 3 in which is measured at the center of each column is less than 3 bar, preferably 2.5 bar, more preferably 2 bar.

三つの1,2,3は床面27に配置されるが、生成物蒸発器11が前記の下に配置されることで第3の3は持ち上げられる。蒸発器11をどこか別の場所に配置し、3を直接床面27の上に置いても当然良い。床面27はコンクリート基礎または他の平面からなる。 Although three tower 1,2,3 are arranged on the floor 27, the third column 3 by product evaporator 11 is disposed under the tower is lifted. Of course, the evaporator 11 may be placed somewhere else and the tower 3 placed directly on the floor 27. The floor surface 27 consists of a concrete foundation or another plane.

精製されるとともに冷却された圧縮空気流33は、区分された第1の1の底部に入り、酸素豊富な流れ25および窒素豊富な流れを作る。酸素豊富な流れ25は、第3の3の下層を通る。窒素豊富な流れは、第1のの頂部凝縮器9で凝縮する。前記凝縮器9は、第3の3の底部から送られ、床面27に配置されたポンプ13によって加圧された液体23の流れによって冷却される。凝縮器9から蒸発した液体17は、第2の2の頂部ガス15と混合し、第3の3の底に供給されるガスの流れ19を作る。第2の2のの上部に、凝縮器9から液体21が供給される。 The purified and cooled compressed air stream 33 enters the bottom of the sectioned first column 1 to produce an oxygen rich stream 25 and a nitrogen rich stream. The oxygen rich stream 25 passes through the lower layer of the third column 3. The nitrogen rich stream condenses in the top condenser 9 of the first column . The condenser 9 is sent from the bottom of the third tower 3 and is cooled by the flow of the liquid 23 pressurized by the pump 13 disposed on the floor surface 27. The liquid 17 evaporated from the condenser 9 is mixed with the top gas 15 of the second column 2 to produce a gas stream 19 fed to the bottom of the third column 3. On top of the second column 2 of the column, the liquid 21 is supplied from the condenser 9.

第2の2は、底部再沸器5そしてできれば中間再沸器7を含む一つまたは二つ、またはそれ以上の再沸器を含む。前記再沸器は、冷間圧縮されたまたはされていない空気の流れ、または冷間圧縮されたまたはされていない窒素の流れを含む、何らかの適当な手段によって加熱されても良い。ガスの流れまたは液体酸素29は、第2の2の下層で回収される。前記液体の流れは、ポンプ(図示せず)によって加圧されても良く、加圧されたガスの流れを作るように蒸発器11に入れられても良い。 The second column 2 contains one or two or more reboilers including a bottom reboiler 5 and possibly an intermediate reboiler 7. The reboiler may be heated by any suitable means, including a cold compressed air stream or not, or a cold compressed air stream or not. A gas stream or liquid oxygen 29 is recovered in the lower layer of the second column 2. The liquid stream may be pressurized by a pump (not shown) or may be placed in the evaporator 11 to create a pressurized gas stream.

液体窒素の流れ35は、バルブで膨張するとともに第3の3の上部に入れられ、そして窒素豊富なガス状の流れ31は第3の3の上部で回収される。好ましくは、第3の3の上部を第1の1の上部よりも低くされることで、重力流によってこの輸送を容易にする
図2と図1との差異は、図1は槽型蒸発器である凝縮器9を示すのに対し、図2は薄膜型蒸発器9を示す。この場合、凝縮器から回収される流れ21は二相流であるとともに、図1に示すように第2のの上部に入る。流れ17は発生しない。
The liquid nitrogen stream 35 is expanded by a valve and placed in the upper part of the third column 3, and the nitrogen-rich gaseous stream 31 is recovered in the upper part of the third column 3. Preferably, the top of the third tower 3 is made lower than the top of the first tower 1 to facilitate this transport by gravity flow. The difference between FIG. 2 and FIG. FIG. 2 shows a thin film evaporator 9 while a condenser 9 is shown. In this case, the stream 21 recovered from the condenser is a two-phase flow and enters the top of the second column as shown in FIG. Stream 17 does not occur.

図3および4は、図1および2の変形であり、それぞれ蒸発器11が欠けた、または一つのの下以外のどこか別の場所に配置された場合を示す。この場合、三つのは床面27に直接置かれる。 FIGS. 3 and 4 are variations of FIGS. 1 and 2 and show the case where the evaporator 11 is missing or placed somewhere other than under one column , respectively. In this case, the three towers are placed directly on the floor 27.

図5および6は、第2のがただ一つの再沸器である底部再沸器5を収容する図1および2の変形をそれぞれ示す。この場合、第2のは当然短くなる。底部再沸器5は、できれば加圧された、またできれば冷間加圧された窒素または空気によって加熱されても良い。 FIGS. 5 and 6 show the variants of FIGS. 1 and 2, respectively, in which the second tower accommodates the bottom reboiler 5, which is a single reboiler. In this case, the second tower is naturally shorter. The bottom reboiler 5 may be heated by nitrogen or air, preferably pressurized and possibly cold pressurized.

本発明によれば、せいぜい一つか二つのポンプが必要であると解される。第1のポンプは、液体を第3のの底部から第1のの頂部凝縮器に上げるために用いられるポンプ13である。加圧された形の酸素が必要とされる場合に用いられる第2のポンプは、液体酸素を加圧するために用いられる。液体25のような他の液体を上げるため、の間の圧力差は液体を浮遊させるに足るものであるべきである。 According to the invention, it is understood that at most one or two pumps are required. The first pump is a pump 13 which is used to raise the liquid from the bottom of the third column in the first column of the top condenser. A second pump, used when pressurized form of oxygen is required, is used to pressurize liquid oxygen. In order to raise other liquids, such as liquid 25, the pressure difference between the columns should be sufficient to float the liquid.

第1のの上の蒸発器から第2および/または第3のへ重力によって流れが生じ得るようなできる限り高い第1の1、およびできる限り低い第2および/または第3の2,3を得るために、第1の1は比較的低い嵩密度(例えば密度が250〜500m/m)を含有し、第2および/または第3のは比較的高い嵩密度(600〜1000m/m)を含有する。パイプ21,35における液体の移動は、これによって容易となる。
本願の出願当初の請求項の記載を実施の態様として以下に付記する。
[1]
中圧で運転し得る第1の蒸留塔(1)と、低圧で運転し得る第2の蒸留塔(2)と、低圧で、または前記低圧で運転し得る第3の蒸留塔(3)と、第1の凝縮−蒸発器(9,9A)と、前記第2の塔の底部に配置された第2の凝縮−蒸発器(5)と、少なくとも前記第1の塔に空気を供給するパイプ(33)と、前記第1の塔の上部から前記第3の塔の上部に窒素豊富な液体を供給するパイプ(35)と、前記第3の塔の底部から前記第1の凝縮−蒸発器に液体を供給する少なくとも一つのパイプ(23)と、前記第1の塔の底部から前記第3の塔に液体を供給するパイプ(25)と、前記第1の凝縮−蒸発器から前記第2の塔に液体を供給するパイプ(21)と、前記第2の塔から前記第3の塔の底部に頂部ガスを供給するパイプ(15,19)と、を具備し、前記第1、第2、および第3の塔は、隣り合って配置され、できれば全て床面(27)の上に配置される空気分離のための装置。
[2]
極低温で運転し得る装置の要素、例えば液体酸素蒸発器(11)が、一つの前記塔(1,2,3)の下に配置され、他の二つの前記塔および前記要素が前記床面に直接配置された[1]に記載の装置。
[3]
前記第2の塔(2)の底部と前記液体酸素蒸発器(11)とに接続された加圧手段を具備した[2]に記載の装置。
[4]
前記第1の凝縮−蒸発器(9,9A)は前記第1の塔(1)の上にあり、前記第1の塔からのガスによって再沸騰し得るように前記第1の塔の上部に接続された[1]ないし[3]のいずれか一つに記載の装置。
[5]
二つの前記塔に接続されたただ一つのポンプ(13)を具備した[1]ないし[4]のいずれか一つに記載の装置。
[6]
前記ポンプ(13)が前記第2の塔の底部から前記第1の凝縮−再沸器(9,9A)に液体を供給する二つの前記パイプ(23)に接続された[5]に記載の装置。
[7]
前記第1の凝縮−再沸器(9)を前記第3の塔(3)の底部に接続するガスパイプ(17,19)を具備する[1]ないし[6]のいずれか一つに記載の装置。
[8]
前記第2の塔(2)および/または前記第3の塔(3)の上部は、前記第1の凝縮−再沸器(9,9A)より低い高さにあり、好ましくは前記第1の塔(1)の上部よりも低く、前記第1の塔(1)の嵩密度は前記第2の塔(2)および/または前記第3の塔(3)の嵩密度よりも低くなり得る[1]ないし[7]のいずれか一つに記載の装置。
[9]
前記第3の塔は凝縮−再沸器を含まない[1]ないし[8]のいずれか一つに記載の装置。
[10]
前記第2の塔(2)は、熱交換手段に加えて第3の凝縮−再沸器(7)および前記第3の凝縮−再沸器の上に配置された熱及び物質交換のための手段を含む[1]ないし[9]のいずれか一つに記載の装置。
[11]
前記第2の塔から前記第3の塔の底部に頂部ガスを供給する前記パイプ(15,19)は、前記第1の凝縮−再沸器(9)で蒸発したガス用のパイプ(17)に接続される[1]ないし[10]のいずれか一つに記載の装置。
[12]
前記第3の塔(3)の下に配置された前記装置の要素は、液体酸素蒸発器(11)である[1]ないし[11]のいずれか一つに記載の装置。
[13]
前記第1の塔(1)の運転圧力と前記第2および第3の塔(2,3)のうち少なくとも一つの圧力との間の圧力差は、3バールよりも少なく、好ましくは2.5バールであり、さらに好ましくは2バールである[1]ないし[12]のいずれか一つに記載の装置を用いる空気分離のための方法。
[14]
前記第2の塔(2)の上部と前記第3の塔(3)の底部との運転圧力の圧力差は、1バールより少なく、好ましくは0.5バールよりも少なく、さらに好ましくは0.2バールよりも少ない[1]ないし[12]のいずれか一つに記載の装置を用いる空気分離のための方法。
First as high first capable as the evaporator of the top of the tower can occur flows by gravity into the second and / or third tower tower 1, and as low as possible second and / or third column To obtain a few, the first column 1 contains a relatively low bulk density (eg a density of 250-500 m 2 / m 3 ), and the second and / or third column has a relatively high bulk density. (600 to 1000 m 2 / m 3 ). The movement of the liquid in the pipes 21 and 35 is thereby facilitated.
The description of the claims at the beginning of the application of the present application will be appended as an embodiment.
[1]
A first distillation column (1) which can be operated at medium pressure, a second distillation column (2) which can be operated at low pressure, and a third distillation column (3) which can be operated at low pressure or at said low pressure A first condenser-evaporator (9, 9A), a second condenser-evaporator (5) arranged at the bottom of the second tower, and a pipe for supplying air to at least the first tower (33), a pipe (35) for supplying a nitrogen-rich liquid from the top of the first tower to the top of the third tower, and the first condenser-evaporator from the bottom of the third tower At least one pipe (23) for supplying liquid to the pipe, a pipe (25) for supplying liquid from the bottom of the first tower to the third tower, and the second from the first condenser-evaporator. A pipe (21) for supplying liquid to the tower of the pipe and a pipe (15,) for supplying top gas from the second tower to the bottom of the third tower 9), comprising a first, second, and third columns are arranged adjacent, apparatus for air separation to be arranged all if possible on the floor surface (27).
[2]
Elements of the device that can operate at cryogenic temperatures, for example a liquid oxygen evaporator (11), are arranged under one of the towers (1, 2, 3), the other two towers and the elements are connected to the floor surface. [1] The apparatus according to [1], which is directly disposed on the apparatus.
[3]
The apparatus according to [2], further comprising pressurizing means connected to the bottom of the second column (2) and the liquid oxygen evaporator (11).
[4]
The first condenser-evaporator (9, 9A) is above the first column (1) and is located at the top of the first column so that it can be reboiled by the gas from the first column. The device according to any one of [1] to [3] connected.
[5]
The apparatus according to any one of [1] to [4], comprising a single pump (13) connected to the two towers.
[6]
[5] The pump (13) is connected to two pipes (23) supplying liquid from the bottom of the second column to the first condenser-reboiler (9, 9A). apparatus.
[7]
According to any one of [1] to [6], comprising a gas pipe (17, 19) connecting the first condenser-reboiler (9) to the bottom of the third column (3). apparatus.
[8]
The top of the second column (2) and / or the third column (3) is at a lower height than the first condenser-reboiler (9, 9A), preferably the first column Lower than the top of the tower (1), the bulk density of the first tower (1) may be lower than the bulk density of the second tower (2) and / or the third tower (3) [ The apparatus according to any one of [1] to [7].
[9]
The apparatus according to any one of [1] to [8], wherein the third column does not include a condenser-reboiler.
[10]
Said second column (2) is for heat and mass exchange arranged on top of a third condenser-reboiler (7) and said third condenser-reboiler in addition to heat exchange means. The apparatus according to any one of [1] to [9], including means.
[11]
The pipes (15, 19) for supplying the top gas from the second column to the bottom of the third column are pipes for gas (17) evaporated in the first condenser-reboiler (9). The device according to any one of [1] to [10], which is connected to the device.
[12]
The device according to any one of [1] to [11], wherein the element of the device arranged under the third tower (3) is a liquid oxygen evaporator (11).
[13]
The pressure difference between the operating pressure of the first column (1) and the pressure of at least one of the second and third columns (2, 3) is less than 3 bar, preferably 2.5 A method for air separation using the apparatus according to any one of [1] to [12], which is bar, more preferably 2 bar.
[14]
The difference in operating pressure between the top of the second column (2) and the bottom of the third column (3) is less than 1 bar, preferably less than 0.5 bar, more preferably 0. A method for air separation using an apparatus according to any one of [1] to [12], less than 2 bar.

Claims (18)

中圧で運転し得る第1の蒸留塔(1)と、低圧で運転し得る第2の蒸留塔(2)と、低圧で運転し得る第3の蒸留塔(3)と、第1の凝縮−蒸発器(9,9A)と、前記第2のの底部に配置された第2の凝縮−蒸発器(5)と、少なくとも前記第1のに空気を供給するパイプ(33)と、前記第1のの上部から前記第3のの上部に窒素豊富な液体を供給するパイプ(35)と、前記第3のの底部から前記第1の凝縮−蒸発器に液体を供給するパイプ(23)と、前記第1のの底部から前記第3のに液体を供給するパイプ(25)と、前記第1の凝縮−蒸発器から前記第2のに液体を供給するパイプ(21)と、前記第2のから前記第3のの底部に頂部ガスを供給するパイプ(15,19)と、を具備し、前記第1の塔と前記第2の塔、および前記第1の塔と前記第3の塔は、それぞれ隣り合って配置される空気分離のための装置。 First distillation column capable of operating at medium pressure (1), the second distillation column can be operated at low pressure and (2), a third distillation column may OPERATION at low pressure and (3), first condenser - evaporator (9, 9A), said second second condensing located at the bottom of the tower - the evaporator (5), a pipe (33) for supplying air to at least the first column A pipe (35) for supplying a nitrogen-rich liquid from the top of the first tower to the top of the third tower , and a liquid for feeding the first condenser-evaporator from the bottom of the third tower and to Rupa type (23), a pipe (25) for supplying liquid to the third column from the bottom of the first column, the first condenser - liquid to the second tower from the evaporator a pipe (21) supplies, and the said second tower third column bottom supplying top gas pipe (15, 19), comprising a first column Serial second column, and wherein the first column the third tower apparatus for air separation to be arranged adjacent each. 前記第1の塔(1)、前記第2の塔(2)および前記第3の塔(3)が全て床面(27)の上に配置される請求項1に記載の装置。The apparatus according to claim 1, wherein the first tower (1), the second tower (2) and the third tower (3) are all arranged on a floor surface (27). 極低温で運転し得る装置の要素である液体酸素蒸発器(11)が、一つの前記(1,2,3)の下に配置され、他の二つの前記が前記床面に直接配置された請求項1に記載の装置。 A liquid oxygen evaporator (11), which is an element of a device that can operate at cryogenic temperatures, is placed under one of the towers (1, 2, 3) and the other two towers are placed directly on the floor. The apparatus of claim 1. 前記第2の(2)の底部と前記液体酸素蒸発器(11)とに接続された加圧手段を具備した請求項2または3に記載の装置。 The apparatus according to claim 2 or 3 , further comprising pressurizing means connected to the bottom of the second column (2) and the liquid oxygen evaporator (11). 前記第1の凝縮−蒸発器(9,9A)は前記第1の(1)の上にあり、前記第1のからのガスによって再沸騰し得るように前記第1のの上部に接続された請求項1ないしのいずれか一つに記載の装置。 The first condenser-evaporator (9, 9A) is above the first column (1) and is located at the top of the first column so that it can be reboiled by the gas from the first column . 5. A device according to any one of claims 1 to 4 connected. 二つの前記に接続されるポンプ(13)を具備した請求項1ないしのいずれか一つに記載の装置。 Apparatus according to any one of claims 1 equipped with a connected Lupo pump (13) into two of the tower 5. 前記ポンプ(13)が前記第2のの底部から前記第1の塔上部に設置される第1の凝縮−再沸器(9,9A)に液体を供給する前記パイプ(23)の経路上に設けられた請求項1ないし5のいずれか一つに記載の装置。 First condensing the pump (13) is installed in the first column top from the bottom of the second column - reboiler (9, 9A) prior Symbol pipe you supplying liquid (23) apparatus according to any one of claims 1 provided on a path 5. 前記第1の凝縮−再沸器(9)を前記第3の(3)の底部に接続するガスパイプ(17,19)を具備する請求項1ないしのいずれか一つに記載の装置。 It said first condensing - Apparatus according reboiler (9) to any one of claims 1 to 7 comprising a gas pipe (17, 19) connected to the bottom of the third column (3). 前記第3のは凝縮−再沸器を含まない請求項1ないし8のいずれか一つに記載の装置。 The apparatus according to any one of claims 1 to 8, wherein the third column does not include a condenser-reboiler. 前記第2の(2)は、第3の凝縮−再沸器(7)および前記第3の凝縮−再沸器の上に配置された熱及び物質交換のための手段を含む請求項1ないし9のいずれか一つに記載の装置。 The second column (2) comprises a third condenser-reboiler (7) and means for heat and mass exchange disposed on the third condenser-reboiler. The apparatus as described in any one of thru | or 9. 前記第2のから前記第3のの底部に頂部ガスを供給する前記パイプ(15,19)は、前記第1の凝縮−再沸器(9)で蒸発したガス用のパイプ(17)に接続される請求項1ないし10のいずれか一つに記載の装置。 The pipes (15, 19) for supplying the top gas from the second column to the bottom of the third column are pipes for gas (17) evaporated in the first condenser-reboiler (9). 11. The device according to any one of claims 1 to 10, which is connected to. 記液体酸素蒸発器(11)は、第3の塔(3)の下に配置されている請求項3ないし11のいずれか一つに記載の装置。 Before SL liquid body oxygen evaporator (11), the third column (3) according to any one of claims 3 to 11 is arranged underneath the. 前記第1の(1)の運転圧力と前記第2および第3の(2,3)のうち少なくとも一つの圧力との間の圧力差は、3バールよりも少ない請求項1ないし11のいずれか一つに記載の装置を用いる空気分離のための方法。 Pressure difference between the at least one pressure of said first column (1) operating pressure and the second and third towers (2,3), to small I請 Motomeko no 1 than 3 bar A method for air separation using the apparatus according to any one of 11. 前記圧力差が2.5バールよりも少ない請求項13に記載の方法。14. A method according to claim 13, wherein the pressure difference is less than 2.5 bar. 前記圧力差が2バールよりも少ない請求項13または14に記載の方法。15. A method according to claim 13 or 14, wherein the pressure difference is less than 2 bar. 前記第2の(2)の上部と前記第3の(3)の底部との運転圧力の圧力差は、1バールより少ない請求項1ないし12のいずれか一つに記載の装置を用いる空気分離のための方法。 The pressure difference between the operating pressure of the bottom of the upper and the third column of the second column (2) (3) An apparatus according to any one of from less I請 Motomeko 1 to 1 bar 12 Method for air separation using. 前記圧力差が0.5バールよりも少ない請求項16に記載の方法。17. A method according to claim 16, wherein the pressure difference is less than 0.5 bar. 前記圧力差が0.2バールよりも少ない請求項16または17に記載の方法。18. A method according to claim 16 or 17, wherein the pressure difference is less than 0.2 bar.
JP2012514517A 2009-06-12 2010-06-04 Apparatus and method for air separation by cryogenic distillation Expired - Fee Related JP5823385B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0953935A FR2946735B1 (en) 2009-06-12 2009-06-12 APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION.
FR0953935 2009-06-12
PCT/FR2010/051101 WO2010142894A2 (en) 2009-06-12 2010-06-04 Apparatus and method for separating air by cryogenic distillation

Publications (3)

Publication Number Publication Date
JP2012529616A JP2012529616A (en) 2012-11-22
JP2012529616A5 true JP2012529616A5 (en) 2014-10-09
JP5823385B2 JP5823385B2 (en) 2015-11-25

Family

ID=42028103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012514517A Expired - Fee Related JP5823385B2 (en) 2009-06-12 2010-06-04 Apparatus and method for air separation by cryogenic distillation

Country Status (9)

Country Link
US (1) US20120118013A1 (en)
EP (1) EP2440871A2 (en)
JP (1) JP5823385B2 (en)
CN (1) CN102667383B (en)
AU (1) AU2010258490B2 (en)
CA (1) CA2762315A1 (en)
FR (1) FR2946735B1 (en)
WO (1) WO2010142894A2 (en)
ZA (1) ZA201108764B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946735B1 (en) * 2009-06-12 2012-07-13 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION.
US20150316317A1 (en) * 2012-12-27 2015-11-05 Linde Aktiengesellschaft Method and device for low-temperature air separation
CA2900122C (en) * 2013-03-06 2023-10-31 Linde Aktiengesellschaft Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant
US10018414B2 (en) * 2015-07-31 2018-07-10 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of low pressure gaseous oxygen
US10101084B2 (en) * 2015-07-31 2018-10-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of low pressure gaseous oxygen
FR3075064B1 (en) * 2017-12-19 2019-12-27 IFP Energies Nouvelles DISTRIBUTOR TRAY WITH GAS COMPARTMENTS AND CHIMNEYS OF THE SAME FORM FOR OFFSHORE GAS / LIQUID CONTACT COLUMN

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781739A (en) * 1984-08-20 1988-11-01 Erickson Donald C Low energy high purity oxygen increased delivery pressure
US4582518A (en) 1984-09-26 1986-04-15 Erickson Donald C Nitrogen production by low energy distillation
GB9325648D0 (en) * 1993-12-15 1994-02-16 Boc Group Plc Air separation
FR2724011B1 (en) * 1994-08-29 1996-12-20 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC DISTILLATION
US5463871A (en) * 1994-10-04 1995-11-07 Praxair Technology, Inc. Side column cryogenic rectification system for producing lower purity oxygen
DE19524928A1 (en) * 1995-07-08 1997-01-09 Basf Ag Process for the rectification of mixtures of high-boiling air and / or temperature sensitive substances, which require a high separation performance, in a fine vacuum, as well as columns suitable for this process
DE19537913A1 (en) * 1995-10-11 1997-04-17 Linde Ag Triple column process for the low temperature separation of air
FR2761897B1 (en) * 1997-04-11 1999-05-14 Air Liquide INSTALLATION FOR SEPARATING A GAS MIXTURE BY DISTILLATION
EP0908226B1 (en) * 1997-10-13 2006-02-22 Taiyo Nippon Sanso Corporation Process and apparatus for separation of stable isotope compound
US5966967A (en) * 1998-01-22 1999-10-19 Air Products And Chemicals, Inc. Efficient process to produce oxygen
FR2774752B1 (en) * 1998-02-06 2000-06-16 Air Liquide AIR DISTILLATION SYSTEM AND CORRESPONDING COLD BOX
JPH11228116A (en) * 1998-02-12 1999-08-24 Nippon Sanso Kk Recovering and purifying method of argon and device therefor
US5916262A (en) * 1998-09-08 1999-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5921109A (en) * 1998-10-21 1999-07-13 Praxair Technology, Inc. Method for operating a cryogenic rectification column
CA2294406C (en) * 1999-01-21 2004-11-02 Sulzer Chemtech Ag Packing with a cross channel structure for a material exchange column with a high specific separation performance
US6357728B1 (en) * 1999-03-15 2002-03-19 Air Products And Chemicals, Inc. Optimal corrugated structured packing
US6134915A (en) * 1999-03-30 2000-10-24 The Boc Group, Inc. Distillation column arrangement for air separation plant
FR2780147B1 (en) * 1999-06-29 2001-01-05 Air Liquide AIR DISTILLATION SYSTEM AND CORRESPONDING COLD BOX
US6227005B1 (en) * 2000-03-01 2001-05-08 Air Products And Chemicals, Inc. Process for the production of oxygen and nitrogen
DE10040391A1 (en) * 2000-08-18 2002-02-28 Linde Ag Cryogenic air separation plant
DE10103968A1 (en) * 2001-01-30 2002-08-01 Linde Ag Three-pillar system for the low-temperature separation of air
DE20205751U1 (en) * 2001-12-12 2002-07-11 Linde Ag Device for the low-temperature separation of air
DE10205878A1 (en) * 2002-02-13 2003-08-21 Linde Ag Cryogenic air separation process
US6568208B1 (en) * 2002-05-03 2003-05-27 Air Products And Chemicals, Inc. System and method for introducing low pressure reflux to a high pressure column without a pump
US6543253B1 (en) * 2002-05-24 2003-04-08 Praxair Technology, Inc. Method for providing refrigeration to a cryogenic rectification plant
US7210312B2 (en) * 2004-08-03 2007-05-01 Sunpower, Inc. Energy efficient, inexpensive extraction of oxygen from ambient air for portable and home use
US7549301B2 (en) * 2006-06-09 2009-06-23 Praxair Technology, Inc. Air separation method
FR2946735B1 (en) * 2009-06-12 2012-07-13 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION.

Similar Documents

Publication Publication Date Title
JP6257656B2 (en) Air separation device, method for obtaining a product containing argon, and method for building an air separation device
JP5823385B2 (en) Apparatus and method for air separation by cryogenic distillation
KR101541742B1 (en) Method and device for low-temperature air separation
JP2012529616A5 (en)
JP2003165712A (en) Method and apparatus for producing krypton and/or xenon by low-temperature air separation
EP0684438B1 (en) Air separation
JPH04227459A (en) Cryogenic air separating system with double formation type side condenser
JPH07260343A (en) Cryogenic rectification system using hybrid product boiler
TW200403420A (en) Air fractionation process and installation with mixing column and krypton-xenon recovery
JP2000111246A (en) Very low temperature rectifying system equipped with high strength and high capacity packing
AU2012311959B2 (en) Method and device for the cryogenic decomposition of air
JP3545629B2 (en) Cryogenic purification method and apparatus for producing ultra-high purity nitrogen and ultra-high purity oxygen
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
US20100221168A1 (en) Cryogenic system for neon production
JPH0618162A (en) Method of transferring liquid and rectification equipment using said method
US6536232B2 (en) Method for plant and separating air by cryogenic distillation
AU2012238460A1 (en) Method and apparatus for separating air by cryogenic distillation
CN102985776B (en) For the method and apparatus by separating air by cryogenic distillation
US7114352B2 (en) Cryogenic air separation system for producing elevated pressure nitrogen
KR100775877B1 (en) Cryogenic distillation system for air separation
JP2006284075A (en) Air separating method and its device
CN103038589A (en) Krypton xenon recovery from pipeline oxygen
KR20010049630A (en) Cryogenic rectification system for producing oxygen product at a non-constant rate
KR100390054B1 (en) Method for producing lower purity oxygen by cryogenic rectification
US20070220917A1 (en) Process and Device for Evaporating an Oxygen-Enriched Working Fluid