JP2012523373A - Carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with combustible impurities, and method for recovering high purity carbon dioxide using the same - Google Patents

Carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with combustible impurities, and method for recovering high purity carbon dioxide using the same Download PDF

Info

Publication number
JP2012523373A
JP2012523373A JP2012505802A JP2012505802A JP2012523373A JP 2012523373 A JP2012523373 A JP 2012523373A JP 2012505802 A JP2012505802 A JP 2012505802A JP 2012505802 A JP2012505802 A JP 2012505802A JP 2012523373 A JP2012523373 A JP 2012523373A
Authority
JP
Japan
Prior art keywords
carbon dioxide
temperature
combustion
measuring device
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012505802A
Other languages
Japanese (ja)
Other versions
JP5565820B2 (en
Inventor
ギチョル パク
ヨンソプ キム
ドンヒ リ
ヨルスン ファン
ウンイル リ
ドンギル リ
ソンモ ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Handok Eng Co ltd
Original Assignee
Handok Eng Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Handok Eng Co ltd filed Critical Handok Eng Co ltd
Publication of JP2012523373A publication Critical patent/JP2012523373A/en
Application granted granted Critical
Publication of JP5565820B2 publication Critical patent/JP5565820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/103Arrangement of sensing devices for oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/104Arrangement of sensing devices for CO or CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2208/00Safety aspects
    • F23G2208/10Preventing or abating fire or explosion, e.g. by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55003Sensing for exhaust gas properties, e.g. O2 content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55011Detecting the properties of waste to be incinerated, e.g. heating value, density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

本発明は、純酸素を用いて二酸化炭素を回収するための方法及び装置に係り、可燃性不純物を含んで排出される廃ガスを、純酸素を用いる燃焼システムを活用して、高純度の二酸化炭素を生産して回収するための方法及び装置に関するものである。本発明は、可燃性不純物が混合された排出ガス中のVOCを燃焼させる燃焼装置と、燃焼装置の内部温度の昇温のための外部空気吸込送風機及びバーナと、排出ガスの圧力を低下させるための減圧バルブと、排出ガスに純酸素を混合させるためのミキサーと、O測定器及びO供給装置と、工程排出ガス中のVOCの濃度を測定するためのLEL(Low Explosive Limit;最低爆発限界)測定器と、補助燃料供給装置と、リサイクル送風機及び燃焼されたガス中の水分を除去し、また流入廃ガスを加熱するための熱交換器と、を含むことを特徴とする。
【選択図】図1
The present invention relates to a method and an apparatus for recovering carbon dioxide using pure oxygen, and uses a combustion system using pure oxygen to remove exhaust gas containing combustible impurities, and uses high-purity dioxide. The present invention relates to a method and apparatus for producing and recovering carbon. The present invention relates to a combustion device for burning VOC in exhaust gas mixed with combustible impurities, an external air suction blower and a burner for raising the internal temperature of the combustion device, and a pressure for exhaust gas. Pressure reducing valve, mixer for mixing exhaust gas with pure oxygen, O 2 measuring device and O 2 supply device, LEL (Low Explosive Limit) for measuring the concentration of VOC in the process exhaust gas; lowest explosion (Limit) measuring device, auxiliary fuel supply device, a recycle blower and a heat exchanger for removing moisture in the burned gas and heating inflow waste gas.
[Selection] Figure 1

Description

本発明は、可燃性不純物が混在する排出ガスから二酸化炭素を回収するための二酸化炭素の高純度化装置、及びこれを用いた高純度の二酸化炭素の回収方法に係り、純酸素を用いて可燃性不純物を含む排出ガスを効率的に燃焼させることによって、二酸化炭素を高純度化し、これを回収する装置、及びこれを用いて高純度の二酸化炭素を回収する方法に関するものである。   The present invention relates to a carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with flammable impurities, and a high-purity carbon dioxide recovery method using the same, and combustible using pure oxygen. The present invention relates to an apparatus for highly purifying carbon dioxide by efficiently burning exhaust gas containing volatile impurities and recovering the same, and a method for recovering high-purity carbon dioxide using the apparatus.

近年、化学工程やその他の各種製品の生産工程から排出される廃ガスを処理するために、多様な燃焼技術が適用されており、このような技術には、直接燃焼、触媒燃焼及び蓄熱式燃焼方法などが用いられている。通常の燃焼方法の場合は、一般の空気と混合されて排出されるVOC(Volatile Organic Compound:揮発性有機化合物)の処理を目的とし、VOCは、燃焼過程で混合ガスの中に含まれている酸素と反応して、二酸化炭素と水に転換されて大気に排出される。   In recent years, various combustion technologies have been applied to treat waste gas emitted from chemical processes and other various product production processes, including direct combustion, catalytic combustion, and regenerative combustion. Methods are used. In the case of a normal combustion method, the purpose is to treat VOC (Volatile Organic Compound) discharged by mixing with general air, and VOC is contained in the mixed gas during the combustion process. It reacts with oxygen and is converted into carbon dioxide and water and discharged into the atmosphere.

しかし、OMEGA工程のように、排出される廃ガスの二酸化炭素の含量が90%以上と高いときには、このような廃ガスを通常の燃焼方法で処理する場合、多量のCOが大気中に排出され、地球温暖化を加速させる主原因になる恐れがある。 However, when the carbon dioxide content of the exhaust gas discharged is as high as 90% or more as in the OMEGA process, a large amount of CO 2 is discharged into the atmosphere when such waste gas is processed by a normal combustion method. And may be the main cause of accelerating global warming.

OMEGA工程(ライセンサー:Shell社)とは、EG(Ethylene Glycol:エチレングリコール)を生産する新規工程であって、2008年、世界最初に韓国で商業生産施設が竣工されて稼働されており、既存のEG生産工程(ライセンサー:Scientific Design社)とは次のような差異点がある。   The OMEGA process (licensor: Shell) is a new process for producing EG (Ethylene Glycol: ethylene glycol). In 2008, the world's first commercial production facility was completed in South Korea. EG production process (Licensor: Scientific Design) has the following differences.

既存工程の場合、生産しようとするMEG(Mono Ethylene Glycol:モノエチレングリコール)の他に、DEG(Di Ethylene Glycol:ジエチレングリコール)、TEG(Tri Ethylene Glycol:トリエチレングリコール)、PEG(Poly Ethylene Glycol:ポリエチレングリコール)などが追加的に生産され、これらの精製のための追加費用が必要となる。一方、OMEGA工程は、MEGのみが生産されるため、生産性が遥かに高いという長所を有している。また、OMEGA工程は、各種のユーティリティ(Utility)使用量が既存工程に比べて少ないだけでなく、廃水の発生量も既存工程に比べて30%減少させることができ、非常に競争力のある工程として評価されており、今後、漸進的に既存工程からOMEGA工程に取って代わられる見込みである。   In the case of an existing process, in addition to MEG (Mono Ethylene Glycol: Monoethylene Glycol) to be produced, DEG (Di Ethylene Glycol: Diethylene Glycol), TEG (Tri Ethylene Glycol: Triethylene Glycol), PEG (Poly Ethylene Glycol: Polyethylene Glycol) Glycol) and the like are additionally produced, and additional costs are required for their purification. On the other hand, the OMEGA process has an advantage that productivity is much higher because only MEG is produced. In addition, the OMEGA process uses not only a small amount of utility, but also reduces the amount of wastewater generated by 30% compared to the existing process, making it a very competitive process. In the future, the existing process will be gradually replaced by the OMEGA process.

ところが、OMEGA工程は、既存工程に比べて、次のような短所を有している。   However, the OMEGA process has the following disadvantages compared to the existing process.

既存工程で排出される廃ガスは、COの含量が99%以上となっており、直ちに回収して使用が可能であったが、OMEGA工程の排出ガスは、COの含量が97%を占め、残りはEO(Ethylene Oxide:エチレンオキサイド)、アセトアルデヒド(Acetaldehyde)、エチレン(Ethylene)、メタン(Methane)などが含まれている。このような廃ガスは、COが高濃度で含有されていても、依然としてVOCなどの有害物質が含有されているため、これらの有害物質から発生する悪臭などの問題によって、排出ガスを直ちに回収してCOを使用することが困難であり、また、COのみを別途に分離して回収するには多大な費用がかかり、技術的な困難がある。 The waste gas discharged in the existing process has a CO 2 content of 99% or more and can be recovered and used immediately. However, the exhaust gas in the OMEGA process has a CO 2 content of 97%. The remainder includes EO (Ethylene Oxide: ethylene oxide), acetaldehyde (Acetaldehyde), ethylene (Ethylene), methane (Methane), and the like. Even if such waste gas contains CO 2 at a high concentration, it still contains harmful substances such as VOC, so exhaust gas is immediately recovered due to problems such as bad odors generated from these harmful substances. Thus, it is difficult to use CO 2 , and it is very expensive and technically difficult to separate and collect only CO 2 separately.

実際、本OMEGA工程のライセンサーであるShell社でも、本OMEGA工程の排出ガスは、廃熱ボイラーに送って焼却したあと、大気に排出するように設計されている。しかし、OMEGA工程から排出されるガスを廃熱ボイラーにより燃焼させたあと、大気に排出する場合、多量のCOが大気に放出されるので、最近の低炭素グリーン成長の基調にも反するだけでなく、再生可能な資源の浪費を招くことはもとより、地球温暖化を加重させるという問題を引き起こす恐れがある。 In fact, Shell, a licensor of the OMEGA process, is designed so that the exhaust gas of the OMEGA process is sent to a waste heat boiler, incinerated, and then discharged to the atmosphere. However, if the gas discharged from the OMEGA process is burned by a waste heat boiler and then discharged to the atmosphere, a large amount of CO 2 is released to the atmosphere, so it is only contrary to the recent low-carbon green growth trend. In addition, it may cause the problem of weighting global warming as well as waste of renewable resources.

また、近年、研究が活発に進められている純酸素燃焼ボイラーの場合は、空気中の窒素を排除した酸素を酸化剤として使用する技術であって、化石燃料を主に使用するガラス溶解炉、鉄鋼加熱炉、ボイラーなどから排出されるCOを回収する目的で利用されている。 In addition, in the case of a pure oxygen combustion boiler that has been actively researched in recent years, it is a technology that uses oxygen that excludes nitrogen in the air as an oxidant, and a glass melting furnace that mainly uses fossil fuels, It is used for the purpose of recovering CO 2 discharged from steel heating furnaces and boilers.

しかし、これは、化石燃料及び純酸素を供給し続けてバーナの火炎を持続的に維持する技術であって、純酸素燃焼技術は、高い火炎温度(3050K)によって材料の耐久性が問題になる恐れがある。特に、先に言及したOMEGA工程のように、高い圧力で廃ガスを排出する場合には、燃焼時に燃焼炉の圧力が高くバーナの点火が不可能なときもある。したがって、このような環境では、燃焼炉でバーナが点火されていない状態で廃ガスの燃焼を行わなければならないため、前記ガラス溶解炉、鉄鋼加熱炉、ボイラーなどに使われる純酸素燃焼技術は、このような排出圧力が高い工程には適用し難しい。   However, this is a technology for continuously supplying fossil fuel and pure oxygen to continuously maintain the flame of the burner. In the pure oxygen combustion technology, durability of the material becomes a problem due to a high flame temperature (3050K). There is a fear. In particular, when exhaust gas is discharged at a high pressure as in the OMEGA process mentioned above, the pressure of the combustion furnace may be high during combustion, making it impossible to ignite the burner. Therefore, in such an environment, since the waste gas must be burned in a state where the burner is not ignited in the combustion furnace, the pure oxygen combustion technology used in the glass melting furnace, the steel heating furnace, the boiler, etc. It is difficult to apply to a process with such a high discharge pressure.

前述した問題点を解決するために、本発明で解決しようとする技術的課題は、低い温度範囲においても燃焼が可能な二酸化炭素の高純度化装置、及びこれを用いた方法を提供し、純酸素を用いた排出ガスの燃焼時にも材料の耐久性が問題とならない、高純度の二酸化炭素を回収する方法を提供することにある。   In order to solve the above-mentioned problems, the technical problem to be solved by the present invention is to provide a carbon dioxide purification apparatus capable of combustion even in a low temperature range, and a method using the same. An object of the present invention is to provide a method for recovering high-purity carbon dioxide in which the durability of the material does not become a problem even when exhaust gas is burned using oxygen.

本発明で解決しようとする他の技術的課題は、バーナが継続的に点火される必要がない燃焼炉を含む二酸化炭素の高純度化装置を提供して、燃焼時に高い圧力が形成される工程から発生する多量のCOを安全、かつ、効果的に回収することができる方法を提供することにある。 Another technical problem to be solved by the present invention is to provide a carbon dioxide purification apparatus including a combustion furnace in which a burner does not need to be continuously ignited so that a high pressure is formed during combustion. It is an object to provide a method capable of safely and effectively recovering a large amount of CO 2 generated from CO2.

本発明で解決しようとするまた他の技術的課題は、OMEGA工程で発生するCOを安全に高純度化し、また回収することができる装置を提供することにある。 Another technical problem to be solved by the present invention is to provide an apparatus that can safely purify and recover CO 2 generated in the OMEGA process.

本発明で解決しようとする他の技術的課題は、OMEGA工程で発生するCOを効果的に回収して使用し得るようにすることによって、経済的利益はもちろん、環境にやさしい工程を提供することにある。 Another technical problem to be solved by the present invention is to provide an eco-friendly process as well as an economic benefit by effectively recovering and using CO 2 generated in the OMEGA process. There is.

前述した課題を解決するための手段として、本発明による可燃性不純物が混在する排出ガスから高純度の二酸化炭素を回収する方法は、90%以上の高濃度のCOと残部としてVOC及び酸素を含む廃ガスを、酸素濃度が1.2〜2%であり、VOCの濃度が10000〜20000ppmであり、残部が二酸化炭素になるように、純酸素燃焼法を用いてCOを高純度化するCOの高純度化方法であることを特徴とする。 As a means for solving the above-mentioned problems, a method for recovering high purity carbon dioxide from exhaust gas mixed with flammable impurities according to the present invention comprises a high concentration of CO 2 of 90% or more, and VOC and oxygen as the balance. The pure oxygen combustion method is used to purify CO 2 so that the waste gas containing it has an oxygen concentration of 1.2 to 2%, a VOC concentration of 10,000 to 20000 ppm, and the balance being carbon dioxide. It is a method for purifying CO 2 .

また、前記90%以上の高濃度のCOと残部としてVOC及び酸素を含む廃ガスは、OMEGA工程によって発生した廃ガスであることを特徴とする。 Also, the waste gas containing VOC and oxygen as CO 2 and the balance of a high concentration of the more than 90%, characterized in that it is a waste gas generated by OMEGA process.

上述した課題を解決するための他の手段として、本発明による可燃性不純物が混在する排出ガスから二酸化炭素を回収するための二酸化炭素の高純度化装置は、a)流入ガスの圧力を1.0kg/cm以下に低下させるための減圧バルブと、純酸素を供給するための純酸素供給装置と、流入ガスに補助燃料を供給するための補助燃料供給装置と、燃焼装置の昇温用送風機と、流入ガス中のO及びVOCの濃度を測定するための流入O測定器及びLEL測定器とを含む工程ガス流入部と、b)燃焼装置の内部を昇温するためのバーナと、流入ガス中のVOCを燃焼させるための燃焼室と、燃焼熱を蓄熱するための蓄熱材層と、昇温時にバーナに燃料を供給するための燃料供給装置と、燃焼室の温度を測定するための温度測定装置と、燃焼室の過昇温を防止するバイパスダンパとを含む工程ガス燃焼部と、c)燃焼されたガス中のOの濃度及び温度を測定する排出O測定器及び温度測定器と、燃焼されたガスを再び流入部に送る再循環送風機と、熱交換器とを含む燃焼ガス排出部と、を含むことを特徴とする。 As another means for solving the above-described problems, a carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with flammable impurities according to the present invention is as follows. A pressure reducing valve for lowering to 0 kg / cm 2 or less, a pure oxygen supply device for supplying pure oxygen, an auxiliary fuel supply device for supplying auxiliary fuel to the inflowing gas, and a blower for raising the temperature of the combustion device And a process gas inflow portion including an inflow O 2 measuring device and an LEL measuring device for measuring concentrations of O 2 and VOC in the inflow gas, and b) a burner for raising the temperature inside the combustion device, A combustion chamber for burning VOC in the inflowing gas, a heat storage material layer for storing combustion heat, a fuel supply device for supplying fuel to the burner at the time of temperature rise, and a temperature of the combustion chamber Temperature measuring device and fuel A processing gas combustion section including a bypass damper for preventing excessive Atsushi Nobori of the chamber, c) a discharge O 2 meter and a temperature measuring device for measuring the concentration and temperature of the O 2 in the combusted gas, is burned It includes a recirculation blower that sends gas to the inflow portion again, and a combustion gas discharge portion that includes a heat exchanger.

また、前記流入O測定器の信号に応じてOの供給量が調節されるように、バルブの開閉を調節する制御器を含むことを特徴とする。 In addition, the controller includes a controller that adjusts the opening and closing of the valve so that the supply amount of O 2 is adjusted according to the signal of the inflow O 2 measuring device.

また、前記補助燃料は、LPG、LNG、メタン、ブタンのうちいずれか一つを使用することを特徴とする。   The auxiliary fuel may be any one of LPG, LNG, methane, and butane.

また、前記LEL測定器及び温度測定装置の信号に応じて補助燃料の供給量が調節されるように、バルブの開閉を調節する制御器を含むことを特徴とする。   Further, the present invention includes a controller that adjusts the opening and closing of the valve so that the supply amount of the auxiliary fuel is adjusted according to the signals of the LEL measuring device and the temperature measuring device.

また、前記昇温用送風機及びバーナは、燃焼装置の昇温時にのみ稼働され、燃焼装置が目標温度に到達したあとに工程ガスが燃焼装置に流入されると、これ以上稼働されないことを特徴とする。   The temperature raising blower and the burner are operated only when the temperature of the combustion device is raised, and when the process gas flows into the combustion device after the combustion device reaches the target temperature, the temperature raising blower and the burner are not operated any more. To do.

また、前記燃焼装置は、RTO(Regenerative Thermal Oxidizer:再生熱酸化装置)、RCO(Regenerative Catalytic Oxidizer:再生触媒酸化装置)、TO(Thermal Oxidizer:熱酸化装置)、CTO(Catalytic Thermal Oxidizer:触媒熱酸化装置)のうちいずれか一つであることを特徴とする。   Further, the combustion apparatus includes RTO (Regenerative Thermal Oxidizer), RCO (Regenerative Catalytic Oxidizer), TO (Thermal Oxidizer), CTO (Catalytic Thermal Oxidizer). Device).

また、前記燃焼室に設置された温度測定装置の信号に応じて、バイパスダンパの開閉を調節する制御器を含むことを特徴とする。   The controller further includes a controller that adjusts opening and closing of the bypass damper in accordance with a signal from a temperature measurement device installed in the combustion chamber.

また、前記LEL測定器及び温度測定装置の信号に応じて、リサイクル(Recycle)送風機の稼働を調節する制御器を含むことを特徴とする。   In addition, a controller for adjusting the operation of the recycle blower according to signals from the LEL measuring device and the temperature measuring device is included.

また、前記燃焼装置の前に水分除去装置及びストレーナー(Strainer)を設置して、廃ガスの中に含まれた水分とカスが燃焼装置に流入されないようにすることを特徴とする。   In addition, a moisture removing device and a strainer are installed in front of the combustion device to prevent moisture and debris contained in the waste gas from flowing into the combustion device.

また、昇温が完了すると、前記昇温用送風機を通じて流入された外部空気は、バイパスダンパの内部ディスク冷却用として使用されるようにすることを特徴とする。   In addition, when the temperature rise is completed, the external air flowing in through the temperature raising blower is used for cooling the internal disk of the bypass damper.

また、昇温が完了すると、前記バーナの作動が停止し逆火防止バルブが開放され、減圧される前の廃ガスがバーナ保護用として流入され、逆火及び爆発を防止するようにすることを特徴とする。   In addition, when the temperature rise is completed, the operation of the burner is stopped, the backfire prevention valve is opened, and the waste gas before being depressurized is introduced for burner protection to prevent backfire and explosion. Features.

また、計器装置をコントロール可能なPCシステムを設置して、排出O測定器の酸素濃度及び温度測定装置の温度とLEL測定器のVOC濃度が一定の範囲内に維持され得るようにすることを特徴とする。 Also, install a PC system that can control the instrument device so that the oxygen concentration of the exhaust O 2 measuring device and the temperature of the temperature measuring device and the VOC concentration of the LEL measuring device can be maintained within a certain range. Features.

また、前記一定の範囲は、酸素濃度が1.2〜2%、温度測定装置の温度が700℃〜880℃の範囲内であり、LEL測定器のVOC濃度は、10000〜20000ppmであることを特徴とする。   Further, the predetermined range is that the oxygen concentration is 1.2 to 2%, the temperature of the temperature measuring device is in the range of 700 ° C. to 880 ° C., and the VOC concentration of the LEL measuring device is 10000 to 20000 ppm. Features.

本発明によって、可燃性不純物が混在する排出ガスから前記可燃性不純物を効果的に除去することによって、有害物質の外部への排出を防止することができる。   According to the present invention, it is possible to prevent harmful substances from being discharged to the outside by effectively removing the combustible impurities from the exhaust gas mixed with combustible impurities.

また、本発明によって、製造工程の排出ガスから発生する多量のCOを効率的に回収することによって、経済的に有利な工程を提供し、二酸化炭素の排出による環境汚染も防止することができる。 Further, according to the present invention, by efficiently recovering a large amount of CO 2 generated from the exhaust gas of the manufacturing process, an economically advantageous process can be provided and environmental pollution due to the discharge of carbon dioxide can be prevented. .

加えて、本発明によって、OMEGA工程で発生するCOを高純度化する方法を提供することによって、前記工程の短所を改善して、OMEGA工程を安全かつ効率的に利用できるようにする。 In addition, according to the present invention, by providing a method for purifying CO 2 generated in the OMEGA process, the disadvantages of the process are improved and the OMEGA process can be used safely and efficiently.

本発明による二酸化炭素の高純度化装置の構成図である。It is a block diagram of the highly purified apparatus of the carbon dioxide by this invention.

本発明に係る純酸素を用いて可燃性不純物が混在する排出ガスから二酸化炭素を高純度化する装置は、本体と、前記本体に形成されて、工程排出ガス中のVOCを300〜990℃の範囲で燃焼させる燃焼室とを含む燃焼装置と、燃焼装置の昇温のための外部空気吸込送風機と、燃焼装置の内部の温度を目標温度である300〜990℃の範囲に昇温させるためのバーナと、排出ガスの圧力を1.0kg/cm以下に低下させるための減圧バルブと、工程排出ガスに純酸素を混合させるためのミキサー(Mixer)と、酸素濃度測定のためのO測定器及びO測定器の測定値によってバルブが調節されるO供給装置と、工程排出ガス中のVOCの濃度を測定するためのLEL(Low Explosive Limit:最低爆発限界)測定器と、燃焼室の温度及びLEL測定器の値によって追加で燃料供給が調節される補助燃料供給装置と、燃焼装置の過熱を防止するために、燃焼されたガスを再び流入部に移送させるリサイクル送風機と、燃焼されたガス中の水分を除去するための熱交換器と、を含むことを特徴とする。 An apparatus for purifying carbon dioxide from exhaust gas mixed with flammable impurities using pure oxygen according to the present invention is formed in a main body and the main body, and the VOC in the process exhaust gas is 300 to 990 ° C. A combustion apparatus including a combustion chamber for burning in a range, an external air suction blower for raising the temperature of the combustion apparatus, and a temperature for raising the temperature inside the combustion apparatus to a target temperature range of 300 to 990 ° C. Burner, pressure reducing valve for reducing exhaust gas pressure to 1.0 kg / cm 2 or less, mixer for mixing pure oxygen into process exhaust gas, and O 2 measurement for measuring oxygen concentration and O 2 supply device valve is regulated by measurement of vessels and O 2 meter, LEL for measuring the concentration of VOC in the process exhaust gas (Low explosive Limit: minimum explosive limit ) Measuring device, auxiliary fuel supply device whose fuel supply is additionally adjusted according to the temperature of the combustion chamber and the value of the LEL measuring device, and the combusted gas transferred again to the inlet to prevent overheating of the combustion device And a heat exchanger for removing moisture in the burned gas.

以下、本発明に係る純酸素を用いたCO高純度化装置を、実施例を通じて詳細に説明すると、次の通りである。 Hereinafter, the CO 2 purification apparatus using pure oxygen according to the present invention will be described in detail through examples.

本実施例では、可燃性不純物を含む排出ガスとしてOMEGA工程100で排出されたガスを例に挙げたが、本発明は、10%以下の可燃性不純物と90%以上の二酸化炭素とを含む廃ガスを排出するいずれの工程にも適用され得る。   In the present embodiment, the gas exhausted in the OMEGA process 100 is taken as an example of exhaust gas containing combustible impurities, but the present invention is a waste containing 10% or less combustible impurities and 90% or more carbon dioxide. It can be applied to any process of exhausting gas.

図1は、製造工程から排出された廃ガスを燃焼させるための、本発明に係る二酸化炭素の高純度化装置の構成図である。図1に示された燃焼装置140は、運転時に燃焼装置140の内部温度を昇温させるために、補助燃料(LPG、LNG、メタン、ブタンなど)を使用してバーナ230を点火させ、燃焼のために必要な酸素を、外部空気吸込送風機130、210を通じて供給して、燃焼装置の内部温度を目標値(300〜990℃)まで昇温させるように構成されている。   FIG. 1 is a configuration diagram of an apparatus for purifying carbon dioxide according to the present invention for burning waste gas discharged from a manufacturing process. The combustion apparatus 140 shown in FIG. 1 ignites the burner 230 using auxiliary fuel (LPG, LNG, methane, butane, etc.) in order to raise the internal temperature of the combustion apparatus 140 during operation. Therefore, oxygen necessary for the above is supplied through the external air suction blowers 130 and 210 to raise the internal temperature of the combustion apparatus to a target value (300 to 990 ° C.).

燃焼装置は、RTO(Regenerative Thermal Oxidizer:再生熱酸化装置)、RCO(Regenerative Catalytic Oxidizer:再生触媒酸化装置)、TO(Thermal Oxidizer:熱酸化装置)、CTO(Catalytic Thermal Oxidizer:触媒熱酸化装置)などの燃焼装置を使用することができる。   Combustion devices include RTO (Regenerative Thermal Oxidizer: Regenerative Catalytic Oxidizer), RCO (Regenerative Catalytic Oxidizer), TO (Thermal Oxidizer: Thermal Oxidizer), CTO (Catalytic Oxidizer). Can be used.

燃焼装置140の炉内温度が目標値(300〜990℃)まで昇温すると、バーナ230の作動が停止され、外部空気吸込送風機210に連結された外部空気供給バルブ212が閉鎖されながら工程ガス流入自動バルブ111が開放されて、OMEGA(Only MEG Advanced)工程100から排出される廃ガスが燃焼装置140に移送されることになる。   When the in-furnace temperature of the combustion apparatus 140 is raised to a target value (300 to 990 ° C.), the operation of the burner 230 is stopped, and the process air flow is performed while the external air supply valve 212 connected to the external air suction fan 210 is closed. The automatic valve 111 is opened, and the waste gas discharged from the OMEGA (Only MEG Advanced) process 100 is transferred to the combustion device 140.

この時、外部空気吸込送風機210を通じて吸い込まれる外部空気は、外部空気供給バルブ212が閉じながら、バイパスダンパ145の内部ディスクに冷却専用で使用されることになり、高温に露出しているバイパスダンパ145の過熱を防止して誤作動を防ぐことができる。   At this time, the external air sucked through the external air suction blower 210 is used exclusively for cooling the internal disk of the bypass damper 145 while the external air supply valve 212 is closed, and the bypass damper 145 exposed to a high temperature. Can be prevented from overheating.

燃焼装置140に移送される廃ガスの圧力を1.0kg/cm以下に低下させるために、流入ダクト134に減圧バルブ112を設置して、燃焼装置140の安定した運転が可能なようにした。また、圧力の上昇による工程生産設備を保護するために、流入ダクト134の圧力が1.9kg/cm以上になると、廃ガスが大気に排出されるように破裂ディスク(Rupture Disk)133を設置した。また、燃焼装置140の運転に異常が感知されたとき、自動中断モードによって工程ガス流入自動バルブ111はクローズされ、非常バルブ110がオープンされて、廃ガスが燃焼装置140に流入される前に非常排出されるようにして安全性を確保した。 In order to reduce the pressure of the waste gas transferred to the combustion device 140 to 1.0 kg / cm 2 or less, a pressure reducing valve 112 is installed in the inflow duct 134 so that the combustion device 140 can be stably operated. . In addition, in order to protect the process production equipment due to the pressure increase, a rupture disk 133 is installed so that the waste gas is discharged to the atmosphere when the pressure of the inflow duct 134 becomes 1.9 kg / cm 2 or more. did. Further, when an abnormality is detected in the operation of the combustion device 140, the process gas inflow automatic valve 111 is closed by the automatic interruption mode, the emergency valve 110 is opened, and the emergency gas is discharged before the waste gas flows into the combustion device 140. Safety was ensured by discharging.

加えて、図面には記載されていないが、前記燃焼装置の前に水分除去装置及びストレーナーを設置して、廃ガスの中に含まれた水分とカスが燃焼装置に流入されないようにすることができる。   In addition, although not shown in the drawings, a moisture removal device and a strainer may be installed in front of the combustion device to prevent moisture and debris contained in the waste gas from flowing into the combustion device. it can.

昇温が完了したあと、バーナ230の作動が停止されると、燃焼装置140内に流入される廃ガスの圧力によって燃焼ガスがバーナ230の点火部に逆火して爆発する危険性があるので、逆火防止バルブ211を開放して、減圧される前の廃ガスをバーナ230保護用で流入させて、逆火及び爆発を防止するようにした。   If the operation of the burner 230 is stopped after the temperature rise is completed, there is a risk that the combustion gas may flash back to the ignition part of the burner 230 and explode due to the pressure of the waste gas flowing into the combustion device 140. The backfire prevention valve 211 was opened, and the waste gas before being depressurized was introduced to protect the burner 230 to prevent backfire and explosion.

バーナ230と外部空気吸込送風機130、210が停止されると、工程から排出される廃ガスの燃焼に必要な酸素を純酸素で供給し、純酸素供給用自動バルブ121を通じてミキサーボックス122で廃ガスと純酸素が混合されるようにした。純酸素の供給量は、ミキサーボックス122で混合されたガスを、流入O測定器132で測定した値によって、純酸素供給用自動バルブ121を通じて自動調節するようになっており、LEL測定器131を通じた廃ガスのVOC濃度と燃焼室の温度によって、補助燃料供給バルブ220を通じて補助燃料の供給量を調節するようにした。 When the burner 230 and the external air suction fans 130 and 210 are stopped, oxygen necessary for combustion of the waste gas discharged from the process is supplied as pure oxygen, and the waste gas is supplied from the mixer box 122 through the automatic valve 121 for pure oxygen supply. And pure oxygen were mixed. The supply amount of pure oxygen is automatically adjusted through the pure oxygen supply automatic valve 121 according to the value measured by the inflow O 2 measuring device 132 with respect to the gas mixed in the mixer box 122, and the LEL measuring device 131. The amount of auxiliary fuel supplied through the auxiliary fuel supply valve 220 is adjusted according to the VOC concentration of waste gas and the temperature of the combustion chamber.

廃ガスは、燃焼装置140内に流入されながら蓄熱材層141を通過して昇温され、炉内の温度(300〜990℃)で燃焼されて、高純度のCOのみが排出ダクト144から排出される。燃焼装置の蓄熱と放熱過程において炉内に流入されずに蓄熱材層141に残留する廃ガスが、未処理された状態で排出されて、燃焼の効率が低下される点を補完するために、パージ(Purge)送風機160を通じたパージ用空気で蓄熱材層141に残っている未処理ガスの強制排気を行って、流入ダクト134に流入させて再処理することによって、処理効率を極大化するように構成した。 The waste gas passes through the heat storage material layer 141 while flowing into the combustion device 140, is heated, and burned at the furnace temperature (300 to 990 ° C.), and only high-purity CO 2 is discharged from the exhaust duct 144. Discharged. In order to complement the point that waste gas remaining in the heat storage material layer 141 without flowing into the furnace in the heat storage and heat dissipation process of the combustion device is discharged in an untreated state, and the efficiency of combustion is reduced. The processing efficiency is maximized by forcibly exhausting the unprocessed gas remaining in the heat storage material layer 141 with the purge air through the purge blower 160 and flowing it into the inflow duct 134 for reprocessing. Configured.

燃焼装置140に流入される廃ガスのVOC濃度が高く炉内の温度が一定温度以上に上昇すると、バイパスダンパ145の自動開閉によって燃焼装置140内の温度を安定的に維持させる。また、排出される高温のガスは熱交換器180によって冷却されるようにした。   When the VOC concentration of the waste gas flowing into the combustion device 140 is high and the temperature in the furnace rises above a certain temperature, the temperature in the combustion device 140 is stably maintained by automatically opening and closing the bypass damper 145. The discharged hot gas is cooled by the heat exchanger 180.

LEL測定器131を通じた廃ガスのVOC濃度及び燃焼室の温度によって、リサイクル送風機170を稼働させて、燃焼装置140の過熱を防止し、処理された高温の高純度COガスの一部を流入ダクト134に再び流入させて、廃ガスと混合されるようにして、予熱及びVOC濃度希釈効果を用いて燃焼が円滑、かつ、安定になされるようにした。 Depending on the VOC concentration of the waste gas through the LEL measuring device 131 and the temperature of the combustion chamber, the recycle blower 170 is operated to prevent the combustion device 140 from being overheated and a part of the processed high-temperature high-purity CO 2 gas flows in. It was made to flow again into the duct 134 and mixed with the waste gas so that the combustion was made smooth and stable by using the preheating and VOC concentration dilution effects.

燃焼装置140から排出された高純度のCOは、冷却及び水分の除去のために熱交換器180を通過し、熱交換器180を通過した高純度のCOは、回収(リサイクル)設備に移送される。このとき、熱交換器180は、燃焼炉に流入される廃ガスの温度を高める目的としても使用することができる。 High purity CO 2 discharged from the combustion device 140, it passes through the heat exchanger 180 for cooling and moisture removal, high purity CO 2 which has passed through the heat exchanger 180, the recovery (recycling) Equipment Be transported. At this time, the heat exchanger 180 can also be used for the purpose of increasing the temperature of the waste gas flowing into the combustion furnace.

高純度COの回収設備に送るためには、排出O測定器143の酸素濃度と温度測定装置142の温度と、そして、LEL測定器131のVOC濃度とがいずれも正常範囲(排出O測定器143の酸素濃度:1.2〜2%/温度測定装置142の温度:700℃〜880℃/LEL測定器131のVOC濃度:10000〜20000ppm)に含まれなければならない。前記正常範囲は、二酸化炭素を回収及び再使用することができる適正な水準である。このような正常範囲の管理は、計器装置をコントロールできるPCシステム300を設置して、前記濃度及び各温度が正常範囲内にコントロールされ得るようにする。正常範囲の状態では回収(リサイクル)移送バルブ181が開放されて回収設備に送られ、異常範囲の状態では大気排出バルブ182が開放されて、処理ガスが大気に排出されるように構成した。 In order to send it to a high-purity CO 2 recovery facility, the oxygen concentration of the exhaust O 2 measuring device 143, the temperature of the temperature measuring device 142, and the VOC concentration of the LEL measuring device 131 are all in the normal range (exhaust O 2 The oxygen concentration of the measuring device 143: 1.2 to 2% / the temperature of the temperature measuring device 142: 700 ° C. to 880 ° C./the VOC concentration of the LEL measuring device 131: 10,000 to 20000 ppm). The normal range is an appropriate level at which carbon dioxide can be recovered and reused. In order to manage the normal range, a PC system 300 capable of controlling the instrument device is installed so that the concentration and each temperature can be controlled within the normal range. In the normal range state, the recovery (recycle) transfer valve 181 is opened and sent to the recovery facility, and in the abnormal range state, the atmospheric discharge valve 182 is opened and the processing gas is discharged to the atmosphere.

本発明は、上述した好ましい実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な改良、変更、代替または付加を行ったうえで実施できることは、当該の技術分野における通常の知識を有する者であれば容易に理解できるだろう。このような改良、変更、代替または付加による実施が、以下の添付された特許請求の範囲に属するものであれば、その技術思想も本発明に属するものと見なす。   The present invention is not limited only to the above-described preferred embodiments, and can be implemented with various improvements, changes, substitutions or additions within the scope not departing from the gist of the present invention. Those who have ordinary knowledge in can easily understand. If such improvements, changes, substitutions, or additions fall within the scope of the following appended claims, the technical idea thereof is also considered to belong to the present invention.

100 OMEGA工程
110 非常バルブ
111 工程ガス流入自動バルブ
112 減圧バルブ
120 純酸素貯蔵所
121 純酸素供給用バルブ
122 ミキサーボックス
130 外部空気吸込送風機
131 LEL測定器
132 流入O測定器
133 破裂ディスク
134 流入ダクト
140 燃焼装置
141 蓄熱材層
142 温度測定装置
143 排出O測定器
144 排出ダクト
145 バイパスダンパ
146 バイパスダクト
150 分配板減速機
160 パージ送風機
170 リサイクル送風機
180 熱交換器
181 回収(リサイクル)移送バルブ
182 大気排出バルブ
200 補助燃料貯蔵所
201 補助燃料遮断バルブ
210 外部空気吸込送風機
211 逆火防止バルブ
212 外部空気供給バルブ
220 補助燃料供給バルブ
230 バーナ
300 PCシステム
100 OMEGA process 110 emergency valve 111 process gas inflow automatic valve 112 pressure reducing valve 120 pure oxygen reservoir 121 pure oxygen supply valve 122 mixer box 130 external air suction blower 131 LEL measuring device 132 inflow O 2 measuring device 133 bursting disk 134 inflow duct 140 combustor 141 heat storage material layer 142 temperature measuring device 143 discharged O 2 measuring 144 exhaust duct 145 bypass damper 146 bypass duct 150 distribution plate reducer 160 purge blower 170 recycle blower 180 heat exchanger 181 recovered (recycled) transfer valve 182 air Discharge valve 200 Auxiliary fuel reservoir 201 Auxiliary fuel shutoff valve 210 External air suction blower 211 Backfire prevention valve 212 External air supply valve 220 Auxiliary fuel supply valve 230 Burner 300 PC system

Claims (15)

90%以上の高濃度のCOと残部としてVOC及び酸素を含む廃ガスを、酸素濃度が1.2〜2%であり、VOCの濃度が10000〜20000ppmであり、残部が二酸化炭素になるまで、純酸素燃焼法を用いてCOを高純度化する、二酸化炭素の高純度化方法。 90% or more of high-concentration CO 2 and waste gas containing VOC and oxygen as the balance until the oxygen concentration is 1.2 to 2%, the concentration of VOC is 10,000 to 20000 ppm, and the balance is carbon dioxide A method for purifying carbon dioxide, which purifies CO 2 using a pure oxygen combustion method. 前記廃ガスは、OMEGA工程によって発生した廃ガスであることを特徴とする、請求項1に記載の二酸化炭素の高純度化方法。   The method for purifying carbon dioxide according to claim 1, wherein the waste gas is waste gas generated by an OMEGA process. a)流入ガスの圧力を1.0kg/cm以下に低下させるための減圧バルブと、
純酸素を供給するための純酸素供給装置と、
流入ガスに補助燃料を供給するための補助燃料供給装置と、
燃焼装置の昇温用送風機と、
流入ガス中のO及びVOCの濃度を測定するための流入O測定器及びLEL測定器と、
を含む工程ガス流入部と、
b)燃焼装置の内部を昇温するためのバーナと、
流入ガス中のVOCを燃焼させるための燃焼室と、
燃焼熱を蓄熱するための蓄熱材層と、
昇温時にバーナに燃料を供給するための燃料供給装置と、
燃焼室の温度を測定するための温度測定装置と、
燃焼室の過昇温を防止するバイパスダンパと、
を含む工程ガス燃焼部と、
c)燃焼されたガス中のOの濃度及び温度を測定する排出O測定器及び温度測定器と、
燃焼されたガスを再び流入部に送る再循環送風機と、
熱交換器と、
を含む燃焼ガス排出部と、
を含むことを特徴とする、二酸化炭素の高純度化装置。
a) a pressure reducing valve for reducing the pressure of the inflowing gas to 1.0 kg / cm 2 or less;
A pure oxygen supply device for supplying pure oxygen;
An auxiliary fuel supply device for supplying auxiliary fuel to the inflow gas;
A blower for heating the combustion device;
An inflow O 2 measuring device and an LEL measuring device for measuring the concentration of O 2 and VOC in the inflow gas;
A process gas inlet including
b) a burner for raising the temperature inside the combustion device;
A combustion chamber for burning VOC in the inflow gas;
A heat storage material layer for storing combustion heat;
A fuel supply device for supplying fuel to the burner when the temperature rises;
A temperature measuring device for measuring the temperature of the combustion chamber;
A bypass damper to prevent overheating of the combustion chamber;
A process gas combustion section including:
c) an exhaust O 2 measuring device and a temperature measuring device for measuring the concentration and temperature of O 2 in the burned gas;
A recirculation blower that sends the burned gas to the inlet again;
A heat exchanger,
A combustion gas exhaust including
An apparatus for purifying carbon dioxide, comprising:
前記流入O測定器の信号に応じてOの供給量が調節されるように、バルブの開閉を調節する制御器を含むことを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。 The high purity of carbon dioxide according to claim 3, further comprising a controller that adjusts opening and closing of the valve so that the supply amount of O 2 is adjusted according to a signal of the inflow O 2 measuring device. Device. 前記補助燃料は、LPG、LNG、メタン、ブタンのうちいずれか一つを使用することを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   The apparatus for purifying carbon dioxide according to claim 3, wherein any one of LPG, LNG, methane, and butane is used as the auxiliary fuel. 前記LEL測定器及び温度測定装置の信号に応じて補助燃料の供給量が調節されるように、バルブの開閉を調節する制御器を含むことを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   The carbon dioxide gas according to claim 3, further comprising a controller that adjusts opening and closing of the valve so that the supply amount of the auxiliary fuel is adjusted according to signals of the LEL measuring device and the temperature measuring device. High purity equipment. 前記昇温用送風機及びバーナは、燃焼装置の昇温時にのみ稼働され、燃焼装置が目標温度に到達したあとに工程ガスが燃焼装置に流入されると、これ以上稼働されないことを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   The temperature raising blower and the burner are operated only when the temperature of the combustion device is raised, and when the process gas flows into the combustion device after the combustion device reaches the target temperature, the temperature raising blower and the burner are not operated any more. The apparatus for purifying carbon dioxide according to claim 3. 前記燃焼装置は、RTO(Regenerative Thermal Oxidizer:再生熱酸化装置)、RCO(Regenerative Catalytic Oxidizer:再生触媒酸化装置)、TO(Thermal Oxidizer:熱酸化装置)、CTO(Catalytic Thermal Oxidizer:触媒熱酸化装置)のうちいずれか一つであることを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   The combustion apparatus includes RTO (Regenerative Thermal Oxidizer), RCO (Regenerative Catalytic Oxidizer), TO (Thermal Oxidizer), CTO (Catalytic Oxidizer). The apparatus for purifying carbon dioxide according to claim 3, which is any one of the above. 前記燃焼室に設置された温度測定装置の信号に応じて、バイパスダンパの開閉を調節する制御器を含むことを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   4. The carbon dioxide purification apparatus according to claim 3, further comprising a controller that adjusts opening and closing of the bypass damper in accordance with a signal from a temperature measurement device installed in the combustion chamber. 前記LEL測定器及び温度測定装置の信号に応じて、リサイクル送風機の稼働を調節する制御器を含むことを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   The apparatus for purifying carbon dioxide according to claim 3, further comprising a controller that adjusts the operation of the recycle blower in accordance with signals from the LEL measuring device and the temperature measuring device. 前記燃焼装置の前に水分除去装置及びストレーナーを設置して、廃ガスの中に含まれた水分とカスが燃焼装置に流入されないようにすることを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   The carbon dioxide according to claim 3, wherein a moisture removing device and a strainer are installed in front of the combustion device to prevent moisture and debris contained in the waste gas from flowing into the combustion device. High purity equipment. 昇温が完了すると、前記昇温用送風機を通じて流入された外部空気は、バイパスダンパの内部ディスク冷却用として使用されるようにすることを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   4. The high purity of carbon dioxide according to claim 3, wherein when the temperature rise is completed, the external air introduced through the temperature raising blower is used for cooling the internal disk of the bypass damper. Device. 昇温が完了すると、前記バーナの作動が停止し逆火防止バルブが開放されて、減圧される前の廃ガスがバーナ保護用として流入されて、逆火及び爆発を防止するようにすることを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。   When the temperature rise is completed, the operation of the burner is stopped, the backfire prevention valve is opened, and the waste gas before being depressurized is introduced for burner protection to prevent backfire and explosion. The apparatus for purifying carbon dioxide according to claim 3, characterized in that it is characterized in that: 計器装置をコントロールできるPCシステムを設置して、排出O測定器の酸素濃度及び温度測定装置の温度とLEL測定器のVOC濃度が一定の範囲内に維持され得るようにすることを特徴とする、請求項3に記載の二酸化炭素の高純度化装置。 A PC system capable of controlling the instrument device is installed so that the oxygen concentration of the exhaust O 2 measuring device and the temperature of the temperature measuring device and the VOC concentration of the LEL measuring device can be maintained within a certain range. The apparatus for purifying carbon dioxide according to claim 3. 前記一定の範囲は、酸素濃度が1.2〜2%、温度測定装置の温度が700℃〜880℃の範囲内であり、LEL測定器のVOC濃度は、10000〜20000ppmであることを特徴とする、請求項14に記載の二酸化炭素の高純度化装置。

The predetermined range is characterized in that the oxygen concentration is 1.2 to 2%, the temperature of the temperature measuring device is in the range of 700 ° C. to 880 ° C., and the VOC concentration of the LEL measuring device is 10,000 to 20000 ppm. The apparatus for purifying carbon dioxide according to claim 14.

JP2012505802A 2009-04-17 2010-03-12 Carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with combustible impurities, and method for recovering high purity carbon dioxide using the same Active JP5565820B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0033712 2009-04-17
KR1020090033712A KR100913888B1 (en) 2009-04-17 2009-04-17 Carbon dioxide purification method and equipment for waste gas of process using pure oxygen combustion
PCT/KR2010/001563 WO2010120046A2 (en) 2009-04-17 2010-03-12 Apparatus for producing higher-purity carbon dioxide for recovering carbon dioxide from waste gas containing flammable impurities, and method for recovering higher-purity carbon dioxide using same

Publications (2)

Publication Number Publication Date
JP2012523373A true JP2012523373A (en) 2012-10-04
JP5565820B2 JP5565820B2 (en) 2014-08-06

Family

ID=41210216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505802A Active JP5565820B2 (en) 2009-04-17 2010-03-12 Carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with combustible impurities, and method for recovering high purity carbon dioxide using the same

Country Status (4)

Country Link
JP (1) JP5565820B2 (en)
KR (1) KR100913888B1 (en)
SG (1) SG175163A1 (en)
WO (1) WO2010120046A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210512B1 (en) * 2012-05-21 2012-12-11 지테크 주식회사 Economical regenerative thermal oxidizer
KR101221335B1 (en) 2012-07-16 2013-01-11 금호환경 주식회사 Mixer for flameless combustion and regenerative thermal oxidizer system equipped with the mixer
CN106287756A (en) * 2016-08-09 2017-01-04 苏州云白环境设备股份有限公司 A kind of using method having Novel machine waste gas burning purifier
KR102105036B1 (en) * 2018-11-05 2020-04-28 한국에너지기술연구원 Oxyfuel combustion device using high concentration carbon dioxide and method for oxyfuel combustion using the same
NL2023532B1 (en) * 2019-07-19 2021-02-08 Busser Beheer B V Mobile degasification system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129867A (en) * 1975-05-04 1976-11-11 Kogyo Kaihatsu Kenkyusho A process for purification of gas containing organic solvents
JPS603422A (en) * 1983-06-22 1985-01-09 Hitachi Ltd Catalytic burner
JPS60209229A (en) * 1984-04-02 1985-10-21 Hitachi Ltd Process for removing hydrocarbon
JPS61151013A (en) * 1984-12-21 1986-07-09 Mitsui Toatsu Chem Inc Method of purifying carbon dioxide
JPH0531320A (en) * 1991-07-31 1993-02-09 Nissan Motor Co Ltd Exhaust gas cleaning apparatus for internal combustion engine
JPH06287001A (en) * 1993-03-31 1994-10-11 Nippon Sanso Kk Production of hydrogen and carbon dioxide
JP2000281327A (en) * 1999-03-29 2000-10-10 Tokyo Gas Co Ltd Production of high purity carbon dioxide
US6224843B1 (en) * 1999-09-13 2001-05-01 Saudi Basic Industries Corporation Carbon dioxide purification in ethylene glycol plants
JP2003093841A (en) * 2001-09-26 2003-04-02 Nippon Shokubai Co Ltd Method and apparatus for treating organic gas for sterilization
JP2004267982A (en) * 2003-03-11 2004-09-30 Nippon Shokubai Co Ltd Method and equipment for treating sterilized exhaust gas
JP2004323263A (en) * 2003-04-22 2004-11-18 Osaka Gas Co Ltd Apparatus for recovering carbon dioxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252305A (en) * 1990-02-28 1991-11-11 Mitsubishi Heavy Ind Ltd Method for recovering carbon dioxide by oxygen enriched combustion
JPH06137514A (en) * 1992-10-28 1994-05-17 Sumitomo Metal Ind Ltd Manufacture of high concentration carbon dioxide gas
US20070151451A1 (en) * 2005-12-22 2007-07-05 Rekers Dominicus M Process for the cooling, concentration or purification of ethylene oxide

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129867A (en) * 1975-05-04 1976-11-11 Kogyo Kaihatsu Kenkyusho A process for purification of gas containing organic solvents
JPS603422A (en) * 1983-06-22 1985-01-09 Hitachi Ltd Catalytic burner
JPS60209229A (en) * 1984-04-02 1985-10-21 Hitachi Ltd Process for removing hydrocarbon
JPS61151013A (en) * 1984-12-21 1986-07-09 Mitsui Toatsu Chem Inc Method of purifying carbon dioxide
JPH0531320A (en) * 1991-07-31 1993-02-09 Nissan Motor Co Ltd Exhaust gas cleaning apparatus for internal combustion engine
JPH06287001A (en) * 1993-03-31 1994-10-11 Nippon Sanso Kk Production of hydrogen and carbon dioxide
JP2000281327A (en) * 1999-03-29 2000-10-10 Tokyo Gas Co Ltd Production of high purity carbon dioxide
US6224843B1 (en) * 1999-09-13 2001-05-01 Saudi Basic Industries Corporation Carbon dioxide purification in ethylene glycol plants
JP2003093841A (en) * 2001-09-26 2003-04-02 Nippon Shokubai Co Ltd Method and apparatus for treating organic gas for sterilization
JP2004267982A (en) * 2003-03-11 2004-09-30 Nippon Shokubai Co Ltd Method and equipment for treating sterilized exhaust gas
JP2004323263A (en) * 2003-04-22 2004-11-18 Osaka Gas Co Ltd Apparatus for recovering carbon dioxide

Also Published As

Publication number Publication date
SG175163A1 (en) 2011-11-28
JP5565820B2 (en) 2014-08-06
WO2010120046A2 (en) 2010-10-21
KR100913888B1 (en) 2009-08-26
WO2010120046A8 (en) 2011-09-29
WO2010120046A3 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5565820B2 (en) Carbon dioxide purification apparatus for recovering carbon dioxide from exhaust gas mixed with combustible impurities, and method for recovering high purity carbon dioxide using the same
JP2006145198A (en) Waste incinerator and waste incineration method
EP2432902B1 (en) Method for operating a regenerative heater
WO2016102709A1 (en) Direct-fired inclined counterflow rotary kilns and use thereof
WO2009072996A1 (en) Plant and method for dry coke quenching
JP5521650B2 (en) Waste treatment apparatus and waste treatment method
JP2009299947A (en) Thermal storage type gas treatment furnace
CN109737435A (en) Thermal accumulating incinerator overtemperature treatment process and device
JP2009256746A (en) Method for adjusting furnace temperature in heating-combustion zone in rotary-hearth furnace, and rotary-hearth furnace
CN104006672A (en) Method for smoke discharging and dedusting of steel making electric furnace
JP2013053360A (en) Method of treating converter waste gas
JP2012125666A (en) Device for treating metal scrap
EP3188805A1 (en) Prevention of combustion in storage silos
KR20100047192A (en) Process and plant for incinerating waste with preheating of the latter
JP3844327B2 (en) Method and apparatus for processing radioactive graphite
JP2007263410A (en) Tuyere blowing method and device for waste melting furnace
KR20190136316A (en) A system for reducing nitrogen oxide
TWI504844B (en) A method of voc abatement with energy recovery and rto waste heat recovery boiler using the method
JP2004163070A (en) Combustion equipment for exhaust gas generated inside gasification melting furnace and combustion method
JP2006023052A (en) Exhaust gas processing method for ash melting furnace, and processing facility therefor
Nakajima et al. Development strategy of environmentally friendly sewage sludge incineration technologies in Bureau of Sewerage Tokyo Metropolitan Government
KR20180029630A (en) System for recycling of waste refrigerant and thermally treating of by-products
KR101505135B1 (en) System for thermally decomposing and detoxicating of waste refrigerant
KR101634731B1 (en) Exhaust gas treatment apparatus and the method thereof
KR100310857B1 (en) How to burn and dissolve waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5565820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250