JP2012510355A - Catalyst carrier, method for producing the same, and use thereof - Google Patents

Catalyst carrier, method for producing the same, and use thereof Download PDF

Info

Publication number
JP2012510355A
JP2012510355A JP2011537899A JP2011537899A JP2012510355A JP 2012510355 A JP2012510355 A JP 2012510355A JP 2011537899 A JP2011537899 A JP 2011537899A JP 2011537899 A JP2011537899 A JP 2011537899A JP 2012510355 A JP2012510355 A JP 2012510355A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst support
layered silicate
catalyst carrier
natural layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011537899A
Other languages
Japanese (ja)
Other versions
JP5509214B2 (en
Inventor
ハゲマイヤー,アルフレット
メストル,ゲルハルト
キュリオパウロ,アリス
シェック,ペーター
Original Assignee
ズード−ケミー アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ズード−ケミー アーゲー filed Critical ズード−ケミー アーゲー
Publication of JP2012510355A publication Critical patent/JP2012510355A/en
Application granted granted Critical
Publication of JP5509214B2 publication Critical patent/JP5509214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • B01J35/51
    • B01J35/615
    • B01J35/633
    • B01J35/647
    • B01J35/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Abstract

本発明は、天然層状ケイ酸塩を含む物質備えるオープンポア(open-pored)触媒担体であって、酸性度が10μvalから60μvalであり、平均孔径が10.5nmから14nmであり、比表面積が160m2/gから175m2/gであり、かさ密度が480g/lから550g/l、であり、Al23 含有量が2.5重量%未満であり、および吸水度が65%を超える触媒担体、その製造のための方法、およびその使用に関する。
【選択図】 なし
The present invention is an open-pored catalyst support comprising a material containing natural layered silicate, having an acidity of 10 μval to 60 μval, an average pore diameter of 10.5 nm to 14 nm, and a specific surface area of 160 m. 2 / g to 175 m 2 / g, a bulk density of 480 g / l to 550 g / l, an Al 2 O 3 content of less than 2.5% by weight, and a water absorption of more than 65% The present invention relates to a carrier, a process for its production and its use.
[Selection figure] None

Description

本発明は、オープンポア(open-pored:開孔)触媒担体、その製造方法、及びその使用に関する。   The present invention relates to an open-pored catalyst support, a process for its production, and its use.

酢酸ビニルモノマー(VAM)は、プラスチックポリマーの合成におけるブロックを組み立てる重要なモノマーである。
VAMの主な使用分野は、特に、ポリ酢酸ビニル、ポリビニルアルコール、及びポリビニルアセタール、並びに、他のモノマー(例えば、エチレン、塩化ビニル、アクリル酸塩、マレイネート、フマル酸塩及びラウリン酸ビニル等)との共重合及び三元重合体の製造の分野である。
Vinyl acetate monomer (VAM) is an important monomer that assembles blocks in the synthesis of plastic polymers.
The main fields of use of VAM are in particular polyvinyl acetate, polyvinyl alcohol, and polyvinyl acetal, and other monomers such as ethylene, vinyl chloride, acrylate, maleate, fumarate and vinyl laurate, etc. And the production of terpolymers.

VAMは、主に、酸化反応により酢酸及びエチレンから気相で生成され、ここでは、この合成のために用いられる触媒は、好ましくは、活性金属としてPdを、プロモーター(promoter)として、Auを、コプロモーター(co−promoter)としてアルカリ金属成分を、さらに好ましくは酢酸塩の形態のカリウムを含有する。
これらの触媒のPd/Auシステムでは、非合金粒子の存在は除外できないが、Pd及びAuの金属は、それぞれの純金属の金属粒子の形態でなく、むしろ、おそらく様々な構成のPd/Au合金粒子の形態で存在する。
また、Auの代替物として、例えばCd若しくはBaは、コプロモーターとして用いられ得る。
VAM is mainly generated in the gas phase from acetic acid and ethylene by an oxidation reaction, where the catalyst used for this synthesis is preferably Pd as the active metal, Au as the promoter, It contains an alkali metal component as a co-promoter, more preferably potassium in the form of acetate.
In these catalytic Pd / Au systems, the presence of non-alloyed particles cannot be ruled out, but the metals of Pd and Au are not in the form of metal particles of their respective pure metals, but rather Pd / Au alloys of different configurations. Present in the form of particles.
As an alternative to Au, for example, Cd or Ba can be used as a copromoter.

近年、VAMは、いわゆる殻触媒を用いて主に製造されるが、前記貴金属であるPdおよびAuは、成形体として形成された触媒担体には完全には浸透せず、むしろ、前記触媒担体の成形体の大なり小なり外側のエリア(殻)にのみ含まれ(EP 565 952 A1、EP 634 214 A1、EP 634 209 A1及びEP 634 208 A1を参照。)、一方でさらに内側の前記触媒担体のエリアには貴金属が存在しない。
殻触媒を用いることにより、より選択的な反応のコントロールが、担体のコア内に活性成分が浸透された担体中の触媒(含浸:impregnated through)を用いる場合に比して、多くの場合に可能となる。
In recent years, VAM is mainly produced using a so-called shell catalyst, but the precious metals Pd and Au do not completely penetrate into the catalyst support formed as a molded body, but rather, Contained only in the area (shell) of the molded body, which is more or less outside (see EP 565 952 A1, EP 634 214 A1, EP 634 209 A1 and EP 634 208 A1), on the other hand, the catalyst support further inside There are no precious metals in this area.
By using a shell catalyst, more selective reaction control is possible in many cases than when using a catalyst in the support (impregnated through) in which the active component is permeated into the core of the support. It becomes.

VAMを生成するための従来技術で知られている殻触媒は、例えば、酸化ケイ素、酸化アルミニウム、アルミノケイ酸塩、酸化チタン若しくは酸化ジルコニウムをベースとした触媒担体である(EP 839 793 A1、WO 1998/018553 A1、WO 2000/058008 A1及びWO 2005/061107 A1を参照。)。
しかしながら、現在では酸化チタン若しくは酸化ジルコニウムをベースとした触媒担体は、ほとんど用いられてないが、それは、これらの触媒担体が、酢酸に比べて長期間の安定性を示さず、且つ比較的高価であるからである。
Shell catalysts known in the prior art for producing VAM are, for example, catalyst supports based on silicon oxide, aluminum oxide, aluminosilicate, titanium oxide or zirconium oxide (EP 839 793 A1, WO 1998). / 018553 A1, see WO 2000/058008 A1 and WO 2005/061107 A1).
At present, however, catalyst supports based on titanium oxide or zirconium oxide are rarely used because they do not exhibit long-term stability and are relatively expensive compared to acetic acid. Because there is.

VAMを生成するために現在用いられている触媒の大部分は、カリウム酢酸塩がコプロモーターとして十分に含浸された天然層状ケイ酸塩をベースにして球体として形成されたポーラスアモルファスアルミノケイ酸塩担体にPd/Auの殻を有する殻触媒である。   Most of the catalysts currently used to produce VAM are based on porous amorphous aluminosilicate supports formed as spheres based on natural layered silicate fully impregnated with potassium acetate as a co-promoter. A shell catalyst having a shell of Pd / Au.

そのようなVAMは、通常、対応する金属前駆体化合物の溶液に前記触媒担体が浸される、いわゆる化学的経路によって、例えば、前記担体を前記溶液に浸すことによって、又は、前記担体がその細孔容積に対応する量の溶液で負荷される初期湿り方法(細孔充填方法)によって生成される。   Such VAMs are usually produced by a so-called chemical route in which the catalyst support is immersed in a solution of the corresponding metal precursor compound, for example by immersing the support in the solution, or when the support is finely divided. Produced by an initial wetting method (pore filling method) loaded with an amount of solution corresponding to the pore volume.

前記触媒のPd/Au殻は、例えば、まず第1ステップでNa2PdCl4溶液に前記触媒担体を浸し、それから第2ステップでNaOHを用いて前記触媒担体に水酸化鉛化合物の形態でPd成分を固定することにより生成される。
それから、別な第3ステップでは、前記触媒担体が、NaAuCl4溶液に浸され、そして、Au成分がNaOHによって同様に固定される。
貴金属成分を前記触媒担体の外殻に固定した後、前記担体は、塩素イオン及びNaイオンがないようにしっかりと洗浄され、乾燥され、焼成され、そして最後に150℃でエチレンで還元される。
このようにして生成されたPd/Au殻は、通常約100μmから500μmの厚みがある。
For example, the Pd / Au shell of the catalyst may be prepared by first immersing the catalyst carrier in a Na 2 PdCl 4 solution in the first step, and then using NaOH in the second step to form a Pd component in the form of a lead hydroxide compound in the catalyst carrier. It is generated by fixing.
Then, in another third step, the catalyst support is immersed in a NaAuCl 4 solution and the Au component is similarly fixed by NaOH.
After fixing the noble metal component to the outer shell of the catalyst support, the support is washed thoroughly free of chlorine and Na ions, dried, calcined and finally reduced with ethylene at 150 ° C.
The Pd / Au shell thus produced usually has a thickness of about 100 μm to 500 μm.

通常、前記貴金属を担持された触媒担体は、最後の固定若しくは還元工程後に酢酸カリウムを負荷されるが、ここでは、貴金属が負荷される外殻でのみ酢酸カリウムの負荷が行われるというよりもむしろ、前記触媒担体が、前記コプロモーターで完全に含浸される。
天然層状ケイ酸塩をベースにしたズードケミー アーゲー社製(ミュンヘン、ドイツ)の“KA−160”と呼ばれる球状の担体は、約160m2/gのBET表面積を有するが、主に触媒担体として用いられる。
Usually, the catalyst support loaded with the noble metal is loaded with potassium acetate after the last fixing or reducing step, but here the loading of potassium acetate is performed only on the outer shell loaded with the noble metal. The catalyst support is completely impregnated with the copromoter.
A spherical support called “KA-160” from Sued Chemie AG (Munich, Germany) based on natural layered silicates has a BET surface area of about 160 m 2 / g, but is mainly used as a catalyst support. .

Pd及びAuをベースにした従来技術で知られているVAM殻触媒、及びKA−160担体によって到達されるVAM選択性は、供給されたエチレンに対して、約90モル%であり、ここでは、反応生成物の残り10モル%は、基本的に、有機遊離体/生成物の全酸化によって生成されるCO2である。
従って、VAM選択性のさらなる増加又は全酸化の抑制は、出発物質の損失を最小限にするために、反応管におけるいわゆる“ホットスポット”を減らしそれによりVAM触媒の寿命を延ばすために、およびリサイクルガスでのCO2パージを軽減するために要求される。
The VAM shell catalyst known in the prior art based on Pd and Au, and the VAM selectivity achieved by the KA-160 support is about 90 mol%, based on the supplied ethylene, where: The remaining 10 mol% of the reaction product is basically CO 2 produced by total oxidation of the organic educt / product.
Thus, further increases in VAM selectivity or suppression of total oxidation can minimize starting material loss, reduce so-called “hot spots” in the reaction tube, thereby extending the life of the VAM catalyst, and recycling. Required to mitigate CO 2 purge with gas.

従って、本発明の目的は、比較的高いVAM選択性によって特徴づけられるVAM触媒を生成しうる触媒担体を提供することである。   Accordingly, it is an object of the present invention to provide a catalyst support capable of producing a VAM catalyst characterized by a relatively high VAM selectivity.

前記目的は、天然層状ケイ酸塩を含む物質を備えるオープンポア触媒担体であって、酸性度が10μvalから60μvalであり、平均孔径が10.5nmから14nmであり、比表面積が160m2/gから175m2/gであり、かさ密度が480g/lから550g/lであり、Al23 含有量が2.5重量%未満であり、および吸水度が65%を超える触媒担体によって到達される。 The object is an open pore catalyst support comprising a material containing natural layered silicate, having an acidity of 10 μval to 60 μval, an average pore diameter of 10.5 nm to 14 nm, and a specific surface area of 160 m 2 / g. Reached by a catalyst support with a bulk density of 175 m 2 / g, a bulk density of 480 g / l to 550 g / l, an Al 2 O 3 content of less than 2.5% by weight and a water absorption of more than 65% .

驚くべきことに、前記したような酸性度、平均孔径、比表面積、かさ密度、Al23 含有量及び吸水度についての本発明に係る前記値を有するオープンポア触媒担体を用いることで、前記したような特定の組み合わせの値を有さない従来のオープンポア触媒担体を用いて製造されたVAM触媒と比較して、高い選択性と全酸化の抑制を特徴とするVAM触媒が製造されうることが見出された。 Surprisingly, by using an open pore catalyst support having the above values according to the present invention for acidity, average pore diameter, specific surface area, bulk density, Al 2 O 3 content and water absorption as described above, Compared with a VAM catalyst produced using a conventional open pore catalyst support having no specific combination value, a VAM catalyst characterized by high selectivity and suppression of total oxidation can be produced. Was found.

前記天然層状ケイ酸塩は、本発明に係る前記触媒担体に含まれる。
「天然層状ケイ酸塩」とは、代わりに「フィロケイ酸塩」も文献では使用されるが、本発明の枠組み内では、すべてのケイ酸塩のユニットをベースとする構造をとるSiO4四面体を内部に含む天然由来のケイ酸物質であって 一般式[Si252-の層において互いに架橋されている未処理の又は処理されたケイ酸塩物質を意味する。
これらの四面体シートは、カチオン、主に、AlおよびMg、を含み、OHまたはOに囲まれた八面体配位であるいわゆる八面体シートと交互に存在している。
例えば、二層フィロケイ酸塩と三層のフィロケイ酸塩とは区別される。
層状ケイ酸塩は、好ましくは、本発明の枠組み内では、粘土鉱物であり、特に、カオリナイト、バイデライト、ヘクトライト、サポナイト、ノントロナイト、マイカ、バーミュキュライトおよびスメクタイトが好ましく、中でも、スメクタイト及び特にモンモリロナイトが好ましい。
「層状ケイ酸塩(Schichtsilikate)」の用語の定義は、例えば、「Lehrbuch der anorganischen Chemie」Hollemann Wiberg, de Gruyter, 102nd edition, 2007 (ISBN 978-3-11-017770-1)、又は、「Rompp Lexikon Chemie(「Rompp」の「o」はウムラウトである。)」, Georg Thieme Verlag の「Phyllosilikat(フィロケイ酸塩)」項目において見出される。
The natural layered silicate is included in the catalyst carrier according to the present invention.
“Natural layered silicate” is also used in the literature instead of “phyllosilicate”, but within the framework of the invention, an SiO 4 tetrahedron with a structure based on all silicate units Means an untreated or treated silicate material which is internally cross-linked in a layer of the general formula [Si 2 O 5 ] 2− .
These tetrahedral sheets contain cations, mainly Al and Mg, and alternate with so-called octahedral sheets that are octahedrally coordinated surrounded by OH or O.
For example, a distinction is made between two-layer phyllosilicates and three-layer phyllosilicates.
Layered silicates are preferably clay minerals within the framework of the invention, in particular kaolinite, beidellite, hectorite, saponite, nontronite, mica, vermiculite and smectite, among others Smectite and especially montmorillonite are preferred.
The definition of the term “Schichtsilikate” is, for example, “Lehrbuch der anorganischen Chemie” Hollemann Wiberg, de Gruyter, 102 nd edition, 2007 (ISBN 978-3-11-017770-1) or “ Rompp Lexikon Chemie (“Rompp” “o” is umlaut) ”, found in the“ Phyllosilikat ”section of Georg Thieme Verlag.

担体材料として使用する前に行われる天然層状ケイ酸塩に対する典型的な処理は、例えば、酸、特に塩酸などの鉱酸による処理および/またはか焼を含む。   Typical treatments for natural layered silicates prior to use as a support material include, for example, treatment with acids, in particular mineral acids such as hydrochloric acid and / or calcination.

本発明に係る触媒担体は、酸性度が10μval/gから60μval/gである。
本発明に係る触媒担体の酸性度のレベルは、酢酸及びエテンからのVAMの気相合成に関して対応する触媒の活性に有利に影響を与え得る。
本発明に係る触媒のより好ましい実施形態においては、前記触媒担体は、酸性度が20μval/gから60μval/gである。
前記担体の酸性度は、例えば、前記担体に酸を含浸させることによって増加され得る。
The catalyst carrier according to the present invention has an acidity of 10 μval / g to 60 μval / g.
The level of acidity of the catalyst support according to the invention can advantageously affect the activity of the corresponding catalyst for the gas phase synthesis of VAM from acetic acid and ethene.
In a more preferred embodiment of the catalyst according to the present invention, the catalyst carrier has an acidity of 20 μval / g to 60 μval / g.
The acidity of the carrier can be increased, for example, by impregnating the carrier with an acid.

触媒担体の酸性度は、以下のようにして測定される。
水100mL(pHブランク値を有する)が、細かく砕かれた触媒担体1gに加えられ、かき混ぜられながら15分間抽出が行われる。
0.01NのNaOH溶液を用いた少なくともpH7.0への滴定は、次のようにして行われ、まず、NaOH溶液1mLが抽出物に適下され(1滴/秒)、2分間待ち、pHが読まれ、さらにNaOH溶液1mLが滴下される等、ここでは滴定が段階的に実施される。
用いられた水のブランク値は、測定され、酸化度の計算が補正される。
それから、滴定曲線(pHに対する0.01N NaOHの量 mL)がプロットされ、前記滴定曲線のpH7での交点が求められる。
pH7の交点までのNaOHの消費量から得られるモル当量は、1担体あたり10-6 equiv/g として算出される。

Figure 2012510355
The acidity of the catalyst support is measured as follows.
100 mL of water (having a pH blank value) is added to 1 g of finely crushed catalyst support and extraction is carried out for 15 minutes while stirring.
Titration to at least pH 7.0 with 0.01 N NaOH solution is performed as follows: first, 1 mL of NaOH solution is applied to the extract (1 drop / second), wait 2 minutes, pH Here, titration is performed stepwise, for example, 1 mL of NaOH solution is added dropwise.
The blank value of the water used is measured and the calculation of the degree of oxidation is corrected.
Then, a titration curve (amount of 0.01 N NaOH with respect to pH, mL) is plotted, and the intersection point of the titration curve at pH 7 is determined.
The molar equivalent obtained from the consumption of NaOH up to the intersection of pH 7 is calculated as 10 −6 equiv / g per carrier.
Figure 2012510355

本発明に係る前記触媒担体は、平均孔径10.5nmから14nmである。
本発明に係る前記触媒担体の細孔拡散限度を最小限に維持するために、本発明に係る触媒担体のさらに好ましい実施形態として、平均孔径10.5nmから12nmであることを提供する。
前記平均孔径はDIN66134(N2吸着等温線による窒素吸着法(BJH法(Barrett, Joyner and Halenda method))によるメソポーラス固体の細孔径分布及び比表面積の測定)に従って測定される。
The catalyst carrier according to the present invention has an average pore diameter of 10.5 nm to 14 nm.
In order to keep the pore diffusion limit of the catalyst support according to the present invention to a minimum, as a further preferred embodiment of the catalyst support according to the present invention, an average pore diameter of 10.5 nm to 12 nm is provided.
The average pore size is measured according to DIN 66134 (measurement of pore size distribution and specific surface area of mesoporous solids by nitrogen adsorption method using N2 adsorption isotherm (BJH method (Barrett, Joyner and Halenda method)).

本発明に係る触媒担体の比表面積は160m2/gから175m2/gであり、好ましくは、165m2/gから170m2/gである。
本発明に係る触媒担体を用いて製造されたVAM触媒のVAM選択性及び、全酸化の抑制は、本発明に係る触媒担体の比表面積が前記のような範囲である場合には、触媒の一定の活性のほとんどにおいて従来どおりに製造されたVAM触媒を用いる場合よりもより高い。
前記比表面積はDIN66131(BET法(Brunauer, Emmett and Teller method)に従ったガス吸着による固体の比表面積の測定)および窒素を用いたDIN66132に従って測定される。
The specific surface area of the catalyst support according to the present invention is from 160 m 2 / g to 175 m 2 / g, preferably from 165 m 2 / g to 170 m 2 / g.
The VAM selectivity of the VAM catalyst produced using the catalyst carrier according to the present invention and the suppression of total oxidation can be achieved when the specific surface area of the catalyst carrier according to the present invention is in the above range. In most of the activity of this is higher than with conventionally produced VAM catalysts.
The specific surface area is measured according to DIN 66131 (measurement of the specific surface area of a solid by gas adsorption according to the BET method (Brunauer, Emmett and Teller method)) and DIN 66132 using nitrogen.

本発明に係る触媒担体のかさ密度(圧縮密度)は480g/lから550g/l、好ましくは480g/lから520g/lである。   The bulk density (compression density) of the catalyst carrier according to the present invention is 480 g / l to 550 g / l, preferably 480 g / l to 520 g / l.

本発明に係る触媒担体において、天然層状ケイ酸塩は、本発明に係る触媒担体中に含まれる天然層状ケイ酸塩の重量に対して2.5重量%未満のAl23を含み、好ましくは、0.1質量%から2.0質量%、さらに好ましくは、0.3質量%から1.8質量%のAl23を含む。
前記天然層状ケイ酸塩のAl23含有量は、本発明に従って、比較的低い値に抑制されているが、これは、酢酸およびエテンからのVAMの気相合成においては、高いAl23含有量においては、圧入硬度の顕著な減少が予想されるはずであるのに対して、天然層状ケイ酸塩中の比較的低いAl23含有量はほとんど不利益にならないためである。
In the catalyst support according to the present invention, the natural layered silicate contains less than 2.5% by weight of Al 2 O 3 based on the weight of the natural layered silicate contained in the catalyst support according to the present invention, preferably Contains 0.1% to 2.0% by weight, more preferably 0.3% to 1.8% by weight of Al 2 O 3 .
The Al 2 O 3 content of the natural layered silicate is constrained to a relatively low value according to the present invention, which is a high Al 2 O in the gas phase synthesis of VAM from acetic acid and ethene. This is because a significant decrease in the indentation hardness should be expected at the 3 content, whereas the relatively low Al 2 O 3 content in the natural layered silicate is hardly detrimental.

本発明に係る触媒担体の水の吸収による重量の増加に従って算出される吸水度は、65%を超え、好ましくは66%から80%、さらに好ましくは67%から75%である。
前記吸水度は、10gの担体サンプルを前記担体サンプルからガスの泡が出なくなるまで脱イオン水中に30分間浸漬することで測定される。
余剰な水は取り除かれ、そして綿タオルで付着している水分を取り除くためにサンプルを拭き取る。
そして、水分を含む担体は重量を測定され、以下のような式で吸水度を算出する。

(アウト総重量(g)− イン総重量(g))×10=吸水度(%)
The water absorption calculated according to the weight increase due to water absorption of the catalyst support according to the present invention is more than 65%, preferably 66% to 80%, more preferably 67% to 75%.
The water absorption is measured by immersing a 10 g carrier sample in deionized water for 30 minutes until no gas bubbles emerge from the carrier sample.
Excess water is removed and the sample is wiped off to remove any water attached with a cotton towel.
And the support | carrier containing a water | moisture content is measured for a weight, and a water absorption is computed by the following formula | equation.

(Out total weight (g) −In total weight (g)) × 10 = Water absorption (%)

天然層状ケイ酸塩は特に好ましくは、本発明の枠組み内において、モンモリロナイトであり、好ましくはベントナイトの形状で使用される。
ベントナイトは、主な構成物としてモンモリロナイトを含有する(約50重量%から90重量%)異なる粘土鉱物の混合物である。
さらに、付随する材料としては、特に、水晶、マイカおよび長石が挙げられうる。
Natural layered silicates are particularly preferably used within the framework of the present invention, montmorillonite, preferably in the form of bentonite.
Bentonite is a mixture of different clay minerals containing montmorillonite (about 50% to 90% by weight) as the main constituent.
Furthermore, accompanying materials may include quartz, mica and feldspar, among others.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記天然層状ケイ酸塩は、酸活性化天然層状ケイ酸塩である。   According to a further preferred embodiment of the catalyst carrier according to the present invention, the natural layered silicate is an acid activated natural layered silicate.

酸活性化層状ケイ酸塩は、従来技術(Rompp Lexikon Chemie, 10th edition(「Rompp」の「o」はウムラウトである。), Georg Thieme Verlag, "Bentonite")において知られている。
本発明に係る触媒担体の吸着力を上げるために、天然層状ケイ酸塩は、酸活性化天然層状ケイ酸塩の上の担体中に存在することが好ましい。
前記酸活性化天然層状ケイ酸塩は、酸活性化モンモリロナイトであることがより好ましい。
モンモリロナイトは、本発明によれば、本発明に係る担体中に含まれる、酸活性化ベントナイトの形状であることがさらに好ましい。
Acid-activated layered silicates are known in the prior art (Rompp Lexikon Chemie, 10 th edition (“Rompp” “o” is umlaut), Georg Thieme Verlag, “Bentonite”).
In order to increase the adsorptive power of the catalyst support according to the present invention, the natural layered silicate is preferably present in the support on the acid activated natural layered silicate.
More preferably, the acid activated natural layered silicate is acid activated montmorillonite.
According to the present invention, the montmorillonite is more preferably in the form of acid-activated bentonite contained in the carrier according to the present invention.

本発明に係る触媒担体のさらに好ましい実施形態によれば、触媒担体は、60Nを超える硬度を有しており、好ましくは、62Nから80N、さらに好ましくは、65Nから75Nの硬度を有することが提供される。
前記硬度(圧入硬度)は、Dr.Schleuniger Pharmatron AG 社製(スイス)のテーブル硬度計8Mを用いて、 球状プローブ(直径:5mm)上で測定される。
測定前に、サンプルは2時間130℃で乾燥される。
硬度は、99測定の平均から算出される。
測定のための、テーブル硬度計8Mの、選択可能なパラメータは下記のように設定される。
硬度(ディメンジョン):N
サンプルからの距離:5.00mm
時間遅延:0.80秒
フィードタイプ:6D
速度:0.60mm/s
According to a further preferred embodiment of the catalyst carrier according to the invention, it is provided that the catalyst carrier has a hardness of more than 60N, preferably 62N to 80N, more preferably 65N to 75N. Is done.
The hardness (press-fit hardness) is the same as that of Dr. It is measured on a spherical probe (diameter: 5 mm) using a table hardness meter 8M manufactured by Schleuniger Pharmatron AG (Switzerland).
Prior to measurement, the sample is dried for 2 hours at 130 ° C.
The hardness is calculated from the average of 99 measurements.
Selectable parameters of the table hardness meter 8M for measurement are set as follows.
Hardness (dimension): N
Distance from sample: 5.00mm
Time delay: 0.80 seconds Feed type: 6D
Speed: 0.60mm / s

本発明によれば、本発明に係る触媒担体中の天然層状ケイ酸塩の割合は、触媒担体の重量に対して、少なくとも50重量%、好ましくは55重量%から100重量%、好ましくは60重量%から99重量%、さらに好ましくは65質量%から98質量%、およびさらにより好ましくは70重量%から97重量%である。   According to the invention, the proportion of natural layered silicate in the catalyst support according to the invention is at least 50% by weight, preferably 55% to 100% by weight, preferably 60% by weight, based on the weight of the catalyst support. % To 99% by weight, more preferably 65% to 98% by weight, and even more preferably 70% to 97% by weight.

本発明に係る触媒担体のさらに好ましい実施形態に於いては、前記触媒担体は、総細孔容積が0.25mL/gから0.8mL/gであることが提供される。   In a further preferred embodiment of the catalyst carrier according to the present invention, it is provided that the catalyst carrier has a total pore volume of 0.25 mL / g to 0.8 mL / g.

本発明に係る触媒担体を用いて製造されたVAM触媒のVAM選択性は、前記触媒担体の総細孔容積に依存することが見出された。
前記触媒担体の総細孔容積は、0.25ml/gから0.8ml/g、好ましくは0.4ml/gから0.75ml/gおよび好ましくは0.5ml/gから0.7ml/gである。
前記総細孔容積は、DIN66134(窒素吸着法(BJH法(Barrett, Joyner and Halenda method))によって測定される。
It has been found that the VAM selectivity of a VAM catalyst produced using the catalyst support according to the present invention depends on the total pore volume of the catalyst support.
The total pore volume of the catalyst support is 0.25 ml / g to 0.8 ml / g, preferably 0.4 ml / g to 0.75 ml / g and preferably 0.5 ml / g to 0.7 ml / g. is there.
The total pore volume is measured by DIN 66134 (nitrogen adsorption method (BJH method (Barrett, Joyner and Halenda method)).

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記触媒担体の総細孔容積の少なくとも80%、好ましくは90%、さらに好ましくは95%がメソポーラスおよびミクロポーラスから形成されることが提供される。
これは、拡散限界により影響を受ける、本発明に従って製造された触媒担体を用いて製造されたVAM触媒担体の、特に、本発明に従って製造された比較的厚い殻を有するPd/Au殻触媒担体の、活性の抑制を中和する。
「ミクロポーラス」、「メソポーラス」および「マクロポーラス」とは、それぞれ直径が2nm未満、直径が2から50nm、直径が50nmを越える、孔を有することを意味する。
総細孔容積におけるメソポーラス及びマクロポーラスの割合は、DIN 66134DIN66134(窒素吸着法(BJH法(Barrett, Joyner and Halenda method))によるメソポーラス固体の細孔径分布及び比表面積の測定)によって測定される本発明に係る触媒担体の細孔径分布を用いて測定される。
According to a further preferred embodiment of the catalyst support according to the invention, it is provided that at least 80%, preferably 90%, more preferably 95% of the total pore volume of the catalyst support is formed from mesoporous and microporous. Is done.
This is due to the VAM catalyst support produced with the catalyst support produced according to the invention, in particular affected by the diffusion limit, in particular with the relatively thick shelled Pd / Au shell catalyst support produced according to the invention. , Neutralize the suppression of activity.
“Microporous”, “mesoporous” and “macroporous” mean having pores with a diameter of less than 2 nm, a diameter of 2 to 50 nm and a diameter of more than 50 nm, respectively.
The proportion of mesoporous and macroporous in the total pore volume is measured by DIN 66134 DIN 66134 (measurement of pore size distribution and specific surface area of mesoporous solids by nitrogen adsorption method (BJH method (Barrett, Joyner and Halenda method)) It is measured using the pore size distribution of the catalyst support according to the above.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記触媒担体中の天然層状ケイ酸塩のSiO2含有量は、少なくとも65重量%、好ましくは少なくとも80質量%、および特に好ましくは90質量%から98質量%であることが提供される。
従って、本発明に係る触媒担体の高い耐薬品性は、VAM合成において、発揮される。
According to a further preferred embodiment of the catalyst support according to the invention, the SiO 2 content of the natural layered silicate in the catalyst support is at least 65% by weight, preferably at least 80% by weight and particularly preferably 90% by weight. % To 98% by weight is provided.
Therefore, the high chemical resistance of the catalyst carrier according to the present invention is exhibited in the VAM synthesis.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記触媒担体は成形体として形成されることが提供される。   According to a further preferred embodiment of the catalyst carrier according to the invention, it is provided that the catalyst carrier is formed as a shaped body.

特に、殻触媒の製造に関しては、本発明に係る触媒担体は、成形体として形成されることが好ましい。
原則として、前記触媒担体は本発明の目的に適している当業者に知られたいかなる形もとりうる。
例えば、本発明に係る触媒担体は、球体状、筒状、有孔の筒状、三つ葉形状、環状、星型、トーラス状あるいはらせん状、好ましくは、リブのあるらせん状または星型のらせん状などの形状をとりうる。
In particular, regarding the production of the shell catalyst, the catalyst carrier according to the present invention is preferably formed as a molded body.
In principle, the catalyst support can take any form known to those skilled in the art suitable for the purposes of the present invention.
For example, the catalyst carrier according to the present invention has a spherical shape, a cylindrical shape, a perforated cylindrical shape, a trefoil shape, an annular shape, a star shape, a torus shape, or a spiral shape, preferably a spiral shape with a rib or a star shape spiral shape. The shape can be taken.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記触媒担体の最大サイズは1mmから25mm、好ましくは最大サイズ3mmから15mmであることが提供される。   According to a further preferred embodiment of the catalyst carrier according to the invention, it is provided that the maximum size of the catalyst carrier is 1 mm to 25 mm, preferably the maximum size 3 mm to 15 mm.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記触媒担体は球体に形成されることが提供される。   According to a further preferred embodiment of the catalyst carrier according to the present invention, it is provided that the catalyst carrier is formed into a sphere.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記球体の直径は2mmから10mm、好ましくは直径は4mmから8mmであることが提供される。   According to a further preferred embodiment of the catalyst carrier according to the present invention, it is provided that the diameter of the sphere is 2 mm to 10 mm, preferably 4 mm to 8 mm.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記触媒担体は、Hf、Ti、Nb、Ta、W、Mg、Re、Y及びFeからなる群から選択される金属の少なくともの一種の酸化物でドープされていることが提供される。
本発明に係る触媒担体を用いて製造されるVAM触媒の活性は、ドーピングによって向上させることが可能である。
According to a further preferred embodiment of the catalyst support according to the present invention, the catalyst support is at least one metal selected from the group consisting of Hf, Ti, Nb, Ta, W, Mg, Re, Y and Fe. It is provided that it is doped with an oxide.
The activity of the VAM catalyst produced using the catalyst carrier according to the present invention can be improved by doping.

本発明に係る触媒担体のさらに好ましい実施形態によれば、触媒担体中のドーパント酸化物の割合は、前記触媒担体の重量に対して、1重量%から25重量%、好ましくは3重量%から15重量%、およびさらに好ましくは5重量%から10重量であることが提供される。
前記ドーピングは、例えば、従来技術から知られているような、表面ドーピング(surface doping)などによって行われ、あるいは、前記一または二以上の金属酸化物が触媒担体のマトリックス内部へ取り込まれうる。
According to a further preferred embodiment of the catalyst support according to the invention, the proportion of dopant oxide in the catalyst support is from 1% to 25% by weight, preferably from 3% to 15%, based on the weight of the catalyst support. It is provided that it is by weight, and more preferably 5-10%.
The doping can be performed, for example, by surface doping, as known from the prior art, or the one or more metal oxides can be incorporated into the matrix of the catalyst support.

さらに好ましい実施形態によれば、前記触媒担体はZrO2フリーであることが提供される。
「ZrO2フリー」とは、前記担体のZrO2含有率が200ppm未満であることをいう。
According to a further preferred embodiment, it is provided that the catalyst support is free of ZrO 2 .
“ZrO 2 free” means that the ZrO 2 content of the carrier is less than 200 ppm.

本発明は方法、特に、本発明に係る触媒担体の製造のための方法であって、
平均孔径が10.5nm未満であり、
比表面積が175m2/gを超え、
かさ密度が550g/lを超え、
Al23 含有量が2.5重量%を超え、および
吸水度が65%を超える、
天然層状ケイ酸塩を含む材料から構成された、第一のオープンポア触媒担体を供給し、
前記第一の触媒担体を鉱酸で処理して、第二の触媒担体を得ることを含む方法にも関連する。
The invention is a process, in particular a process for the production of a catalyst support according to the invention,
The average pore size is less than 10.5 nm,
The specific surface area exceeds 175 m 2 / g,
The bulk density exceeds 550 g / l,
Al 2 O 3 content exceeds 2.5% by weight, and water absorption exceeds 65%,
Supplying a first open pore catalyst support composed of a material containing natural layered silicate;
Also relevant is a process comprising treating the first catalyst support with a mineral acid to obtain a second catalyst support.

本発明による方法を用いて製造される触媒担体で製造されうるVAM触媒は、例えば、本発明に係る方法において用いられる前記第一の触媒担体のような従来のオープンポア触媒担体を用いて得られたVAM触媒と比べて比較的高い選択性で特徴づけられることが見出された。   A VAM catalyst which can be produced with a catalyst carrier produced using the method according to the invention is obtained, for example, using a conventional open pore catalyst carrier such as the first catalyst carrier used in the method according to the invention. It has been found that it is characterized by a relatively high selectivity compared to the VAM catalyst.

本発明による目的に適した当業者に公知のいかなる鉱酸でも鉱酸として使用することが可能である。
好ましい鉱酸の例は、塩酸、硝酸、硫酸、および燐酸であり、中でも、塩酸、特に20%塩酸が好ましい。
Any mineral acid known to those skilled in the art suitable for the purposes according to the invention can be used as the mineral acid.
Examples of preferred mineral acids are hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, among which hydrochloric acid, especially 20% hydrochloric acid is preferred.

第一のオープンポア触媒担体として、天然層状ケイ酸塩を含み、前記のような平均孔径、比表面積、かさ密度、Al23含有量および吸水度の値を満たすいかなる通常のオープンポア触媒担体でも用いることができる。 Any ordinary open pore catalyst support that contains natural layered silicate as the first open pore catalyst support and satisfies the above average pore diameter, specific surface area, bulk density, Al 2 O 3 content and water absorption value But it can also be used.

本発明に係る方法に特に好ましく用いることができるオープンポア触媒担体としては、ズートケミーアーゲー社(ミュンヘン、ドイツ)製、商品名「KA」、天然層状ケイ酸塩をベースとし、前記第一触媒担体の前記値に合致する球形状担体がある。   As an open pore catalyst support that can be used particularly preferably in the method according to the present invention, the first catalyst support is based on the product name “KA”, natural layered silicate, manufactured by Sud Chemie AG (Munich, Germany). There is a spherical carrier that matches the value of.

本発明に係る方法の好ましい実施形態によれば、前記第一の触媒担体の鉱酸での処理が、酸性度が10μvalから60μval、平均孔径が10.5nmから14nm、比表面積が160m2/gから175m2/g、かさ密度が480g/lから550g/l、Al23 含有量が2.5重量%未満、および吸水度が65%を超える第二の触媒担体が得られるまで行われることが提供される。 According to a preferred embodiment of the method according to the invention, the treatment of the first catalyst support with a mineral acid has an acidity of 10 μval to 60 μval, an average pore diameter of 10.5 nm to 14 nm, a specific surface area of 160 m 2 / g. To 175 m 2 / g, a bulk density of 480 g / l to 550 g / l, an Al 2 O 3 content of less than 2.5% by weight, and a second catalyst support with a water absorption of more than 65%. Can be provided.

本発明に係るオープンポア触媒担体のより好ましい実施形態について前記したような記載は、本発明に係る方法で得られうる第二のオープンポア触媒担体に適宜適用することは留意されうる。   It can be noted that the description as described above for the more preferred embodiment of the open pore catalyst carrier according to the present invention is appropriately applied to the second open pore catalyst carrier that can be obtained by the method according to the present invention.

本発明に係る方法のさらに好ましい実施形態によれば、鉱酸での処理は、5時間から100時間に渡って、より好ましくは7時間から50時間に渡って、および特には、8時間から15時間に渡って行われることが提供される。   According to a further preferred embodiment of the method according to the invention, the treatment with mineral acid is carried out over 5 to 100 hours, more preferably over 7 to 50 hours and in particular between 8 and 15 hours. Provided to be done over time.

本発明に係る方法のさらに好ましい実施形態によれば、鉱酸での処理は高温、特に50℃を超える温度で行われることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the treatment with mineral acid is carried out at an elevated temperature, in particular at a temperature above 50 ° C.

本発明に係る方法のさらに好ましい実施形態によれば、鉱酸での処理の後に、前記第二の触媒担体は洗浄されることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that after the treatment with mineral acid, the second catalyst support is washed.

洗浄は、得られた本発明に係る第二のオープンポア触媒担体が、鉱酸処理後の酸残渣を、選択的には、鉱酸によって天然層状ケイ酸塩から溶解した構成成分をも、含まないよう(free)にするために役立ち、かかる洗浄は水で行われることが好ましい。   In the washing, the obtained second open pore catalyst support according to the present invention contains an acid residue after treatment with a mineral acid, optionally also a component dissolved from a natural layered silicate with a mineral acid. It serves to be free and such washing is preferably performed with water.

本発明に係る方法のさらに好ましい実施形態によれば、前記第二の触媒担体は洗浄後にか焼されることが提供される。
前記か焼は、好ましくは400℃から800℃の温度、より好ましくは500℃から700℃の温度で行われることが好ましい。
前記か焼は、3時間から24時間、好ましくは5時間から20時間、特には7時間から10時間行われる。
According to a further preferred embodiment of the method according to the invention, it is provided that the second catalyst support is calcined after washing.
The calcination is preferably performed at a temperature of 400 ° C. to 800 ° C., more preferably at a temperature of 500 ° C. to 700 ° C.
The calcination is carried out for 3 to 24 hours, preferably 5 to 20 hours, in particular 7 to 10 hours.

本発明に係るさらに好ましい実施形態によれば、天然層状ケイ酸塩はモンモリロナイトであり、中でも特に好ましくは、モンモリロナイトがベントナイトの構成物質として存在することが提供される。   According to a further preferred embodiment of the present invention, the natural layered silicate is montmorillonite, particularly preferably provided that montmorillonite is present as a constituent of bentonite.

本発明に係る触媒担体のさらに好ましい実施形態によれば、前記天然層状ケイ酸塩が、酸活性化天然層状ケイ酸塩であることが提供される。   According to a further preferred embodiment of the catalyst carrier according to the present invention, it is provided that the natural layered silicate is an acid activated natural layered silicate.

本発明に係る方法によれば、前記第二の触媒担体の比表面積が、165m2/gから170m2/gであることが提供される。 According to the method of the present invention, it is provided that the specific surface area of the second catalyst support is from 165 m 2 / g to 170 m 2 / g.

本発明に係る方法のさらに好ましい実施形態によれば、前記第二の触媒担体の硬度が、60Nを超えることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the hardness of the second catalyst support exceeds 60N.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体の酸性度が1μval/gから80μval/gであることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the acidity of the first catalyst support is from 1 μval / g to 80 μval / g.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体中の天然層状ケイ酸塩の割合が、少なくとも50重量%であることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the proportion of natural layered silicate in the first catalyst support is at least 50% by weight.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体の総細孔容積が0.25ml/gから0.8ml/gであることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the total pore volume of the first catalyst support is from 0.25 ml / g to 0.8 ml / g.

本発明に係る方法のさらに好ましい実施形態によれば、前記触媒担体の総細孔容積の少なくとも80%が、メソポーラスおよびマクロポーラスから形成されていることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that at least 80% of the total pore volume of the catalyst support is formed from mesoporous and macroporous.

本発明に係る方法のさらに好ましい実施形態によれば、前記第二の触媒担体のかさ密度が、480から520g/lであることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the bulk density of the second catalyst support is from 480 to 520 g / l.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体中に含まれる前記天然層状ケイ酸塩のSiO2含有量が、少なくとも65重量%であることが提供される。 According to a further preferred embodiment of the method according to the invention, it is provided that the SiO 2 content of the natural layered silicate contained in the first catalyst support is at least 65% by weight.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体が、成形体として形成されており、前記第一触媒担体は、好ましくは最大1mmから25mmであることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the first catalyst support is formed as a shaped body, and the first catalyst support is preferably at most 1 mm to 25 mm. .

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体は球体であり、前記球体の直径は特に2mmから10mmであることが提供される。   According to a further preferred embodiment of the method according to the invention, it is provided that the first catalyst support is a sphere, and the diameter of the sphere is in particular from 2 mm to 10 mm.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体が、Hf、Ti、Nb、Ta、W、Mg、Re、Y及びFeからなる群から選択される金属の少なくとも一種の酸化物でドープされており、前記第一の触媒担体中のドーパント酸化物の割合が好ましくは1重量%から25重量%であることが提供される。   According to a further preferred embodiment of the method according to the present invention, the first catalyst support is at least one metal selected from the group consisting of Hf, Ti, Nb, Ta, W, Mg, Re, Y and Fe. It is provided that the proportion of dopant oxide in the first catalyst support is preferably 1% to 25% by weight.

本発明に係る方法のさらに好ましい実施形態によれば、前記第一の触媒担体がZrO2フリーであることが提供される。 According to a further preferred embodiment of the method according to the invention, it is provided that the first catalyst support is free of ZrO 2 .

本発明は、本発明に係る方法により得ることが可能な本発明に係る触媒担体にも関連する。   The invention also relates to the catalyst support according to the invention obtainable by the method according to the invention.

本発明に係る触媒担体の使用、および、酢酸ビニルモノマーの合成のための触媒の製造における本発明に係る方法を用いて得ることが可能な触媒担体の使用にも関連する。   It also relates to the use of the catalyst support according to the invention and the use of the catalyst support obtainable with the process according to the invention in the manufacture of a catalyst for the synthesis of vinyl acetate monomers.

本発明に係る使用の好ましい実施形態によれば、触媒が、酸化状態が0であるPdおよびAuが含まれる殻中にある殻触媒であることが提供される。   According to a preferred embodiment of the use according to the invention, it is provided that the catalyst is a shell catalyst in a shell comprising Pd and Au with an oxidation state of 0.

以下の実施例は本発明の説明の役割を果たす。   The following examples serve to illustrate the invention.

例1
本発明に係る触媒担体の製造
ズートケミーアーゲー社製から市販されている直径約5mmの表1に示すパラメータを有する球体状のKA担体700gを丸底フラスコに入れ、25%塩酸で、50℃を超える温度で全30時間の処理を行った。
得られた処理済み担体は、水で洗浄され、その後乾燥された。
乾燥された担体は、5時間、450℃から670℃の間の温度範囲でか焼され、表1に示すようなパラメータを有する本発明に係る触媒担体が得られた。
Example 1
Production of catalyst carrier according to the present invention 700 g of a spherical KA carrier having a parameter shown in Table 1 having a diameter of about 5 mm, which is commercially available from Zoot Chemie AG, was placed in a round bottom flask, and 25 ° C hydrochloric acid was used at 50 ° C. A total of 30 hours of treatment was performed at a temperature exceeding that.
The treated carrier obtained was washed with water and then dried.
The dried support was calcined in the temperature range between 450 ° C. and 670 ° C. for 5 hours to obtain a catalyst support according to the present invention having the parameters shown in Table 1.

Figure 2012510355
※ 表1中の前記かさ密度 (圧縮密度) は、内径6cmの1リットルメスシリンダー内で再現精度約±1g/lで測定された。
Figure 2012510355
* The bulk density (compression density) in Table 1 was measured in a 1 liter graduated cylinder with an inner diameter of 6 cm with a reproducibility of about ± 1 g / l.

例2
Na2PdCl4溶液(Pd含有量19.64%)2.867gを、HAuCl4溶液(Au含有量41.81%)0.505gおよびH2O40.41gを混合した均一な溶液中に加えた。
本発明の例1の本発明に係る触媒担体を65g加えた後、それらを65分間室温で丸底フラスコ内で、乾燥状態になるまで回転した。
含浸の後、50:50のNaOH:KOH(すなわち40.965 g、0.38モルNaOH+40.965g、0.38モルKOH)の混合物からなる81.93gの0.38Mのベース混合物が前記担体球体に加えられ、全体を16.5時間室温で一晩そのまま置いた。
定着溶液(ベース溶液)を排水した後、このように製造された触媒前駆体は、2時間、73.14gの10%NaH2PO2溶液で還元された。
還元溶液を排水した後、前記担体球体は、脱塩水で19時間、室温において、Cl除去のため水を定期的に交換しながら洗浄された。
前記洗浄水の最終的な伝導度の値は4.6μSであった。前記触媒は、そして90℃で1時間、流動床ドライヤーで乾燥された。
前記乾燥された触媒は、通常は、2モルのKOAc溶液25.25gと、19.18gのH2Oの混合物で含浸され、1時間、室温でそのまま置かれた。
最後に、流動床ドライヤーでの再乾燥が90℃、1時間で行われた。
Example 2
2.867 g of Na 2 PdCl 4 solution (Pd content 19.64%) was added into a homogeneous solution mixed with 0.505 g of HAuCl 4 solution (Au content 41.81%) and 40.41 g of H 2 O. .
After adding 65 g of the catalyst support according to the invention of Example 1 of the invention, they were rotated for 65 minutes at room temperature in a round bottom flask until dry.
After impregnation, 81.93 g of a 0.38 M base mixture consisting of a mixture of 50:50 NaOH: KOH (ie 40.965 g, 0.38 mol NaOH + 40.965 g, 0.38 mol KOH) is the carrier sphere. The whole was left overnight at room temperature for 16.5 hours.
After draining the fixing solution (base solution), the catalyst precursor thus produced was reduced with 73.14 g of 10% NaH 2 PO 2 solution for 2 hours.
After draining the reducing solution, the carrier spheres were washed with demineralized water for 19 hours at room temperature, with periodic water changes to remove Cl.
The final conductivity value of the washing water was 4.6 μS. The catalyst was then dried in a fluid bed dryer at 90 ° C. for 1 hour.
The dried catalyst was usually impregnated with a mixture of 25.25 g of a 2 molar KOAc solution and 19.18 g of H 2 O and left to stand at room temperature for 1 hour.
Finally, re-drying with a fluid bed dryer was performed at 90 ° C. for 1 hour.

このように製造された38個の触媒球体は、固定床チューブ型反応装置で、室温145℃、10バール、550ml/min、窒素中15vol% のHOAc、6vol%のO2、39vol%のC24、からなるフィードガスにさらされ、そして、反応装置の出力をガスクロマトグラフィーを用いて測定した。 The 38 catalyst spheres thus produced were fixed bed tube reactors at room temperature 145 ° C., 10 bar, 550 ml / min, 15 vol% HOAc in nitrogen, 6 vol% O 2 , 39 vol% C 2. The reactor was exposed to a feed gas consisting of H 4 , and the reactor output was measured using gas chromatography.

前記選択性(VAMに対するエチレンの)は、以下の式に従って算出される。

S(C24)=VAM モル/(VAM モル+CO2/2 モル)。

結果として得られる空時収率(resultant space-time yield)は、イン g VAM/1触媒/時間で得られる。
酸素変換率は、(イン O2モル−アウト O2モル)/イン O2モル、
に従って算出される。
The selectivity (of ethylene relative to VAM) is calculated according to the following formula:

S (C 2 H 4) = VAM moles / (VAM moles + CO 2/2 mol).

The resulting space-time yield is obtained in ng VAM / 1 catalyst / hour.
The oxygen conversion rate is (in O 2 mol-out O 2 mol) / in O 2 mol,
Is calculated according to

本発明に係る触媒担体を用いて製造される触媒は、93.5%のS(C24)選択性および、酸素変換率30%において474g VAM/1触媒/時間の空時収率(ガスクロマトグラフィーを用いて測定)を示す。 The catalyst produced using the catalyst support according to the present invention has a space-time yield of 474 g VAM / 1 catalyst / hour at an S (C 2 H 4 ) selectivity of 93.5% and an oxygen conversion of 30% ( Measured using gas chromatography).

例3(比較例)
Na2PdCl4溶液(Pd含有量19.64%)2.867gを、HAuCl4溶液(Au含有量41.81%)0.505gおよびH2O35.997gを混合した均一な溶液中に加えた。
本発明の例1に、市販されているKA担体を65g加えた後、それらを65分間室温で丸底フラスコ内で、乾燥状態になるまで回転した。
含浸の後、50:50のNaOH:KOH(すなわち40.965 g、0.38モルNaOH+40.965g、0.38モルKOH)の混合物からなる81.93gの0.38Mのベース混合物が前記担体球体に加えられ、全体を16.5時間室温で一晩そのまま置いた。
定着溶液(ベース溶液)を排水した後、このように製造された触媒前駆体は、2時間、73.14gの10%NaH2PO2溶液で還元された。
還元溶液を排水した後、前記担体球体は、脱塩水で19時間、室温において、Cl除去のため水を定期的に交換しながら洗浄された。
前記洗浄水の最終的な伝導度の値は4.6μSであった。前記触媒は、そして90℃で1時間、流動床ドライヤーで乾燥された。
前記乾燥された触媒は、通常は、2モルのKOAc溶液25.25gと、19.18gのH2Oの混合物で含浸され、1時間、室温でそのまま置かれた。
最後に、流動床ドライヤーでの再乾燥が90℃、1時間で行われた。
Example 3 (comparative example)
2.867 g of Na 2 PdCl 4 solution (Pd content 19.64%) was added into a homogeneous solution mixed with 0.505 g of HAuCl 4 solution (Au content 41.81%) and 35.997 g of H 2 O. .
After adding 65 g of commercially available KA carrier to Example 1 of the present invention, they were rotated for 65 minutes at room temperature in a round bottom flask until dry.
After impregnation, 81.93 g of a 0.38 M base mixture consisting of a mixture of 50:50 NaOH: KOH (ie 40.965 g, 0.38 mol NaOH + 40.965 g, 0.38 mol KOH) is the carrier sphere. The whole was left overnight at room temperature for 16.5 hours.
After draining the fixing solution (base solution), the catalyst precursor thus produced was reduced with 73.14 g of 10% NaH 2 PO 2 solution for 2 hours.
After draining the reducing solution, the carrier spheres were washed with demineralized water for 19 hours at room temperature, with periodic water changes to remove Cl.
The final conductivity value of the washing water was 4.6 μS. The catalyst was then dried in a fluid bed dryer at 90 ° C. for 1 hour.
The dried catalyst was usually impregnated with a mixture of 25.25 g of a 2 molar KOAc solution and 19.18 g of H 2 O and left to stand at room temperature for 1 hour.
Finally, re-drying with a fluid bed dryer was performed at 90 ° C. for 1 hour.

このように製造された38個の触媒球体は、固定床チューブ型反応装置で、室温145℃、10バール、550ml/min、窒素中15vol% のHOAc、6vol%のO2、39vol%のC24、からなるフィードガスにさらされ、反応装置の出力をガスクロマトグラフィーを用いて測定した。 The 38 catalyst spheres thus produced were fixed bed tube reactors at room temperature 145 ° C., 10 bar, 550 ml / min, 15 vol% HOAc in nitrogen, 6 vol% O 2 , 39 vol% C 2. The reactor was exposed to a feed gas consisting of H 4 , and the output of the reactor was measured using gas chromatography.

本発明に係る触媒担体を用いて製造される触媒は、92.0%のS(C24)選択性および、酸素変換率31%において440g VAM/1触媒/時間の空時収量(ガスクロマトグラフィーを用いて測定)を示す。 The catalyst produced using the catalyst support according to the present invention has a space-time yield of 440 g VAM / 1 catalyst / hour (gas) at 92.0% S (C 2 H 4 ) selectivity and 31% oxygen conversion. (Measured using chromatography).

Claims (47)

天然層状ケイ酸塩を含む物質備えるオープンポア(open-pored)触媒担体であって、
酸性度が10μvalから60μvalであり、
平均孔径が10.5nmから14nmであり、
比表面積が160m2/gから175m2/gであり、
かさ密度が480g/lから550g/l、であり、
Al23 含有量が2.5重量%未満であり、および
吸水度が65%を超える、触媒担体。
An open-pored catalyst support comprising a material comprising natural layered silicate,
The acidity is from 10 μval to 60 μval,
The average pore size is 10.5 nm to 14 nm,
The specific surface area is 160 m 2 / g to 175 m 2 / g,
The bulk density is from 480 g / l to 550 g / l,
A catalyst support having an Al 2 O 3 content of less than 2.5% by weight and a water absorption of greater than 65%.
前記平均孔径が10.5nmから12nmであることを特徴とする請求項1に記載の触媒担体。   The catalyst carrier according to claim 1, wherein the average pore diameter is 10.5 nm to 12 nm. 前記天然層状ケイ酸塩がモンモリロナイトであることを特徴とする請求項1又は2に記載の触媒担体。   The catalyst carrier according to claim 1 or 2, wherein the natural layered silicate is montmorillonite. 前記モンモリロナイトが、ベントナイトの構成物質として存在することを特徴とする請求項3に記載の触媒担体。   The catalyst carrier according to claim 3, wherein the montmorillonite is present as a constituent of bentonite. 前記天然層状ケイ酸塩が、酸活性化天然層状ケイ酸塩であることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   The catalyst carrier according to any one of the preceding claims, wherein the natural layered silicate is an acid activated natural layered silicate. 比表面積が165m2/gから170m2/gであることを特徴とする先の請求項のいずれか一項に記載の触媒担体。 The catalyst support according to any one of the preceding claims, wherein the specific surface area is 165 m 2 / g to 170 m 2 / g. 硬度が60Nを超えることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   The catalyst carrier according to any one of the preceding claims, wherein the hardness exceeds 60N. 酸性度が20μval/gから60μval/gであることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   The catalyst support according to any one of the preceding claims, wherein the acidity is from 20 µval / g to 60 µval / g. 前記天然層状ケイ酸塩の前記触媒担体中の割合が、少なくとも50重量%であることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   Catalyst support according to any one of the preceding claims, characterized in that the proportion of the natural layered silicate in the catalyst support is at least 50% by weight. 総細孔容積が0.25ml/gから0.8ml/gであることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   Catalyst support according to any one of the preceding claims, characterized in that the total pore volume is from 0.25 ml / g to 0.8 ml / g. 前記触媒担体の総細孔容積の少なくとも80%が、メソポーラスおよびマクロポーラスから形成されていることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   Catalyst support according to any one of the preceding claims, characterized in that at least 80% of the total pore volume of the catalyst support is formed from mesoporous and macroporous. かさ密度が480g/lから520g/lであることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   Catalyst support according to any one of the preceding claims, characterized in that the bulk density is from 480 g / l to 520 g / l. 前記触媒担体中に含まれる天然層状ケイ酸塩のSiO2含有量が少なくとも65重量%であることを特徴とする先の請求項のいずれか一項に記載の触媒担体。 Catalyst support according to any one of the preceding claims, characterized in that the natural layered silicate contained in the catalyst support has an SiO 2 content of at least 65% by weight. 成形体として形成されていることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   The catalyst carrier according to any one of the preceding claims, wherein the catalyst carrier is formed as a molded body. 最大サイズが1mmから25mmであることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   The catalyst carrier according to any one of the preceding claims, wherein the maximum size is 1 mm to 25 mm. 球体であることを特徴とする請求項14または15に記載の触媒担体。   The catalyst carrier according to claim 14 or 15, wherein the catalyst carrier is a sphere. 前記球体の直径が2mmから10mmであることを特徴とする請求項16に記載の触媒担体。   The catalyst carrier according to claim 16, wherein the diameter of the sphere is 2 mm to 10 mm. Hf、Ti、Nb、Ta、W、Mg、Re、Y及びFeからなる群から選択される金属の少なくとも1種の酸化物でドープされていることを特徴とする先の請求項のいずれか一項に記載の触媒担体。   Any of the preceding claims, doped with at least one oxide of a metal selected from the group consisting of Hf, Ti, Nb, Ta, W, Mg, Re, Y and Fe. The catalyst support according to Item. 前記ドーパント酸化物の前記触媒担体中の割合は1重量%から25重量%であることを特徴とする請求項18に記載の触媒担体。   The catalyst carrier according to claim 18, wherein the proportion of the dopant oxide in the catalyst carrier is 1 wt% to 25 wt%. ZrO2フリーであることを特徴とする先の請求項のいずれか一項に記載の触媒担体。 The catalyst carrier according to any one of the preceding claims, which is free of ZrO 2 . 平均孔径が10.5nm未満であり、
比表面積が175m2/gを超え、
かさ密度が550g/lを超え、
Al23 含有量が2.5重量%を超え、および
吸水度が65%を超える、
天然層状ケイ酸塩を含む材料から構成された、第一のオープンポア触媒担体を供給し、
前記第一の触媒担体を鉱酸で処理して、第二の触媒担体を得る、
ことを含む方法。
The average pore size is less than 10.5 nm,
The specific surface area exceeds 175 m 2 / g,
The bulk density exceeds 550 g / l,
Al 2 O 3 content exceeds 2.5% by weight, and water absorption exceeds 65%,
Supplying a first open pore catalyst support composed of a material containing natural layered silicate;
Treating the first catalyst support with a mineral acid to obtain a second catalyst support;
A method involving that.
前記第一の触媒担体を、
酸性度が10μvalから60μvalであり、
平均孔径が10.5nmから14nmであり、
比表面積が160m2/gから175m2/gであり、
かさ密度が480g/lから550g/lであろ、
Al23 含有量が2.5重量%未満であり、および
吸水度が65%を超える
第二の触媒担体が得られるまで鉱酸で処理を行うことを特徴とする請求項21に記載の方法。
The first catalyst support,
The acidity is from 10 μval to 60 μval,
The average pore size is 10.5 nm to 14 nm,
The specific surface area is 160 m 2 / g to 175 m 2 / g,
The bulk density is from 480 g / l to 550 g / l,
The treatment according to claim 21, characterized in that the treatment with mineral acid is carried out until a second catalyst support is obtained with an Al 2 O 3 content of less than 2.5% by weight and a water absorption of greater than 65%. Method.
前記鉱酸での処理が、5時間から100時間の間に渡って行われることを特徴とする請求項21または22に記載の方法。   23. A process according to claim 21 or 22, wherein the treatment with mineral acid is carried out over a period of 5 to 100 hours. 前記鉱酸での処理が、50℃を超える温度で行われることを特徴とする請求項21乃至23のいずれか一項に記載の方法。   24. A method according to any one of claims 21 to 23, wherein the treatment with mineral acid is carried out at a temperature above 50 <0> C. 前記第二の触媒担体は前記鉱酸での処理の後に洗浄されることを特徴とする請求項21乃至24のいずれか一項に記載の方法。   25. A method according to any one of claims 21 to 24, wherein the second catalyst support is washed after the treatment with the mineral acid. 前記第二の触媒担体は、洗浄後、か焼されることを特徴とする請求項25に記載の方法。   26. The method of claim 25, wherein the second catalyst support is calcined after washing. 前記天然層状ケイ酸塩が、モンモリロナイトであることを特徴とする請求項21乃至26のいずれか一項に記載の方法。   27. A method according to any one of claims 21 to 26, wherein the natural layered silicate is montmorillonite. 前記モンモリロナイトが、ベントナイトの構成物質として存在することを特徴とする請求項27に記載の方法。   28. The method of claim 27, wherein the montmorillonite is present as a constituent of bentonite. 前記天然層状ケイ酸塩が、酸活性化天然層状ケイ酸塩であることを特徴とする請求項21乃至28のいずれか一項に記載の方法。   29. A method according to any one of claims 21 to 28, wherein the natural layered silicate is an acid activated natural layered silicate. 前記第二の触媒担体の比表面積が、165m2/gから170m2/gであることを特徴とする請求項21乃至29のいずれか一項に記載の方法。 30. The method according to any one of claims 21 to 29, wherein the second catalyst support has a specific surface area of 165 m < 2 > / g to 170 m < 2 > / g. 前記第二の触媒担体の硬度が、60Nを超えることを特徴とする請求項21乃至30のいずれか一項に記載の方法。   The method according to any one of claims 21 to 30, wherein the hardness of the second catalyst carrier exceeds 60N. 前記第一の触媒担体の酸性度が1μval/gから80μval/gであることを特徴とする請求項21乃至31のいずれか一項に記載の方法。   32. The method according to any one of claims 21 to 31, wherein the acidity of the first catalyst support is from 1 [mu] val / g to 80 [mu] val / g. 前記第一の触媒担体中の天然層状ケイ酸塩の割合が、少なくとも50重量%であることを特徴とする請求項21乃至32のいずれか一項に記載の方法。   33. A process according to any one of claims 21 to 32, wherein the proportion of natural layered silicate in the first catalyst support is at least 50% by weight. 前記第一の触媒担体の総細孔容積が0.25ml/gから0.8ml/gであることを特徴とする請求項21乃至33のいずれか一項に記載の方法。   34. A method according to any one of claims 21 to 33, wherein the total pore volume of the first catalyst support is from 0.25 ml / g to 0.8 ml / g. 前記触媒担体の総細孔容積の少なくとも80%が、メソポーラスおよびマクロポーラスから形成されていることを特徴とする請求項21乃至34のいずれか一項に記載の方法。   35. A method according to any one of claims 21 to 34, wherein at least 80% of the total pore volume of the catalyst support is formed from mesoporous and macroporous. 前記第二の触媒担体のかさ密度が、480から520g/lであることを特徴とする請求項21乃至35のいずれか一項に記載の方法。   36. A process according to any one of claims 21 to 35, wherein the bulk density of the second catalyst support is from 480 to 520 g / l. 前記第一の触媒担体中に含まれる前記天然層状ケイ酸塩のSiO2含有量が、少なくとも65重量%であることを特徴とする請求項21乃至36のいずれか一項に記載の方法。 The SiO 2 content of the first of the natural layered silicate contained in the catalyst carrier, the method according to any one of claims 21 to 36, characterized in that at least 65% by weight. 前記第一の触媒担体が、成形体として形成されていることを特徴とする請求項21乃至37のいずれか一項に記載の方法。   The method according to any one of claims 21 to 37, wherein the first catalyst carrier is formed as a molded body. 前記第一の触媒担体の最大サイズが、1mmから25mmであることを特徴とする請求項21乃至38のいずれか一項に記載の方法。   The method according to any one of claims 21 to 38, wherein the maximum size of the first catalyst support is 1 mm to 25 mm. 前記第一の触媒担体は球体であることを特徴とする請求項38又は39に記載の方法。   40. A method according to claim 38 or 39, wherein the first catalyst support is a sphere. 前記球体の直径が、2mmから10mmであることを特徴とする請求項40に記載の方法。   41. The method of claim 40, wherein the sphere has a diameter of 2 mm to 10 mm. 前記第一の触媒担体が、Hf、Ti、Nb、Ta、W、Mg、Re、Y及びFeからなる群から選択される金属の少なくとも1種の酸化物でドープされていることを特徴とする請求項21乃至41のいずれか一項に記載の方法。   The first catalyst support is doped with at least one oxide of a metal selected from the group consisting of Hf, Ti, Nb, Ta, W, Mg, Re, Y, and Fe. 42. A method according to any one of claims 21 to 41. 前記第一の触媒担体中のドーパント酸化物の割合が1重量%から25重量%であることを特徴とする請求項42に記載の方法。   43. The method of claim 42, wherein the proportion of dopant oxide in the first catalyst support is 1 wt% to 25 wt%. 前記第一の触媒担体がZrO2フリーであることを特徴とする請求項21乃至43のいずれか一項に記載の方法。 The method according to any one of claims 21 to 43 wherein the first catalyst carrier characterized in that it is a ZrO 2 free. 請求項21乃至44のいずれか一項に記載の方法によって得られる請求項1乃至20のいずれか1項に記載の触媒担体。   The catalyst carrier according to any one of claims 1 to 20, which is obtained by the method according to any one of claims 21 to 44. 酢酸ビニルモノマーの合成の触媒の製造における請求項1乃至20、又は請求項45に記載の触媒担体の使用。   46. Use of a catalyst support according to claims 1 to 20 or 45 in the manufacture of a catalyst for the synthesis of vinyl acetate monomer. 前記触媒が、酸化状態が0であるPdおよびAuが含まれる殻中にある殻触媒である請求項46に記載の使用。   47. Use according to claim 46, wherein the catalyst is a shell catalyst in a shell containing Pd and Au with an oxidation state of 0.
JP2011537899A 2008-11-30 2009-11-30 Catalyst carrier, method for producing the same, and use thereof Expired - Fee Related JP5509214B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008059340.0 2008-11-30
DE102008059340A DE102008059340A1 (en) 2008-11-30 2008-11-30 Catalyst support, process for its preparation and its use
PCT/EP2009/008526 WO2010060648A1 (en) 2008-11-30 2009-11-30 Catalyst carrier, method for the production thereof, and use thereof

Publications (2)

Publication Number Publication Date
JP2012510355A true JP2012510355A (en) 2012-05-10
JP5509214B2 JP5509214B2 (en) 2014-06-04

Family

ID=42046430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011537899A Expired - Fee Related JP5509214B2 (en) 2008-11-30 2009-11-30 Catalyst carrier, method for producing the same, and use thereof

Country Status (5)

Country Link
JP (1) JP5509214B2 (en)
CN (1) CN102227259B (en)
DE (2) DE102008059340A1 (en)
TW (1) TW201026393A (en)
WO (1) WO2010060648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521842A (en) * 2015-07-13 2018-08-09 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Silica-supported tantalum-based catalysts for the conversion of ethanol to butadiene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894145A (en) * 2014-04-10 2014-07-02 中国石油天然气股份有限公司 Acid modified bentonite adsorbent and preparation method thereof
CN109331850B (en) * 2018-10-08 2021-07-23 万华化学集团股份有限公司 Core-shell type catalyst carrier and coating catalyst
US20220026322A1 (en) * 2018-10-12 2022-01-27 Saint-Gobain Ceramics & Plastics, Inc. Quantification of surface acidity on a low surface area material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500464A (en) * 2002-09-27 2006-01-05 ビーエーエスエフ アクチェンゲゼルシャフト Catalyst, method for producing the same, and method for polymerizing cyclic ether using the catalyst
JP2008132488A (en) * 2001-06-08 2008-06-12 Sued-Chemie Ag Method for production of adsorption agent pellet based on acid-activated laminar silicate and use thereof as catalyst
JP2008279437A (en) * 2007-04-13 2008-11-20 Showa Denko Kk Process for production of allyl acetate production catalyst

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW330160B (en) 1992-04-08 1998-04-21 Hoechst Ag Supported catalyst, process for its preparation and its use for the preparation of vinyl acetate
DE4323981C1 (en) 1993-07-16 1995-03-09 Hoechst Ag Pallet and potassium, and cadmium, barium or gold-containing coated catalyst, process for its preparation and its use in the production of vinyl acetate
DE4323978C1 (en) 1993-07-16 1995-02-16 Hoechst Ag Pallet and potassium, and cadmium, barium or gold-containing coated catalyst, process for its preparation and its use in the production of vinyl acetate
DE4323980C1 (en) 1993-07-16 1995-03-30 Hoechst Ag Pallet and potassium, and cadmium, barium or gold-containing coated catalyst, process for its preparation and its use in the production of vinyl acetate
DE4429643A1 (en) * 1994-08-20 1996-02-22 Sued Chemie Ag Acid-treated inorganic moldings and their use
US6022823A (en) 1995-11-07 2000-02-08 Millennium Petrochemicals, Inc. Process for the production of supported palladium-gold catalysts
DE19601861A1 (en) * 1996-01-19 1997-07-24 Sued Chemie Ag High-porosity catalyst support for olefin-hydration catalyst etc.
GB9622911D0 (en) 1996-11-04 1997-01-08 Bp Chem Int Ltd Process
DE19914066A1 (en) 1999-03-27 2000-10-05 Celanese Chem Europe Gmbh Catalysts for the gas phase oxidation of ethylene and acetic acid to vinyl acetate, process for their preparation and their use
KR100886048B1 (en) 2003-12-19 2009-02-26 셀라니즈 인터내셔날 코포레이션 Zirconia containing support material for catalysts
DE102007025444A1 (en) * 2007-05-31 2008-12-11 Süd-Chemie AG VAM shell catalyst, process for its preparation and its use
DE102007025324A1 (en) * 2007-05-31 2008-12-11 Süd-Chemie AG Process for the preparation of a coated catalyst by means of a base or acid mixture
DE102007043446B4 (en) * 2007-09-12 2013-08-22 Süd-Chemie Ip Gmbh & Co. Kg Catalyst support with increased thermal conductivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132488A (en) * 2001-06-08 2008-06-12 Sued-Chemie Ag Method for production of adsorption agent pellet based on acid-activated laminar silicate and use thereof as catalyst
JP2006500464A (en) * 2002-09-27 2006-01-05 ビーエーエスエフ アクチェンゲゼルシャフト Catalyst, method for producing the same, and method for polymerizing cyclic ether using the catalyst
JP2008279437A (en) * 2007-04-13 2008-11-20 Showa Denko Kk Process for production of allyl acetate production catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521842A (en) * 2015-07-13 2018-08-09 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Silica-supported tantalum-based catalysts for the conversion of ethanol to butadiene

Also Published As

Publication number Publication date
JP5509214B2 (en) 2014-06-04
CN102227259A (en) 2011-10-26
TW201026393A (en) 2010-07-16
CN102227259B (en) 2014-08-20
DE112009003510A5 (en) 2012-05-31
DE102008059340A1 (en) 2010-06-10
WO2010060648A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8586780B2 (en) Doped Pd/Au shell catalyst, method for producing the same and use thereof
TW442331B (en) Catalyst composition
KR101330585B1 (en) Zirconium-doped catalyst support, method for producing the same and catalyst containing a zirconium-doped catalyst support
JP5476293B2 (en) VAM shell catalyst, method for producing and using the same
KR101483212B1 (en) Catalyst carrier, method for the production thereof, and use thereof
KR20100047198A (en) Method for producing a shell catalyst and corresponding shell catalyst
JP2010527779A (en) Pd / Au shell catalyst containing HfO2, production process, and use thereof
JP5509214B2 (en) Catalyst carrier, method for producing the same, and use thereof
JP5188034B2 (en) Gold-supported particles with excellent wear resistance
JP2021510344A (en) Heterogeneous catalyst for producing methyl methacrylate by oxidative esterification
TW201026387A (en) Shell catalyst, process for its preparation and use
DE102007043447A1 (en) Catalyst carrier, useful e.g. in the synthesis of vinyl acetate monomer, comprises an open-porous matrix formed from a material containing natural silicate layer, where elementary carbon is distributed in the matrix
JP4895251B2 (en) Method for producing catalyst for production of methacrylic acid ester
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
KR20140013052A (en) Basic catalyst support body having a low surface area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees