JP2012256535A - Illumination system - Google Patents

Illumination system Download PDF

Info

Publication number
JP2012256535A
JP2012256535A JP2011129296A JP2011129296A JP2012256535A JP 2012256535 A JP2012256535 A JP 2012256535A JP 2011129296 A JP2011129296 A JP 2011129296A JP 2011129296 A JP2011129296 A JP 2011129296A JP 2012256535 A JP2012256535 A JP 2012256535A
Authority
JP
Japan
Prior art keywords
light
emitting element
wavelength
illumination system
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011129296A
Other languages
Japanese (ja)
Inventor
Junichi Kinoshita
順一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2011129296A priority Critical patent/JP2012256535A/en
Priority to PCT/JP2012/055723 priority patent/WO2012169248A1/en
Publication of JP2012256535A publication Critical patent/JP2012256535A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an illumination system that can easily control illumination light and that has high safety and reliability.SOLUTION: An illumination system has a first light-emitting element, a second light-emitting element, a wavelength conversion body, a first light guide body, a second light guide body, and a driving circuit. The first light-emitting element can emit first light in a wavelength range from ultraviolet light to visible light. The second light-emitting element can emit infrared light. The wavelength conversion body can absorb the first light, and emit conversion light with a wavelength longer than that of the first light. The first light guide body can transmit the first light toward the wavelength conversion body. The second light guide body can transmit the infrared light toward the wavelength conversion body. The driving circuit can control an output of the first light, and drive the second light-emitting element. The first light is mixed with the conversion light, and the illumination light is emitted. Also, the infrared light is emitted as a control light signal.

Description

本発明の実施形態は、照明システムに関する。   Embodiments described herein relate generally to a lighting system.

照明装置に発光素子(LD:Laser Diode)を用いると、通信機能を持つ照明システムの構成が容易となる。   When a light emitting element (LD) is used for the lighting device, the configuration of the lighting system having a communication function becomes easy.

照明システムとして、照明光に信号を重畳する可視光通信方式、リモコンによる調光方式、無線機能を有する照明監視制御方式、などがある。   Illumination systems include a visible light communication method in which a signal is superimposed on illumination light, a light control method using a remote controller, and an illumination monitoring control method having a wireless function.

可視光や電波を空中伝搬し遠隔操作により照明装置を制御する場合、ノイズやEMI(Electromagnetic interference)による信号強度の制限のため、高い通信品質を保つことが困難である。このため、高い安全性が要求される空港や道路などの照明システムに用いるには問題がある。   When visible light or radio waves are propagated in the air and the lighting device is controlled by remote control, it is difficult to maintain high communication quality due to signal intensity limitations due to noise and EMI (Electromagnetic interference). For this reason, there is a problem in using it for lighting systems such as airports and roads that require high safety.

特開2003−318836号公報JP 2003-318836 A

本発明が解決しようとする課題は、照明光の制御が容易で、安全性および信頼性が高い照明システムを提供する。   The problem to be solved by the present invention is to provide an illumination system that is easy to control illumination light and has high safety and reliability.

本発明の実施形態にかかる照明システムは、第1の発光素子と、第2の発光素子と、波長変換体と、第1の導光体と、第2の導光体と、駆動回路と、を有する。前記第1の発光素子は、紫外から可視光の波長範囲の第1の光を放出可能である。前記第2の発光素子は、赤外光を放出可能である。前記波長変換体は、前記第1の光を吸収し、前記第1の光の波長よりも長い波長の変換光を放出可能である。前記第1の導光体は、前記第1の光を前記波長変換体へ向けて伝送可能である。前記第2の導光体は、前記赤外光を前記波長変換体へ向けて伝送可能である。前記駆動回路は、前記第1の光の出力を制御可能であり、かつ前記第2の発光素子を駆動可能である。前記第1の光と、前記変換光と、が混合され、照明光が放出される。また、前記赤外光が制御光信号として放出される。   An illumination system according to an embodiment of the present invention includes a first light emitting element, a second light emitting element, a wavelength converter, a first light guide, a second light guide, a drive circuit, Have The first light emitting element can emit first light in a wavelength range from ultraviolet to visible light. The second light emitting element can emit infrared light. The wavelength converter can absorb the first light and emit converted light having a wavelength longer than the wavelength of the first light. The first light guide can transmit the first light toward the wavelength converter. The second light guide can transmit the infrared light toward the wavelength converter. The drive circuit can control the output of the first light and can drive the second light emitting element. The first light and the converted light are mixed to emit illumination light. The infrared light is emitted as a control light signal.

本発明の他の実施形態にかかる照明システムは、発光素子と、導光体と、波長変換体と、受光素子と、駆動回路と、を有する。前記発光素子は、紫外から可視光の波長範囲の光を放出可能である。前記導光体は、第1の端部と、第1の端部の反対側に設けられた第2の端部と、を有する。前記導光体は、前記発光素子から放出された前記光が前記第1の端部へ入射したのち前記第2の端部に向かって伝搬可能である。波長変換体は、前記第2の端部から出射した前記光を吸収し、前記光の波長よりも長い波長の変換光を放出可能である。前記受光素子は、前記変換光を検出可能な受光素子であって、前記第2の端部へ入射し伝搬されたのち前記第1の端部から出射した前記変換光を検出する。前記駆動回路は、前記変換光が所定値よりも低下したことを前記受光素子が検出または、前記駆動回路の前記受光素子が前記変換光を予め設定した時間検出しなかった場合など通常と異なる検出結果を生じると、前記発光素子の駆動を停止可能である。前記発光素子から放出された前記光と、前記変換光と、が混合されて照明光として放出される。   An illumination system according to another embodiment of the present invention includes a light emitting element, a light guide, a wavelength converter, a light receiving element, and a drive circuit. The light emitting element can emit light in a wavelength range from ultraviolet to visible light. The light guide has a first end and a second end provided on the opposite side of the first end. The light guide can propagate toward the second end after the light emitted from the light emitting element is incident on the first end. The wavelength converter can absorb the light emitted from the second end and emit converted light having a wavelength longer than the wavelength of the light. The light receiving element is a light receiving element capable of detecting the converted light, and detects the converted light emitted from the first end after being incident and propagated to the second end. The drive circuit detects that the light receiving element has detected that the converted light has fallen below a predetermined value, or when the light receiving element of the drive circuit has not detected the converted light for a preset time. When the result is generated, the driving of the light emitting element can be stopped. The light emitted from the light emitting element and the converted light are mixed and emitted as illumination light.

照明光の制御が容易で、安全性および信頼性が高い照明システムが提供される。   An illumination system that can easily control the illumination light and has high safety and reliability is provided.

第1の実施形態にかかる照明システムのブロック図である。It is a block diagram of the illumination system concerning 1st Embodiment. 第1の実施形態にかかる照明装置の構成図である。It is a block diagram of the illuminating device concerning 1st Embodiment. 入射光波長に対する光ファイバーの伝送損失を示すグラフ図である。It is a graph which shows the transmission loss of the optical fiber with respect to incident light wavelength. 第2の実施形態にかかる照明システムのブロック図である。It is a block diagram of the illumination system concerning 2nd Embodiment. 第2の実施形態の構成図である。It is a block diagram of 2nd Embodiment. 図6(a)は第2の実施形態の第1変形例、図6(b)は第2の実施形態の第2変形例、の構成図である。FIG. 6A is a configuration diagram of a first modification of the second embodiment, and FIG. 6B is a configuration diagram of a second modification of the second embodiment. 図7(a)は第3の実施形態にかかる照明システム、図7(b)はその第1変形例、図7(c)はその第2変形例、の構成図、である。FIG. 7A is a configuration diagram of the illumination system according to the third embodiment, FIG. 7B is a configuration diagram of the first modification, and FIG. 7C is a configuration diagram of the second modification.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、第1の実施形態にかかる照明システムのブロック図である。
第1の実施形態は、光ファイバーのような導光体を用いて紫外から可視光の波長範囲の光を伝送し光源から離れた空間の照明を行うとともに、照明には寄与しない波長の光を照明空間近傍に伝送する照明システムである。すなわち、第1の実施形態は、通信機能を有する照明システムと言える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a lighting system according to the first embodiment.
In the first embodiment, light in a wavelength range from ultraviolet to visible light is transmitted using a light guide such as an optical fiber to illuminate a space away from the light source, and illuminate light having a wavelength that does not contribute to illumination. It is an illumination system that transmits near the space. That is, the first embodiment can be said to be an illumination system having a communication function.

照明システム5は、照明装置10を含む。照明装置10は、第1の発光素子20(20a、20b)、第1の導光体40(40a、40b)、波長変換体60、および第1の発光素子20を駆動可能な駆動回路70、を有している。本図において、第1の発光素子20は、駆動回路70からの駆動信号S1aで駆動される発光素子20aと、駆動信号S1bで駆動される発光素子20bと、を含む。   The lighting system 5 includes a lighting device 10. The lighting device 10 includes a first light emitting element 20 (20a, 20b), a first light guide 40 (40a, 40b), a wavelength converter 60, and a drive circuit 70 capable of driving the first light emitting element 20. have. In the drawing, the first light emitting element 20 includes a light emitting element 20a driven by a drive signal S1a from the drive circuit 70 and a light emitting element 20b driven by a drive signal S1b.

発光素子20aからの放出光は、導光体40a内を伝搬し、波長変換体60を照射する。また、発光素子20aからの放出光は、導光体40b内を伝搬し、波長変換体60を照射する。波長変換体60を照射した伝搬光LBa、LBbのそれぞれの一部は、波長変換体60に吸収され、放出光の波長よりも長い波長を有する変換光LYを放出する。   The emitted light from the light emitting element 20a propagates in the light guide 40a and irradiates the wavelength converter 60. The emitted light from the light emitting element 20a propagates in the light guide 40b and irradiates the wavelength converter 60. A part of each of the propagation lights LBa and LBb irradiated with the wavelength converter 60 is absorbed by the wavelength converter 60 and emits converted light LY having a wavelength longer than the wavelength of the emitted light.

もし、並列に接続される第1の発光素子20の数を増やすと、変換光LY、および波長変換されずに放出される伝搬光LBa、LBbが共に増加し、高い光出力とすることができる。伝搬光LB(LBa、LBb)と、変換光LYと、は混合され照明光LWとなる。複数の発光素子20を設けると、例えば、1万ルーメン(lm)という高光束を得ることができる。   If the number of the first light emitting elements 20 connected in parallel is increased, both the converted light LY and the propagated lights LBa and LBb emitted without wavelength conversion increase, and a high light output can be obtained. . The propagation light LB (LBa, LBb) and the converted light LY are mixed to become the illumination light LW. When a plurality of light emitting elements 20 are provided, for example, a high luminous flux of 10,000 lumens (lm) can be obtained.

導光体40は、光ファイバー、透明樹脂、ガラスなどからなり、円や矩形などの断面を有する。光は、導光体40の延在する方向へ伝搬される。   The light guide 40 is made of an optical fiber, a transparent resin, glass, or the like, and has a cross section such as a circle or a rectangle. The light is propagated in the direction in which the light guide 40 extends.

他方、照明システム5は、照明装置10の他に、第2の発光素子30と、第2の導光体50と、を有している。第2の発光素子30は、駆動回路70からの駆動信号S2で駆動される。第2の発光素子30からの放出光は、照明光には寄与しない制御光信号であり、第2の導光体50内を伝搬したのち照明光LWの照射空間内に放出される。その放出光は、波長変換体60を照射し、透過または散乱する。   On the other hand, the illumination system 5 includes a second light emitting element 30 and a second light guide 50 in addition to the illumination device 10. The second light emitting element 30 is driven by the drive signal S2 from the drive circuit 70. The emitted light from the second light emitting element 30 is a control light signal that does not contribute to the illumination light, and is propagated through the second light guide 50 and then emitted into the irradiation space of the illumination light LW. The emitted light irradiates the wavelength converter 60 and is transmitted or scattered.

なお、第1の導光体20、第2の導光体50、および波長変換体60、などを含む発光部は、光学部品で構成される。すなわち、発光素子やその駆動回路などの電気部品を含まないので発光部を給電する必要がない。このため、メンテナンスが容易であり、遠隔制御が容易である。   In addition, the light emission part containing the 1st light guide 20, the 2nd light guide 50, the wavelength converter 60, etc. is comprised with an optical component. That is, since it does not include electrical components such as a light emitting element and its driving circuit, it is not necessary to supply power to the light emitting unit. For this reason, maintenance is easy and remote control is easy.

図2は、第1の実施形態にかかる照明システムの構成図である。
第1の発光素子20および第2の発光素子30は、LD(Laser Diode) とすることができる。図2では、第1の発光素子20a、20bは、InGaN系材料等からなる青色LDであるものとし、その発光波長は450nm近傍であるものとする。LDの場合、半値全角が、垂直方向で約30度、水平方向で約15度などと狭くでき、発光点も約10μm以下と小さくできる。このため、放出光を効率よく光ファイバーなどへ導入できるので好ましい。第2の発光素子30からの放出光は、赤外光の波長範囲(例えば780nm以上)とする。
FIG. 2 is a configuration diagram of the illumination system according to the first embodiment.
The first light emitting element 20 and the second light emitting element 30 can be LD (Laser Diode). In FIG. 2, it is assumed that the first light emitting elements 20a and 20b are blue LDs made of an InGaN-based material or the like, and the emission wavelength is around 450 nm. In the case of LD, the full width at half maximum can be narrowed to about 30 degrees in the vertical direction and about 15 degrees in the horizontal direction, and the light emitting point can also be reduced to about 10 μm or less. For this reason, since emitted light can be efficiently introduced into an optical fiber or the like, it is preferable. The emitted light from the second light emitting element 30 is in the infrared wavelength range (for example, 780 nm or more).

また、導光体40は、光ファイバーからなるものとする。第1の発光素子20aからの放出光は、光コネクタ80を介して第1の光ファイバー40の一方の端部へ入射する。第1の発光素子20bからの放出光は、光コネクタ80を介して第1の光ファイバー40の一方の端部入射する。第2の発光素子30からの放出光は、光コネクタ80を介して光ファイバー40の一方の端部に入射する。光ファイバー40の長さDは、例えば、20〜30mとすることができる。   Moreover, the light guide 40 shall consist of optical fibers. The emitted light from the first light emitting element 20 a is incident on one end of the first optical fiber 40 via the optical connector 80. The emitted light from the first light emitting element 20 b is incident on one end of the first optical fiber 40 via the optical connector 80. The emitted light from the second light emitting element 30 enters one end of the optical fiber 40 via the optical connector 80. The length D of the optical fiber 40 can be set to 20 to 30 m, for example.

光ファイバー40へ入射した光は、光ファイバー40の他方の端部に設けられた光コネクタ82を介して導光透明部材84へ導かれる。導光透明部材84の内部または外周部には、蛍光体などからなる波長変換体60が設けられる。   The light incident on the optical fiber 40 is guided to the light guide transparent member 84 through the optical connector 82 provided at the other end of the optical fiber 40. A wavelength converter 60 made of a phosphor or the like is provided inside or on the outer periphery of the light guide transparent member 84.

なお、光ファイバー40は、図1のように、独立の光ファイバー40a、40b、50からなるものであってもよい。または、図2のように、共通の1つの光ファイバーであってもよい。さらに、例えば、入力側において分割されたコア部が、融着などにより束ねられ1つのコア部とされたコンバイナ構造であってもよい。   The optical fiber 40 may be composed of independent optical fibers 40a, 40b, and 50 as shown in FIG. Alternatively, a common optical fiber may be used as shown in FIG. Further, for example, a combiner structure in which the core portion divided on the input side is bundled by fusion or the like to form one core portion may be used.

青色の伝搬光LBa、LBbは、導光透明部材84の内部を進行しつつ、外方へも放出される。この場合、波長変換体60として、例えば珪酸塩系材料やYAG(Yttrium-Aluminum-Garnet)系材料を用いた黄色蛍光体を用いると、発光強度のピークが約560nm近傍の黄色光LYを得ることができる。この結果、青色伝搬光LBと、黄色光LYと、が混合された(擬似)白色光LWを得ることができる。伝搬光LBa、LBbの波長を、それぞれ波長変換体60の励起スペクトル強度が最大となる波長近傍にすると、発光スペクトル強度を高めることが容易となる。   The blue propagation lights LBa and LBb travel outside the light guide transparent member 84 and are also emitted outward. In this case, when a yellow phosphor using, for example, a silicate material or a YAG (Yttrium-Aluminum-Garnet) material is used as the wavelength converter 60, yellow light LY having a peak of emission intensity of about 560 nm is obtained. Can do. As a result, (pseudo) white light LW in which the blue propagation light LB and the yellow light LY are mixed can be obtained. When the wavelengths of the propagating lights LBa and LBb are close to the wavelength where the excitation spectrum intensity of the wavelength converter 60 is maximized, the emission spectrum intensity can be easily increased.

第2の発光素子30が、例えばAlGaAs/GaAs系材料であると、波長が860nm近傍の赤外光を得ることができる。また、InGaAsP/InP系材料を用いると、980nm、1300nm、1550nm、近傍の赤外光を得ることができる。蛍光体のような波長変換体は、赤外光に対しては透明なので、赤外光LIは波長変換体60を透過するか散乱され、照明効果を損なうことなく外部に放出される。   When the second light emitting element 30 is made of, for example, an AlGaAs / GaAs material, infrared light having a wavelength near 860 nm can be obtained. When an InGaAsP / InP material is used, infrared light in the vicinity of 980 nm, 1300 nm, and 1550 nm can be obtained. Since a wavelength converter such as a phosphor is transparent to infrared light, the infrared light LI passes through or is scattered by the wavelength converter 60 and is emitted to the outside without impairing the illumination effect.

なお、赤外光を駆動する電流に変調信号を重畳すると、照明光が照射される空間に設けられた赤外光検出器89は、変調された赤外光LIを光/電気変換し、伝送された信号を復調することができる。すなわち、人間や乗り物などの被照明体は、照明光LWとともに放出された赤外光LIから有用な情報を受け取ることできる。   When the modulation signal is superimposed on the current that drives the infrared light, the infrared light detector 89 provided in the space irradiated with the illumination light performs optical / electrical conversion and transmission of the modulated infrared light LI. Can be demodulated. That is, an illuminated body such as a person or a vehicle can receive useful information from the infrared light LI emitted together with the illumination light LW.

また、照明装置において、30m以上の距離から照明システムを制御するには、光ファイバー内を伝送した赤外光を用いることが好ましい。赤外光の波長範囲は、霧などの悪天候でも可視光よりも遠くまで空中伝搬する。このため、赤外光検出器89を用いることにより、乗り物の操縦者が、空港や道路などにおいて、障害物、人間、照明位置などを確認することが容易であり、安全性が高められる。   Further, in the lighting device, in order to control the lighting system from a distance of 30 m or more, it is preferable to use infrared light transmitted through the optical fiber. The wavelength range of infrared light propagates in the air farther than visible light even in bad weather such as fog. For this reason, by using the infrared light detector 89, it is easy for a vehicle operator to check an obstacle, a person, a lighting position, etc. in an airport or a road, and safety is improved.

図3は、入射光の波長に対する光ファイバーの伝送損失を示すグラフ図である。
光ファイバーとしては、石英光ファイバー、PCF(プラスチッククラッド光ファイバー)、POF(プラスチック光ファイバー)などがある。コアおよびクラッドが石英からなる石英光ファーバーの伝送損失は、PCFやPOFの伝送損失よりもそれぞれ小さい。しかしながら、青色光は、光ファイバー内での散乱が大きく、伝送損失が大きい。このため、照明光としての伝送距離は、石英光ファイバーを用いても実用上では約30m程度となる。
FIG. 3 is a graph showing transmission loss of an optical fiber with respect to the wavelength of incident light.
Examples of the optical fiber include a quartz optical fiber, a PCF (plastic clad optical fiber), and a POF (plastic optical fiber). The transmission loss of a quartz optical fiber whose core and cladding are made of quartz is smaller than that of PCF or POF. However, blue light is highly scattered in the optical fiber and has a large transmission loss. For this reason, the transmission distance as illumination light is practically about 30 m even if a quartz optical fiber is used.

他方、波長が780nm以上の赤外光は、石英光ファイバー内での伝送損失が約3.5dB/km以下と小さい。このため、10kmまでの信号伝送が容易である。また、PCFでも6dB/kmの伝送損失なので、1〜5kmの信号伝送が可能である。さらに、検出器の感度以上であれば、制御光信号は低強度であってもよい。このため、伝送損失に対する許容範囲は広い。   On the other hand, infrared light having a wavelength of 780 nm or more has a small transmission loss of about 3.5 dB / km or less in the quartz optical fiber. For this reason, signal transmission up to 10 km is easy. Further, since the PCF has a transmission loss of 6 dB / km, signal transmission of 1 to 5 km is possible. Further, the control light signal may have a low intensity as long as the sensitivity of the detector is exceeded. For this reason, the tolerance for transmission loss is wide.

図4は、第2の実施形態にかかる照明システムのブロック図である。
第2の実施形態は、第3の導光体52と、光/電気変換部72と、をさらに有する。第3の導光体52は、照明光を生成するための第1の発光素子20からの放出光を伝送する第1の導光体40よりも長い。
FIG. 4 is a block diagram of a lighting system according to the second embodiment.
The second embodiment further includes a third light guide 52 and an optical / electrical converter 72. The 3rd light guide 52 is longer than the 1st light guide 40 which transmits the emitted light from the 1st light emitting element 20 for producing | generating illumination light.

第3の導光体52には、波長変換体60により散乱された赤外戻り光LIRが入射され、その出射光は光/電気変換部72により、駆動制御信号SCに変換される。例えば、波長変換体60が劣化するか、導光体40が破損するかなどして、赤外戻り光LIRの強度が変化した場合、駆動制御信号SCに応じて、第1の発光素子20をシャットダウンする。このようにすると、高エネルギーを有する青色光LBが人間の目などを直接照射することを抑制できる。   Infrared return light LIR scattered by the wavelength converter 60 is incident on the third light guide 52, and the emitted light is converted into a drive control signal SC by the optical / electrical converter 72. For example, when the intensity of the infrared return light LIR changes due to deterioration of the wavelength converter 60 or damage of the light guide 40, the first light emitting element 20 is changed according to the drive control signal SC. Shut down. If it does in this way, it can control that blue light LB which has high energy irradiates a human eye etc. directly.

図5は、第2の実施形態にかかる照明システムの構成図である。
第2の導光体(光ファイバー)30の長さDRは、第1の導光体(光ファイバー)20の長さDよりも長く、例えば30m以上、10km以下、などとする。第2の光ファイバー52に設けられた光/電気変換部72により、長さDRを伝送されて減衰した赤外戻り光LIR(制御光信号)が、赤外光受光素子72aで電気信号に変換され、増幅制御回路72bにより増幅される。このようにして生成された駆動制御信号SCを用いて駆動回路70が駆動される。第3の光ファイバー52の長さDRを第1の光ファイバー40の長さDよりも大きくし、駆動制御信号SCを駆動回路70まで伝送することは容易である。すなわち、分散して設けられた多数の照明装置を、遠距離において一括して監視や制御が可能である。
FIG. 5 is a configuration diagram of an illumination system according to the second embodiment.
The length DR of the second light guide (optical fiber) 30 is longer than the length D of the first light guide (optical fiber) 20, for example, 30 m or more and 10 km or less. The infrared return light LIR (control light signal) transmitted through the length DR and attenuated by the light / electricity conversion unit 72 provided in the second optical fiber 52 is converted into an electrical signal by the infrared light receiving element 72a. Amplified by the amplification control circuit 72b. The drive circuit 70 is driven using the drive control signal SC generated in this way. It is easy to transmit the drive control signal SC to the drive circuit 70 by making the length DR of the third optical fiber 52 larger than the length D of the first optical fiber 40. That is, it is possible to monitor and control a large number of distributed illumination devices at a long distance.

図6(a)は第2の実施形態の第1変形例、図6(b)は第2の実施形態の第2変形例、の構成図である。
図6(a)の第1変形例では、第2の光ファイバー52の受光側と、駆動回路70と、の間に、赤外光受光素子72a、増幅制御回路74、第3の発光素子75、光ファイバー76、光/電気変換部73を設ける。また、第2の発光素子30は、InGaAsP/InPからなる1300nm〜1550nm波長範囲のLDとする。このようにすると、第3の光ファイバー52の長さDRを、例えば10kmのように大きくしても、照明システムの監視や制御が容易である。
FIG. 6A is a configuration diagram of a first modification of the second embodiment, and FIG. 6B is a configuration diagram of a second modification of the second embodiment.
6A, between the light receiving side of the second optical fiber 52 and the drive circuit 70, an infrared light receiving element 72a, an amplification control circuit 74, a third light emitting element 75, An optical fiber 76 and an optical / electrical converter 73 are provided. The second light emitting element 30 is an LD made of InGaAsP / InP and having a wavelength range of 1300 nm to 1550 nm. In this way, even if the length DR of the third optical fiber 52 is increased to, for example, 10 km, the lighting system can be easily monitored and controlled.

このため、監視や通信をコントロールセンターに集約して、照明空間である白色発光部87よりも遠い距離に設けることができる。すなわち、白色発光部87、第1の発光素子20、第1の光ファイバー40、などにおける故障を、遠距離で監視できる。   For this reason, monitoring and communication can be concentrated in the control center and provided at a distance farther than the white light emitting unit 87 that is an illumination space. That is, failures in the white light emitting unit 87, the first light emitting element 20, the first optical fiber 40, and the like can be monitored at a long distance.

赤外光受光素子72aによる受信信号は、増幅制御回路74により判断され、第3の発光素子75からシャットダウン信号などを光ファイバー76を介して駆動回路70に伝達可能となる。なお、光ファイバー76を用いずに、光ファイバー52を用いてもよい。この場合、光ファイバー52の途中に駆動回路70への分岐部や光スイッチなどを設ければよい。   A reception signal from the infrared light receiving element 72 a is determined by the amplification control circuit 74, and a shutdown signal or the like can be transmitted from the third light emitting element 75 to the drive circuit 70 via the optical fiber 76. Instead of using the optical fiber 76, the optical fiber 52 may be used. In this case, a branching section to the drive circuit 70, an optical switch, or the like may be provided in the middle of the optical fiber 52.

光ファイバー通信は、電磁ノイズの影響を受けにくい。このため、光ファイバーを用いた照明システム遠方監視制御システムは、広域にわたって安全性および信頼性を保ちつつ、一括して監視制御できる。光ファイバーは、高速道路や空港では、既に埋設されているケースが多いため、そのまま、照明システムの監視および制御に活用できる。   Optical fiber communication is less susceptible to electromagnetic noise. For this reason, the illumination system remote monitoring and control system using the optical fiber can be collectively monitored and controlled while maintaining safety and reliability over a wide area. Optical fibers can be used for monitoring and control of lighting systems as they are because they are already buried in highways and airports.

図6(b)の第2変形例では、照明空間の側にも発受光素子を設ける。被照明体98からの光信号は、外部検出器としての赤外線受光素子90により検出され、増幅制御回路92を介して第4の発光素子94を駆動する。第4の発光素子94からの赤外光戻り光LIRは、光ファイバー53を介して、第3の光ファイバー52へ入射する。   In the second modification of FIG. 6B, a light emitting / receiving element is also provided on the illumination space side. An optical signal from the object to be illuminated 98 is detected by an infrared light receiving element 90 as an external detector, and drives a fourth light emitting element 94 via an amplification control circuit 92. The infrared light return light LIR from the fourth light emitting element 94 is incident on the third optical fiber 52 through the optical fiber 53.

被照明体98からの光信号としては、例えば、自動車のヘッドランプやリアランプの発光や、赤外/可視光モニターカメラからの映像信号などを含む。このように、照明装置内部の故障信号以外の外部信号も、長距離である第3の光ファイバー52を介して、照明システムの監視や制御を行うコントロールセンターへ伝送できる。   Examples of the optical signal from the object to be illuminated 98 include light emission of a headlamp and a rear lamp of an automobile and a video signal from an infrared / visible light monitor camera. Thus, external signals other than the failure signal inside the lighting device can also be transmitted to the control center that monitors and controls the lighting system via the third optical fiber 52 that is a long distance.

図7(a)は第3の実施形態にかかる照明システム、図7(b)はその第1変形例、図7(c)はその第2変形例、の構成図、である。
図7(a)の照明システムは、第1の発光素子20と、第1の端部および第2の端部を第1の導光体(光ファイバー)40と、波長変換体60と、受光素子71と、駆動回路70と、を有している。第1の発光素子20を青色LDとし、第1の光ファイバー40を石英ファイバーからなるものとするが、本発明はこれに限定されるものではない。
FIG. 7A is a configuration diagram of the illumination system according to the third embodiment, FIG. 7B is a configuration diagram of the first modification, and FIG. 7C is a configuration diagram of the second modification.
The illumination system of FIG. 7A includes a first light emitting element 20, a first end and a second end serving as a first light guide (optical fiber) 40, a wavelength converter 60, and a light receiving element. 71 and a drive circuit 70. The first light emitting element 20 is a blue LD, and the first optical fiber 40 is a quartz fiber. However, the present invention is not limited to this.

また、波長変換体60は、例えば珪酸塩系材料やYAG系材料からなる黄色蛍光体からなるものとする。青色光は、第1の端部へ入射し、光ファイバー40を伝搬する。こののち、青色光は、第1の端部の反対の側の第2の端部から出射し、導光透明部材84へ入射する。導光透明部材84の外縁に設けられた黄色蛍光体60は、青色光LBの一部を吸収し、黄色光を放出する。   The wavelength converter 60 is made of a yellow phosphor made of, for example, a silicate material or a YAG material. The blue light enters the first end and propagates through the optical fiber 40. Thereafter, the blue light exits from the second end opposite to the first end and enters the light guide transparent member 84. The yellow phosphor 60 provided on the outer edge of the light guide transparent member 84 absorbs part of the blue light LB and emits yellow light.

黄色蛍光体60に吸収されずに導光透明部材84の外部に放出された青色光LBと、黄色光、とが混合されて、(擬似)白色光LWを生じ、照明光として用いることができる。本図では、第1の発光素子20は、2つ(20a、20b)を含むが、1つでもよい。発光素子の数を増やすと、出力を高めることができる。   The blue light LB released to the outside of the light guide transparent member 84 without being absorbed by the yellow phosphor 60 and the yellow light are mixed to generate a (pseudo) white light LW, which can be used as illumination light. . In the figure, the first light emitting element 20 includes two (20a, 20b), but may be one. Increasing the number of light emitting elements can increase the output.

青色光LBの一部は、黄色蛍光体60により散乱されて広がり、光ファイバー40の第2の端部へ入射し、青色戻り光LBRとなり、第1の端部から出射する。また、放射角度が広い黄色光の一部は、第2の端部へ入射し、黄色戻り光LYRとなって伝搬し、第1の端部から出射する。すなわち、白色戻り光は、第2の端部から第1の端部へ向かって伝搬する。   Part of the blue light LB is scattered and spread by the yellow phosphor 60, enters the second end of the optical fiber 40, becomes blue return light LBR, and exits from the first end. Further, a part of yellow light having a wide radiation angle enters the second end, propagates as yellow return light LYR, and exits from the first end. That is, the white return light propagates from the second end toward the first end.

黄色戻り光LYRは、黄色光波長範囲に受光感度を有する受光素子71を用いて検出される。例えば、Siフォトダイオードの受光面に青色光を遮断するようなフィルタを設ける。このようにすると、光ファイバー40の破損、または黄色蛍光体60の破損などにより白色光が放出不能または出力低下が生じる故障モードを瞬時に察知し、速やかに照明装置をシャットダウンできる。この場合、破損部から離れた出力側で故障を検知できるので、検出および制御部の破損を抑制できる。このため、高出力青色レーザ光が人間の眼などへダメージを加えることが抑制でき、照明装置を高い信頼性で監視可能な照明システムとすることができる。   The yellow return light LYR is detected using a light receiving element 71 having light receiving sensitivity in the yellow light wavelength range. For example, a filter that blocks blue light is provided on the light receiving surface of the Si photodiode. In this way, it is possible to instantly detect a failure mode in which white light cannot be emitted or output is reduced due to damage to the optical fiber 40 or damage to the yellow phosphor 60, and the lighting device can be shut down quickly. In this case, since the failure can be detected on the output side away from the damaged portion, the detection and the control portion can be prevented from being damaged. For this reason, it can suppress that a high output blue laser beam damages a human eye etc., and it can be set as the illumination system which can monitor an illuminating device with high reliability.

図7(b)の第1変形例では、白色戻り光LWRは第2の光ファイバー51内を発光素子の方向に向かって進み、受光素子71へ入射する。また、図7(c)の第2変形例では、第3の光ファイバー52の長さDRは、第1の光ファイバー40の長さDよりも長くすることができる。図3に示すように、例えば青色光(例えば波長450nm)および黄色光(例えば波長560nm)は赤外光よりも伝送損失が大きい。しかし、白色戻り光LWRは、照明光として用いるのではなく、照明システムの制御に用いる。駆動回路70を制御可能な信号であれば、低レベルでもよい。すなわち、照明光の伝送距離よりも遠くの距離にあるコントロールセンターまで信号を伝送できる。   In the first modification of FIG. 7B, the white return light LWR travels in the second optical fiber 51 toward the light emitting element and enters the light receiving element 71. In the second modification of FIG. 7C, the length DR of the third optical fiber 52 can be longer than the length D of the first optical fiber 40. As shown in FIG. 3, for example, blue light (for example, wavelength 450 nm) and yellow light (for example, wavelength 560 nm) have a larger transmission loss than infrared light. However, the white return light LWR is not used as illumination light, but is used for controlling the illumination system. Any signal that can control the drive circuit 70 may be at a low level. That is, a signal can be transmitted to a control center located farther than the transmission distance of illumination light.

以上、図面を参照しつつ、本発明の実施の形態について説明した。しかしながら、本発明は、これらの実施形態に限定されない。本発明を構成する導光体、光ファイバー、発光素子、受光素子、波長変換体、駆動回路、などの材質、形状、サイズ、配置などに関して、当業者が各種設計変更を行ったものであっても、本発明の主旨を逸脱しない限り、本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments. Even if those skilled in the art have made various design changes regarding the material, shape, size, arrangement, etc. of the light guide, optical fiber, light emitting element, light receiving element, wavelength converter, drive circuit, etc. constituting the present invention. Unless it deviates from the main point of this invention, it is included in the scope of the present invention.

5 照明システム、20 第1の発光素子、30 第2の発光素子、40 第1の導光体(光ファイバー)、50 第2の導光体(光ファイバー)、52 第3の導光体(光ファイバー)、60 波長変換体、70 駆動回路、72 光電気変換部、72a 赤外光受光素子、SC 駆動制御信号、LW 照明光、LI (赤外)制御光信号、LIR (赤外)制御光信号、LB 伝搬光、LY 変換光   DESCRIPTION OF SYMBOLS 5 Illumination system, 20 1st light emitting element, 30 2nd light emitting element, 40 1st light guide (optical fiber), 50 2nd light guide (optical fiber), 52 3rd light guide (optical fiber) 60 wavelength converter, 70 drive circuit, 72 photoelectric conversion unit, 72a infrared light receiving element, SC drive control signal, LW illumination light, LI (infrared) control light signal, LIR (infrared) control light signal, LB propagating light, LY converted light

Claims (8)

紫外から可視光の波長範囲の第1の光を放出可能な第1の発光素子と、
赤外光を放出可能な第2の発光素子と、
前記第1の光を吸収し、前記第1の光の波長よりも長い波長の変換光を放出可能な波長変換体と、
前記第1の光を前記波長変換体へ向けて伝送可能な第1の導光体と、
前記赤外光を前記波長変換体へ向けて伝送可能な第2の導光体と、
前記第1の光の出力を制御可能であり、かつ前記第2の発光素子を駆動可能な駆動回路と、
を備え、
前記第1の光と、前記変換光と、を混合して照明光を放出し、
前記赤外光を制御光信号として放出することを特徴とする照明システム。
A first light emitting element capable of emitting first light in a wavelength range from ultraviolet to visible light;
A second light emitting element capable of emitting infrared light;
A wavelength converter capable of absorbing the first light and emitting converted light having a wavelength longer than the wavelength of the first light;
A first light guide capable of transmitting the first light toward the wavelength converter;
A second light guide capable of transmitting the infrared light toward the wavelength converter;
A drive circuit capable of controlling the output of the first light and driving the second light emitting element;
With
Mixing the first light and the converted light to emit illumination light;
An illumination system that emits the infrared light as a control light signal.
前記波長変換体により散乱された前記制御光信号を伝送可能な第3の導光体と、
前記第3の導光体から出射した前記制御光信号を出力電気信号に変換可能な光電気変換部と、
を備え、
前記駆動回路は、前記出力電気信号に応じて前記第1の光の前記出力を制御することを特徴とする請求項1記載の照明システム。
A third light guide capable of transmitting the control light signal scattered by the wavelength converter;
A photoelectric conversion unit capable of converting the control light signal emitted from the third light guide into an output electric signal;
With
The illumination system according to claim 1, wherein the drive circuit controls the output of the first light in accordance with the output electric signal.
前記第3の導光体へ入射する赤外光は、前記第2の発光素子からの前記赤外光以外の赤外光を含むことを特徴とする請求項2記載の照明システム。   The illumination system according to claim 2, wherein the infrared light incident on the third light guide includes infrared light other than the infrared light from the second light emitting element. 前記第3の導光体の長さは、前記第1および第2の導光体の長さよりもそれぞれ大きく、
前記第3の導光体からの出射光に応じた信号は、増幅されたのちに前記駆動回路へ入力されることを特徴とする請求項2または3に記載の照明システム。
The length of the third light guide is greater than the length of each of the first and second light guides,
4. The illumination system according to claim 2, wherein a signal corresponding to light emitted from the third light guide is amplified and then input to the drive circuit. 5.
前記第1、第2、第3の導光体は、それぞれ光ファイバーを含むことを特徴とする請求項2〜4のいずれか1つに記載の照明システム。   The illumination system according to claim 2, wherein each of the first, second, and third light guides includes an optical fiber. 前記第1の導光体と前記第2の導光体とは、共通であることを特徴とする請求項1〜5のいずれか1つに記載の照明システム。   The illumination system according to claim 1, wherein the first light guide and the second light guide are common. 紫外から可視光の波長範囲の光を放出可能な発光素子と、
第1の端部と、第1の端部の反対側に設けられた第2の端部と、を有する導光体であって、前記発光素子から放出された前記光が前記第1の端部へ入射したのち前記第2の端部に向かって伝搬可能な導光体と、
前記第2の端部から出射した前記光を吸収し、前記光の波長よりも長い波長の変換光を放出可能な波長変換体と、
前記変換光を検出可能な受光素子であって、前記第2の端部へ入射し伝搬されたのち前記第1の端部から出射した前記変換光を検出する受光素子と、
前記変換光が所定値よりも低下したことを前記受光素子が検出すると、前記発光素子の駆動を停止可能な駆動回路と、
を備え、
前記発光素子から放出された前記光と、前記変換光と、を混合して照明光として放出することを特徴とする照明システム。
A light emitting device capable of emitting light in a wavelength range from ultraviolet to visible light;
A light guide having a first end and a second end provided on the opposite side of the first end, wherein the light emitted from the light emitting element is the first end A light guide capable of propagating toward the second end after being incident on the portion;
A wavelength converter capable of absorbing the light emitted from the second end and emitting converted light having a wavelength longer than the wavelength of the light;
A light receiving element capable of detecting the converted light, wherein the light receiving element detects the converted light emitted from the first end after being incident and propagated to the second end;
A drive circuit capable of stopping driving of the light emitting element when the light receiving element detects that the converted light has decreased below a predetermined value;
With
An illumination system, wherein the light emitted from the light emitting element and the converted light are mixed and emitted as illumination light.
前記導光体は、光ファイバーであることを特徴とする請求項7記載の照明システム。   The illumination system according to claim 7, wherein the light guide is an optical fiber.
JP2011129296A 2011-06-09 2011-06-09 Illumination system Withdrawn JP2012256535A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011129296A JP2012256535A (en) 2011-06-09 2011-06-09 Illumination system
PCT/JP2012/055723 WO2012169248A1 (en) 2011-06-09 2012-03-06 Illuminating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129296A JP2012256535A (en) 2011-06-09 2011-06-09 Illumination system

Publications (1)

Publication Number Publication Date
JP2012256535A true JP2012256535A (en) 2012-12-27

Family

ID=47295822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129296A Withdrawn JP2012256535A (en) 2011-06-09 2011-06-09 Illumination system

Country Status (2)

Country Link
JP (1) JP2012256535A (en)
WO (1) WO2012169248A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132473A1 (en) * 2013-03-01 2014-09-04 東芝ライテック株式会社 Linear light emitting body, solid-state light emitting device, and solid-state illumination device
DE102013207841A1 (en) * 2013-04-29 2014-10-30 Osram Gmbh lighting device
EP3999775A4 (en) * 2019-07-16 2023-09-06 KYOCERA SLD Laser, Inc. Infrared illumination device configured with a gallium and nitrogen containing laser source
US11906121B1 (en) 2022-10-21 2024-02-20 Kyocera Sld Laser, Inc. Laser high beam and low beam headlamp apparatus and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515636B2 (en) * 2015-03-30 2019-05-22 株式会社島津製作所 Fiber coupled laser
DE102018114420A1 (en) * 2018-06-15 2019-12-19 Osram Opto Semiconductors Gmbh LIGHT FIBER AND LIGHTING DEVICE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223996A (en) * 2002-01-29 2003-08-08 Sankosha Corp Illumination lamp blown-out filament monitor
JP2007004203A (en) * 2006-09-15 2007-01-11 Nakagawa Kenkyusho:Kk Light transmission body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132473A1 (en) * 2013-03-01 2014-09-04 東芝ライテック株式会社 Linear light emitting body, solid-state light emitting device, and solid-state illumination device
DE102013207841A1 (en) * 2013-04-29 2014-10-30 Osram Gmbh lighting device
EP3999775A4 (en) * 2019-07-16 2023-09-06 KYOCERA SLD Laser, Inc. Infrared illumination device configured with a gallium and nitrogen containing laser source
US11906121B1 (en) 2022-10-21 2024-02-20 Kyocera Sld Laser, Inc. Laser high beam and low beam headlamp apparatus and method

Also Published As

Publication number Publication date
WO2012169248A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2012169248A1 (en) Illuminating system
JP5122542B2 (en) Light emitting device, lighting device, and light detector
US9261259B2 (en) Laser-beam utilization device and vehicle headlight
JP5677293B2 (en) Eye-safe laser-based illumination
WO2013140691A1 (en) Solid illumination device
CN109073169B (en) Laser-based light source
KR101880070B1 (en) A device for simultaneous data and power transmission over an optical waveguide
CN110094692B (en) Lighting device of integrated LiDAR system and car
JP2014187326A (en) Solid-state lighting device
CN109980494A (en) A kind of monitoring method and fiber laser device of Raman light
CN114144711A (en) Light emitting device and optical fiber
US10734783B2 (en) Laser oscillator
JP2015210890A (en) Light source device and vehicle
US10326528B2 (en) Optical transceiver and control method for optical transceiver
JP3724483B2 (en) Optical wireless transmission device
JP2015015146A (en) Optical fiber cable for solid-state lighting device and solid-state lighting device
KR101542476B1 (en) Optical coupler for coupling multiful short-wavelength light
KR101842187B1 (en) A device for lighting white light
WO2022209785A1 (en) Measuring device
JPH06139500A (en) Inter-car distance controller
CN107426884A (en) Light-source system, car light and automobile
US10247377B2 (en) Headlight for a motor vehicle
CN110566842A (en) Light projector
RU22279U1 (en) OPTICAL COMMUNICATION SYSTEM
KR20170018494A (en) Lamp for vehicle

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902