JP2012255581A - Flying body - Google Patents

Flying body Download PDF

Info

Publication number
JP2012255581A
JP2012255581A JP2011128148A JP2011128148A JP2012255581A JP 2012255581 A JP2012255581 A JP 2012255581A JP 2011128148 A JP2011128148 A JP 2011128148A JP 2011128148 A JP2011128148 A JP 2011128148A JP 2012255581 A JP2012255581 A JP 2012255581A
Authority
JP
Japan
Prior art keywords
infrared
ultraviolet emission
inhibitor
injection nozzle
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011128148A
Other languages
Japanese (ja)
Inventor
Shuji Kondo
秀嗣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011128148A priority Critical patent/JP2012255581A/en
Publication of JP2012255581A publication Critical patent/JP2012255581A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an infrared ray and an ultraviolet ray emitted from a combustion gas generated during combustion of a propellant object without enlarging a flying body, thereby preventing the flying body from being detected by an infrared detector and an ultraviolet detector.SOLUTION: The flying body includes a combustion chamber, an injection nozzle, and a control mechanism of infrared ray and ultraviolet ray emission. The combustion chamber stores the propellant inside, and burns the propellant. The injection nozzle is connected to the combustion chamber and is provided in the rear part of a body, and jets the combustion gas generated by the combustion of the propellant backward. The control mechanism of infrared ray and ultraviolet ray emission is connected to the combustion chamber or the injection nozzle, and emits an agent or member, that absorbs the infrared ray and the ultraviolet ray emitted by the combustion gas, toward the circumference region of the injection region of the combustion gas to cover the outer periphery of the injection region.

Description

本発明の実施形態は、赤外線検知器や紫外線検知器による検知を行いにくい飛翔体に関する。   Embodiments of the present invention relate to a flying object that is difficult to detect by an infrared detector or an ultraviolet detector.

図20は、従来型の飛翔体の飛翔時における断面図である。同図に示されるように、飛翔体は、燃焼室11内に格納された推進薬13(固体推進薬または液体推進薬)を燃焼させ、発生した燃焼ガスを噴射ノズル15から放出することで生じる推力によって飛翔する。しかし、噴射ノズル15から後方に放出される燃焼ガスは、赤外線および紫外線を放出するため、赤外線検知器や紫外線検知器を使用することで、飛翔体は容易に検知されてしまう。   FIG. 20 is a cross-sectional view of a conventional flying object during flight. As shown in the figure, the flying object is produced by burning the propellant 13 (solid propellant or liquid propellant) stored in the combustion chamber 11 and releasing the generated combustion gas from the injection nozzle 15. Fly by thrust. However, since the combustion gas released backward from the injection nozzle 15 emits infrared rays and ultraviolet rays, the flying object is easily detected by using an infrared detector or an ultraviolet detector.

また、赤外線や紫外線を発生する機体を赤外線検知器や紫外線検知器において検知しにくくする方法に関する従来技術では、機体が燃焼ガスを排出する前に、別途取り込んだ低温の空気と燃焼ガスを混合させ、燃焼ガスの温度を低下することにより、赤外線および紫外線の放出を抑制する方法が知られている。   In addition, in the prior art related to a method for making it difficult to detect an infrared ray or ultraviolet ray by an infrared detector or an ultraviolet ray detector, before the aircraft discharges the combustion gas, separately mixed low-temperature air and the combustion gas are mixed. A method for suppressing the emission of infrared rays and ultraviolet rays by lowering the temperature of the combustion gas is known.

特開2008−280967号公報JP 2008-280967 A 特開2005−280697号公報Japanese Patent Laying-Open No. 2005-280697

しかしながら、上記の従来技術においては、低温の空気と燃焼ガスを混合させ、燃焼ガスの温度を低下することにより、赤外線や紫外線の放出を抑制する方式のため、空気を取り入れるための構造や、空気と燃焼ガスを混合させる空間を別途設ける必要があり、飛翔体に適用するとサイズが大きくなってしまうという問題がある。   However, in the above-described conventional technology, a structure for taking in air, a method for suppressing emission of infrared rays and ultraviolet rays by mixing low-temperature air and combustion gas and reducing the temperature of the combustion gas, It is necessary to provide a space for mixing the combustion gas and the combustion gas, and there is a problem that the size becomes large when applied to a flying object.

そこで、本発明は、上記従来技術の問題に鑑み、飛翔体の大型化を要せずに、推進薬の燃焼時に発生する燃焼ガスから放出される赤外線および紫外線を抑制し、赤外線検知器や紫外線検知器による検知を行いにくい飛翔体を提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention suppresses infrared rays and ultraviolet rays emitted from the combustion gas generated during combustion of the propellant without requiring an increase in the size of the flying object, and thereby an infrared detector and ultraviolet ray The object is to provide a flying object that is difficult to detect by a detector.

本発明の一実施形態に係る飛翔体は、燃焼室、噴射ノズルおよび赤外線・紫外線放出抑制機構を備える。   A flying object according to an embodiment of the present invention includes a combustion chamber, an injection nozzle, and an infrared / ultraviolet emission suppression mechanism.

燃焼室は、内部に推進薬を格納し、この推進薬を燃焼する。噴射ノズルは、燃焼室の連結して機体の後方部に設けられ、推進薬の燃焼によって発生した燃焼ガスを後方へ噴射する。赤外線・紫外線放出抑制機構は、燃焼室または噴射ノズルに接続して設けられ、燃焼ガスが発する赤外線および紫外線を吸収する薬剤または部材を燃焼ガスの噴射領域の外周領域に向けて放出し、噴射領域の外周部を被覆する。   A combustion chamber stores a propellant inside and burns this propellant. The injection nozzle is connected to the combustion chamber and provided in the rear part of the airframe, and injects the combustion gas generated by the combustion of the propellant backward. The infrared / ultraviolet emission suppression mechanism is connected to a combustion chamber or an injection nozzle, and discharges an agent or a member that absorbs infrared and ultraviolet rays emitted by combustion gas toward the outer peripheral region of the injection region of the combustion gas. The outer peripheral part of is covered.

本発明の実施形態1に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 1 of this invention. 図1に示す飛翔体を噴射ノズル側から見た底面図。The bottom view which looked at the flying body shown in FIG. 1 from the injection nozzle side. 図1に示す飛翔体の飛翔時における断面図。Sectional drawing at the time of flight of the flying body shown in FIG. 本発明の実施形態2に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 2 of this invention. 図4に示す飛翔体を噴射ノズル側から見た底面図。The bottom view which looked at the flying body shown in FIG. 4 from the injection nozzle side. 本発明の実施形態3に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 3 of this invention. 図6に示す飛翔体を噴射ノズル側から見た底面図。The bottom view which looked at the flying body shown in FIG. 6 from the injection nozzle side. 図6に示す飛翔体の飛翔時における断面図。Sectional drawing at the time of flight of the flying body shown in FIG. 本発明の実施形態4に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 4 of this invention. 図9に示す飛翔体の噴射ノズル外周部分の拡大図。The enlarged view of the injection nozzle outer peripheral part of the flying body shown in FIG. 図10に示す飛翔体のA−A´部における断面図。Sectional drawing in the AA 'part of the flying body shown in FIG. 本発明の実施形態5に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 6 of this invention. 図13に示す飛翔体を噴射ノズル側から見た底面図。The bottom view which looked at the flying body shown in FIG. 13 from the injection nozzle side. 本発明の実施形態7に係る飛翔体の全体構成例を示す断面図。Sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 7 of this invention. 図15に示す飛翔体を噴射ノズル側から見た底面図。The bottom view which looked at the flying body shown in FIG. 15 from the injection nozzle side. 図15に示す飛翔体の飛翔時における断面図。Sectional drawing at the time of flight of the flying body shown in FIG. 図15に示す飛翔体の飛翔時における外観図。The external view at the time of flight of the flying body shown in FIG. 図15に示す飛翔体における耐熱性ファイバークロスの切り離し機構の具体例を示す図。The figure which shows the specific example of the separation mechanism of the heat resistant fiber cloth in the flying body shown in FIG. 従来型の飛翔体の飛翔時における断面図。Sectional drawing at the time of the flight of the conventional flying body.

以下、本発明の実施形態について図面を用いて詳細に説明する。
<実施形態1>
図1は、本発明の実施形態1に係る飛翔体の全体構成例を示す断面図である。また、図2は、図1に示す飛翔体を噴射ノズル15側から見た底面図である。これらの図に示されるように、飛翔体は、前方部に燃焼室11を備え、この燃焼室11内には例えばエチレン・プロピレンゴムなどの断熱部材12を介して環形状の推進薬13が格納された飛翔体である。また、推進薬13推進薬13の中央部に形成された空間には点火を行う点火装置14が配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Embodiment 1>
FIG. 1 is a cross-sectional view showing an example of the overall configuration of a flying object according to Embodiment 1 of the present invention. 2 is a bottom view of the flying object shown in FIG. 1 as viewed from the injection nozzle 15 side. As shown in these drawings, the flying body includes a combustion chamber 11 in the front portion, and a ring-shaped propellant 13 is stored in the combustion chamber 11 via a heat insulating member 12 such as ethylene / propylene rubber. Is a flying object. Further, in the space formed in the central portion of the propellant 13 propellant 13, an ignition device 14 that performs ignition is disposed.

推進薬13としては、運搬性や充填性等を考慮して例えば、HTPB(末端水酸基ポリブタジエン)などの固体推進薬を用いる。   As the propellant 13, for example, a solid propellant such as HTPB (terminal hydroxyl group polybutadiene) is used in consideration of transportability and filling properties.

また、飛翔体の後方部には、燃焼室11の連結された噴射ノズル15(推進装置)が設けられており、推進薬13の燃焼によって発生した燃焼ガスを後方へ噴射する。そして、噴射ノズル15の内周面には、赤外線および紫外線の放出を抑制するための機構(以下、「赤外線・紫外線放出抑制機構」)として赤外線反射剤、赤外線吸収剤、紫外線反射剤および紫外線吸収剤を適宜混合した物質(以下、併せて「赤外線・紫外線放出抑制剤」という。)16の層が固着されている。この赤外線・紫外線放出抑制剤16の具定例としては、シリコン、赤外線吸収有機化合物、酸化チタン、酸化亜鉛、セリウム化合物等が挙げられる。   Further, an injection nozzle 15 (propulsion device) connected to the combustion chamber 11 is provided in the rear part of the flying body, and the combustion gas generated by the combustion of the propellant 13 is injected backward. On the inner peripheral surface of the injection nozzle 15, as a mechanism for suppressing the emission of infrared rays and ultraviolet rays (hereinafter referred to as “infrared ray / ultraviolet ray emission suppression mechanism”), an infrared reflector, an infrared absorber, an ultraviolet reflector, and an ultraviolet absorber. A layer of a substance (hereinafter collectively referred to as “infrared / ultraviolet emission inhibitor”) 16 in which an agent is appropriately mixed is fixed. Specific examples of the infrared / ultraviolet emission inhibitor 16 include silicon, an infrared absorbing organic compound, titanium oxide, zinc oxide, and a cerium compound.

尚、本実施形態では赤外線・紫外線放出抑制剤16の層は、高圧を負荷することにより固形化して形成するが、燃焼室11側から噴射ノズル15側への燃焼ガスの噴射圧力によって所定時間に亘って飛散するように強度調整を行うものとする。例えば、バインダ(ゴム)や強化プラスチック等に練り込む方式が好適である。飛散時において、固形化した抑制剤と周囲の流速の関係は、飛しょう体の速度、ノズルの設計により、影響の度合いが違うので、個別に設計する必要がある。   In the present embodiment, the layer of the infrared / ultraviolet emission inhibitor 16 is formed by solidification by applying a high pressure. However, the layer is formed at a predetermined time depending on the combustion gas injection pressure from the combustion chamber 11 side to the injection nozzle 15 side. The strength is adjusted so as to be scattered over. For example, a method of kneading into a binder (rubber) or reinforced plastic is suitable. The relationship between the solidified inhibitor and the surrounding flow velocity at the time of scattering varies depending on the speed of the flying object and the design of the nozzle, so it must be designed individually.

図3は、図1に示す飛翔体の飛翔時における断面図である。ここでは、第一段点火を行った場合の様子が示されており、燃焼室11側での燃焼によって燃焼ガスが発生すると、燃焼ガスは矢印S方向に移動して噴射ノズル15から外部へ放出され、機体には矢印T方向への推進力を生じる。また、噴射の際には、噴射ノズル15の内周面に沿って形成されている赤外線・紫外線放出抑制剤16の層は、噴射の圧力によって削り取られる。すなわち、燃焼ガスの噴射領域の外周領域に向けて放出され、噴射領域の外周部を抑制剤粒子の層(以下、「反射・吸収層」)17で被覆する状態となる。この結果、燃焼ガスから放出される赤外線および紫外線は、赤外線および紫外線を反射・吸収する反射・吸収層17の内部で拡散、減衰されるようになり、この反射・吸収層層17の外部に放出されるときは、減衰した赤外線および紫外線となる。   3 is a cross-sectional view of the flying object shown in FIG. 1 when flying. Here, the state in the case of performing the first stage ignition is shown. When combustion gas is generated by combustion on the combustion chamber 11 side, the combustion gas moves in the direction of arrow S and is released from the injection nozzle 15 to the outside. As a result, a propulsive force in the direction of arrow T is generated in the aircraft. Further, at the time of jetting, the layer of the infrared / ultraviolet emission inhibitor 16 formed along the inner peripheral surface of the jet nozzle 15 is scraped off by the jetting pressure. That is, the combustion gas is discharged toward the outer peripheral region of the injection region, and the outer peripheral portion of the injection region is covered with a layer of inhibitor particles (hereinafter, “reflection / absorption layer”) 17. As a result, infrared rays and ultraviolet rays emitted from the combustion gas are diffused and attenuated inside the reflection / absorption layer 17 that reflects and absorbs infrared rays and ultraviolet rays, and are emitted to the outside of the reflection / absorption layer 17. When done, it becomes attenuated infrared and ultraviolet light.

このように、本実施形態によれば、噴射ノズル15の内周面に簡易な施工によって赤外線・紫外線放出抑制機構を実装するため、飛翔体の大型化を要せずに、推進薬の燃焼時に発生する燃焼ガスから放出される赤外線および紫外線を抑制し、外部のセンサ等からの検知を行いにくくできる。   As described above, according to the present embodiment, since the infrared / ultraviolet emission suppression mechanism is mounted on the inner peripheral surface of the injection nozzle 15 by simple construction, it is not necessary to increase the size of the flying object, and at the time of combustion of the propellant. Infrared rays and ultraviolet rays emitted from the generated combustion gas can be suppressed, and detection from an external sensor or the like can be made difficult.

以下、発明の他の実施形態を図4乃至図19に基づいて詳細に説明する。尚、上記実施形態1の各図面に付された符号と共通する符号は同一の対象を示すため、説明は省略し、相違点を中心に説明する。   Hereinafter, another embodiment of the invention will be described in detail with reference to FIGS. In addition, since the code | symbol common to the code | symbol attached | subjected to each drawing of the said Embodiment 1 shows the same object, description is abbreviate | omitted and it demonstrates centering on difference.

<実施形態2>
図4は、本発明の実施形態2に係る飛翔体の全体構成例を示す断面図である。また、図5は、図4に示す飛翔体を噴射ノズル15側から見た底面図である。
<Embodiment 2>
FIG. 4 is a cross-sectional view showing an example of the overall configuration of a flying object according to Embodiment 2 of the present invention. FIG. 5 is a bottom view of the flying object shown in FIG. 4 as viewed from the injection nozzle 15 side.

これらの図に示されるように、本実施形態に係る飛翔体は、実施形態1の飛翔体とは赤外線・紫外線放出抑制機構の形成位置が異なり、燃焼室11および噴射ノズル15の外周部に亘って赤外線・紫外線放出抑制剤16を固着させることで形成されている。   As shown in these drawings, the flying object according to the present embodiment differs from the flying object of the first embodiment in the formation position of the infrared / ultraviolet emission suppression mechanism, and extends over the outer periphery of the combustion chamber 11 and the injection nozzle 15. Thus, the infrared ray / ultraviolet emission inhibitor 16 is fixed.

本実施形態の場合、赤外線・紫外線放出抑制剤16の層は、機体の飛翔時の空気抵抗力によって所定時間に亘って後方へ飛散させるため、土壁のように、手でさわるとぼろぼろ落ちる程度の固形化を想定している。したがって、基本的には水や結合性の低い接着剤を用いて高圧で押し固める方式などが好適である。   In the case of this embodiment, the layer of the infrared / ultraviolet emission inhibitor 16 scatters backward for a predetermined time due to air resistance during the flight of the aircraft, so that it falls to the touch when touched with a hand like a dirt wall. Is assumed to be solidified. Therefore, basically, a method in which water or an adhesive having a low binding property is used to press and solidify at a high pressure is suitable.

このように、本実施形態によれば、上記実施形態1と同様に、簡易な構造および施工によって燃焼ガスの噴射領域の外周部に赤外線・紫外線放出抑制剤16の粉末を飛散させることが可能となる。また、噴射ノズル15の内周面だけでなく、燃焼室11の外周部に亘って赤外線・紫外線抑制機構が形成されているため、上記実施形態1に比べて多くの薬剤を飛散させることが可能な利点がある。   Thus, according to the present embodiment, as in the first embodiment, the powder of the infrared / ultraviolet emission inhibitor 16 can be scattered on the outer peripheral portion of the injection region of the combustion gas with a simple structure and construction. Become. In addition, since the infrared / ultraviolet suppression mechanism is formed not only on the inner peripheral surface of the injection nozzle 15 but also on the outer peripheral portion of the combustion chamber 11, it is possible to disperse more chemicals than in the first embodiment. There are significant advantages.

<実施形態3>
図6は、本発明の実施形態3に係る飛翔体の全体構成例を示す断面図である。図7は、図6に示す飛翔体を噴射ノズル15側から見た底面図である。
<Embodiment 3>
FIG. 6 is a cross-sectional view showing an example of the overall configuration of a flying object according to Embodiment 3 of the present invention. FIG. 7 is a bottom view of the flying object shown in FIG. 6 as viewed from the injection nozzle 15 side.

これらの図に示されるように、本実施形態においては赤外線・紫外線放出抑制機構は、赤外線・紫外線放出抑制剤格納部20、高圧ガスボンベ21、ガス管22および抑制剤放出口23から構成されている。   As shown in these drawings, in the present embodiment, the infrared / ultraviolet emission suppression mechanism is composed of an infrared / ultraviolet emission inhibitor storage unit 20, a high-pressure gas cylinder 21, a gas pipe 22, and an inhibitor outlet 23. .

赤外線・紫外線放出抑制剤格納部20は、噴射ノズル15の外周部に沿って環状に形成され、粉末加工された赤外線・紫外線放出抑制剤16を格納する容器である。   The infrared / ultraviolet emission inhibitor storage unit 20 is a container for storing the powdered infrared / ultraviolet emission inhibitor 16 formed in a ring shape along the outer periphery of the injection nozzle 15.

高圧ガスボンベ21は、この赤外線・紫外線放出抑制剤格納部20とガス管22によって連結して設けられ、噴射ノズル15から燃焼ガスが放出されるのに合わせて赤外線・紫外線放出抑制剤格納部20に向けて放出する高圧ガスを格納する容器である。   The high-pressure gas cylinder 21 is provided by being connected to the infrared / ultraviolet emission inhibitor storage unit 20 by a gas pipe 22, and the infrared / ultraviolet emission inhibitor storage unit 20 is connected to the combustion gas released from the injection nozzle 15. This is a container for storing high-pressure gas that is emitted toward the outside.

抑制剤放出口23は、赤外線・紫外線放出抑制剤格納部20に連結しており、噴射ノズル15の噴射口の外周部に所望の数設けられ、高圧ガスの放出に伴って赤外線・紫外線放出抑制剤格納部20から放出する赤外線・紫外線放出抑制剤16を燃焼ガスの噴射領域の外周領域に向けて放出する。   The inhibitor discharge port 23 is connected to the infrared / ultraviolet emission inhibitor storage unit 20 and is provided in a desired number on the outer peripheral portion of the injection port of the injection nozzle 15 to suppress infrared / ultraviolet emission as the high-pressure gas is released. The infrared / ultraviolet emission suppressing agent 16 released from the agent storage unit 20 is released toward the outer peripheral region of the combustion gas injection region.

図8は、図6に示す飛翔体の飛翔時における断面図である。ここでは、第一段点火を行った場合の様子が示されており、燃焼室11側での燃焼によって燃焼ガスが発生すると、燃焼ガスは矢印S方向に移動して噴射ノズル15から外部へ放出され、機体には矢印T方向への推進力を生じる。また、噴射の際には、飛翔体の制御装置(図示省略する)からの指令に基づいて高圧ガスボンベ21から高圧ガスが赤外線・紫外線放出抑制剤格納部20に導入される。そして、赤外線・紫外線放出抑制剤格納部20内に格納されている粉末状の赤外線・紫外線放出抑制剤16が、燃焼ガスの噴射領域の外周領域に向けて放出され、噴射領域の外周部を被覆する状態となる。この結果、燃焼ガスから放出される赤外線および紫外線は、赤外線および紫外線を反射・吸収する反射・吸収層17の内部で拡散、減衰されるようになり、この反射・吸収層17の外部に放出されるときは、減衰した赤外線および紫外線となる。   FIG. 8 is a cross-sectional view of the flying object shown in FIG. 6 at the time of flight. Here, the state in the case of performing the first stage ignition is shown. When combustion gas is generated by combustion on the combustion chamber 11 side, the combustion gas moves in the direction of arrow S and is released from the injection nozzle 15 to the outside. As a result, a propulsive force in the direction of arrow T is generated in the aircraft. Further, at the time of injection, high-pressure gas is introduced from the high-pressure gas cylinder 21 into the infrared / ultraviolet emission inhibitor storage unit 20 based on a command from a flying body control device (not shown). The powdery infrared / ultraviolet emission inhibitor 16 stored in the infrared / ultraviolet emission inhibitor storage unit 20 is released toward the outer peripheral region of the combustion gas injection region, and covers the outer peripheral portion of the injection region. It becomes a state to do. As a result, infrared rays and ultraviolet rays emitted from the combustion gas are diffused and attenuated inside the reflection / absorption layer 17 that reflects and absorbs infrared rays and ultraviolet rays, and are emitted to the outside of the reflection / absorption layer 17. When this occurs, it becomes attenuated infrared and ultraviolet light.

このように、本実施形態によれば、赤外線・紫外線放出抑制剤16の飛散を高圧ガスの導入タイミングによって制御することが可能となる。   As described above, according to this embodiment, the scattering of the infrared / ultraviolet emission inhibitor 16 can be controlled by the introduction timing of the high-pressure gas.

<実施形態4>
図9は、本発明の実施形態4に係る飛翔体の全体構成例を示す断面図である。また、図10は、図9に示す飛翔体の噴射ノズル15外周部分の拡大図であり、図11は、図10に示す飛翔体の断面AA´部における断面図である。
<Embodiment 4>
FIG. 9 is a cross-sectional view showing an example of the overall configuration of a flying object according to Embodiment 4 of the present invention. FIG. 10 is an enlarged view of the outer peripheral portion of the spray nozzle 15 of the flying object shown in FIG. 9, and FIG. 11 is a sectional view of the flying object shown in FIG.

これらの図に示されるように、本実施形態においては赤外線・紫外線放出抑制機構を構成する赤外線・紫外線放出抑制剤格納部20、高圧ガスボンベ21、ガス管22および抑制剤放出口23の位置が上記実施形態3とは異なり、赤外線・紫外線放出抑制剤格納部20が高圧ガスボンベ21と噴射ノズル15の外周面(側面)の間に配置され、かつ、噴射ノズル15の内壁面と外壁面の間には、環状の抑制剤流路18が赤外線・紫外線放出抑制剤格納部20に連結して設けられている。また、噴射ノズル15の外周面上には、抑制剤流路18に連結された抑制剤放出口23が形成されている。   As shown in these drawings, in the present embodiment, the positions of the infrared / ultraviolet emission inhibitor storage unit 20, the high-pressure gas cylinder 21, the gas pipe 22 and the inhibitor discharge port 23 that constitute the infrared / ultraviolet emission suppression mechanism are as described above. Unlike the third embodiment, the infrared / ultraviolet emission inhibitor storage unit 20 is disposed between the high pressure gas cylinder 21 and the outer peripheral surface (side surface) of the injection nozzle 15, and between the inner wall surface and the outer wall surface of the injection nozzle 15. Is provided with an annular inhibitor channel 18 connected to the infrared / ultraviolet emission inhibitor storage unit 20. In addition, an inhibitor discharge port 23 connected to the inhibitor flow path 18 is formed on the outer peripheral surface of the injection nozzle 15.

したがって、本実施形態によれば、高圧ガスボンベ21から高圧ガス(例えば窒素ガスやアルゴンガス)を赤外線・紫外線放出抑制剤16を充填した赤外線・紫外線放出抑制剤格納部20に向けて噴射すると、噴射ノズル15の底面だけでなく側面の抑制剤放出口23からも放出できる。この結果、側面から放出された薬剤は飛翔体の後部外壁面と噴射ノズル15との間に形成されている空間に滞留するため、実施形態3に比べて赤外線・紫外線放出抑制剤16の放出時の濃度を均一化できる効果を奏する。   Therefore, according to the present embodiment, when a high-pressure gas (for example, nitrogen gas or argon gas) is injected from the high-pressure gas cylinder 21 toward the infrared / ultraviolet emission inhibitor storage unit 20 filled with the infrared / ultraviolet emission inhibitor 16, It can be discharged not only from the bottom surface of the nozzle 15 but also from the side-side inhibitor discharge port 23. As a result, since the medicine released from the side surface stays in the space formed between the rear outer wall surface of the flying object and the injection nozzle 15, when the infrared / ultraviolet emission inhibitor 16 is released as compared with the third embodiment. There is an effect that the density of the can be made uniform.

<実施形態5>
図12は、本発明の実施形態5に係る飛翔体の全体構成例を示す断面図である。同図に示されるように、本実施形態における赤外線・紫外線放出抑制機構は、噴射ノズル15の外周部に沿って環状に形成され、粉末加工された赤外線・紫外線放出抑制剤16を格納する赤外線・紫外線放出抑制剤格納部20および抑制剤放出口23の他に、燃焼圧力誘導管24およびピストン25を備えている。
<Embodiment 5>
FIG. 12 is a cross-sectional view showing an example of the overall configuration of a flying object according to Embodiment 5 of the present invention. As shown in the figure, the infrared / ultraviolet emission suppression mechanism in the present embodiment is formed in an annular shape along the outer peripheral portion of the injection nozzle 15, and stores the infrared / ultraviolet emission suppression agent 16 that has been processed into powder. In addition to the ultraviolet emission inhibitor storage unit 20 and the inhibitor outlet 23, a combustion pressure guide tube 24 and a piston 25 are provided.

燃焼圧力誘導管24は、赤外線・紫外線放出抑制剤格納部20および燃焼室11に連結して設けられ、燃焼室11から赤外線・紫外線放出抑制剤格納部20に向けて燃焼圧力を誘導する金属管である。燃焼圧力誘導管24内には、所望の充填剤を充填しておき、充填剤を燃焼圧力で押すことによってピストン25へ圧力を伝えることができる。   The combustion pressure guide tube 24 is connected to the infrared / ultraviolet emission inhibitor storage unit 20 and the combustion chamber 11, and is a metal tube that guides the combustion pressure from the combustion chamber 11 toward the infrared / ultraviolet emission inhibitor storage unit 20. It is. The combustion pressure guide tube 24 is filled with a desired filler, and the pressure can be transmitted to the piston 25 by pushing the filler with the combustion pressure.

ピストン25は、赤外線・紫外線放出抑制剤格納部20内において燃焼圧力誘導管24側に設けられ、燃焼圧力の導入に伴って赤外線・紫外線放出抑制剤格納部20内に格納されている赤外線・紫外線放出抑制剤16に対して抑制剤放出口23方向への押圧力を加える部材である。   The piston 25 is provided on the combustion pressure guide tube 24 side in the infrared / ultraviolet emission inhibitor storage unit 20, and the infrared / ultraviolet light stored in the infrared / ultraviolet emission inhibitor storage unit 20 as the combustion pressure is introduced. It is a member that applies a pressing force in the direction of the inhibitor discharge port 23 to the release inhibitor 16.

このように、本実施形態によれば、飛翔体の後方部に、噴射ノズル15とは別の燃焼ガスの圧力誘導路である燃焼圧力誘導管24を設けているため、燃焼圧力によりピストン25を押して噴射ノズル15周辺に設けられた赤外線・紫外線放出抑制剤格納部20から赤外線・紫外線放出抑制剤16の粉末を放出する噴射ノズル15から後方へ飛散させることが可能となる。   As described above, according to the present embodiment, the combustion pressure induction pipe 24 that is a pressure induction path for the combustion gas different from the injection nozzle 15 is provided in the rear part of the flying body. It is possible to push the powder of the infrared / ultraviolet emission suppression agent 16 from the infrared / ultraviolet emission suppression agent storage 20 provided around the injection nozzle 15 to be scattered backward from the injection nozzle 15.

したがって、上記実施形態3および実施形態4と異なり、高圧ガスボンベを用いることなく噴射タイミングに合わせて赤外線・紫外線放出抑制剤16を放出・飛散することが可能な効果を奏する。   Therefore, unlike the third and fourth embodiments, the infrared / ultraviolet emission inhibitor 16 can be released and scattered in accordance with the injection timing without using a high-pressure gas cylinder.

<実施形態6>
図13は、本発明の実施形態6に係る飛翔体の全体構成例を示す断面図である。また、図14は、図13に示す飛翔体を噴射ノズル15側から見た底面図である。
<Embodiment 6>
FIG. 13: is sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 6 of this invention. FIG. 14 is a bottom view of the flying object shown in FIG. 13 as viewed from the injection nozzle 15 side.

これらの図に示されるように、本実施形態における赤外線・紫外線放出抑制機構は、赤外線・紫外線放出抑制剤格納部20の他に、押しバネ26、振動装置27および抑制剤放出メッシュ28を備えた構成である。尚、赤外線・紫外線放出抑制剤格納部20に格納されている赤外線・紫外線放出抑制剤16はバインダ(ゴム)や高圧を負荷することにより固形化されているものとする。 As shown in these drawings, the infrared / ultraviolet emission suppression mechanism according to the present embodiment includes a push spring 26, a vibration device 27, and an inhibitor release mesh 28 in addition to the infrared / ultraviolet emission suppression agent storage unit 20. It is a configuration. It is assumed that the infrared / ultraviolet emission inhibitor 16 stored in the infrared / ultraviolet emission inhibitor storage unit 20 is solidified by applying a binder (rubber) or high pressure.

押しバネ26は、赤外線・紫外線放出抑制剤格納部20に隣接して燃焼室11側に設けられ、赤外線・紫外線放出抑制剤格納部20内の赤外線・紫外線放出抑制剤16を噴射ノズル15の噴射方向と平行に抑制剤放出メッシュ28側へ押し付けるバネである。   The push spring 26 is provided on the combustion chamber 11 side adjacent to the infrared / ultraviolet emission inhibitor storage unit 20, and injects the infrared / ultraviolet emission inhibitor 16 in the infrared / ultraviolet emission inhibitor storage unit 20 from the injection nozzle 15. It is a spring that is pressed in parallel to the direction toward the inhibitor release mesh 28 side.

振動装置27は、押しバネ26に隣接して設けられ、飛翔体の制御装置(図示省略する)からの指令に基づいて所望のタイミングで押しバネ26に振動を加える装置である。   The vibration device 27 is a device that is provided adjacent to the push spring 26 and applies vibration to the push spring 26 at a desired timing based on a command from a flying body control device (not shown).

抑制剤放出メッシュ28は、赤外線・紫外線放出抑制剤格納部20の一端に噴射ノズル15の噴射口の外周部に沿って網目状に形成されたヤスリ部材であって、振動装置27からの振動と押しバネ26からの押圧力とに基づいて当接された赤外線・紫外線放出抑制剤16を削り取り、燃焼ガスの噴射領域の外周領域に向けて放出する。   The inhibitor release mesh 28 is a file member formed in a mesh shape along the outer peripheral portion of the injection port of the injection nozzle 15 at one end of the infrared / ultraviolet emission suppression storage unit 20. The infrared / ultraviolet emission inhibitor 16 abutted on the basis of the pressing force from the pressing spring 26 is scraped off and released toward the outer peripheral region of the combustion gas injection region.

このように、本実施形態によれば、飛翔体の制御装置(図示省略する)からの指令に基づいて振動装置27から振動が発生し、赤外線・紫外線放出抑制剤16の粉末がヤスリがけによって生成される構成のため、予め粉末化させておく場合に比べて飛散制御が容易となる効果を奏する。   As described above, according to the present embodiment, vibration is generated from the vibration device 27 based on a command from the control device (not shown) of the flying object, and the powder of the infrared / ultraviolet emission inhibitor 16 is generated by filing. Because of the configuration, the effect of facilitating the scattering control is achieved compared to the case where it is previously powdered.

<実施形態7>
図15は、本発明の実施形態7に係る飛翔体の全体構成例を示す断面図である。また、図16は、図15に示す飛翔体を噴射ノズル15側から見た底面図であり、図17は、図15に示す飛翔体の飛翔時における断面図である。
<Embodiment 7>
FIG. 15: is sectional drawing which shows the example of whole structure of the flying body which concerns on Embodiment 7 of this invention. 16 is a bottom view of the flying object shown in FIG. 15 as viewed from the injection nozzle 15 side, and FIG. 17 is a cross-sectional view of the flying object shown in FIG. 15 at the time of flight.

これらの図に示されるように、本実施形態における赤外線・紫外線放出抑制機構は、赤外線・紫外線放出抑制剤16の代わりに耐熱性ファイバークロス29を用いて飛翔体から発生する赤外線や紫外線を反射または吸収して減衰を図るものであり、クロス格納部30およびクロス展開部31を備えている。耐熱性ファイバークロス29の具体例としては。アラミド繊維などの強化繊維をシート状に織ったものに耐熱性ゴムを加工したもの(繊維に吹きつけたり、貼り付けたりして2000℃〜3000℃の温度に耐えられるようしたもの)などが挙げられる。 As shown in these figures, the infrared / ultraviolet emission suppression mechanism in this embodiment reflects or reflects infrared or ultraviolet rays generated from a flying object using a heat-resistant fiber cloth 29 instead of the infrared / ultraviolet emission inhibitor 16. It absorbs and attenuates, and includes a cross storage portion 30 and a cross unfolding portion 31. As a specific example of the heat resistant fiber cloth 29. Examples include those in which heat-resistant rubber is processed on a sheet of woven reinforcing fibers such as aramid fibers (which can withstand temperatures of 2000 ° C. to 3000 ° C. by spraying or pasting the fibers). .

クロス格納部30は、噴射ノズル15の外周部に沿って環状に形成され、耐熱性ファイバークロス29を格納する容器である。クロス展開部31は、クロス格納部30に格納された耐熱性ファイバークロス29を燃焼ガスの噴射領域の外周領域に向けて押し出すことで展開し、燃焼ガスの噴射領域の外周部を耐熱性ファイバークロス29で被覆する。本実施形態では、発射筒方式を使用し、発射筒であるクロス格納部30の内側に耐熱性ファイバークロス29を折り畳んで格納しておき、クロス展開部31が発射時に押し出すことで蛇腹が展開するように構成されている。尚、耐熱性ファイバークロス29がないときに比べて、空気抵抗は大きくなると考えられるが、クロスを展開したときの特性に合わせて飛翔体を制御することで大きな影響は抑えられる。   The cloth storage unit 30 is a container that is formed in an annular shape along the outer periphery of the injection nozzle 15 and stores the heat-resistant fiber cloth 29. The cloth unfolding section 31 unfolds the heat resistant fiber cloth 29 stored in the cloth storing section 30 by pushing it toward the outer peripheral area of the combustion gas injection region, and the outer periphery of the combustion gas injection area is expanded to the heat resistant fiber cloth. 29. In the present embodiment, a firing tube system is used, and the heat-resistant fiber cloth 29 is folded and stored inside the cloth storage portion 30 that is a firing tube, and the bellows is developed by pushing out the cloth unfolding portion 31 at the time of firing. It is configured as follows. In addition, although it is thought that air resistance becomes large compared with the case where there is no heat-resistant fiber cloth 29, a big influence is suppressed by controlling a flying body according to the characteristic when a cloth is developed.

また、図18は、図15に示す飛翔体の飛翔時における外観図である。同図に示されるように、耐熱性ファイバークロス29には所望の数のスリット32が形成されており、燃焼ガスの膨張による圧力の減少にともない、耐熱性ファイバークロス29の内圧と大気圧との圧力差を調整するように構成されている。これは、噴射ノズル15の設計においては、燃焼ガスが常に最適膨張〜不足膨張(ノズル出口でのガス圧が大気と同じか高い状態)となるように設計する必要があるためである。過膨張(ノズル出口の圧力が大気圧以下となり、最悪の場合ノズル内面から燃焼ガス流が剥離する状態)となった場合には、ノズル内面から衝撃波が発生したり、燃焼ガスが耐熱性ファイバークロス29の内部で不定の動きをしたりするため、ばたつき等が発生し、飛翔体の運動に悪影響を与えるからである。したがって、噴射ノズル15の噴射口近傍の圧力は大気圧以上とする。   FIG. 18 is an external view of the flying object shown in FIG. 15 at the time of flight. As shown in the figure, a desired number of slits 32 are formed in the heat resistant fiber cloth 29, and the internal pressure and the atmospheric pressure of the heat resistant fiber cloth 29 are reduced as the pressure decreases due to the expansion of the combustion gas. It is configured to adjust the pressure difference. This is because the injection nozzle 15 needs to be designed so that the combustion gas is always in the optimum expansion to the underexpansion (the gas pressure at the nozzle outlet is the same as or higher than the atmosphere). In the event of overexpansion (in the worst case, the combustion gas flow is separated from the nozzle inner surface), a shock wave is generated from the nozzle inner surface, or the combustion gas is heat resistant fiber cloth. This is because an indefinite movement is caused inside 29, causing flapping and the like, which adversely affects the movement of the flying object. Therefore, the pressure in the vicinity of the injection port of the injection nozzle 15 is set to atmospheric pressure or higher.

更に、燃焼中は、燃焼ガスによって内部から圧力を受けるので、耐熱性ファイバークロス29は膨らんでいるが、燃焼終了時間にあわせ、制御装置(図示省略する)からの指令に基づいてクロス展開部31で展開された耐熱性ファイバークロス29を機体から切り離す機能を有しており、後の飛翔動作に影響を及ぼさないものとする。   Further, during combustion, since the pressure is received from the inside by the combustion gas, the heat-resistant fiber cloth 29 swells, but the cloth development part 31 is based on a command from a control device (not shown) according to the combustion end time. It has a function of separating the heat-resistant fiber cloth 29 developed in step 1 from the airframe and does not affect the subsequent flight operation.

切り離し方法としては、種々の方法が考えられる。例えば、以下の図19に示すように、飛翔体に所定の運動をさせる(例えば、左右に首を振るような運動をさせるとか、ロール回転させる等)ことで切り離す機械的方法が挙げられる。ここでは、機体にある溝を形状しておき、飛翔体の運動によってその溝を耐熱性ファイバークロス29の接合部のピンが発射時の位置(図19(a))からロールGの作用によって順次移動し(図19(b)・(c))、複数回の運動の繰り返しによって最終的には溝から耐熱性ファイバークロス29の接合部のピンが抜け落ちる(図19(d))構造例が示されている。本実施形態では、この溝はクロス展開部31に形成する。   Various methods can be considered as the separation method. For example, as shown in FIG. 19 below, there is a mechanical method in which the flying object is separated by causing the flying object to perform a predetermined motion (for example, a motion such as swinging the neck to the left or right, or rotating the roll). Here, the groove in the airframe is formed, and the groove is sequentially formed by the action of the roll G from the position at the time of launch of the joint of the heat-resistant fiber cloth 29 (FIG. 19A) by the movement of the flying object. It moves (FIGS. 19B and 19C), and the pin of the joint portion of the heat-resistant fiber cloth 29 is finally dropped from the groove by repeating a plurality of movements (FIG. 19D). Has been. In this embodiment, this groove is formed in the cross development part 31.

尚、耐熱性ファイバークロス29の切り離し方法として他の方法を用いてもよい。例えば、電気的方法としては、燃焼時間に合わせてソレノイド等でフックを動かして切り離したり、クロス接合部に磁石を施工しておき、電磁的に切り離したりする方法もある。機械的方法についても、燃焼が終了した際に空気抵抗によって機体が減速することを利用して、減速加速度により作動するバネ等で切り離したり、爆発ボルト等によって強制的にクロス接合部を破壊して切り離したりする方法も考えられる。   Note that other methods may be used as a method of separating the heat resistant fiber cloth 29. For example, as an electrical method, there is a method in which a hook is moved with a solenoid or the like in accordance with a combustion time and separated, or a magnet is applied to a cross joint portion and electromagnetically separated. As for the mechanical method, using the fact that the aircraft decelerates due to air resistance when combustion is completed, it can be separated by a spring that operates by deceleration acceleration, or the cross joint can be forcibly destroyed by an explosion bolt or the like. It is possible to separate them.

このように、本実施形態によれば、赤外線・紫外線放出抑制剤16を飛散させる代わりに耐熱性ファイバークロス29を展開させる構成のため、上記各実施形態に比べて確実に燃焼ガスから放出される赤外線および紫外線を吸収あるいは反射して減衰させ、赤外線検知器および紫外線検知器による飛翔体の検知を行いにくくできる効果を奏する。   As described above, according to the present embodiment, the heat-resistant fiber cloth 29 is deployed instead of scattering the infrared / ultraviolet emission inhibitor 16, so that it is reliably released from the combustion gas as compared with the above embodiments. The infrared ray and ultraviolet ray are absorbed or reflected and attenuated to produce an effect that makes it difficult to detect the flying object by the infrared ray detector and the ultraviolet ray detector.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…燃焼室
12…断熱部材
13…推進薬
14…点火装置
15…噴射ノズル
16…赤外線・紫外線放出抑制剤
20…赤外線・紫外線放出抑制剤格納部
21…高圧ガスボンベ
22…ガス管
23…抑制剤放出口
24…燃焼圧力誘導管
25…ピストン
26…押しバネ
27…振動装置
28…抑制剤放出メッシュ
29…耐熱性ファイバークロス
30…クロス格納部
31…クロス展開部
32…スリット
DESCRIPTION OF SYMBOLS 11 ... Combustion chamber 12 ... Thermal insulation member 13 ... Propellant 14 ... Ignition device 15 ... Injection nozzle 16 ... Infrared ray / ultraviolet emission inhibitor 20 ... Infrared ray / ultraviolet emission inhibitor storage part 21 ... High pressure gas cylinder 22 ... Gas pipe 23 ... Inhibitor Release port 24 ... Combustion pressure induction tube 25 ... Piston 26 ... Push spring 27 ... Vibration device 28 ... Inhibitor release mesh 29 ... Heat-resistant fiber cloth 30 ... Cross storage part 31 ... Cross unfolding part 32 ... Slit

Claims (8)

内部に推進薬を格納し、この推進薬を燃焼する燃焼室と、
この燃焼室の連結して機体の後方部に設けられ、前記推進薬の燃焼によって発生した燃焼ガスを後方へ噴射する噴射ノズルと、
前記燃焼室または前記噴射ノズルに接続して設けられ、前記燃焼ガスが発する赤外線および紫外線を吸収する薬剤または部材を前記燃焼ガスの噴射領域の外周領域に向けて放出し、前記噴射領域の外周部を被覆する赤外線・紫外線放出抑制機構と、
を備えることを特徴とする飛翔体。
A combustion chamber for storing the propellant inside and burning the propellant;
An injection nozzle that is connected to this combustion chamber and is provided in the rear part of the fuselage, and injects the combustion gas generated by the combustion of the propellant backward,
A chemical agent or member that is provided in connection with the combustion chamber or the injection nozzle and absorbs infrared rays and ultraviolet rays emitted from the combustion gas is discharged toward the outer peripheral region of the injection region of the combustion gas, and the outer peripheral portion of the injection region Infrared / ultraviolet emission suppression mechanism that coats
A flying object characterized by comprising:
前記赤外線・紫外線放出抑制機構は、前記噴射ノズルの噴射口の内周面に沿って固着して形成され、前記燃焼ガスの噴射圧力によって所定時間に亘って飛散する赤外線・紫外線放出抑制剤であることを特徴とする請求項1記載の飛翔体。   The infrared / ultraviolet emission suppression mechanism is an infrared / ultraviolet emission inhibitor that is fixedly formed along the inner peripheral surface of the injection nozzle of the injection nozzle and scatters over a predetermined time by the injection pressure of the combustion gas. The flying object according to claim 1. 前記赤外線・紫外線放出抑制機構は、前記燃焼室または前記噴射ノズルの外周部に固着して形成され、機体の飛翔時の空気抵抗力によって所定時間に亘って飛散する赤外線・紫外線放出抑制剤であることを特徴とする請求項1記載の飛翔体。   The infrared / ultraviolet emission suppression mechanism is an infrared / ultraviolet emission inhibitor that is formed to be fixed to the outer peripheral portion of the combustion chamber or the injection nozzle and scatters over a predetermined time due to air resistance during the flight of the aircraft. The flying object according to claim 1. 前記赤外線・紫外線放出抑制機構は、
前記噴射ノズルの外周部に沿って環状に形成され、粉末加工された赤外線・紫外線放出抑制剤を格納する赤外線・紫外線放出抑制剤格納部と、
この赤外線・紫外線放出抑制剤格納部に連結して設けられ、前記赤外線・紫外線放出抑制剤格納部に向けて放出する高圧ガスを格納する高圧ガスボンベと、
前記赤外線・紫外線放出抑制剤格納部に連結して、前記噴射ノズルの噴射口の外周部に所望の数設けられ、前記高圧ガスの放出に伴って前記赤外線・紫外線放出抑制剤格納部から放出する前記赤外線・紫外線放出抑制剤を前記燃焼ガスの噴射領域の外周領域に向けて放出する抑制剤放出口と、
を備えることを特徴とする請求項1記載の飛翔体。
The infrared / ultraviolet emission suppression mechanism is
An infrared / ultraviolet emission inhibitor storage unit that stores an infrared / ultraviolet emission inhibitor that is formed in a ring shape along the outer periphery of the injection nozzle and that is processed into powder; and
A high-pressure gas cylinder that is connected to the infrared / ultraviolet emission inhibitor storage unit and stores a high-pressure gas that is released toward the infrared / ultraviolet emission inhibitor storage unit;
It is connected to the infrared / ultraviolet emission inhibitor storage part, provided in a desired number on the outer peripheral part of the injection nozzle, and is released from the infrared / ultraviolet emission inhibitor storage part as the high-pressure gas is released. An inhibitor discharge port for releasing the infrared / ultraviolet emission inhibitor toward the outer peripheral region of the injection region of the combustion gas;
The flying object according to claim 1, comprising:
前記赤外線・紫外線放出抑制機構は、
前記噴射ノズルの外周部に沿って環状に形成され、粉末加工された赤外線・紫外線放出抑制剤を格納する赤外線・紫外線放出抑制剤格納部と、
この赤外線・紫外線放出抑制剤格納部および前記燃焼室に連結して設けられ、前記赤外線・紫外線放出抑制剤格納部に向けて前記燃焼ガスの燃焼圧力を誘導する燃焼圧力誘導管と、
前記赤外線・紫外線放出抑制剤格納部内の前記燃焼圧力誘導管側に設けられ、前記燃焼圧力の導入に伴って前記赤外線・紫外線放出抑制剤に圧力を加えるピストンと、
前記赤外線・紫外線放出抑制剤格納部に連結して、前記噴射ノズルの噴射口の外周部に所望の数設けられ、前記ピストンからの圧力に伴って前記赤外線・紫外線放出抑制剤格納部から前記赤外線・紫外線放出抑制剤を前記燃焼ガスの噴射領域の外周領域に向けて放出する抑制剤放出口と、
を備えることを特徴とする請求項1記載の飛翔体。
The infrared / ultraviolet emission suppression mechanism is
An infrared / ultraviolet emission inhibitor storage unit that stores an infrared / ultraviolet emission inhibitor that is formed in a ring shape along the outer periphery of the injection nozzle and that is processed into powder; and
A combustion pressure induction tube that is connected to the infrared / ultraviolet emission inhibitor storage unit and the combustion chamber, and induces the combustion pressure of the combustion gas toward the infrared / ultraviolet emission inhibitor storage unit;
A piston that is provided on the combustion pressure induction tube side in the infrared / ultraviolet emission inhibitor storage unit and applies pressure to the infrared / ultraviolet emission inhibitor with the introduction of the combustion pressure;
Connected to the infrared / ultraviolet emission suppressing agent storage part, a desired number of outer peripheral parts of the injection nozzle of the injection nozzle are provided, and the infrared rays from the infrared / ultraviolet emission suppression inhibitor storage part are accompanied by pressure from the piston. An inhibitor discharge port for releasing the ultraviolet emission inhibitor toward the outer peripheral region of the combustion gas injection region;
The flying object according to claim 1, comprising:
前記赤外線・紫外線放出抑制機構は、
前記噴射ノズルの外周部に沿って環状に形成され、赤外線・紫外線放出抑制剤を格納する赤外線・紫外線放出抑制剤格納部と、
前記赤外線・紫外線放出抑制剤格納部に隣接して前記燃焼室側に設けられ、前記赤外線・紫外線放出抑制剤格納部内の前記赤外線・紫外線放出抑制剤を前記噴射ノズルの噴射方向へ押し付ける押しバネと、
この押しバネに隣接して設けられ、所望のタイミングで前記押しバネに振動を加える振動装置と、
前記赤外線・紫外線放出抑制剤格納部の一端に前記噴射ノズルの噴射口の外周部に沿って網目状に形成されたヤスリ部材であって、前記振動装置からの振動と前記押しバネからの押圧力とに基づいて当接された前記赤外線・紫外線放出抑制剤を削り取り、前記燃焼ガスの噴射領域の外周領域に向けて放出する抑制剤放出メッシュと、
を備えることを特徴とする請求項1記載の飛翔体。
The infrared / ultraviolet emission suppression mechanism is
An infrared / ultraviolet emission inhibitor storage part that is formed annularly along the outer periphery of the injection nozzle and stores an infrared / ultraviolet emission inhibitor,
A pressing spring provided on the combustion chamber side adjacent to the infrared / ultraviolet emission inhibitor storage unit and pressing the infrared / ultraviolet emission inhibitor in the infrared / ultraviolet emission inhibitor storage unit in the injection direction of the injection nozzle; ,
A vibration device that is provided adjacent to the push spring and applies vibration to the push spring at a desired timing;
A file member formed in a mesh shape along the outer periphery of the injection port of the injection nozzle at one end of the infrared / ultraviolet emission inhibitor storage unit, the vibration from the vibration device and the pressing force from the pressing spring Scraping the infrared / ultraviolet emission inhibitor that has been abutted on the basis of, and an inhibitor release mesh that releases toward the outer peripheral region of the injection region of the combustion gas,
The flying object according to claim 1, comprising:
前記噴射ノズルの外周部に沿って環状に形成され、耐熱性ファイバークロスを格納するクロス格納部と、
このクロス格納部に格納された前記耐熱性ファイバークロスを前記燃焼ガスの噴射領域の外周領域に向けて展開し、前記噴射領域の外周部を被覆するクロス展開部と、
を備えることを特徴とする請求項1記載の飛翔体。
A cloth storage part that is formed in an annular shape along the outer periphery of the injection nozzle and stores a heat-resistant fiber cloth,
A cross deploying portion that unfolds the heat-resistant fiber cloth stored in the cloth storing portion toward an outer peripheral region of the injection region of the combustion gas, and covers an outer peripheral portion of the injection region;
The flying object according to claim 1, comprising:
前記耐熱性ファイバークロスには、前記燃焼ガスの放出時における前記噴射ノズルの噴射口近傍の気圧を大気圧以上の値に調整する所望の数のスリットが形成されているをことを特徴とする請求項7記載の飛翔体。   The heat-resistant fiber cloth is formed with a desired number of slits for adjusting the pressure in the vicinity of the injection port of the injection nozzle when the combustion gas is released to a value equal to or higher than the atmospheric pressure. Item 7. A flying object according to item 7.
JP2011128148A 2011-06-08 2011-06-08 Flying body Abandoned JP2012255581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128148A JP2012255581A (en) 2011-06-08 2011-06-08 Flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128148A JP2012255581A (en) 2011-06-08 2011-06-08 Flying body

Publications (1)

Publication Number Publication Date
JP2012255581A true JP2012255581A (en) 2012-12-27

Family

ID=47527297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128148A Abandoned JP2012255581A (en) 2011-06-08 2011-06-08 Flying body

Country Status (1)

Country Link
JP (1) JP2012255581A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991797A (en) * 1989-01-17 1991-02-12 Northrop Corporation Infrared signature reduction of aerodynamic surfaces
US6373058B1 (en) * 1998-08-15 2002-04-16 Mckinney Richard A. Method of reducing infrared viewability of objects
US20030159426A1 (en) * 2002-02-26 2003-08-28 Vickery Charles A. Rocket exhaust plume signature tailoring
US6698330B1 (en) * 1987-07-01 2004-03-02 Northrop Grumman Corporation Infrared friend or foe identification system
US20070033946A1 (en) * 2005-08-09 2007-02-15 Greene Leonard M Helicopter defense system and method
US7624666B1 (en) * 2003-07-08 2009-12-01 Raytheon Company Obscuration method for reducing the infrared signature of an object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698330B1 (en) * 1987-07-01 2004-03-02 Northrop Grumman Corporation Infrared friend or foe identification system
US4991797A (en) * 1989-01-17 1991-02-12 Northrop Corporation Infrared signature reduction of aerodynamic surfaces
US6373058B1 (en) * 1998-08-15 2002-04-16 Mckinney Richard A. Method of reducing infrared viewability of objects
US20030159426A1 (en) * 2002-02-26 2003-08-28 Vickery Charles A. Rocket exhaust plume signature tailoring
US7624666B1 (en) * 2003-07-08 2009-12-01 Raytheon Company Obscuration method for reducing the infrared signature of an object
US20070033946A1 (en) * 2005-08-09 2007-02-15 Greene Leonard M Helicopter defense system and method

Similar Documents

Publication Publication Date Title
CN101778761B (en) Nacelle equipped with at least one excess pressure flap
US8387507B2 (en) Weapon interceptor projectile with deployable frame and net
US10928146B2 (en) Apparatus and method for accelerating an object via an external free jet
US20140069667A1 (en) Device for extinguishing a fire
US9371801B2 (en) Ignition device for two-pulse rocket motor with thermal barrier membrane
JP2017061294A (en) Inlet flow restrictor
EP2382126A1 (en) Dispenser unit for countermeasures
KR20220050957A (en) Fire protection and suppression devices, materials, systems and methods of use thereof
JP2012255581A (en) Flying body
RU2401413C1 (en) Method for separation of accelerating engine of coned-bore rocket and rocket for its realisation
JP2013040744A (en) Missile
US3138921A (en) Variable area nozzle
GB2550669A (en) An aircraft including a wing with improved acoustic treatment
CN207946020U (en) A kind of assembly power self-eject launch device
RU2313686C1 (en) Rocket engine expandable nozzle
JP6310293B2 (en) Combustor, jet engine, flying object, and operation method of jet engine
US2928319A (en) Cartridge actuated catapult with split inner tube
CN107957209A (en) A kind of assembly power self-eject launch device
GB2559044A (en) A vertical take-off vehicle
CN207809795U (en) It is a kind of to penetrate umbrella rocket means for the quick parachute-opening of parachute
CN113606057A (en) Axial sliding type partition plate suitable for multi-pulse solid rocket engine
JP2015168314A (en) Missile
US4022020A (en) Debris catcher for thrust termination ports
RU2540182C2 (en) Device for braking of detached rocket engine
CN108423199A (en) A kind of gunpowder makees movable barrel type interstage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20141219