JP2012254433A - Method for treating incineration ash containing fluorine and heavy metals - Google Patents

Method for treating incineration ash containing fluorine and heavy metals Download PDF

Info

Publication number
JP2012254433A
JP2012254433A JP2011130252A JP2011130252A JP2012254433A JP 2012254433 A JP2012254433 A JP 2012254433A JP 2011130252 A JP2011130252 A JP 2011130252A JP 2011130252 A JP2011130252 A JP 2011130252A JP 2012254433 A JP2012254433 A JP 2012254433A
Authority
JP
Japan
Prior art keywords
fluorine
cement
combustion ash
heavy metals
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011130252A
Other languages
Japanese (ja)
Inventor
Yoshiori Inoue
佳織 井上
Takaaki Nishimura
高明 西村
Takashi Okumura
貴司 奥村
Yukio Tani
幸雄 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2011130252A priority Critical patent/JP2012254433A/en
Publication of JP2012254433A publication Critical patent/JP2012254433A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating incineration ash containing fluorine and heavy metals, in which the incineration ash is treated so that the fluorine and the heavy metals contained in the incineration ash, that becomes a raw material of civil engineering materials such as a subbase material and a backfilling material to be utilized in a soil field, can be made below values set in the environmental quality standards for soil and so that the treated incineration ash can be used suitably even in such a winter season that cement is hardly hardened particularly.SOLUTION: In the case that the incineration ash contains at least one component of fluorine of >0.8 mg/L, hexavalent chromium of >0.05 mg/L and lead of >0.01 mg/L when subjected to the elution test method based on the 2003 announcement No.18 of the Environment Agency, clay soil, cement, a cold protecting agent and water are added to the incineration ash and an obtained mixture is kneaded and cured. As a result, the fluorine and the heavy metals can be insolubilized so that the amounts of the fluorine and the heavy metals to be eluted can become below the standard values even when the curing temperature is ≤10°C.

Description

本発明は、フッ素および重金属類含有燃焼灰の処理方法に関する。さらに詳しくは、環境省で2003年2月に施行された土壌汚染対策法での規制対象物質であるフッ素および重金属類の溶出規制値に適合するため、これらを含む燃焼灰に、産業廃棄物として有効利用されていない粘土質土壌、セメント、塩化カルシウム系耐寒剤および水を加えて混練して養生することにより、その燃焼灰中に含まれるフッ素の溶出量を0.8mg/L以下、六価クロムの溶出量を0.05mg/L以下、鉛溶出量を0.01mg/L以下にする燃焼灰の処理方法に関する。 The present invention relates to a method for treating fluorine and heavy metal-containing combustion ash. More specifically, in order to comply with the elution regulation values for fluorine and heavy metals, which are regulated substances under the Soil Contamination Countermeasures Law enacted in February 2003 by the Ministry of the Environment, the combustion ash containing them is treated as industrial waste. Clay soil not effectively used, cement, calcium chloride-based cryogen and water are kneaded and cured, so that the elution amount of fluorine contained in the combustion ash is 0.8 mg / L or less, hexavalent The present invention relates to a combustion ash treatment method in which the elution amount of chromium is 0.05 mg / L or less and the lead elution amount is 0.01 mg / L or less.

地球温暖化防止策の一環として、非化石燃料である廃タイヤや木屑、RPFといった新エネルギーを燃料としたボイラの稼動が進んでいる。ただし、新エネルギーボイラから排出される燃焼灰の量は、化石燃料ボイラの場合に比べて非常に多く、一部セメント原料として利用される場合もあるが、燃料由来の塩素分や有害物質を多く含有する場合は、セメント原料としての引き取りも難しく、埋立て処分されている場合が多く、有効活用するために無害化処理方法が求められており、多くの処理方法が開示されている。
中でもセメントを用いる処理方法が多く開示されているが、寒冷地をはじめとして温度が低い状態ではセメントの固化が進まず、養生の効果が十分でなく、フッ素やその他重金属の溶出抑制が不十分であることがある。
As part of measures to prevent global warming, boilers that use non-fossil fuels, such as waste tires, wood chips, and RPF, have been operating. However, the amount of combustion ash emitted from new energy boilers is much larger than that of fossil fuel boilers, and some of them are used as raw materials for cement, but they contain a large amount of chlorine and harmful substances derived from fuel. When it is contained, it is difficult to take it up as a cement raw material, and in many cases it is disposed of in landfills, and a detoxification treatment method is required for effective use, and many treatment methods are disclosed.
Among them, many treatment methods using cement have been disclosed, but the solidification of the cement does not proceed at low temperatures including cold regions, the curing effect is not sufficient, and the elution suppression of fluorine and other heavy metals is insufficient. There may be.

セメントを用いる技術として、例えば、焼却灰や溶融飛灰に製鋼スラグ微粉末、フライアッシュ、を水とともに加えて混合し、押し出し成型機にて成型する方法が開示されている(特許文献1)。しかしこの方法は、溶出を抑制するために混合物を成型した後、養生に6週間以上かける。または養生期間短縮のために蒸気養生やオートクレーブ養生を必要とし、取り扱う作業者の安全面の確保もさることながらコストがかかり過ぎ、加えて使用する製鋼スラグやフライアッシュの粒度に制限を受ける等々、溶出抑制が如何に困難であるかの一端を示している。 As a technique using cement, for example, a method is disclosed in which incinerated ash or molten fly ash is mixed with steel slag fine powder and fly ash together with water, and then mixed with an extrusion molding machine (Patent Document 1). However, this method takes 6 weeks or more after the mixture is molded in order to suppress elution. Or it requires steam curing or autoclave curing to shorten the curing period, it is too costly while ensuring the safety of the handling operator, in addition, it is limited by the grain size of steelmaking slag and fly ash used, etc. This shows one end of how difficult elution suppression is.

土、炭および焼却灰などからの重金属の溶出を抑える方法として、水砕スラグ、二水石膏に消石灰またはセメントを混合した固化主剤と塩化カリウム、塩化マグネシウム、塩化ナトリウム、塩化カルシウム、塩化アンモニウム、炭酸カリウム、等々の10種類から5種以上を選択し、且つクエン酸等3種類から1種以上を選択してなる固化助剤を配合して土質固化剤とし、さらに得られた土質固化剤と土類、炭類、多孔質体、等々の物質を混合固化する技術が開示(特許文献2)されているが、非常に数多くの薬品が必要であり処理の手間やコストもかかることに加え、結果的に実施例で示された鉛溶出量は0.03mg/Lと土壌環境基準値を超過しており多種多様な薬品を加えただけでは焼却灰中のフッ素および重金属類の十分な溶出抑制は期待できない。 As a method to suppress the elution of heavy metals from soil, charcoal and incinerated ash, etc., solidified main agent mixed with granulated slag, dihydrate gypsum and slaked lime or cement and potassium chloride, magnesium chloride, sodium chloride, calcium chloride, ammonium chloride, carbonate Select 5 or more types from 10 types such as potassium, etc. and mix 1 or more types from 3 types such as citric acid to make a soil solidifying agent. Furthermore, the obtained soil solidifying agent and soil (Patent Document 2) discloses a technique for mixing and solidifying substances such as coals, charcoal, and porous materials (Patent Document 2). In particular, the lead elution amount shown in the examples is 0.03 mg / L, which exceeds the soil environmental standard value, and by adding various chemicals, sufficient elution suppression of fluorine and heavy metals in incineration ash is sufficient. It can not be expected.

焼却灰の無害化固化処理方法として、焼却灰100質量部と砂10〜30質量部の混合物100質量部に対し、セメント主体の固化剤(セメント、リグニンスルホン酸ソーダ、トリポリリン酸ソーダ、ジルコニウム、ソーダ灰/塩化カルシウム、酸化第一鉄の混合物)を15〜30質量部及び合成エマルジョン樹脂溶液を、焼却灰、砂、セメント主体助剤の混合物量に対し、7〜15質量部混合し、成型して養生する方法が特許化されている(特許文献3)。記載の固化剤にはセメント以外に6種類と多くの薬品を組み合わせ、製造工程としては複雑化している。ただし、実施例と比較例の効果比較において文献本文にも記載されているとおり、重金属の溶出有無は合成エマルジョンの有無のみでの差異だけであることから、溶出抑制物質は単に合成エマルジョンだけであったことが容易に読み取れる。
また、いずれの文献においても常温、または加温した条件にて溶出抑制の処方を行われている。
As a method for detoxifying and solidifying incinerated ash, a cement-based solidifying agent (cement, sodium lignin sulfonate, sodium tripolyphosphate, zirconium, soda is added to 100 parts by mass of a mixture of 100 parts by mass of incinerated ash and 10 to 30 parts by mass of sand. 15 to 30 parts by mass of a mixture of ash / calcium chloride and ferrous oxide) and 7 to 15 parts by mass of the synthetic emulsion resin solution with respect to the mixture of incineration ash, sand and cement-based auxiliary agent, and molded. The method of curing is patented (Patent Document 3). The described solidifying agent is combined with six kinds of chemicals other than cement, and the manufacturing process is complicated. However, as described in the text of the literature in comparison of the effects of the examples and comparative examples, the presence or absence of elution of heavy metals is only the difference depending on the presence or absence of the synthetic emulsion, so the elution inhibitor is only the synthetic emulsion. Can be easily read.
Moreover, in any literature, the prescription of elution suppression is performed on normal temperature or the conditions heated.

このように燃焼灰中のフッ素および重金属類を土壌環境基準値以下に溶出抑制できる技術が容易でないことの一端が伺われるが、さらにセメントの使用が制限される冬期養生条件下での溶出抑制技術は皆無であった。
特開1999−165144号公報 特開2005−272510号公報 特許第3077644号公報
In this way, it is said that technology that can suppress elution of fluorine and heavy metals in combustion ash below the soil environmental standard value is not easy, but further elution suppression technology under winter curing conditions where the use of cement is restricted There was nothing.
JP 1999-165144 A JP 2005-272510 A Japanese Patent No. 3077644

本発明が解決しようとする課題は、路盤材や埋戻し材といった土壌分野へ利用される土木資材の原料となる燃焼灰からのフッ素および重金属類を土壌環境基準値以下にすることであり、特にセメントの固化が進みにくい冬期においても、好適に使用できる処理方法である。 The problem to be solved by the present invention is to make fluorine and heavy metals from combustion ash used as a raw material for civil engineering materials used in the field of soil such as roadbed materials and backfill materials to be below the soil environmental standard value. This is a treatment method that can be suitably used even in winter when cement solidification is difficult to proceed.

上記の課題を解決するためには、燃焼灰とシルト等の粘土質土壌、セメントおよび耐寒剤を加えて、燃焼灰からのフッ素および重金属の溶出抑制を達成する方法であり、以下の発明を包含する。
(1)平成15年環境庁告示18号に基づく溶出試験方法で溶出させた場合に溶出量がフッ素0.8mg/Lおよび重金属類として6価クロム0.05mg/L、鉛0.01mg/Lの少なくとも1項目以上が超過する成分を含有する燃焼灰に、粘土質土壌、セメント、耐寒剤および水を加えて混練して養生することにより、溶出量が基準値以下となるように不溶化するフッ素および重金属類含有燃焼灰の処理方法。
(2)前記養生条件が10℃以下であることを特徴とする(1)記載のフッ素および重金属類含有燃焼灰の処理方法。
(3)記粘土質土壌が0.004〜0.06ミリメートルからなるシルト主体である(1)又は(2)記載のフッ素および重金属類含有燃焼灰の処理方法。
(4)前記耐寒剤が燃焼灰とセメントの混合物固形分100質量部に対し、固形分換算で1〜10質量部添加する(1)〜(3)のいずれか1項に記載のフッ素および重金属類含有燃焼灰の処理方法。
(5)前記耐寒剤が塩化カルシウム系耐寒剤であり、前記燃焼灰とセメントの混合物固形分100質量部に対し、塩化カルシウム系耐寒剤中の塩化カルシウム分1.0〜5質量部を混合する(1)〜(4)のいずれか1項に記載のフッ素および重金属類含有燃焼灰の処理方法。
In order to solve the above-mentioned problems, a method for achieving suppression of elution of fluorine and heavy metals from combustion ash by adding clayey soil such as combustion ash and silt, cement and a cryogen, including the following inventions To do.
(1) Elution amount is 0.8mg / L of fluorine and 0.05mg / L of hexavalent chromium as heavy metals and 0.01mg / L of lead when dissolved by the dissolution test method based on Notification No. 18 of 2003 Environment Agency Fluorine that is insolubilized so that the amount of elution becomes less than the standard value by curing and curing clay ash, cement, cryogen and water to the combustion ash containing components that exceed at least one of the above And method for treating heavy metal-containing combustion ash.
(2) The treatment method for fluorine and heavy metal-containing combustion ash according to (1), wherein the curing condition is 10 ° C. or less.
(3) The method for treating fluorine and heavy metal-containing combustion ash according to (1) or (2), wherein the clayey soil is a silt main body composed of 0.004 to 0.06 millimeters.
(4) The fluorine and heavy metal according to any one of (1) to (3), wherein the cryogen is added in an amount of 1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of the solid content of the mixture of combustion ash and cement. Of processing ash containing combustion ash.
(5) The cryogen is a calcium chloride cryogen, and 1.0 to 5 parts by mass of calcium chloride in the calcium chloride cryogen is mixed with 100 parts by mass of the solid content of the combustion ash and cement. (1) The processing method of fluorine and heavy metal containing combustion ash of any one of (4).

本発明の燃焼灰の処理方法は、フッ素および重金属類の溶出量を土壌環境基準値以下に溶出抑制することが可能で、特に気温の低い冬期においても溶出抑制が可能な方法である。 The combustion ash treatment method of the present invention is a method that can suppress the elution amount of fluorine and heavy metals below the soil environmental standard value, and can suppress elution even in winter when the temperature is low.

以下、本発明について詳細を説明する。
本発明者らは、フッ素及び重金属類含有燃焼灰を無害化し有効活用するために、該燃焼灰に粘土質土壌およびセメント、更に種々のセメント混和剤について鋭意研究を進めた結果、耐寒剤を添加することで、冬期養生条件下においてもフッ素および重金属類を同時に溶出抑制させる効果があることを見出した。
本発明で使用される燃焼灰としては、石炭などの固形燃料、木屑・樹皮などのバイオマス燃料、RPF、RDF、廃タイヤなどの廃棄物燃料、廃紙・黒液・製紙スラッジ活性汚泥などの廃棄物系バイオマスを燃焼した際に発生する燃焼灰であり、詳しくはこれらを燃焼した際に排出されるガスをサイクロン電気集塵器(EP)やバグフィルター等で捕獲した飛灰(それぞれEP灰とバグ灰と略す)等であり、粒度は特に範囲を選ばない。
燃焼灰は、1種または複数から選ばれた燃料または廃棄物を燃焼させて得られた燃焼灰であればよく、複数の燃焼灰を混合しても原料の燃焼灰として用いることもできる。
Hereinafter, the present invention will be described in detail.
In order to detoxify and effectively use fluorine and heavy metal-containing combustion ash, the present inventors conducted extensive research on clay soil and cement, and various cement admixtures. By doing so, it was found that there is an effect of suppressing elution of fluorine and heavy metals at the same time even under winter curing conditions.
As combustion ash used in the present invention, solid fuel such as coal, biomass fuel such as wood chips and bark, waste fuel such as RPF, RDF, and waste tires, waste paper, black liquor, paper sludge activated sludge, etc. Combustion ash generated when combusting physical biomass, and more specifically, fly ash captured by a cyclone electrostatic precipitator (EP), bag filter, etc. The agglomeration is not particularly limited.
The combustion ash may be combustion ash obtained by burning fuel or waste selected from one or more kinds, and even if a plurality of combustion ash is mixed, it can also be used as a raw material combustion ash.

本発明で使用される粘土質土壌としてはシルトを主体としたものを使用する。シルトとは砂と粘土の中間の大きさのもので、一般に微砂とも呼ばれている。地質学・岩石学では1/16〜1/256ミリメートル(約0.004〜0.06ミリメートル)、土壌学では0.002〜0.02ミリメートルの粒子をさし、1/256ミリメートルより小さなものを泥土、1/16ミリメートルより大きなものを砂として分類されている。本発明においては1/16〜1/256ミリメートルの大きさのものをシルトとして有効利用するものである。ただ、シルトは発生する産業においても厳密に分画している事例は多くなく、砂分を回収した後に沈殿池にて沈降したものを廃棄処理しているのが実情である。こうした事情も鑑み、シルト分以外の粒径のものが多少含まれても本発明においては好適に使用できるものである。 As the clay soil used in the present invention, a soil mainly composed of silt is used. Silt is an intermediate size between sand and clay and is generally called fine sand. In geology and petrology, 1/16 to 1/256 mm (about 0.004 to 0.06 mm), and in soil science, 0.002 to 0.02 mm, which is smaller than 1/256 mm. Is classified as mud and sand larger than 1/16 mm as sand. In the present invention, those having a size of 1/16 to 1/256 mm are effectively used as silt. However, there are not many cases in which silt is strictly fractionated even in the industry where it is generated, and the actual situation is that the sediment settled in the sedimentation basin after the sand is collected is disposed of. In view of such circumstances, even if particles having a particle size other than the silt are included, they can be suitably used in the present invention.

本発明に使用するセメントとしては、高炉セメントが挙げられるが、ポルトランドセメントに対する高炉スラグの配合によってA種、B種、C種に分類されるが、特に限定されるものではない。
本発明においてはセメントの配合が必須であるが、配合量は燃焼灰、粘土質土壌、セメントの各固形分量合計からの比率で表され、セメントは10〜60質量%の間で選択される。10質量%より小さい配合率ではセメントによる固化への寄与率が小さく、耐寒剤効果の差異が不明瞭となるので好ましくない。一方、60質量%を越えるセメントの配合率では固化への効果はあるもののコストアップにつながることから経済的に好ましくない。
Examples of the cement used in the present invention include blast furnace cement, which are classified into A type, B type, and C type according to the blending of blast furnace slag with Portland cement, but are not particularly limited.
In the present invention, blending of cement is essential, but the blending amount is expressed as a ratio from the total solid content of combustion ash, clayey soil, and cement, and the cement is selected between 10 to 60% by mass. If the blending ratio is less than 10% by mass, the contribution ratio to the solidification by the cement is small, and the difference in the cryoprotective effect becomes unclear. On the other hand, a cement content exceeding 60% by mass is not economically preferable because it has an effect on solidification but leads to an increase in cost.

本発明において、使用する耐寒剤は、セメントの水和反応を促進するものであり一般に市販されているものでよい、防凍剤とて市販されているものでもよい、形状は固液どちらでも良いが均一な撹拌、綱混練時間短縮のため液状がより好ましく、主成分に、無機質窒素化合物、塩化カルシウム、硫酸カルシウム、亜硝酸ナトリウム、亜硝酸カルシウム、硝酸カルシウム等を用いて市販されている。中でも塩化カルシウム主体の耐寒剤は塩化物イオン量が多いため、鉄を腐食する弊害が認められているが、比較的安価で取り扱いが容易であることから鉄筋を使用しない場所、例えば再生路盤材として好適に使用できる。
耐寒剤は燃焼灰とセメントの固形分の合計100質量部に対して固形分換算1〜10質量部で添加することが好ましい。1質量部未満ではセメントの水和反応の促進に寄与せず、溶出抑制効果が発現しないため好ましくない。また10質量部を超えて添加しても効果が頭打ちになり経済的に好ましくない。
燃焼灰とセメント、粘土質土壌および塩化カルシウム系耐寒剤で処理する際は、燃焼灰、セメント固形分の合計100質量部に対して、塩化カルシウム系耐寒剤中の塩化カルシウム分は1.0〜5質量部、特に好ましくは1〜3質量部加える。塩化カルシウム系耐寒剤は添加水の一部として添加し、その分を考慮して調整水は減らして添加する。
In the present invention, the cryoprotectant to be used is one that promotes the hydration reaction of cement and may be one that is generally commercially available, one that is commercially available as an antifreeze agent, and the shape may be either solid or liquid. A liquid is more preferable for uniform stirring and shortening the kneading time of the rope, and it is commercially available using an inorganic nitrogen compound, calcium chloride, calcium sulfate, sodium nitrite, calcium nitrite, calcium nitrate or the like as the main component. Among them, the calcium chloride-based cryoprotectant has a large amount of chloride ions, and has been recognized to be harmful to iron, but it is relatively inexpensive and easy to handle. It can be used suitably.
The cryoprotectant is preferably added in an amount of 1 to 10 parts by mass in terms of solids with respect to 100 parts by mass in total of solids of combustion ash and cement. If it is less than 1 part by mass, it does not contribute to the promotion of the hydration reaction of the cement and the elution suppression effect is not manifested. Moreover, even if it adds exceeding 10 mass parts, an effect will stop and it is economically unpreferable.
When treating with combustion ash and cement, clayey soil, and calcium chloride cryoprotectant, the calcium chloride content in the calcium chloride cryoprotectant is 1.0 to 100 parts by mass with respect to a total of 100 parts by mass of combustion ash and cement solids. Add 5 parts by weight, particularly preferably 1 to 3 parts by weight. Calcium chloride-based cryoprotectant is added as a part of the added water, and the adjusted water is reduced and added in consideration of that amount.

また、セメントとともに水和反応に必要な水を付与させるが、一般水道、工業用水、または工場排水等の不純物を取除く目的で別途薬品を添加した処理水も好適に使用できる。 Moreover, although water required for a hydration reaction is provided with cement, the treated water which added the chemical separately for the purpose of removing impurities, such as general water, industrial water, or factory waste water, can also be used conveniently.

添加する水の量は、極端に多い場合は水和反応に時間がかかり、強度は低くなり、極端に少ない場合は、十分な水和反応が進まず固化が困難となるなどの養生後の固化品の強度に影響を与えることが知られている。ただ、一般的に耐寒剤を添加する際の注意点として、耐寒剤が液体品の場合は含まれる水分は添加する水の一部として換算する。さらに耐寒剤の使用説明書には一般的に最大水セメント比(W/C比)は50%程度と記載されている例が多く見られるが、本発明においてはシルトを含み、且つ燃焼灰が吸水性に富むことから必ずしも前述の一般的な水セメント比とは一致しない。燃焼灰を含むことにより水の保持性能に優れ、安定した水和反応が進められることも他には類を見ない本発明の特徴の一つに挙げられ、例えば混練後の取扱い易さで水量を決めるなど、水和反応に必要な量を常識的な範囲で採用すれば良い。 If the amount of water to be added is extremely large, the hydration reaction takes time and the strength decreases, and if it is extremely small, solidification after curing such that sufficient hydration reaction does not proceed and solidification becomes difficult. It is known to affect the strength of goods. However, in general, as a precaution when adding a cryoprotectant, when the cryoprotectant is a liquid product, the contained moisture is converted as a part of the added water. Furthermore, there are many examples where the maximum water-cement ratio (W / C ratio) is generally described as about 50% in the instruction manual for the cryoprotectant, but in the present invention, silt is included and combustion ash is contained. Since it is rich in water absorption, it does not necessarily match the above-mentioned general water cement ratio. One of the unique features of the present invention is that the combustion ash is included so that the water retention performance is excellent and the stable hydration reaction proceeds.For example, the amount of water is easy to handle after kneading. The amount necessary for the hydration reaction may be adopted within a common sense range.

本発明においては、乾燥状態の燃焼灰とセメントを予め均一に分散するように混合し、ついで水分を含む粘土質土壌、塩化カルシウム系耐寒剤と必要な水分を加えて、全材料の混合および混練を行うことが好ましい。ただしこれらを別々の装置で行う必要はなく、公知の混合・混練装置を用いて混練することが好ましい。 In the present invention, dry combustion ash and cement are mixed in advance so as to be uniformly dispersed, and then clay soil containing moisture, calcium chloride-based cryogen and necessary moisture are added, and all materials are mixed and kneaded. It is preferable to carry out. However, it is not necessary to perform these in separate apparatuses, and it is preferable to knead them using a known mixing / kneading apparatus.

以下に機器の一例を挙げると日工ダッシュミキサ、ドラムミキサ、傾胴ミキサ、リボンミキサ、アイリッヒインテンシブミキサ、ペレガイアミキサ等の公知の混合攪拌装置を好適に用いることができる。また、攪拌時間については、機器により攪拌能力に特徴があるため規定はあえて行わないが、目安として1〜15分程度である。 As examples of equipment, known mixing and stirring devices such as a Nikko dash mixer, drum mixer, tilting cylinder mixer, ribbon mixer, Eirich intensive mixer, and Pelegaia mixer can be suitably used. Moreover, about stirring time, since it has the characteristics in stirring ability with an apparatus, it does not dare prescribe, but it is about 1 to 15 minutes as a standard.

本発明は混練後の養生温度が低い場合でも溶出抑制効果がある。10度以下の条件となる冬期においてもハウスや室などで加温することなく、屋外で養生を行う。10度以上の養生条件においても、耐寒剤添加によってセメントの水和反応は促進されフッ素や重金属類の溶出を抑制する効果はあるが、無添加の場合でもセメントの水和反応は進むため、差が少なくなる。用途によって異なるが、再生路盤材として使用する場合、固化後の粉砕が行いやすい形状にて養生して固化する。養生日数は、およそ1〜28日間、好ましくは7日間〜14日で養生する。 The present invention has an elution suppression effect even when the curing temperature after kneading is low. Curing is performed outdoors without heating in a house or room even in winter when the temperature is 10 degrees or less. Even under curing conditions of 10 ° C or higher, the addition of a cold-resistant agent accelerates the cement hydration reaction and has the effect of suppressing elution of fluorine and heavy metals. Less. Although it depends on the application, when it is used as a recycled roadbed material, it is cured and solidified in a shape that facilitates pulverization after solidification. The curing period is approximately 1 to 28 days, preferably 7 days to 14 days.

以下に実施例及び比較例を挙げて本発明を具体的に説明するが、もちろん本発明はこれによって何等制限されるものではない。なお、特に示さない限り、燃焼灰は以下の燃焼灰を、シルトは以下の粒径分布のものを用いた。また、特に示さない限り、実施例及び比較例における薬品の添加率は燃焼灰、セメント等の全固形分の割合として質量%で示す。また、実施例1に処理に関する詳細を示し、他の実施例と比較例においては差異を明らかにするため主な変更点を示す。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Unless otherwise indicated, the following combustion ash was used as the combustion ash, and silt having the following particle size distribution was used. Moreover, unless otherwise indicated, the addition rate of the chemical | medical agent in an Example and a comparative example is shown by the mass% as a ratio of total solid content, such as combustion ash and cement. Further, details regarding the processing are shown in Example 1, and major changes are shown in order to clarify the difference between the other examples and the comparative example.

燃焼灰(1)の性状
廃タイヤ50質量部、廃材等の木質原料25質量部、製紙スラッジ25質量部を燃料とした流動床炉のバグフィルター捕集燃焼灰を燃焼灰とした。また、燃焼灰のフッ素および重金属類の溶出量を測定し、表1に記載した。
Combustion ash (1) properties Combustion ash was used as the combustion filter ash collected from the bag filter of a fluidized bed furnace using 50 parts by mass of waste tires, 25 parts by mass of wood raw materials such as waste materials, and 25 parts by mass of papermaking sludge as fuel. Moreover, the elution amounts of fluorine and heavy metals in combustion ash were measured and listed in Table 1.

燃焼灰(2)の性状
廃タイヤ48質量部、廃材等の木質原料32質量部、製紙スラッジ20質量部を燃料とした流動床炉のバグフィルター捕集燃焼灰を燃焼灰とした。また、燃焼灰のフッ素および重金属類の溶出量を測定し、表1に記載した。
Characteristics of combustion ash (2) Combustion ash was used as the combustion ash from the bag filter collection combustion ash of a fluidized bed furnace using 48 parts by mass of waste tires, 32 parts by mass of wood raw materials such as waste materials, and 20 parts by mass of papermaking sludge as fuel. Moreover, the elution amounts of fluorine and heavy metals in combustion ash were measured and listed in Table 1.

シルトの粒径分布
採石場にて砕石後、製品として分級した残さについて沈殿池で沈殿させて濃縮したものを原料のシルトとして使用した。
このときのシルトについてレーザー回折散乱式粒子径分布測定装置(Microtrac_MT−3300EX)を用いて粒径を測定すると平均粒径11.44μm、62μm以上が5.6%、3.9μm以下が28.0%含有からなるものであった。
After pulverization in a silt particle size distribution quarry, the residue classified as a product was precipitated in a sedimentation basin and concentrated, and used as a raw silt.
When the particle size of the silt was measured using a laser diffraction scattering type particle size distribution measuring device (Microtrac_MT-3300EX), the average particle size was 11.44 μm, 62 μm or more was 5.6%, and 3.9 μm or less was 28.0. % Content.

(A)溶出試験方法
平成15年環境省告示第18号に順じて行なった。すなわち、試料を十分風乾後、非金属製である目開き2mmの篩を通過させたもの50gを、1,000mLの蓋つきのポリエチレン容器に取り、純水(pH5.8〜6.3)を500mL加えて試料液を調整した。この試料液を、常温、大気圧下で、産廃溶出振とう機(タイテック社製)を用いて6時間連続振とうした(振とう幅4〜5cm、振動数200回/分)。ついで、振とう後の試料液を、30分間静置した後、毎分約3,000回転で20分間遠心分離した。上澄み液を孔径0.45μmのメンブレンフィルターでろ過し、ろ液を取り、定量に必要な量を計り取り、これを検液とした。
(A) Dissolution test method The dissolution test was conducted in accordance with the Ministry of the Environment Notification No. 18 of 2003. That is, after sufficiently air-drying the sample, 50 g of a non-metallic sieve having a mesh opening of 2 mm was taken into a 1,000 mL polyethylene container with a lid, and 500 mL of pure water (pH 5.8 to 6.3) was added. In addition, a sample solution was prepared. This sample solution was shaken continuously for 6 hours at room temperature and atmospheric pressure using an industrial waste elution shaker (manufactured by Taitec Corporation) (shaking width: 4 to 5 cm, vibration frequency: 200 times / min). Next, the sample solution after shaking was allowed to stand for 30 minutes, and then centrifuged at about 3,000 rpm for 20 minutes. The supernatant was filtered through a membrane filter having a pore size of 0.45 μm, the filtrate was taken, the amount required for quantification was measured, and this was used as a test solution.

(B)フッ素の測定方法
検液をイオンクロマトグラフ(ICS−2000/(株)日本ダイオネクス社製)で定量した(JIS K 0102の34.2、水質環境基準告示付表6)。
(B) Method for Measuring Fluorine The test solution was quantified with an ion chromatograph (ICS-2000 / manufactured by Nippon Dionex Co., Ltd.) (34.2 of JIS K 0102, Table 6 with Water Quality Environmental Standard Notification).

(C)六価クロムの測定方法
検液をジフェニルカルバジド吸光光度法で定量した(JIS K 0102の65.2.1)。
(C) Method for measuring hexavalent chromium The test solution was quantified by diphenylcarbazide absorptiometry (JIS K 0102 65.2.1).

(D)鉛の測定方法
検液をICP質量分析法で定量した(JIS K 0102の54.4)。
(D) Method for measuring lead The test solution was quantified by ICP mass spectrometry (JIS K 0102 54.4).

実施例1
絶乾質量1,166gの燃焼灰(1)に対し(固形分21.2質量%相当)、高炉Bセメント2,134g(固形分38.8質量%相当)添加し、アイリッヒインテンシブミキサ((株)日本アイリッヒ社製)を用いて予備攪拌として1分間混合した。ついで固形分濃度56.7%のシルトを、シルトの持ち込み水分を考慮して全部で3,880g(固形分40質量%)添加し、塩化カルシウム系耐寒剤(ボース耐寒剤25%溶液、(株)ボース社製)275g、および調整水を534g加えて、混練を2分間行った。これら原料の配合比と添加剤の質量%については、表2に記載した。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったところ、表3に示すようにフッ素、鉛、六価クロムいずれの元素の溶出量も土壌環境基準値以下であった。
Example 1
Add 2,134 g of blast furnace B cement (equivalent to 38.8 mass% solids) to the burned ash (1) with an absolute dry mass of 1,166 g (equivalent to 21.2 mass% solid content) and add an Eirich intensive mixer (( The mixture was mixed for 1 minute as a pre-stirring using Nippon Eirich Co. Next, a total of 3,880 g of silt having a solid content concentration of 56.7% is added in consideration of the moisture brought into the silt (solid content of 40% by mass). ) 275 g of Bose) and 534 g of adjusted water were added and kneading was carried out for 2 minutes. The blending ratio of these raw materials and the mass% of the additives are shown in Table 2. After 7 days of solidification and curing period (age) at 5 ° C, a solid sample was subjected to a dissolution test in accordance with Notification No. 18 of the Ministry of the Environment in 2003. As shown in Table 3, fluorine, lead, hexavalent The amount of elution of any element of chromium was below the soil environmental standard value.

実施例2
調整水の量を369gとした以外は実施例1と同様に処理を行った(表2)。5℃養生での材齢7日間の固化サンプルからのフッ素、鉛、六価クロムの溶出量は、表3に示すように土壌環境基準値以下であった。
Example 2
The treatment was performed in the same manner as in Example 1 except that the amount of the adjusted water was 369 g (Table 2). As shown in Table 3, the elution amounts of fluorine, lead, and hexavalent chromium from the solidified sample with a age of 7 days under 5 ° C. curing were below the soil environment standard value.

実施例3
絶乾質量954gの燃焼灰(1)に対し、高炉Bセメント1,746g添加し、アイリッヒインテンシブミキサを用いて予備攪拌として1分間混合した。ついで固形分濃度56.7%のシルトを、シルトの持ち込み水分を考慮して1,800g添加し、AE剤0.45g、亜硝酸カルシウム系耐寒剤(ポズテック99、BASFポゾリス(株)社製)225gおよび調整水を297g加えて、混練を2分間行った(表2)。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行い、表3に示すようにフッ素、六価クロムおよび鉛の溶出量は土壌環境基準値以下であった。
Example 3
1,746 g of blast furnace B cement was added to the burning ash (1) having an absolute dry mass of 954 g, and mixed for 1 minute as preliminary stirring using an Eirich intensive mixer. Next, 1,800 g of silt having a solid content concentration of 56.7% was added in consideration of the moisture brought into the silt, 0.45 g of AE agent, calcium nitrite-based cryoprotectant (Poztec 99, manufactured by BASF Pozzolith Co., Ltd.) 225 g and 297 g of adjusted water were added and kneading was carried out for 2 minutes (Table 2). After 7 days of solidification and curing period (age) at 5 ° C, the solidified sample was subjected to a dissolution test according to Notification No. 18 of the Ministry of the Environment in 2003. As shown in Table 3, fluorine, hexavalent chromium and lead The amount of elution was below the soil environmental standard value.

実施例4
絶乾質量6,600gの燃焼灰(2)に対し、高炉Bセメント8,800g添加し、ついで固形分濃度50%のシルトを13,200g添加し、耐寒剤として塩化カルシウム(塩化カルシウム35%溶液、(株)トクヤマ社製)1,100gおよび調整水を2,367g加えて、2軸式のダッシュ200N型ミキサー(日工(株)社製)を用いて混練を2分間行った。これら原料の配合比と添加剤の質量%については、表4に記載した。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行い、表5に示すようにフッ素、六価クロムおよび鉛の溶出量は土壌環境基準値以下であった。
Example 4
Add 8,800 g of blast furnace B cement to burned ash (2) with an absolute dry mass of 6,600 g, then add 13,200 g of silt with a solid concentration of 50%, and use calcium chloride (35% calcium chloride solution) as a cryogen. 1,100 g of Tokuyama Co., Ltd.) and 2,367 g of conditioned water were added, and kneading was carried out for 2 minutes using a biaxial dash 200N mixer (Nikko Co., Ltd.). The blending ratio of these raw materials and the mass% of the additives are shown in Table 4. After 7 days of solidification and curing period (age) at 5 ° C, a dissolution test was conducted on the solidified sample according to Notification No. 18 of the Ministry of the Environment in 2003. As shown in Table 5, fluorine, hexavalent chromium and lead The amount of elution was below the soil environmental standard value.

実施例5
塩化カルシウム系耐寒剤1,987gおよび調整水を909g加えた以外は、実施例4と同様に処理を行った(表4)。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったが、表5に示すようにフッ素および六価クロム、鉛の溶出量は土壌環境基準値以下であった。
Example 5
The treatment was performed in the same manner as in Example 4 except that 1,987 g of calcium chloride-based cryoprotectant and 909 g of adjusted water were added (Table 4). After 7 days of solidification and curing period (age) at 5 ° C., the solidified sample was subjected to a dissolution test according to Ministry of the Environment Notification No. 18 of 2003. As shown in Table 5, fluorine and hexavalent chromium, The amount of lead elution was below the soil environmental standard.

実施例6
混練処理後の固化養生温度として、夏期を想定して26℃とした以外は、実施例4と同様に処理を行った(表4)。26℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったが、表5に示すようにフッ素および六価クロム、鉛の溶出量は土壌環境基準値以下であった。
Example 6
The treatment was performed in the same manner as in Example 4 except that the solidification curing temperature after the kneading treatment was set to 26 ° C. assuming the summer (Table 4). After 7 days of solidification curing period (age) at 26 ° C., a dissolution test was conducted on the solidified sample according to the Ministry of the Environment Notification No. 18 of 2003. As shown in Table 5, fluorine and hexavalent chromium, The amount of lead elution was below the soil environmental standard.

比較例1
絶乾質量1,166gの燃焼灰(1)に対し、高炉Bセメントを2,134g添加し、アイリッヒインテンシブミキサを用いて予備攪拌として1分間混合した。ついで固形分濃度56.7%のシルトを3,880g(固形分総質量の40%)添加し、調整水を1,015g加えて、混練を2分間行った。これら原料の配合比と添加剤の質量%については、表2に記載した。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったが、表3に示すようにフッ素の溶出量は土壌環境基準値以下であったが、六価クロム溶出量が0.067mg/L、鉛溶出量が0.011mg/Lとそれぞれ土壌環境基準値を超過した。
Comparative Example 1
2,134 g of blast furnace B cement was added to the burned ash (1) having an absolute dry mass of 1,166 g, and mixed for 1 minute as preliminary stirring using an Eirich intensive mixer. Next, 3,880 g of silt having a solid content concentration of 56.7% (40% of the total mass of the solid content) was added, 1,015 g of adjusted water was added, and kneading was performed for 2 minutes. The blending ratio of these raw materials and the mass% of the additives are shown in Table 2. After the solidification curing period (age) at 5 ° C for 7 days, the elution test was conducted on the solidified sample in accordance with Notification No. 18 of the Ministry of the Environment in 2003. Although it was below the environmental standard value, the hexavalent chromium elution amount was 0.067 mg / L and the lead elution amount was 0.011 mg / L, which exceeded the soil environmental standard value.

比較例2
リグニン成分としてクラフト蒸解後の黒液(固形分濃度20%)275gおよび調整水520gを加えた以外は比較例1と同様に処理を行った(表2)。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったが、六価クロムの溶出量は土壌環境基準値以下であったが、フッ素の溶出量が0.84mg/Lと鉛溶出量が0.012mg/Lとそれぞれ土壌環境基準値を超過した(表3)。
Comparative Example 2
The treatment was performed in the same manner as in Comparative Example 1 except that 275 g of black liquor (20% solid content concentration) after kraft cooking and 520 g of adjusted water were added as lignin components (Table 2). After 7 days of solidification and curing period (age) at 5 ° C, the solidified sample was subjected to a dissolution test according to Notification No. 18 of the Ministry of the Environment in 2003. However, the elution amount of fluorine was 0.84 mg / L and the elution amount of lead was 0.012 mg / L, which exceeded the soil environmental standard values (Table 3).

比較例3
調整水1,015gの代わりに人工海水を1,015g加えた以外は比較例1と同様に処理を行った(表2)。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったが、鉛の溶出量は土壌環境基準値以下であったが、フッ素および六価クロム溶出量がそれぞれ、0.81mg/Lおよび0.054mg/Lと土壌環境基準値を超過した(表3)。
Comparative Example 3
The treatment was performed in the same manner as in Comparative Example 1 except that 1,015 g of artificial seawater was added instead of 1,015 g of adjusted water (Table 2). After 7 days of solidification and curing period (age) at 5 ° C, the solidified sample was subjected to a dissolution test according to Notification No. 18 of the Ministry of the Environment in 2003. The amount of lead eluted was below the soil environmental standard value. However, the elution amounts of fluorine and hexavalent chromium were 0.81 mg / L and 0.054 mg / L, respectively, exceeding the soil environment standard values (Table 3).

比較例4
絶乾質量6,600gの燃焼灰(2)に対し、高炉Bセメント8,800g添加し、ついで固形分濃度50%のシルトを13,200g(固形分総質量の30%)添加し、調整水を4,180g加えて、2軸式のダッシュ200N型ミキサー(日工(株)社製)を用いて混練を2分間行った。これら原料の配合比と添加剤の質量%については、表4に記載した。5℃での固化養生期間(材齢)を7日間経た後、固化したサンプルについて平成15年環境省告示第18号に従い溶出試験を行ったが、表5に示すようにフッ素および六価クロムの溶出量は土壌環境基準値以下であったが、鉛溶出量が0.014mg/Lと土壌環境基準値を超過した。
Comparative Example 4
Add 8,800 g of blast furnace B cement to burned ash (2) with an absolute dry mass of 6,600 g, then add 13,200 g of silt with a solid content concentration of 50% (30% of the total mass of solid content), and adjust water 4,180 g was added, and kneading was performed for 2 minutes using a biaxial dash 200N type mixer (manufactured by Nikko Corporation). The blending ratio of these raw materials and the mass% of the additives are shown in Table 4. After 7 days of solidification curing period (age) at 5 ° C, the solidified sample was subjected to a dissolution test in accordance with Notification No. 18 of the Ministry of the Environment in 2003. As shown in Table 5, fluorine and hexavalent chromium Although the elution amount was not more than the soil environment standard value, the lead elution amount was 0.014 mg / L, which exceeded the soil environment standard value.

Figure 2012254433
Figure 2012254433

Figure 2012254433
Figure 2012254433

Figure 2012254433
Figure 2012254433

Figure 2012254433
Figure 2012254433

Figure 2012254433
Figure 2012254433

実施例1〜6と比較例1〜4を比較することから明らかなように、冬期養生条件下および夏期の条件下においても、燃焼灰に由来するフッ素および重金属類は土壌環境基準値以下に溶出抑制されており、1年をとおして再生路盤材や埋め戻し材といった土壌分野へ安全に土木材料として利用することが可能となった。 As is clear from comparing Examples 1 to 6 and Comparative Examples 1 to 4, fluorine and heavy metals derived from combustion ash are eluted below the soil environmental standard value even under winter curing conditions and summer conditions. Through the course of one year, it has become possible to safely use it as a civil engineering material in the field of soil such as recycled roadbed materials and backfill materials.

Claims (5)

平成15年環境庁告示18号に基づく溶出試験方法で溶出させた場合に溶出量がフッ素0.8mg/Lおよび重金属類として6価クロム0.05mg/L、鉛0.01mg/Lの少なくとも1項目以上が超過する成分を含有する燃焼灰に、粘土質土壌、セメント、耐寒剤および水を加えて混練して養生することにより、前記溶出量が基準値以下となるように不溶化するフッ素および重金属類含有燃焼灰の処理方法。 Elution amount is 0.8 mg / L of fluorine and 0.05 mg / L of hexavalent chromium as heavy metals and 0.01 mg / L of lead when eluted by the dissolution test method based on Notification No. 18 of the Environment Agency in 2003 Fluorine and heavy metals that are insolubilized so that the amount of elution falls below the standard value by curing and curing clay ash, cement, cryogen and water to the combustion ash containing components exceeding the above items Of processing ash containing combustion ash. 前記養生条件が10℃以下であることを特徴とする請求項1記載のフッ素および重金属類含有燃焼灰の処理方法。 2. The method for treating fluorine and heavy metal-containing combustion ash according to claim 1, wherein the curing condition is 10 [deg.] C. or less. 前記粘土質土壌が0.004〜0.06ミリメートルからなるシルト主体である請求項1又は2に記載のフッ素および重金属類含有燃焼灰の処理方法。 The method for treating fluorine and heavy metal-containing combustion ash according to claim 1 or 2, wherein the clay soil is mainly composed of silt composed of 0.004 to 0.06 millimeters. 前記耐寒剤が燃焼灰とセメントの混合物固形分100質量部に対し、固形分換算で1〜10質量部添加する請求項1〜3のいずれか1項に記載のフッ素および重金属類含有燃焼灰の処理方法。 The fluorine- and heavy metal-containing combustion ash according to any one of claims 1 to 3, wherein the cryoprotectant is added in an amount of 1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of the mixture solid content of combustion ash and cement. Processing method. 前記耐寒剤が塩化カルシウム系耐寒剤であり、前記燃焼灰とセメントの混合物固形分100質量部に対し、塩化カルシウム系耐寒剤中の塩化カルシウム分1.0〜5質量部を混合する請求項1〜4のいずれか1項に記載のフッ素および重金属類含有燃焼灰の処理方法。 The cold-resistant agent is a calcium chloride-based cold-resistant agent, and 1.0 to 5 parts by mass of calcium chloride in the calcium chloride-based cryogen is mixed with 100 parts by mass of the solid content of the combustion ash and cement. The processing method of fluorine and heavy metal containing combustion ash of any one of -4.
JP2011130252A 2011-06-10 2011-06-10 Method for treating incineration ash containing fluorine and heavy metals Pending JP2012254433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011130252A JP2012254433A (en) 2011-06-10 2011-06-10 Method for treating incineration ash containing fluorine and heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130252A JP2012254433A (en) 2011-06-10 2011-06-10 Method for treating incineration ash containing fluorine and heavy metals

Publications (1)

Publication Number Publication Date
JP2012254433A true JP2012254433A (en) 2012-12-27

Family

ID=47526529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130252A Pending JP2012254433A (en) 2011-06-10 2011-06-10 Method for treating incineration ash containing fluorine and heavy metals

Country Status (1)

Country Link
JP (1) JP2012254433A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208280A (en) * 1996-02-07 1997-08-12 Kunihiro Fukai Cement hydration accelerator
JPH11322401A (en) * 1998-05-13 1999-11-24 Kurita Water Ind Ltd Solidification and formation of ash
JP2000081499A (en) * 1999-09-17 2000-03-21 Hitachi Ltd Processing method for radioactive waste, solidified body of radioactive waste, and solidifier
JP2002018411A (en) * 2000-07-07 2002-01-22 Kurita Water Ind Ltd Method for solidifying and molding ash
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2004210588A (en) * 2002-12-27 2004-07-29 Takasu Ai System:Kk Solidification assisting composition and its producing method
JP2010269293A (en) * 2009-05-25 2010-12-02 Shoji Iwahara Method for manufacturing paper sludge ash, cement composition containing paper sludge ash prepared by the method and cement solid matter constituted by solidifying the cement composition
JP2012102473A (en) * 2010-11-08 2012-05-31 Oji Paper Co Ltd Base course material and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208280A (en) * 1996-02-07 1997-08-12 Kunihiro Fukai Cement hydration accelerator
JPH11322401A (en) * 1998-05-13 1999-11-24 Kurita Water Ind Ltd Solidification and formation of ash
JP2000081499A (en) * 1999-09-17 2000-03-21 Hitachi Ltd Processing method for radioactive waste, solidified body of radioactive waste, and solidifier
JP2002018411A (en) * 2000-07-07 2002-01-22 Kurita Water Ind Ltd Method for solidifying and molding ash
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2004210588A (en) * 2002-12-27 2004-07-29 Takasu Ai System:Kk Solidification assisting composition and its producing method
JP2010269293A (en) * 2009-05-25 2010-12-02 Shoji Iwahara Method for manufacturing paper sludge ash, cement composition containing paper sludge ash prepared by the method and cement solid matter constituted by solidifying the cement composition
JP2012102473A (en) * 2010-11-08 2012-05-31 Oji Paper Co Ltd Base course material and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015024485; '新しい耐寒剤を用いたコンクリートの性状について' コンクリート工学年次論文報告集 Vol.12,No.1, 199006, P.59-64, 寺田米男 *
JPN6015024486; 辻 正哲,外: '低品質骨材を用いたコンクリートの凍結融解抵抗性改善に関する研究' 学術講演会講演論文集 Vol.51, 20020522, P.426-427 *

Similar Documents

Publication Publication Date Title
JP4826089B2 (en) Combustion ash treatment method
JP5757613B2 (en) Processing materials such as heavy metals
JP2009195791A (en) Treatment method of incineration ash
JP2013202550A (en) Method of producing solidified material from biomass incineration ash
JP4694434B2 (en) By-product processing method
JP2005313147A (en) Method for processing incineration ash
JP2006198505A (en) Processing method of combustion ash
JP2000343097A (en) Nitrate nitrogen denitrification substrate and its production
JP6248739B2 (en) Combustion ash treatment method and use thereof
JP2004305833A (en) Method for stabilization treatment of waste
JP5540286B2 (en) Roadbed material and method for manufacturing the same
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
JP2012254433A (en) Method for treating incineration ash containing fluorine and heavy metals
KR100948658B1 (en) Method for solidifying sewage sludge
JP4967131B2 (en) Waste disposal method
JP2006247630A (en) Waste water treating hydrophobization solid-liquid separating medium
JP2008094901A (en) Mud solidifying material
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
Carmalin Sophia et al. Leaching of metals on stabilization of metal sludge using cement based materials
JP2013256779A (en) Roadbed material and manufacturing method thereof
JP2007313382A (en) Method for treating incineration ash containing fluorine and chrome
JPH0217228B2 (en)
JPS6041589A (en) Solidification process of waste material
JP4865199B2 (en) Method for treating boron-containing combustion ash
JP2020000968A (en) Method of treating combustion ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110