JP2012253398A - Device, system, and method for transmitting power and information - Google Patents

Device, system, and method for transmitting power and information Download PDF

Info

Publication number
JP2012253398A
JP2012253398A JP2009225278A JP2009225278A JP2012253398A JP 2012253398 A JP2012253398 A JP 2012253398A JP 2009225278 A JP2009225278 A JP 2009225278A JP 2009225278 A JP2009225278 A JP 2009225278A JP 2012253398 A JP2012253398 A JP 2012253398A
Authority
JP
Japan
Prior art keywords
information transmission
power information
power
transmission device
communication electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009225278A
Other languages
Japanese (ja)
Inventor
Yoshio Karasawa
好男 唐澤
和之 ▲高▼▲崎▼
Kazuyuki Takasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electro Communications NUC
Original Assignee
University of Electro Communications NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electro Communications NUC filed Critical University of Electro Communications NUC
Priority to JP2009225278A priority Critical patent/JP2012253398A/en
Priority to PCT/JP2010/066787 priority patent/WO2011040392A1/en
Publication of JP2012253398A publication Critical patent/JP2012253398A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device, a system, and a method for performing power transmission and efficient information transmission while minimizing interference between magnetic field coupling and electric field coupling even in a device which needs to be downsized and miniaturized.SOLUTION: A plane including an electrode surface of a communication electrode part 110 and a coil axis 101 of a power transmission/reception hollow coil 100 cross each other at an approximately right angle. A part of the electrode surface is arranged so as not to overlap a hollow portion of the power transmission/reception hollow coil 100, and so as to overlap a coil surface of the power transmission/reception hollow coil 100, when viewed in a direction of the coil axis.

Description

本発明は、電力と情報を非接触で同時に受け渡しを行う装置、システム、及び方法に関する。   The present invention relates to an apparatus, a system, and a method for simultaneously transferring power and information without contact.

近年、ノート型パーソナルコンピュータ、非接触型ICカード、RFID(Radio Frequency Identification)など、非接触でワイヤレス情報通信を行う装置が普及している。また、コードレス電話や電動髭剃り器など、非接触でワイヤレス充電が可能な装置も普及してきている。そこで、このようなワイヤレス通信とワイヤレス充電を同時に行える装置が望まれるところである。   In recent years, devices that perform wireless information communication in a contactless manner such as notebook personal computers, contactless IC cards, and RFID (Radio Frequency Identification) have become widespread. In addition, devices capable of wireless charging without contact, such as cordless phones and electric shavers, are becoming popular. Therefore, an apparatus capable of simultaneously performing such wireless communication and wireless charging is desired.

このようにワイヤレス情報通信とワイヤレス充電を同時に行う方法として、電界結合と磁界結合を使用することが一般的であり、この方法により実現している先行技術として、特許文献1と特許文献2がある。
特許文献1には、本体装置と,本体装置に非接触にデータの受け渡しを行うICメモリカードよりなるICメモリカードシステムにおいて,本体装置は,電源電力をICメモリカードに供給する給電回路とICメモリカードに誘導起電力により電力供給するコイルAを備え,ICメモリカードは本体装置のコイルAと誘導的に結合して給電回路から供給される電力を受け取るコイルBとコイルBに接続される電源回路を備え,本体装置とICメモリカードは,誘導結合による手段と異なる手段、例えば、コンデンサを利用した静電結合により非接触結合してデータの受け渡しを行う非接触結合手段(請求項3及び図2)を備えた構成を開示している。
また、特許文献2にも、ほぼ同様な構成が開示されている(図1〜4)。
As a method for performing wireless information communication and wireless charging at the same time, it is common to use electric field coupling and magnetic field coupling. As prior arts realized by this method, there are Patent Document 1 and Patent Document 2. .
In Patent Document 1, in an IC memory card system including a main body device and an IC memory card that transfers data to the main body in a non-contact manner, the main body device includes a power supply circuit that supplies power to the IC memory card and an IC memory. The card is provided with a coil A for supplying electric power by induced electromotive force, and the IC memory card is inductively coupled with the coil A of the main unit to receive power supplied from the power supply circuit and a power supply circuit connected to the coil B The main body device and the IC memory card are different from the means by inductive coupling, for example, non-contact coupling means for transferring data by non-contact coupling by electrostatic coupling using a capacitor (claims 3 and 2). ) Is disclosed.
Patent Document 2 also discloses a substantially similar configuration (FIGS. 1 to 4).

特開平6−187514JP-A-6-187514 特公平4−500896Japanese Patent Fair 4-5000896

しかし、最近は通信のより高速化、電源のより高容量化、充電の高速化に加え、装置のより小型化、コンパクト化が求められているが、特に、小型化・コンパクト化する装置においては、ワイヤレス充電を行うために発生させる磁界が、ワイヤレス情報通信を行うために発生させる電界に電磁干渉を与えることが問題となる。すなわち、磁界を発生させる例えばコイルと電界を発生させる例えば電極を近接させると、互いに干渉しあい、特に磁界が電界に与える干渉が大きく、情報通信の効率が低下し通信速度が低速になったり、電極で発熱するなどの問題がある。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、磁界結合と電界結合間の干渉を最小限にし、電力の伝送と効率のよい情報伝送を同時に行う装置、システム、及び方法を提供することにある。
However, recently, in addition to higher communication speed, higher power supply capacity, and higher charge speed, there has been a demand for smaller and more compact devices. Especially in devices that are smaller and more compact. The problem is that the magnetic field generated for wireless charging gives electromagnetic interference to the electric field generated for wireless information communication. That is, for example, when a coil that generates a magnetic field and an electrode that generates an electric field are brought close to each other, they interfere with each other, particularly the interference that the magnetic field gives to the electric field is large, the efficiency of information communication decreases, the communication speed decreases, and the electrodes There are problems such as heat generation.
Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to minimize interference between magnetic field coupling and electric field coupling, and simultaneously transmit power and efficiently transmit information. It is to provide an apparatus, system and method for performing.

上記課題を解決するために、本発明のある観点によれば、磁界結合により非接触で電力を送受する電力送受中空コイル部と、電界結合により非接触で通信を行う通信電極部と、を有し、前記通信電極部の電極面を含む平面と前記電力送受中空コイル部のコイル軸とが略垂直に交わり、前記電極面の一部が、コイル軸方向視で、前記電力送受中空コイル部の中空部分と重ならず、かつ、前記電力送受中空コイル部のコイル面と重なるように配置されることを特徴とする電力情報伝送装置が提供される。
なお、ここで言う略垂直とは、完全な垂直である必要はなく、非接触で電力と情報をやり取りするための磁界結合の磁界と電界結合の電界との間の干渉を無視しうる程度の垂直を意味する。
この構成によれば、磁界結合と電界結合間の干渉を最小限にし、電力の伝送と効率のよい情報伝送を同時に行う電力情報伝送装置を提供することが可能となる。
In order to solve the above problems, according to an aspect of the present invention, there is provided a power transmission / reception hollow coil portion that transmits and receives power in a contactless manner by magnetic field coupling, and a communication electrode portion that performs contactless communication by electric field coupling. And the plane including the electrode surface of the communication electrode portion and the coil axis of the power transmission / reception hollow coil portion intersect substantially perpendicularly, and a part of the electrode surface of the power transmission / reception hollow coil portion is viewed in the coil axial direction. Provided is a power information transmission device that is arranged so as not to overlap a hollow portion and to overlap a coil surface of the power transmission / reception hollow coil portion.
Note that the term “substantially vertical” as used herein does not need to be completely vertical, and the interference between the magnetic field of magnetic field coupling and the electric field of electric field coupling for exchanging power and information in a non-contact manner can be ignored. Means vertical.
According to this configuration, it is possible to provide a power information transmission apparatus that minimizes interference between magnetic field coupling and electric field coupling, and simultaneously performs power transmission and efficient information transmission.

また、前記通信電極部は、前記電力送受中空コイル部の前記中空部分の径以上の径を有する開口部を有し、前記中空部分の全体が、コイル軸方向視で、前記開口部と重なるように配置され、前記通信電極部は、前記開口部と前記通信電極部の外周とを結ぶ1または2以上のスリットを有することを特徴としてもよい。
この構成によれば、さらに、通信電極部において、交差する磁束による渦電流を発生しにくくし、発熱を最小化することができる。
Further, the communication electrode portion has an opening having a diameter equal to or larger than the diameter of the hollow portion of the power transmission / reception hollow coil portion, and the entire hollow portion overlaps with the opening in a coil axial direction view. The communication electrode part may have one or more slits that connect the opening and the outer periphery of the communication electrode part.
According to this configuration, it is further difficult to generate eddy currents due to intersecting magnetic fluxes in the communication electrode section, and heat generation can be minimized.

また、前記スリットは、さらに、前記開口部と前記通信電極部の外周との間に前記開口部を囲むようにしてなることを特徴としてもよい。
この構成によれば、伝送相手の電力情報伝送装置との位置合わせにおいて、ねじれの方向の位置合わせが不要となる。
In addition, the slit may further be configured to surround the opening between the opening and the outer periphery of the communication electrode part.
According to this configuration, in the alignment with the power information transmission apparatus of the transmission partner, alignment in the direction of twist is not necessary.

また、前記2以上のスリットを有する電力情報伝送装置において、前記スリットにより分割される通信電極部の一を基準電位とし、他を信号電位とすることを特徴としてもよい。
この構成によれば、電力情報伝送装置間の情報伝送の効率を上げることが可能となる。
In the power information transmission device having the two or more slits, one of the communication electrode portions divided by the slit may be a reference potential and the other may be a signal potential.
According to this configuration, it is possible to increase the efficiency of information transmission between power information transmission apparatuses.

また、前期電力送受中空コイル部が、扁平コイルであることを特徴としてもよい。
この構成によれば、薄型の電力情報伝送装置が可能となる。
Further, the power transmission / reception hollow coil portion may be a flat coil.
According to this configuration, a thin power information transmission device is possible.

また、本発明の別の観点によれば、上記に記載の電力情報伝送装置を用いた電力情報伝送システムであって、第一の電力情報伝送装置と第二の電力情報伝送装置のそれぞれの電力送受中空コイル部のコイル軸が略同一軸線上に配置され、前記第一の電力情報伝送装置と前記第二の電力情報伝送装置のそれぞれの通信電極部の電極面が互いに対向するように配置され、前記第一の電力情報伝送装置の前記電力送受中空コイル部は、前記第二の電力情報伝送装置の前記電力送受中空コイル部と磁界結合を行うために磁界を発生させ、前記第一の電力情報伝送装置の前記通信電極部または前記第二の電力情報伝送装置の前記通信電極部の一方は、他方の電力情報伝送装置の前記通信電極部と電界結合を行うために電界を発生させることを特徴とする電力情報伝送システムが提供される。
なお、ここで言う略同一軸線とは、完全な同一軸線である必要はなく、非接触で電力と情報をやり取りするための磁界結合の磁界と電界結合の電界との間の干渉を無視しうる程度の同一軸線を意味する。
この構成によれば、磁界結合と電界結合間の干渉を最小限にし、電力の伝送と効率のよい情報伝送を同時に行う電力情報伝送システムを提供することが可能となる。
According to another aspect of the present invention, there is provided a power information transmission system using the power information transmission device described above, wherein each power of the first power information transmission device and the second power information transmission device. The coil shafts of the transmission / reception hollow coil portions are arranged on substantially the same axis, and the electrode surfaces of the communication electrode portions of the first power information transmission device and the second power information transmission device are arranged to face each other. The power transmission / reception hollow coil portion of the first power information transmission device generates a magnetic field to perform magnetic field coupling with the power transmission / reception hollow coil portion of the second power information transmission device, and the first power information transmission device One of the communication electrode unit of the information transmission device or the communication electrode unit of the second power information transmission device generates an electric field to perform electric field coupling with the communication electrode unit of the other power information transmission device. Characterize Force information transmission system is provided.
In addition, the substantially same axis line here does not need to be completely the same axis line, and interference between a magnetic field of magnetic field coupling and an electric field of electric field coupling for exchanging power and information in a non-contact manner can be ignored. Means the same axis.
According to this configuration, it is possible to provide a power information transmission system that minimizes interference between magnetic field coupling and electric field coupling and simultaneously performs power transmission and efficient information transmission.

さらに、本発明の別の観点によれば、2つの電力情報伝送装置の間で非接触で、磁界結合により電力を送受し、かつ電界結合により通信を行う電力情報伝送方法であって、第一の前記電力情報伝送装置は、第二の前記電力情報伝送装置と磁界結合を行うために磁界を発生させ、前記第一の前記電力情報伝送装置または前記第二の前記電力情報伝送装置の一方は、他方の前記電力情報伝送装置と電界結合を行うために電界を発生させ、前記第一の前記電力情報伝送装置と前記第二の前記電力情報伝送装置との間の前記電界の電気力線が、前記第二の前記電力情報伝送装置と前記第二の前記電力情報伝送装置との間の前記磁界の磁束に重ならないことを特徴とする電力情報伝達方法が提供される。
この構成によれば、磁界結合と電界結合間の干渉を最小限にし、電力の伝送と効率のよい情報伝送を同時に行う電力情報伝送方法を提供することが可能となる。
Furthermore, according to another aspect of the present invention, there is provided a power information transmission method in which power is transmitted and received by magnetic field coupling between two power information transmission devices and communication is performed by electric field coupling, The power information transmission device generates a magnetic field for magnetic field coupling with the second power information transmission device, and one of the first power information transmission device or the second power information transmission device is An electric field is generated for electric field coupling with the other power information transmission device, and an electric field line of the electric field between the first power information transmission device and the second power information transmission device is A power information transmission method is provided that does not overlap the magnetic flux of the magnetic field between the second power information transmission device and the second power information transmission device.
According to this configuration, it is possible to provide a power information transmission method that minimizes interference between magnetic field coupling and electric field coupling, and simultaneously performs power transmission and efficient information transmission.

以上説明したように、本発明によれば、小型化・コンパクト化が必要な装置においても、磁界結合と電界結合間の干渉を最小限にし、電力の伝送と効率のよい情報伝送を同時に行うことができる。
また、非接触で電力伝送及び通信を行うことができるため、2つの電力情報伝送装置の間に遮蔽物(皮膚などを含む)があっても効果が減じられることもない。
As described above, according to the present invention, even in an apparatus that requires downsizing and compactness, interference between magnetic field coupling and electric field coupling can be minimized, and power transmission and efficient information transmission can be performed simultaneously. Can do.
In addition, since power transmission and communication can be performed in a non-contact manner, even if there is a shield (including skin) between the two power information transmission devices, the effect is not reduced.

本発明の一実施形態を示した基本構成図。The basic block diagram which showed one Embodiment of this invention. 本発明の一実施形態における通信電極部と電力送受中空コイル部を示した構成図。The block diagram which showed the communication electrode part and electric power transmission / reception hollow coil part in one Embodiment of this invention. 本発明の一実施形態における通信電極部を示した構造図。<図3A>開口部とスリットが一つの通信電極部。<図3B>開口部とスリットが二つの通信電極部。<図3C>開口部と、スリットが開口部を囲むようにある通信電極部。<図3D>開口部のない通信電極部。<図3E>開口部のみがある通信電極部。<図3F>スリットのみがある通信電極部。The structure figure which showed the communication electrode part in one Embodiment of this invention. <FIG. 3A> An opening and a slit are one communication electrode part. <FIG. 3B> A communication electrode part with two openings and slits. <FIG. 3C> A communication electrode part with an opening and a slit surrounding the opening. <FIG. 3D> Communication electrode part without opening. <FIG. 3E> A communication electrode part having only an opening. <FIG. 3F> Communication electrode part having only slits. 本発明の一実施形態における効果を示す図。The figure which shows the effect in one Embodiment of this invention. 本発明の一実施形態を示したシステムの模式図。The schematic diagram of the system which showed one Embodiment of this invention. 本発明の一実施形態である、ノート型パーソナルコンピュータに適用した場合の模式図。The schematic diagram at the time of applying to the notebook type personal computer which is one Embodiment of this invention. 本発明の一実施形態である、埋込型医療機器に適用した場合の模式図。The schematic diagram at the time of applying to the implantable medical device which is one Embodiment of this invention.

以下では、図面を参照しながら、本発明の各実施形態に係る装置等について説明する。
<第1実施形態>
図1は、電力情報伝送システムについての本実施形態に係る基本的な構成を説明するものである。この電力情報伝送システム1は、2つの電力情報伝送装置10からなっている。ここでは、説明の便宜上、左の電力情報伝送装置10を送信側電力情報伝送装置11、右の電力情報伝送装置10を受信側電力情報伝送装置12とする。
Below, the apparatus etc. which concern on each embodiment of this invention are demonstrated, referring drawings.
<First Embodiment>
FIG. 1 illustrates a basic configuration according to this embodiment of the power information transmission system. The power information transmission system 1 includes two power information transmission apparatuses 10. Here, for convenience of explanation, the left power information transmission device 10 is referred to as a transmission side power information transmission device 11, and the right power information transmission device 10 is referred to as a reception side power information transmission device 12.

送信側電力情報伝送装置11は、電力送受中空コイル部100、通信電極部110、電源部120、変調器140、マイクロコンピュータ160を備えている。電源部120は交流電源からなり、電源部120と電力送受中空コイル部100は接続され、電力送受中空コイル部100は電源部120から電力を供給され、電力送受中空コイル部100には交流電流が流れる。通信電極部110、変調器140、及びマイクロコンピュータ160が直列に接続され、マイクロコンピュータ160が送信情報を生成し、その送信情報を変調器140が所定の変調方式により変調し、その変調された信号が通信電極部110に供給される。   The transmission-side power information transmission device 11 includes a power transmission / reception hollow coil unit 100, a communication electrode unit 110, a power source unit 120, a modulator 140, and a microcomputer 160. The power supply unit 120 is composed of an AC power supply, the power supply unit 120 and the power transmission / reception hollow coil unit 100 are connected, the power transmission / reception hollow coil unit 100 is supplied with power from the power supply unit 120, and the power transmission / reception hollow coil unit 100 receives an AC current. Flowing. The communication electrode unit 110, the modulator 140, and the microcomputer 160 are connected in series, the microcomputer 160 generates transmission information, the modulator 140 modulates the transmission information by a predetermined modulation method, and the modulated signal Is supplied to the communication electrode unit 110.

受信側電力情報伝送装置12は、電力送受中空コイル部100、通信電極部110、充電部130、復調器150、マイクロコンピュータ160、および機器(負荷)170を備えている。電力送受中空コイル部100と充電部130は接続され、後述するように、送信側電力情報伝送装置11の電力送受中空コイル部100との磁界結合により、電力送受中空コイル部100に発生した電力を充電部130に充電できる。機器170は、その充電部130に接続され、充電された電力を使用できる。通信電極部110、復調器150、及びマイクロコンピュータ160が直列に接続され、後述するように、送信側電力情報伝送装置11の通信電極部110との電界結合により通信電極部110で受信した信号情報は、復調器150で復調され、マイクロコンピュータ160に渡され、受信情報として使用され、情報通信が成立する。   The reception-side power information transmission device 12 includes a power transmission / reception hollow coil unit 100, a communication electrode unit 110, a charging unit 130, a demodulator 150, a microcomputer 160, and a device (load) 170. The power transmission / reception hollow coil unit 100 and the charging unit 130 are connected, and the power generated in the power transmission / reception hollow coil unit 100 by magnetic field coupling with the power transmission / reception hollow coil unit 100 of the transmission-side power information transmission device 11 as described later. The charging unit 130 can be charged. The device 170 is connected to the charging unit 130 and can use the charged power. The communication electrode unit 110, the demodulator 150, and the microcomputer 160 are connected in series, and signal information received by the communication electrode unit 110 by electric field coupling with the communication electrode unit 110 of the transmission-side power information transmission device 11, as will be described later. Is demodulated by the demodulator 150, passed to the microcomputer 160 and used as received information, and information communication is established.

送信側電力情報伝送装置11の電力送受中空コイル部100は、受信側電力情報伝送装置12の電力送受中空コイル部100と磁界結合を行うために磁界を発生させるが、送信側電力情報伝送装置11の電力送受中空コイル部100と、受信側電力情報伝送装置12の電力送受中空コイル部100は、互いのコイル軸101がほぼ同一軸線上になるように配置される。これにより、効率のよい磁界結合が行われる。   The power transmission / reception hollow coil unit 100 of the transmission-side power information transmission device 11 generates a magnetic field to perform magnetic field coupling with the power transmission / reception hollow coil unit 100 of the reception-side power information transmission device 12. The power transmission / reception hollow coil unit 100 and the power transmission / reception hollow coil unit 100 of the reception-side power information transmission device 12 are arranged such that the coil axes 101 are substantially on the same axis. Thereby, efficient magnetic field coupling is performed.

送信側電力情報伝送装置11の通信電極部110は、受信側電力情報伝送装置12の通信電極部110と電界結合を行うために電界を発生させるが、送信側電力情報伝送装置11の通信電極部110と、受信側電力情報伝送装置12の通信電極部110は、互いに対向して配置される。これにより、効率のよい電界結合が行われる。また、受信側電力情報伝送装置12から情報を送信する場合は、送信側電力情報伝送装置11からではなく、受信側電力情報伝送装置12の通信電極部110が、送信側電力情報伝送装置11の通信電極部110と電界結合を行うために電界を発生させる。これにより、双方向の情報通信が可能となる。なお、双方向の情報通信は、時分割方式や周波数分割方式などにより可能である。   The communication electrode unit 110 of the transmission-side power information transmission device 11 generates an electric field to perform electric field coupling with the communication electrode unit 110 of the reception-side power information transmission device 12, but the communication electrode unit of the transmission-side power information transmission device 11 110 and the communication electrode unit 110 of the reception-side power information transmission device 12 are arranged to face each other. Thereby, efficient electric field coupling is performed. Further, when transmitting information from the reception-side power information transmission device 12, the communication electrode unit 110 of the reception-side power information transmission device 12 is not connected to the transmission-side power information transmission device 11, not from the transmission-side power information transmission device 11. An electric field is generated for electric field coupling with the communication electrode unit 110. Thereby, bi-directional information communication is possible. Bidirectional information communication is possible by a time division method, a frequency division method, or the like.

図2は、この電力情報伝送システム1における電力情報伝送装置10の電力送受中空コイル部100と通信電極部110の構成を説明するものである。通信電極部110の電極面111と電力送受中空コイル部100のコイル軸101は、コイル軸101が電極面111を含む平面にほぼ垂直である関係を有して配置される。換言すれば、電力送受中空コイル部100のコイル面103と通信電極部110の電極面111とが平行である関係を有して配置される。また、コイル軸方向から見た場合において、通信電極部110の一部分が、電力送受中空コイル部100の中空部分102と重ならないように配置される。これにより、電力送受中空コイル部100で生じる中空部分102での磁束が、通信電極部110に交差することがなくなるので、電力伝送に与える影響を抑えることができ、換言すれば、磁界結合と電界結合の干渉を最小限に抑えることができ、効率のよい電力転送と情報通信を行うことができ、また、通信電極部110での発熱などを防ぐことができる。また、コイル軸方向から見た場合において、通信電極部110の一部分が、電力送受中空コイル部100のコイル面103と重なるように配置される。好ましくは、図2に示すように、コイル軸方向から見た場合において、電力送受中空コイル部100の径と通信電極部110の径がほぼ一致しているとよい。電力送受中空コイル部100の外側の磁束が、通信電極部110に交差することがなくなるので、上記と同様な効果を得ることが可能となる。   FIG. 2 illustrates the configuration of the power transmission / reception hollow coil unit 100 and the communication electrode unit 110 of the power information transmission device 10 in the power information transmission system 1. The electrode surface 111 of the communication electrode unit 110 and the coil shaft 101 of the power transmission / reception hollow coil unit 100 are disposed so that the coil shaft 101 is substantially perpendicular to a plane including the electrode surface 111. In other words, the coil surface 103 of the power transmission / reception hollow coil unit 100 and the electrode surface 111 of the communication electrode unit 110 are arranged in a parallel relationship. Further, when viewed from the coil axis direction, a part of the communication electrode part 110 is arranged so as not to overlap the hollow part 102 of the power transmission / reception hollow coil part 100. Thereby, since the magnetic flux in the hollow portion 102 generated in the power transmission / reception hollow coil portion 100 does not cross the communication electrode portion 110, the influence on the power transmission can be suppressed, in other words, the magnetic field coupling and the electric field. Coupling interference can be minimized, efficient power transfer and information communication can be performed, and heat generation at the communication electrode unit 110 can be prevented. Further, when viewed from the coil axis direction, a part of the communication electrode portion 110 is disposed so as to overlap the coil surface 103 of the power transmission / reception hollow coil portion 100. Preferably, as shown in FIG. 2, when viewed from the coil axis direction, the diameter of the power transmission / reception hollow coil portion 100 and the diameter of the communication electrode portion 110 may be substantially the same. Since the magnetic flux outside the power transmission / reception hollow coil portion 100 does not cross the communication electrode portion 110, the same effect as described above can be obtained.

図3は、電力情報伝送装置10の通信電極部110の構造を説明するものである。図3Dに示すような開口部やスリットをまったく有さない通信電極部と図3Fに示すような開口部を有さない通信電極部は、電力送受中空コイル部100で生じる中空部分102での磁束が、通信電極部110に交差するので、電力伝送に与える影響が大きくなる。また、図3Eに示すようなスリットを有さない通信電極部は、上記磁束により渦電流が生じ、電力伝送に与える影響が大きくなるとともに、通信電極部に熱が発生する原因となる。   FIG. 3 illustrates the structure of the communication electrode unit 110 of the power information transmission apparatus 10. A communication electrode portion having no opening or slit as shown in FIG. 3D and a communication electrode portion having no opening as shown in FIG. 3F are magnetic fluxes in the hollow portion 102 generated in the power transmission / reception hollow coil portion 100. However, since it intersects with the communication electrode unit 110, the influence on the power transmission is increased. Further, in the communication electrode portion having no slit as shown in FIG. 3E, an eddy current is generated by the magnetic flux, and the influence on the power transmission is increased, and heat is generated in the communication electrode portion.

図3A、3B、3Cは、かかる問題を解決した構造を示す。まず、すべてにおいて、通信電極部110は、電力送受中空コイル部100の中空部分102の径以上の径を有する開口部112を有し、かつ、図3Aでは、開口部112と外周113を結ぶ一つのスリット114を有する通信電極部110の構造を、図3Bでは、開口部112と外周113を結ぶ二つのスリット114を有する通信電極部110の構造を示す。通信電極部110がかかる構造を有することにより、上記問題を解決することができる。なお、2つの電力情報伝送装置10の間でアースを共通にすることができる場合は、基準電位を別に設ける必要がないので図3Aの構造を使用することができる。   3A, 3B, and 3C show structures that solve this problem. First, in all, the communication electrode part 110 has an opening part 112 having a diameter equal to or larger than the diameter of the hollow part 102 of the power transmission / reception hollow coil part 100, and in FIG. The structure of the communication electrode unit 110 having two slits 114 is shown in FIG. 3B, and the structure of the communication electrode unit 110 having two slits 114 connecting the opening 112 and the outer periphery 113 is shown. When the communication electrode unit 110 has such a structure, the above problem can be solved. If the ground can be shared between the two power information transmission apparatuses 10, it is not necessary to separately provide a reference potential, so the structure of FIG. 3A can be used.

また、図3Cでは、電力送受中空コイル部100の中空部分102の径以上の径を有する開口部112を有するともに、開口部112と通信電極部110の外周113との間に、開口部112を囲むようにしてなるスリット114を有する通信電極部110を示す。好ましくは、開口部112を囲むスリット114と開口部112が同心円状にしてなるとよい。これにより、図3A、3Bに示す通信電極部110は、相手方の電力情報伝送装置10の通信電極部110と位置合わせをする際、ねじれの方向にも位置合わせが必要だが、この図3Cに示す通信電極部110は、それが不要となる。   Further, in FIG. 3C, an opening 112 having a diameter equal to or larger than the diameter of the hollow portion 102 of the power transmission / reception hollow coil unit 100 is provided, and the opening 112 is provided between the opening 112 and the outer periphery 113 of the communication electrode unit 110. The communication electrode part 110 which has the slit 114 made to enclose is shown. Preferably, the slit 114 surrounding the opening 112 and the opening 112 are concentric. As a result, the communication electrode unit 110 shown in FIGS. 3A and 3B needs to be aligned in the twist direction when aligning with the communication electrode unit 110 of the counterpart power information transmission apparatus 10, but this is shown in FIG. 3C. The communication electrode unit 110 is not necessary.

なお、スリット114が2つある場合、換言すれば、通信電極部110が2つの電極からなる場合、その電極の1つを基準電位、もう1つを信号電位とすることにより、情報伝送の効率をあげることができる。また、スリット114が3つ以上ある場合、その電極の1つを基準電位、その他の電極を複数の異なった信号電位とすることにより、情報伝送の効率をあげるとともに、複数の信号を同時に通信することができる。   When there are two slits 114, in other words, when the communication electrode unit 110 includes two electrodes, the efficiency of information transmission can be improved by using one of the electrodes as a reference potential and the other as a signal potential. Can give. When there are three or more slits 114, one of the electrodes is set to a reference potential and the other electrodes are set to a plurality of different signal potentials, thereby improving the efficiency of information transmission and simultaneously transmitting a plurality of signals. be able to.

また、電力情報伝送装置10の電力送受中空コイル部100は、扁平コイルであってもよい。より薄い電力情報伝送装置10が可能となる。   Further, the power transmission / reception hollow coil portion 100 of the power information transmission apparatus 10 may be a flat coil. A thinner power information transmission apparatus 10 is possible.

図4は、本実施形態における効果を説明するものである。同図では、外形40mm、内径15mm、巻数30回の電力送受中空コイル部100と、外形45mm、内径20mm、巻数30回の電力送受中空コイル部100を対向させ、図3Aに示す通信電極部110(外形40mm、内径20mm、スリット幅1mm)を1枚だけ挿入し、電力送受中空コイル部100と通信電極部110の間の間隔はそれぞれ1mmとし、間にABS樹脂製の板を挿入した場合の電力伝送特性を示す。
開口部112とスリット114の両方がない通信電極部110(図3D)や、開口部120はあるがスリット114がない通信電極部110(図3E)を使用する場合(図示せず)、2つの電力送受中空コイル部の間に通信電極部がないときに比べて、電力の伝送損失はおよそ24dBである。一方、開口部112とスリット114の両方がある通信電極部110(図3A、3B、3C)の場合は、その損失は3dB程度にまで低減させることができる。これは、開口部112を設けたことで、電力送受中空コイル部100の中空部分102を通る磁束が通信電極部110に遮られることがなくなり、また、スリット114を設けることによって通信電極部110に渦電流が流れないようになるためである。従って、開口部112とスリット114を設けることにより、伝送損失が20dB程度改善されることがわかる。
FIG. 4 explains the effect of this embodiment. In the figure, the power transmission / reception hollow coil portion 100 having an outer diameter of 40 mm, an inner diameter of 15 mm, and a winding number of 30 is opposed to the power transmission / reception hollow coil portion 100 having an outer shape of 45 mm, an inner diameter of 20 mm, and a winding number of 30, and the communication electrode portion 110 shown in FIG. When only one sheet (outer diameter 40 mm, inner diameter 20 mm, slit width 1 mm) is inserted, the distance between the power transmission / reception hollow coil part 100 and the communication electrode part 110 is 1 mm, and an ABS resin plate is inserted between them. The power transmission characteristics are shown.
When using the communication electrode part 110 (FIG. 3D) without both the opening 112 and the slit 114 and the communication electrode part 110 (FIG. 3E) with the opening 120 but without the slit 114 (not shown), two Compared to the case where there is no communication electrode portion between the power transmission / reception hollow coil portions, the power transmission loss is approximately 24 dB. On the other hand, in the case of the communication electrode portion 110 (FIGS. 3A, 3B, and 3C) having both the opening 112 and the slit 114, the loss can be reduced to about 3 dB. This is because the provision of the opening 112 prevents the magnetic flux passing through the hollow portion 102 of the power transmission / reception hollow coil unit 100 from being interrupted by the communication electrode unit 110, and the provision of the slit 114 allows the communication electrode unit 110 to This is because eddy currents do not flow. Therefore, it can be seen that the transmission loss is improved by about 20 dB by providing the opening 112 and the slit 114.

<第2実施形態>
図5は、本実施形態を示したシステムの模式図である。本実施形態では、DAC220において、地上デジタル放送1チャンネル分(帯域幅約5.7MHz、情報量16.8MbpsのOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重方式)信号)を0.3〜6MHzのベースバンド信号に変換した信号を用いて、LED240に電力を供給しながら、情報と電力の同時伝送を行った。なお、通信電極部110には、銅板コンデンサ270を設けることによりベースバンド信号が伝送され、受信された信号は、IQ変調器250により復調され、チューナ260に渡され、モニタ(図示せず)に地上デジタル放送の画像が映し出される。これによれば、電力伝送下で、地上デジタル放送のハイビジョン動画の伝送が可能となる。
Second Embodiment
FIG. 5 is a schematic diagram of a system showing the present embodiment. In the present embodiment, the DAC 220 transmits a terrestrial digital broadcasting channel (OFDM (Orthogonal Frequency Division Multiplexing) signal) having a bandwidth of about 5.7 MHz and an information amount of 16.8 Mbps (0.3 to 6 MHz). Information and power were transmitted simultaneously while supplying power to the LED 240 using the signal converted into the baseband signal. The communication electrode unit 110 is provided with a copper plate capacitor 270 so that a baseband signal is transmitted. The received signal is demodulated by the IQ modulator 250, passed to the tuner 260, and sent to a monitor (not shown). Digital terrestrial broadcast images are displayed. According to this, high-definition moving image transmission of terrestrial digital broadcasting can be performed under power transmission.

<第3実施形態>
図6は、本発明に係る電力情報伝送装置を、ノート型パーソナルコンピュータ200に対して適用した場合の模式図である。ノート型パーソナルコンピュータ200は受信側電力情報伝送装置12を、机210は送信側電力情報伝送装置11を有している。同図に示すように、本電力情報伝送装置は、非接触で電力と情報を同時に伝送できるため、机210の上の所定の位置にノート型パーソナルコンピュータを置くだけで、電力が供給され、情報のやり取りができるようになる。従来のように、電源ケーブルやネットワークケーブルを接続する必要がなく、人の動きが多いような場所でも、ケーブルが邪魔にならず、また、ケーブルにつまずくなどの事故も軽減できる。
<Third Embodiment>
FIG. 6 is a schematic diagram when the power information transmission apparatus according to the present invention is applied to a notebook personal computer 200. The notebook personal computer 200 has a reception-side power information transmission device 12, and the desk 210 has a transmission-side power information transmission device 11. As shown in the figure, the power information transmission apparatus can transmit power and information simultaneously in a non-contact manner, so that power can be supplied simply by placing a notebook personal computer at a predetermined position on the desk 210. Can be exchanged. There is no need to connect a power cable or network cable as in the past, and the cable does not get in the way even in places where there is a lot of human movement, and accidents such as tripping over the cable can be reduced.

<第4実施形態>
図7は、本発明に係る電力情報伝送装置を、埋込型医療機器280に対して適用した場合の模式図である。埋込型医療機器280は、受信側電力情報伝送装置12を有している。同図に示すように、本電力情報伝送装置10は、非接触で電力を伝送できるため、体外に電極を露出することなく埋込型医療機器280を体内に設置することができ、使用者の身体への負担は少なくて済む。さらに、電力だけでなく、非接触で情報も伝送できるため、体内の機器に給電しながら情報をやり取りすることが可能になるので、血圧、脈拍などの情報を長期間記録したデータなどの受け渡しが可能となる。
使用者は、埋込型医療機器280に充電を行ったり、当機器から情報を取る場合には、当機器側の本受信側電力情報伝送装置12と、電源側の本送信側電力情報伝送装置11のコイル軸を合わせることにより、給電と情報収集が可能となる。
<Fourth embodiment>
FIG. 7 is a schematic diagram when the power information transmission apparatus according to the present invention is applied to the implantable medical device 280. The implantable medical device 280 includes the reception-side power information transmission device 12. As shown in the figure, since the power information transmission device 10 can transmit power without contact, the implantable medical device 280 can be installed inside the body without exposing the electrode to the outside of the user. Less burden on the body. Furthermore, since not only power but also information can be transmitted without contact, it is possible to exchange information while supplying power to devices in the body, so it is possible to exchange data such as blood pressure and pulse information recorded for a long period of time. It becomes possible.
When the user charges the implantable medical device 280 or obtains information from the device, the user side power information transmission device 12 on the device side and the power information transmission device on the power source side are transmitted. By aligning the 11 coil axes, power supply and information collection are possible.

1 電力情報伝送システム
10 電力情報伝送装置
11 電力情報伝送装置(送信側)
12 電力情報伝送装置(受信側)
100 電力送受中空コイル部
101 コイル軸
102 中空部分
103 コイル面
110 通信電極部
111 電極面
112 開口部
113 外周
114 スリット
120 電源部
130 充電部
140 変調器
150 復調器
160 マイクロコンピュータ
170 機器(負荷)
200 ノート型パーソナルコンピュータ
210 机
220 デジタル・アナログ・コンバータ(DAC)
230 ファンクションジェネレータ
240 LED
250 IQ変調器
260 チューナ
270 銅板コンデンサ
280 埋込型医療機器
DESCRIPTION OF SYMBOLS 1 Power information transmission system 10 Power information transmission apparatus 11 Power information transmission apparatus (transmission side)
12 Power information transmission equipment (receiving side)
DESCRIPTION OF SYMBOLS 100 Electric power transmission / reception hollow coil part 101 Coil shaft 102 Hollow part 103 Coil surface 110 Communication electrode part 111 Electrode surface 112 Opening part 113 Outer periphery 114 Slit 120 Power supply part 130 Charging part 140 Modulator 150 Demodulator 160 Microcomputer 170 Equipment (load)
200 Notebook personal computer 210 Desk 220 Digital-to-analog converter (DAC)
230 Function generator 240 LED
250 IQ Modulator 260 Tuner 270 Copper Plate Capacitor 280 Implantable Medical Device

Claims (7)

磁界結合により非接触で電力を送受する電力送受中空コイル部と、
電界結合により非接触で通信を行う通信電極部と、を有し、
前記通信電極部の電極面を含む平面と前記電力送受中空コイル部のコイル軸とが略垂直に交わり、
前記電極面の一部が、コイル軸方向視で、前記電力送受中空コイル部の中空部分と重ならず、かつ、前記電力送受中空コイル部のコイル面と重なるように配置されることを特徴とする電力情報伝送装置。
A power transmission / reception hollow coil portion for transmitting and receiving power in a non-contact manner by magnetic field coupling;
A communication electrode unit that performs non-contact communication by electric field coupling,
The plane including the electrode surface of the communication electrode portion and the coil axis of the power transmission / reception hollow coil portion intersect substantially perpendicularly,
A part of the electrode surface is arranged so as not to overlap a hollow portion of the power transmission / reception hollow coil portion and to a coil surface of the power transmission / reception hollow coil portion in a coil axial direction view. Power information transmission device.
前記通信電極部は、前記電力送受中空コイル部の前記中空部分の径以上の径を有する開口部を有し、
前記中空部分の全体が、コイル軸方向視で、前記開口部と重なるように配置され、
前記通信電極部は、前記開口部と前記通信電極部の外周とを結ぶ1または2以上のスリットを有することを特徴とする請求項1に記載の電力情報伝送装置。
The communication electrode part has an opening having a diameter equal to or larger than the diameter of the hollow part of the power transmission / reception hollow coil part,
The entire hollow portion is arranged so as to overlap the opening in the coil axial direction view,
The power information transmission device according to claim 1, wherein the communication electrode unit includes one or more slits that connect the opening and an outer periphery of the communication electrode unit.
前記スリットは、さらに、前記開口部と前記通信電極部の外周との間に前記開口部を囲むようにしてなることを特徴とする請求項2に記載の電力情報伝送装置。   The power information transmission apparatus according to claim 2, wherein the slit further surrounds the opening between the opening and an outer periphery of the communication electrode part. 前記2以上のスリットを有する請求項2または3に記載の電力情報伝送装置において、前記スリットにより分割される通信電極部の一を基準電位とし、他を信号電位とすることを特徴とする請求項2または3に記載の電力情報伝送装置。   4. The power information transmission device according to claim 2 or 2, wherein the two or more slits have one of the communication electrode portions divided by the slit as a reference potential and the other as a signal potential. 4. The power information transmission device according to 2 or 3. 前期電力送受中空コイル部が、扁平コイルであることを特徴とする請求項1に記載の電力情報伝送装置。   The power information transmission device according to claim 1, wherein the power transmission / reception hollow coil portion is a flat coil. 請求項1〜5いずれかに記載の電力情報伝送装置を用いた電力情報伝送システムであって、
第一の電力情報伝送装置と第二の電力情報伝送装置のそれぞれの電力送受中空コイル部のコイル軸が略同一軸線上に配置され、
前記第一の電力情報伝送装置と前記第二の電力情報伝送装置のそれぞれの通信電極部の電極面が互いに対向するように配置され、
前記第一の電力情報伝送装置の前記電力送受中空コイル部は、前記第二の電力情報伝送装置の前記電力送受中空コイル部と磁界結合を行うために磁界を発生させ、
前記第一の電力情報伝送装置の前記通信電極部または前記第二の電力情報伝送装置の前記通信電極部の一方は、他方の電力情報伝送装置の前記通信電極部と電界結合を行うために電界を発生させることを特徴とする電力情報伝送システム。
A power information transmission system using the power information transmission device according to claim 1,
The coil shafts of the power transmission / reception hollow coil portions of the first power information transmission device and the second power information transmission device are arranged on substantially the same axis,
The electrode surfaces of the respective communication electrode portions of the first power information transmission device and the second power information transmission device are arranged to face each other,
The power transmission / reception hollow coil portion of the first power information transmission device generates a magnetic field to perform magnetic field coupling with the power transmission / reception hollow coil portion of the second power information transmission device,
One of the communication electrode unit of the first power information transmission device or the communication electrode unit of the second power information transmission device is configured to apply an electric field to perform electric field coupling with the communication electrode unit of the other power information transmission device. The power information transmission system characterized by generating.
2つの電力情報伝送装置の間で非接触で、磁界結合により電力を送受し、かつ電界結合により通信を行う電力情報伝送方法であって、
第一の前記電力情報伝送装置は、第二の前記電力情報伝送装置と磁界結合を行うために磁界を発生させ、
前記第一の前記電力情報伝送装置または前記第二の前記電力情報伝送装置の一方は、他方の前記電力情報伝送装置と電界結合を行うために電界を発生させ、
前記第一の前記電力情報伝送装置と前記第二の前記電力情報伝送装置との間の前記電界の電気力線が、前記第二の前記電力情報伝送装置と前記第二の前記電力情報伝送装置との間の前記磁界の磁束に重ならないことを特徴とする電力情報伝達方法。
A power information transmission method for transmitting and receiving power by magnetic field coupling and communicating by electric field coupling in a non-contact manner between two power information transmission devices,
The first power information transmission device generates a magnetic field to perform magnetic field coupling with the second power information transmission device,
One of the first power information transmission device or the second power information transmission device generates an electric field to perform electric field coupling with the other power information transmission device,
The electric field lines of the electric field between the first power information transmission device and the second power information transmission device are the second power information transmission device and the second power information transmission device. A power information transmission method characterized by not overlapping with the magnetic flux of the magnetic field between the two.
JP2009225278A 2009-09-29 2009-09-29 Device, system, and method for transmitting power and information Pending JP2012253398A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009225278A JP2012253398A (en) 2009-09-29 2009-09-29 Device, system, and method for transmitting power and information
PCT/JP2010/066787 WO2011040392A1 (en) 2009-09-29 2010-09-28 Device, system, and method for transmitting electric power and information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225278A JP2012253398A (en) 2009-09-29 2009-09-29 Device, system, and method for transmitting power and information

Publications (1)

Publication Number Publication Date
JP2012253398A true JP2012253398A (en) 2012-12-20

Family

ID=43826207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225278A Pending JP2012253398A (en) 2009-09-29 2009-09-29 Device, system, and method for transmitting power and information

Country Status (2)

Country Link
JP (1) JP2012253398A (en)
WO (1) WO2011040392A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122853A1 (en) * 2013-02-05 2014-08-14 株式会社 村田製作所 Electrical power receiver, electrical power transmitter, and electrical power transmission system
US9166286B2 (en) 2013-03-29 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Communication device
JP2017041594A (en) * 2015-08-21 2017-02-23 矢崎総業株式会社 Power transmission communication unit
CN108878117A (en) * 2014-11-14 2018-11-23 乾坤科技股份有限公司 Without substrate electronic building brick and its manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012002474T5 (en) * 2011-06-14 2014-02-27 Murata Manufacturing Co., Ltd. Energy transmission device and Energieübertragungssytem
JP2015008546A (en) * 2011-10-28 2015-01-15 パナソニック株式会社 Non-contact power transmission device
JP2015008548A (en) * 2011-10-28 2015-01-15 パナソニック株式会社 Non-contact power transmission device
WO2013065238A1 (en) * 2011-11-01 2013-05-10 パナソニック株式会社 Resonance coupler
JP2014097208A (en) * 2012-11-15 2014-05-29 Itoki Corp Communication and power supply table
DE102015121452B3 (en) * 2015-12-09 2017-05-11 Sick Ag Apparatus for the contactless transmission of data and for determining an angle change between two relatively moving objects
JP6778269B2 (en) * 2016-09-23 2020-10-28 アップル インコーポレイテッドApple Inc. Electromagnetic shield for wireless power transfer systems
US10084349B2 (en) 2017-02-15 2018-09-25 Apple Inc. Inductive module
US10910862B2 (en) 2016-09-23 2021-02-02 Apple Inc. Electromagnetic shielding for wireless power transfer systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620628Y2 (en) * 1986-08-05 1994-06-01 沖電気工業株式会社 Transmission medium symmetrically arranged information card
JPH0818474B2 (en) * 1988-02-02 1996-02-28 日本電気株式会社 Information card
JPH04275694A (en) * 1991-03-01 1992-10-01 Citizen Watch Co Ltd Ic card system
DE4125145A1 (en) * 1991-07-30 1993-02-04 Schwan Ulrich TRANSMISSION DEVICE
JP3432317B2 (en) * 1994-11-18 2003-08-04 エヌイーシートーキン株式会社 Cordless power station
US7907043B2 (en) * 2005-11-30 2011-03-15 Ryutaro Mori Planar inductor
JP4544289B2 (en) * 2007-11-09 2010-09-15 ソニー株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122853A1 (en) * 2013-02-05 2014-08-14 株式会社 村田製作所 Electrical power receiver, electrical power transmitter, and electrical power transmission system
JP5737546B2 (en) * 2013-02-05 2015-06-17 株式会社村田製作所 Power receiving device, power transmitting device, and power transmission system
JPWO2014122853A1 (en) * 2013-02-05 2017-01-26 株式会社村田製作所 Power receiving device, power transmitting device, and power transmission system
US9166286B2 (en) 2013-03-29 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Communication device
JPWO2014155424A1 (en) * 2013-03-29 2017-02-16 パナソニックIpマネジメント株式会社 Communication device
CN108878117A (en) * 2014-11-14 2018-11-23 乾坤科技股份有限公司 Without substrate electronic building brick and its manufacturing method
JP2017041594A (en) * 2015-08-21 2017-02-23 矢崎総業株式会社 Power transmission communication unit
US10027171B2 (en) 2015-08-21 2018-07-17 Yazaki Corporation Power transmitting communication unit

Also Published As

Publication number Publication date
WO2011040392A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP2012253398A (en) Device, system, and method for transmitting power and information
JP5969117B2 (en) Dual mode antenna
US6819013B2 (en) Electrically isolated power and signal coupler system for a patient connected device
US11075487B2 (en) Cable unit for connecting devices to enable wireless exchange of data and/or power between them
US11489366B2 (en) Battery module for wireless exchange of data and power of a patient monitoring system
US10027169B2 (en) Wireless power supply system, power transmitting apparatus and power receiving apparatus
US20060224048A1 (en) Wearable personal area data network
CN110679060A (en) Transmission assembly for universal wireless charging device and method thereof
JP3745151B2 (en) Non-contact transmission device
JPH11143600A (en) Docking bay system
US20180262236A1 (en) Connector and device for wireless transmission of data and power
EP1389079A4 (en) Apparatus for contactless power transfer for implantable medical device
US20120098352A1 (en) Method and apparatus for transmitting power and data for usb device
CN112422159B (en) Electro-magnetic quadrature coupling device for energy-carrying communication and energy-carrying communication system
TW201324950A (en) Antenna device and electronic instrument
US20180241436A1 (en) Stackable connector and device for wireless transmission of power
CN207117682U (en) Wireless operation control terminal and medical diagnostic equipment
KR20140021693A (en) Dual-mode antenna
CN106094984A (en) The distance sensing device of a kind of smart machine and smart machine
US20240088725A1 (en) Electronic device and method for wireless communication
CN113452160B (en) Terminal equipment and wireless charging assembly
CN206401959U (en) The charging base of terminal device
US11868180B2 (en) Docking station with wireless charging
KR20140021695A (en) Dual-mode antenna
KR20210011238A (en) Wireless power transfer apparatus and system including the same