JP2012252058A - Light diffusion member, original plate, and manufacturing method thereof - Google Patents

Light diffusion member, original plate, and manufacturing method thereof Download PDF

Info

Publication number
JP2012252058A
JP2012252058A JP2011122633A JP2011122633A JP2012252058A JP 2012252058 A JP2012252058 A JP 2012252058A JP 2011122633 A JP2011122633 A JP 2011122633A JP 2011122633 A JP2011122633 A JP 2011122633A JP 2012252058 A JP2012252058 A JP 2012252058A
Authority
JP
Japan
Prior art keywords
concavo
film
convex structure
original plate
light diffusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011122633A
Other languages
Japanese (ja)
Inventor
Naoki Taniguchi
直樹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2011122633A priority Critical patent/JP2012252058A/en
Publication of JP2012252058A publication Critical patent/JP2012252058A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light diffusion member of which hue is unchanged between the upper and lower parts of a step that corresponds to a boundary of a joint of an original plate, the boundary being inconspicuous.SOLUTION: The sheet-like light diffusion member includes, at least on one surface: a rugged structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm; and a step that has an average height of 1 to 100 μm and a maximum height of 1 to 100 μm and substantially linearly traverses the surface.

Description

本発明は、表面に微細な凹凸構造を有する光拡散部材に関し、例えば光源ユニットや液晶表示装置に用いられる光拡散部材に関する。
また、本発明は、表面に微細な凹凸構造を有する光拡散部材を製造する際に使用する原版(転写用原版)に関する。
The present invention relates to a light diffusing member having a fine concavo-convex structure on a surface, and relates to a light diffusing member used for a light source unit or a liquid crystal display device, for example.
The present invention also relates to an original plate (transfer original plate) used when manufacturing a light diffusing member having a fine concavo-convex structure on the surface.

現在、表面に微細な凹凸構造を有する光拡散部材は液晶表示装置やスクリーンなどの幅広い分野で利用されている。それに伴い、光拡散部材を大面積で作製したり、歩留まりよく生産する需要が増している。
光拡散部材の表面の凹凸構造は、通常、平らな基板の表面に、転写用原版の凹凸パターンを転写することにより形成されるが、大面積の光拡散部材を作成する場合には、原版を位置をずらして転写することを繰り返すことにより基材の全表面をカバーする必要がある。そのような場合には、光拡散部材の原版の端部に相当する箇所に継ぎ目が発生するので、このような継ぎ目を目立たなくするために、種々の方法が提案されている。
Currently, light diffusing members having a fine concavo-convex structure on the surface are used in a wide range of fields such as liquid crystal display devices and screens. Accordingly, there is an increasing demand for producing light diffusing members with a large area and producing with high yield.
The concavo-convex structure on the surface of the light diffusing member is usually formed by transferring the concavo-convex pattern of the original plate for transfer onto the surface of a flat substrate. It is necessary to cover the entire surface of the substrate by repeating the transfer by shifting the position. In such a case, since a seam is generated at a portion corresponding to the end of the original plate of the light diffusing member, various methods have been proposed in order to make the seam inconspicuous.

特許文献1には、表面に単位凹凸パターンが複数連続して形成された凹凸パターンシートであって、隣接する前記単位凹凸パターンの境界線が所定の間隔で波状に形成された凹凸パターンシートと、凹凸パターン型が形成された所定寸法の凹凸パターン原版を用いて、単位複製原版部が複数連続して形成された多面複製原版を製造する凹凸パターンの多面複製原版の製造方法が開示されている。また、特許文献1には、多面付けされた単位複製原版部の境界線が転写される部分が目立たないので、連続した凹凸パターンシートを作製することができるとの効果が記載されている。   Patent Document 1 discloses a concavo-convex pattern sheet in which a plurality of unit concavo-convex patterns are continuously formed on the surface, and a concavo-convex pattern sheet in which boundary lines between adjacent unit concavo-convex patterns are formed in a wave shape at a predetermined interval; There is disclosed a method for producing a multi-sided replication original plate having a concavo-convex pattern, in which a multi-sided replication original plate having a plurality of unit duplication plate parts formed continuously using a concavo-convex pattern original plate having a predetermined dimension on which a concavo-convex pattern mold is formed. Further, Patent Document 1 describes an effect that a continuous uneven pattern sheet can be produced because a portion to which a boundary line of a multi-faceted unit duplication original plate portion is transferred is not conspicuous.

特許文献2には、表面に凹凸パターンが形成された凹凸パターンシートであって、2本の波状の境界線が所定の間隔で形成された凹凸パターンシートと、凹凸パターンのつなぎ目に出来る溝に成形材料を充填し、前記成形材料に原版を押し当てる凹凸パターン複製版の製造方法が生地されている。また、特許文献2には、つなぎ目が転写された部分が目立たないとの効果が記載されている。
また、特許文献1または2に記載の凹凸パターンシートは、ホログラム、光回折パターンや2〜10μmの微細凹凸のある光学可変パターン、光ファイバーの研磨テープとして使用できる旨の記載がある。
Patent Document 2 discloses a concavo-convex pattern sheet having a concavo-convex pattern formed on the surface, and a concavo-convex pattern sheet in which two wavy boundary lines are formed at predetermined intervals, and a groove formed at the joint of the concavo-convex pattern. The manufacturing method of the uneven | corrugated pattern replication plate which fills material and presses an original plate to the said molding material is made | formed. Patent Document 2 describes an effect that a portion where a joint is transferred is not conspicuous.
Further, there is a description that the uneven pattern sheet described in Patent Document 1 or 2 can be used as a hologram, a light diffraction pattern, an optical variable pattern having fine unevenness of 2 to 10 μm, and an optical fiber polishing tape.

特開2003−345225号公報JP 2003-345225 A 特開2003−344628号公報JP 2003-344628 A

しかしながら、特許文献1または特許文献2に開示されている多面複製原版および凹凸パターン複製版では、原版の境界線に相当する箇所が蛇行してしまうという問題がある。特許文献1又は特許文献2に開示されている多面複製原版および凹凸パターン複製版では、原版の境界線に相当する箇所に、ある高さを持った段差を有するが、段差が蛇行していると段差の上下で色味が変わって見えるという現象が生じ、結果として原版の境界線が目立って見え、光拡散部材として使用する場合には品位悪化の要因となりうる。また、表面の微細凹凸構造が異方性を有している場合、段差が多面複製原版又は凹凸パターン複製版を横断する方向と微細凹凸構造の長軸方向が異なると、境界部分で光学特性が変化してしまう場合があるという問題もある。
本発明はかかる点に鑑みてなされたものであり、原版の境界線に相当する箇所の段差の上下で色味が変わらず、それゆえ境界線が目立ちにくい光拡散部材を提供することを目的とする。
However, in the multi-sided copy original plate and the uneven pattern copy plate disclosed in Patent Document 1 or Patent Document 2, there is a problem that a portion corresponding to the boundary line of the original plate meanders. In the multi-sided copy original plate and the uneven pattern copy plate disclosed in Patent Document 1 or Patent Document 2, there is a step having a certain height at a position corresponding to the boundary line of the original plate, but the step is meandering The phenomenon that the color appears to change at the top and bottom of the step occurs, and as a result, the boundary line of the original plate is conspicuous, and when used as a light diffusing member, it can be a factor of deterioration in quality. In addition, when the fine concavo-convex structure on the surface has anisotropy, if the direction in which the step crosses the multi-sided replication original plate or the concavo-convex pattern replication plate and the major axis direction of the fine concavo-convex structure are different, the optical characteristics at the boundary portion There is also a problem that it may change.
The present invention has been made in view of such points, and an object thereof is to provide a light diffusing member in which the color does not change above and below the level difference of the portion corresponding to the boundary line of the original plate, and therefore the boundary line is not noticeable. To do.

本発明者は、表面に凹凸構造を有する光拡散部材において、原版の境界線(継ぎ目)に相当する箇所を直線状にすることによって上記の課題を解決できることを着想し、検討の結果、以下の発明を完成させた。   The present inventor has conceived that, in a light diffusing member having a concavo-convex structure on the surface, the above-mentioned problem can be solved by making a portion corresponding to the boundary line (seam) of the original plate linear, and as a result of the study, Completed the invention.

すなわち、本発明の光拡散部材は以下のとおりである。
シート状の光拡散部材であって、
少なくとも一方の表面に、
平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造と、
平均高さが1〜100μm、最大高さが1〜100μmであり、前記表面を略直線状に横断する段差を有する光拡散部材。
That is, the light diffusing member of the present invention is as follows.
A sheet-like light diffusing member,
On at least one surface,
An uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm;
A light diffusing member having an average height of 1 to 100 μm, a maximum height of 1 to 100 μm, and having a step which crosses the surface substantially linearly.

また、本発明の光拡散部材製造用原版は以下のとおりである。
少なくとも一方の表面に、平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンと平均高さが1〜100μm、最大高さが1〜100μmであり前記表面を略直線状に横断する段差を有する、光拡散部材製造用平板状原版。
外側表面に、平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンと、平均高さが1〜100μm、最大高さが1〜100μmであり前記表面を略直線状に横断する段差を有する、光拡散部材製造用円筒状原版。
The original plate for producing a light diffusing member of the present invention is as follows.
An at least one surface has an uneven pattern corresponding to an uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm, an average height of 1 to 100 μm, and a maximum height of 1 to 100 μm. A flat original plate for producing a light diffusing member, having a step that crosses substantially linearly.
The outer surface has an uneven pattern corresponding to an uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm, an average height of 1 to 100 μm, a maximum height of 1 to 100 μm, A cylindrical original plate for producing a light diffusing member, having a step that crosses linearly.

さらに、本発明の光拡散部材製造用平板状原版の製造方法は以下のとおりである。
表面に平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンを有する第一のフィルムと、表面に平均ピッチが1〜150μm、高さが1〜150μmである凹凸構造に対応する凹凸パターンを有し、少なくとも一辺が略直線状である第二のフィルムを用意する工程、
第一のフィルムにの表面上に、該表面を略直線状に横断する接着剤層を形成する接着剤層形成工程、
前記接着剤層の上に第二のフィルムを裏面が前記接着剤層と接する向きに積層する積層工程、
前記接着剤が第二のフィルムの略直線状の一辺からはみ出さないように、かつ前記第二のフィルムの厚さから前記凹凸構造の高さを引いた値H(μm)と、前記接着剤層の厚さD(μm)が下記式(1)を満たすように、前記接着剤層を前記第二のフィルムの上から押し広げる押圧工程、及び
前記接着剤を硬化させる硬化工程、
を含む光拡散部材製造用平板状原版の製造方法。
1≦H+D≦100...(1)
Furthermore, the manufacturing method of the flat plate precursor for manufacturing the light diffusing member of the present invention is as follows.
A first film having a concavo-convex pattern corresponding to a concavo-convex structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm on the surface, and an average pitch of 1 to 150 μm and a height of 1 to 150 μm on the surface A step of preparing a second film having a concavo-convex pattern corresponding to the concavo-convex structure and at least one side being substantially linear;
An adhesive layer forming step of forming an adhesive layer crossing the surface substantially linearly on the surface of the first film;
A laminating step of laminating the second film on the adhesive layer in a direction in which the back surface is in contact with the adhesive layer;
A value H (μm) obtained by subtracting the height of the concavo-convex structure from the thickness of the second film so that the adhesive does not protrude from one side of the substantially linear shape of the second film, and the adhesive A pressing step of spreading the adhesive layer from above the second film so that the thickness D (μm) of the layer satisfies the following formula (1), and a curing step of curing the adhesive,
A method for producing a flat plate precursor for producing a light diffusing member.
1 ≦ H + D ≦ 100. . . (1)

さらに、本発明の光拡散部材製造用円筒状原版の製造方法は以下のとおりである。
少なくとも一辺が略直線状であり、表面に平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンを有する第三のフィルムを用意する工程、
裏面が円筒状基材に、第三のフィルムを前記略直線状の一辺と対向する辺の側から巻きつける捲回工程、
第三のフィルムの前記略直線状の一辺近傍の裏面上に、該フィルムを略直線状に横断する接着剤層を形成する接着剤層形成工程、
前記接着剤層を第三のフィルムの表面に積層する積層工程、
前記接着剤が前記第三のフィルムの略直線状の一辺からはみ出さないように、かつ前記第三のフィルムの厚さから前記凹凸構造の高さを引いた値H(μm)と、前記接着剤層の厚さD(μm)が下記式(1)を満たすように、前記接着剤層を前記第三のフィルムの上から押し広げる押圧工程、及び
前記接着剤を硬化させる硬化工程、
を含む光拡散部材製造用円筒状原版の製造方法。
1≦H+D≦100...(1)
Furthermore, the manufacturing method of the cylindrical negative | original plate for light-diffusion member manufacture of this invention is as follows.
A step of preparing a third film having a concavo-convex pattern corresponding to a concavo-convex structure having at least one side substantially linear and having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm on the surface;
A winding process in which the back surface is wound around the cylindrical base material from the side of the side opposite to the substantially linear side,
An adhesive layer forming step of forming an adhesive layer that crosses the film substantially linearly on the back surface of the third film near one side of the substantially linear shape;
A laminating step of laminating the adhesive layer on the surface of the third film;
A value H (μm) obtained by subtracting the height of the concavo-convex structure from the thickness of the third film so that the adhesive does not protrude from one side of the substantially linear shape of the third film, and the adhesion A pressing step of spreading the adhesive layer from above the third film so that the thickness D (μm) of the agent layer satisfies the following formula (1), and a curing step of curing the adhesive,
The manufacturing method of the cylindrical original plate for light diffusing member manufacture containing this.
1 ≦ H + D ≦ 100. . . (1)

本発明によれば、製造の際に使用された原版に含まれる境界線(継ぎ目)に相当する箇所において、段差の上下で色味が変わらず、それゆえ境界線が目立ちにくい光拡散部材を提供することができる。   According to the present invention, there is provided a light diffusing member in which the color does not change at the top and bottom of the level difference in the portion corresponding to the boundary line (seam) included in the original plate used in the manufacture, and therefore the boundary line is not noticeable. can do.

(a)(b)本発明の光拡散部材の断差と凹凸構造の一例を示す模式図。(A) (b) The schematic diagram which shows an example of the difference and uneven structure of the light-diffusion member of this invention. 凹凸構造の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of an uneven structure. 凹凸構造の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of an uneven structure. 表面を略直線状に横断する段差の説明図。Explanatory drawing of the level | step difference which crosses the surface substantially linearly. 表面を略直線状に横断する段差の説明図。Explanatory drawing of the level | step difference which crosses the surface substantially linearly. 表面を略直線状に横断するものではない段差の例を示す説明図。Explanatory drawing which shows the example of the level | step difference which does not cross the surface substantially linearly. 異方性を有する凹凸構造の説明図。Explanatory drawing of the uneven structure which has anisotropy. 凹凸構造の長軸方向と段差が表面を横断する方向のなす角αの説明図。Explanatory drawing of angle (alpha) which the major axis direction of a concavo-convex structure and the level | step difference cross the surface. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 本発明の平板状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the flat plate precursor of this invention. 原版における段差部分の断面模式図。The cross-sectional schematic diagram of the level | step-difference part in an original edition. 原版における段差部分の断面模式図。The cross-sectional schematic diagram of the level | step-difference part in an original edition. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 本発明の円筒状原版の製造方法の一実施態様を示す図。The figure which shows one embodiment of the manufacturing method of the cylindrical negative | original plate of this invention. 実施例1の光拡散部材の段差近傍の表面プロファイル図。FIG. 3 is a surface profile diagram in the vicinity of a step of the light diffusing member of Example 1. 実施例2の光拡散部材の段差近傍の表面プロファイル図。FIG. 6 is a surface profile diagram in the vicinity of a step of the light diffusing member of Example 2. 実施例3の光拡散部材の段差近傍の表面プロファイル図。FIG. 6 is a surface profile diagram in the vicinity of a step of a light diffusing member of Example 3. 実施例4の光拡散部材の段差近傍の表面プロファイル図。FIG. 6 is a surface profile diagram in the vicinity of a step of a light diffusing member of Example 4. 実施例5の光拡散部材の段差近傍の表面プロファイル図。FIG. 10 is a surface profile diagram in the vicinity of a step of a light diffusing member of Example 5. 比較例1の光拡散部材の段差近傍の表面プロファイル図。The surface profile figure of the level | step difference vicinity of the light-diffusion member of the comparative example 1. 比較例2の光拡散部材の段差近傍の表面プロファイル図。The surface profile figure of the level | step difference vicinity of the light-diffusion member of the comparative example 2.

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
但し、図面は模式的なものであり、本発明の実施の形態の各構成要件の寸法はこれにより制限されない。また、図面相互間においては、互いの寸法の関係や比率が異なることもある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
However, the drawings are schematic, and the dimensions of the constituent elements of the embodiment of the present invention are not limited thereby. In addition, the dimensional relationships and ratios may differ between the drawings.

(光拡散部材)
本発明の第1の実施の形態に係る光拡散部材は、少なくとも一方の表面に平均ピッチ1〜150μm、平均高さ1〜150μmの凹凸構造を有し、前記表面の少なくとも一箇所に平均高さが1〜100μmで最大高さが1〜100μmであり前記表面を略直線状に横断する段差を有する光拡散部材である。 このような光拡散部材としては、例えば、図1(a)、及び図1(b)に斜視図で示した凹凸構造と段差を有する光拡散部材があげられる。ここで、図1−aは、異方性を有する凹凸構造の場合を示し、図1(b)は等方性を有する凹凸構造の場合を示している。
この凹凸構造は、複数の凹部及び/又は凸部の集合により構成される表面構造であれば限定はなく、各凹部、凸部の形状や配置にも限定はない。各凹部、凸部の形状としては、例えば、(楕)円錐型、釣鐘型、半円柱(畝)、三角柱(畝)等が挙げられ、また、その配置としては、格子配置(円錐型、釣鐘型等の場合)、平行配置(畝の場合)が挙げられる。具体例としては、たとえば図2aの断面図に示したような各凸部が半円柱状(畝)で、そのピッチ及び高さが規則性を持った凹凸構造や、図2bの断面図に示したような各凸部の高さが不規則な凹凸構造が挙げられる。
(Light diffusion member)
The light diffusing member according to the first embodiment of the present invention has a concavo-convex structure with an average pitch of 1 to 150 μm and an average height of 1 to 150 μm on at least one surface, and the average height is at least one place on the surface. Is a light diffusing member having a height difference of 1 to 100 μm and a maximum height of 1 to 100 μm, and having a step that crosses the surface substantially linearly. An example of such a light diffusing member is a light diffusing member having a step and a concave-convex structure shown in perspective views in FIGS. 1 (a) and 1 (b). Here, FIG. 1A shows the case of an uneven structure having anisotropy, and FIG. 1B shows the case of an uneven structure having isotropic properties.
The concave-convex structure is not limited as long as it is a surface structure constituted by a set of a plurality of concave portions and / or convex portions, and there is no limitation on the shape and arrangement of the concave portions and convex portions. Examples of the shape of each concave portion and convex portion include (elliptical) conical shape, bell shape, semi-cylindrical shape (畝), triangular prism (畝), and the like, and the arrangement is lattice arrangement (conical shape, bell shape). In the case of a mold, etc.) and parallel arrangement (in the case of a collar). As a concrete example, for example, each convex part as shown in the cross-sectional view of FIG. 2a is a semi-cylindrical shape (ridge), and the pitch and height thereof are regular, or shown in the cross-sectional view of FIG. 2b. An uneven structure in which the height of each protrusion is irregular is given.

前記凹凸構造は、好ましくは平均ピッチ1〜50μm、平均高さ1〜50μmであり、さらに好ましくは平均ピッチ1〜30μm、高さ1〜30μmである。なお、平均ピッチが測定方向により異なる場合には、平均ピッチが最も短くなる方向について測定した平均ピッチが1〜50μmである。   The uneven structure preferably has an average pitch of 1 to 50 μm and an average height of 1 to 50 μm, more preferably an average pitch of 1 to 30 μm and a height of 1 to 30 μm. In addition, when an average pitch changes with measurement directions, the average pitch measured about the direction where an average pitch becomes the shortest is 1-50 micrometers.

前記表面を略直線状に横断する段差は、凹凸構造の境界を目立ちにくくするために、平均高さが1〜50μmで、最大高さが1〜50μmであることがより好ましく、平均高さが1〜25μmで、最大高さが1〜25μmであることがさらに好ましい。
ここで、段差が略直線状であるとは、表面において段差の開始端と終端を結んだ直線の両側2mmの範囲内に、段差を平面視した線がすべて含まれることをいう。たとえば、段差を平面視した直線31を実線、両側2mmの範囲を点線32で示した図3a〜cにおいては、図3a、及び図3bで示した段差は略直線状に該当し、図3cで示した段差は該当しない。
The step that crosses the surface substantially linearly has an average height of 1 to 50 μm and a maximum height of 1 to 50 μm in order to make the boundary of the concavo-convex structure inconspicuous. More preferably, the maximum height is 1 to 25 μm.
Here, that the level difference is substantially linear means that all the lines in plan view of the level difference are included within a range of 2 mm on both sides of the straight line connecting the start and end of the level difference on the surface. For example, in FIGS. 3a to 3c in which the straight line 31 in plan view of the step is shown by a solid line and the range of 2 mm on both sides is shown by the dotted line 32, the step shown in FIGS. 3a and 3b corresponds to a substantially straight line. The steps shown are not applicable.

この凹凸構造の平均ピッチ及び平均高さ、並びに段差の平均及び最大高さは、例えば株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)や原子間力顕微鏡(AFM:Atomic Force Microscope)を用いて、光拡散部材の任意の断面(ただし、凹凸構造、段差を横切る断面)を観察することにより測定可能である。なお、凹凸構造の平均ピッチが測定方向により異なる場合には、少なくとも凹凸構造の平均ピッチについては、平均ピッチが最も短くなる方向に平行な断面で観察するものとする。
ここで、凹凸構造の平均ピッチ、平均高さは、任意の断面から抽出した任意の300μmの間に存在する凹部又は凸部のピッチ、高さの平均値とする。
また、段差の平均ピッチ、最大高さは、段差を横切る任意の10断面で測定した段差の高さの平均値、最大値とする。
The average pitch and average height of the concavo-convex structure and the average and maximum height of the step are, for example, an ultra-depth color 3D shape measurement microscope (VK-9500) manufactured by Keyence Corporation, an atomic force microscope (AFM), or an atomic force microscope. ), And can be measured by observing an arbitrary cross section of the light diffusion member (however, a concavo-convex structure, a cross section crossing a step). When the average pitch of the concavo-convex structure varies depending on the measurement direction, at least the average pitch of the concavo-convex structure is observed in a cross section parallel to the direction in which the average pitch is the shortest.
Here, the average pitch and average height of the concavo-convex structure are the average values of the pitch and height of the concave portions or convex portions existing between arbitrary 300 μm extracted from an arbitrary cross section.
In addition, the average pitch and the maximum height of the steps are the average value and the maximum value of the heights of the steps measured on any 10 cross sections that cross the step.

本実施の形態光拡散部材においては、段差から発生し(段差から始まり)、段差と直交する方向に500μm以上の長さ(幅)を有する欠陥を持たないことが好ましい。ここで欠陥とは、各凹部及び/又は凸部の欠落(図11参照)や、光の散乱特性を局所的に変化させるような異物が存在している部分のことをいい、段差と直交する方向とは、光拡散部材表面において段差の開始端と終端を結んだ直線と直交する方向をいう。なお、段差から発生する欠陥は、その段差と直交する方向の長さ(幅)が500μm未満であることが好ましいが、段差に平行な方向の長さについてはは500μm以上であってもよいい。凹凸構造の境界を認識しづらくするためには、このような段差から発生する欠陥の幅が500μm未満であることが好ましく、100μm未満であることがより好ましく、50μm未満であることがさらに好ましい。   In the light diffusing member of the present embodiment, it is preferable that the light diffusing member does not have a defect that occurs from a step (starts from a step) and has a length (width) of 500 μm or more in a direction orthogonal to the step. Here, the defect refers to a portion where each concave portion and / or convex portion is missing (see FIG. 11) or a foreign substance that locally changes the light scattering characteristics, and is orthogonal to the step. The direction refers to a direction orthogonal to a straight line connecting the start end and the end of the step on the surface of the light diffusing member. In addition, it is preferable that the length (width) of the defect generated from the step in the direction orthogonal to the step is less than 500 μm, but the length in the direction parallel to the step may be 500 μm or more. . In order to make it difficult to recognize the boundary of the concavo-convex structure, the width of the defect generated from such a step is preferably less than 500 μm, more preferably less than 100 μm, and even more preferably less than 50 μm.

第1の実施の形態に係る光拡散部材においては、凹凸構造が異方性を有していても良い。ここで言う異方性を有するとは、表面(凹凸構造が形成されている面)の法線方向から当該凹凸構造を平面視した時に、凹部又は凸部41の、任意の軸43上でのピッチと、該軸43と直交する軸42上でのピッチが異なることをいい、例えば、前述の図1(a)の凹凸構造や、図4記載のように開口部が楕円状の凹部または底面が楕円状の凸部41からなる凹凸構造や、レンチキュラーレンズ状の凹凸構造のことである。凹凸構造が異方性を有している場合、凹凸構造の長軸方向(ピッチが最も長くなる方向のことをいう)と、段差が表面を略直線状に横断する方向(光拡散部材表面において段差の開始端と終端を結んだ直線と平行な方向)とがなす角αが10°以下であると段差による境界がより認識しづらくなるために好ましい(図5参照)。   In the light diffusing member according to the first embodiment, the concavo-convex structure may have anisotropy. Having anisotropy here means that the concave or convex portion 41 on an arbitrary axis 43 when the concave and convex structure is viewed in plan from the normal direction of the surface (surface on which the concave and convex structure is formed). This means that the pitch and the pitch on the axis 42 orthogonal to the axis 43 are different. For example, the concave-convex structure in FIG. 1 (a) described above, or a concave or bottom surface having an elliptical opening as shown in FIG. Is a concavo-convex structure composed of elliptical convex portions 41 or a lenticular lens-shaped concavo-convex structure. When the concavo-convex structure has anisotropy, the long axis direction of the concavo-convex structure (referred to as the direction in which the pitch becomes the longest) and the direction in which the step crosses the surface substantially linearly (on the surface of the light diffusing member) It is preferable that the angle α formed by the step formed in the direction parallel to the straight line connecting the start end and the end of the step is 10 ° or less because the boundary due to the step becomes more difficult to recognize (see FIG. 5).

第1の実施の形態に係る光拡散部材の厚みに限定はなく、光拡散部材が可撓性のない板状部材であっても、可撓性を有するフィルム状部材であっても好ましく用いることができる。   There is no limitation on the thickness of the light diffusing member according to the first embodiment, and the light diffusing member is preferably a plate-like member having no flexibility or a film-like member having flexibility. Can do.

(原版と原版の製造方法)
以下、本発明に係る光拡散部材の製造方法の一例について記す。
本発明に係る光拡散部材が表面に有する凹凸構造及び略直線状の段差は、好ましくは、原版を用いて転写賦形される。
(Original plate and original plate manufacturing method)
Hereinafter, an example of the manufacturing method of the light-diffusion member which concerns on this invention is described.
The uneven structure and the substantially linear step provided on the surface of the light diffusing member according to the present invention are preferably transferred and shaped using an original plate.

使用する転写用原版は、その表面(平板状原版の場合には一方の表面)に上述した光拡散部材が表面に有する凹凸構造及び段差に対応する凹凸パターンを有するものであれば、平板状であっても円筒状であってもよい。   The transfer master to be used is flat if the surface (one surface in the case of a flat master) has the concavo-convex structure and the concavo-convex pattern corresponding to the step on the surface. It may be cylindrical.

上記原版において、少なくとも凹凸パターンが形成された面は、耐久性の高い金属(鋼材、ニッケル、クロム等)や硬質の樹脂からなるのが好ましく、原版全体が前記耐久性の高い金属や硬質の樹脂からなることがより好ましい。   In the original plate, at least the surface on which the concavo-convex pattern is formed is preferably made of a highly durable metal (steel material, nickel, chromium, etc.) or a hard resin, and the entire original plate is made of the highly durable metal or hard resin. More preferably, it consists of.

このような段差に対応する凹凸パターンを有する原版は、例えば以下のようにして作製することができる。
まず、片面に平均ピッチ1〜150μm、平均高さ1〜150μmの凹凸構造を有するフィルム61を、平板状原版の場合は少なくとも2枚、円筒状原版の場合は少なくとも1枚用意する(図6a)。ここで、少なくともそのうちの一枚の一辺は略直線状である。このようなフィルムとしては、例えば薄い金属箔や、樹脂フィルムを好ましく用いることができる。
An original plate having a concavo-convex pattern corresponding to such a step can be produced, for example, as follows.
First, at least two films 61 having a concavo-convex structure with an average pitch of 1 to 150 μm and an average height of 1 to 150 μm on one side are prepared in the case of a plate-shaped original plate and at least one in the case of a cylindrical original plate (FIG. 6 a). . Here, at least one of the sides is substantially linear. As such a film, for example, a thin metal foil or a resin film can be preferably used.

なお、上述のフィルムの表面に凹凸構造を賦与する方法に限定はなく、公知の方法を使用することができる。例えば、切削、サンドブラスト等の機械加工によって賦与してもよいし、レーザーのスペックルパターン露光により賦与することもできる。スペックルパターン露光を利用する方法は、機械加工では困難なピッチ及び/又は高さが10μm以下の微細な凹凸構造の形成に適しており、また適度な不規則性を有する凹凸構造を形成することも容易であるので、好ましい方法である。
スペックルパターン露光を利用する場合には、具体的には次のようにして微細な凹凸構造を形成することができる。
例えば、拡散層を通過させたレーザー光によって空間にスペックルパターンを発生させ、これをフォトレジスト等の感光性材料に照射する。次いで、露光した感光性材料を公知の方法によって現像すると、感光性材料に上記スペックルパターンに対応した凹凸構造(この凹凸構造のことも「スペックルパターン」ということがある。)を有するレジストマスタを得る。
通常、レーザー光を拡散層で拡散させると、スペックルパターンは等方性の円形ムラとして発生するが、レーザー光の波長やレーザー光を拡散させる条件等を適宜変更することにより、所望の異方性を有する楕円形ムラを発生させることが可能となる。具体的には、特表2004−508585号公報の段落0047〜0057に開示される方法等によって発生させることができる。
凹凸構造を有する金属型の場合は、さらに、上記のようにして作製したレジストマスタをサブマスタ型とし、このサブマスタ型に電鋳等の方法で金属を被着してこの金属に上記凹凸構造に対応する凹凸構造を転写した後にレジストマスタから剥離させることによって作製することができる。
以上のようにして作製した凹凸構造を有する型から、基材(樹脂フィルム等)上に感光性材料(紫外線硬化樹脂等)により構成される層を有するフィルムに凹凸構造を転写することにより、前述の表面に凹凸構造を有するフィルムを得ることもできる。
なお、干渉露光によるスペックルパターンを用いた微細な凹凸構造の作製方法は周知であり、例えば、特許第3413519号、特表2003−525472号公報及び特表2004−508585号公報等に開示されている。
In addition, there is no limitation in the method of providing a concavo-convex structure on the surface of the above-mentioned film, A well-known method can be used. For example, it may be given by machining such as cutting or sandblasting, or may be given by laser speckle pattern exposure. The method using speckle pattern exposure is suitable for forming a fine concavo-convex structure having a pitch and / or height of 10 μm or less, which is difficult by machining, and forming a concavo-convex structure having an appropriate irregularity. Is also a preferable method.
When using speckle pattern exposure, specifically, a fine uneven structure can be formed as follows.
For example, a speckle pattern is generated in the space by laser light that has passed through the diffusion layer, and this is irradiated onto a photosensitive material such as a photoresist. Then, when the exposed photosensitive material is developed by a known method, the photosensitive material has a concavo-convex structure corresponding to the speckle pattern (this concavo-convex structure may also be referred to as “speckle pattern”). Get.
Normally, when laser light is diffused in a diffusion layer, the speckle pattern is generated as isotropic circular unevenness. However, by changing the wavelength of the laser light and the conditions for diffusing the laser light appropriately, the desired anisotropic property can be obtained. It becomes possible to generate elliptical unevenness having the property. Specifically, it can be generated by the method disclosed in paragraphs 0047 to 0057 of JP-T-2004-508585.
In the case of a metal mold having a concavo-convex structure, the resist master prepared as described above is used as a sub-master mold, and a metal is applied to the sub-master mold by a method such as electroforming, so that the metal corresponds to the concavo-convex structure. It can be produced by peeling the concavo-convex structure to be transferred from the resist master.
By transferring the concavo-convex structure from the mold having the concavo-convex structure produced as described above to a film having a layer composed of a photosensitive material (ultraviolet curable resin, etc.) on a base material (resin film, etc.), A film having an uneven structure on the surface can also be obtained.
In addition, a method for producing a fine concavo-convex structure using a speckle pattern by interference exposure is well known, and is disclosed in, for example, Japanese Patent No. 3341519, Japanese Patent Publication No. 2003-525472, Japanese Patent Publication No. 2004-508585, and the like. Yes.

次に、平板状の原版の場合は、用意した表面に凹凸構造を有する2枚のフィルムうち、1枚のフィルム(第一のフィルム)61a(図6a)の一部分に接着剤を塗布すること等によって前記表面を略直線状に横断する接着剤層62を形成し(接着剤層形成工程(図6b))、前記接着剤層の上に、もう一枚の一辺が略直線状であるフィルム(第二のフィルム)61bを裏面が前記接着剤層と接する向きに積層する(積層工程(図6c))。次いで、前記接着剤が前記第二のフィルムの略直線状の一辺からはみ出さないように、かつ前記第二のフィルムの厚さからその凹凸構造の高さを引いた値H(μm)と、前記接着剤層の厚さD(μm)が下記式(1)を満たすように接着剤層を前記第二のフィルムの上から押し広げ(押圧工程(図6d〜f))、前記接着剤を硬化させる(硬化工程)。
1≦H+D≦100...(1)
Next, in the case of a plate-shaped original plate, an adhesive is applied to a part of one film (first film) 61a (FIG. 6a) out of two films having an uneven structure on the prepared surface, etc. To form an adhesive layer 62 crossing the surface substantially linearly (adhesive layer forming step (FIG. 6b)), and another film having a substantially linear shape on the adhesive layer ( A second film 61b is laminated so that the back surface is in contact with the adhesive layer (lamination step (FIG. 6c)). Next, a value H (μm) obtained by subtracting the height of the concavo-convex structure from the thickness of the second film so that the adhesive does not protrude from one side of the substantially linear shape of the second film, The adhesive layer is spread from above the second film so that the thickness D (μm) of the adhesive layer satisfies the following formula (1) (pressing step (FIGS. 6d to f)), and the adhesive is Curing (curing process).
1 ≦ H + D ≦ 100. . . (1)

押圧工程においては、接着剤が第二のフィルムの端からはみ出ないように注意しながら接着剤層を押し広げ、接着剤層の厚さをある程度薄くした後、第一のフィルム原版と第二のフィルムの境界を粘着テープ63等でしっかりと固定し(図6e)、その後、第一のフィルムと第二のフィルムとの境界まで再度接着剤層を押し広げる(図6f)ことが好ましい。このようにすると、粘着テープ63等で接着剤が堰き止められるため、第二のフィルムの端から接着剤がはみ出ることを抑えることができる。接着剤が第二のフィルムからはみ出てしまうと、その部分は凹凸構造の全部もしくは一部が接着剤に埋もれるため前述した欠陥の原因となってしまう。粘着テープ63等は接着剤を硬化させた後(硬化工程の後)に剥離して除去することができ、これにより、段差に対応するパターンを有する原版を作製することができる(図6g)。   In the pressing step, the adhesive layer is spread out while taking care that the adhesive does not protrude from the end of the second film, and after the thickness of the adhesive layer is reduced to some extent, the first film master and the second film It is preferable to firmly fix the boundary of the film with an adhesive tape 63 or the like (FIG. 6e), and then spread the adhesive layer again to the boundary between the first film and the second film (FIG. 6f). If it does in this way, since an adhesive agent is dammed up with the adhesive tape 63 grade | etc., It can suppress that an adhesive agent protrudes from the edge of a 2nd film. When the adhesive protrudes from the second film, the entire surface of the concavo-convex structure is partially or buried in the adhesive, which causes the above-described defects. The adhesive tape 63 and the like can be peeled and removed after the adhesive is cured (after the curing step), whereby an original plate having a pattern corresponding to the step can be produced (FIG. 6g).

この製造方法で用いる接着剤に限定はなく、アクリル樹脂系接着剤、ウレタン樹脂系接着剤、エポキシ樹脂系接着剤など様々な種類のものを使用できる。特に紫外線硬化型の接着剤を好ましく用いることができる。また、ハンドリングの観点から粘度200cP以下の低粘度の接着剤を好ましく用いることができ、例えば(有)グルーラボ社製のGL−1001等を用いることが出来る。   The adhesive used in this manufacturing method is not limited, and various types of adhesives such as an acrylic resin adhesive, a urethane resin adhesive, and an epoxy resin adhesive can be used. In particular, an ultraviolet curable adhesive can be preferably used. From the viewpoint of handling, a low-viscosity adhesive having a viscosity of 200 cP or less can be preferably used. For example, GL-1001 manufactured by Glue Laboratories, Inc. can be used.

また、第一、第二のフィルムを樹脂フィルムから作製していた場合には、このようにして作製した原版にさらにニッケル等の電鋳処理を行うことによって、金属原版とすることもできる。   In addition, when the first and second films are made from a resin film, a metal original plate can be obtained by further performing electroforming treatment of nickel or the like on the original plate thus prepared.

この原版を作製する時に使用する表面に凹凸構造を有するフィルムの厚さdから凹凸構造の高さhを引いた値Hと接着剤層の厚さDとの合計が、作製する原版の段差、及び、これによって転写される光拡散部材の段差の高さAとなる。そこで上記HとDとの合計が1〜100μmとなるように調節し、凹凸構造の境界である段差を目立ちにくくする(図7a(第一及び第二のフィルムがポリエチレンテレフタレート等の基材71の上に凹凸構造層72を形成したものである場合)、図7b(第一及び第二のフィルムが金属フィルム(金型)である場合の例))。
また、以上の手法を複数回繰り返すことで、より大面積の原版を得ることも可能である。
The sum of the value H obtained by subtracting the height h of the concavo-convex structure from the thickness d of the film having the concavo-convex structure on the surface used when producing this original plate, and the thickness D of the adhesive layer, In addition, the height A of the level difference of the light diffusing member to be transferred is obtained. Therefore, the total of H and D is adjusted so as to be 1 to 100 μm, and the step which is the boundary of the concavo-convex structure is made inconspicuous (FIG. 7a (the first and second films are made of a base material 71 such as polyethylene terephthalate). FIG. 7 b (an example in which the first and second films are metal films (metal molds))).
In addition, it is possible to obtain an original plate with a larger area by repeating the above-described method a plurality of times.

また、原版が円筒状であると、ロール状のフィルム基材に回転により連続転写することで、大面積な光拡散部材を得ることができるという観点から好ましい。このような円筒状の原版は、以下のようにして作製することができる。   Moreover, it is preferable from a viewpoint that a large-area light-diffusion member can be obtained by carrying out continuous transfer by rotation to a roll-shaped film base material as the original plate is cylindrical. Such a cylindrical original plate can be produced as follows.

円筒状の原版の場合は、少なくとも一辺が略直線状であり、表面に凹凸構造を有する第三のフィルム84(図8a)を、予め用意しておいた円筒状基材83に前記略直線状の一辺と対向する辺から、裏面が円筒状基材と接するように(凹凸構造を有する表面が外側となるように)巻きつけ(捲回工程(図8b))、いったん、第三のフィルムを円筒状基材の回りに弛みのないようにしっかりと巻きつけた後、その巻き終わり部分をわずかに浮かせての前記対向する辺の近傍の裏面に接着剤85を塗布すること等によってフィルムを略直線状に横断する接着剤層を形成し(接着剤層形成工程)、次いで前記接着剤層を対向する前記第三のフィルムの表面に積層し(積層工程(図8c))、前記接着剤が前記第三のフィルムの略直線状の一辺からはみ出さないように、かつ前記第三のフィルムの厚さから前記凹凸構造の高さを引いた値H(μm)と、前記接着剤層の厚さD(μm)が下記式(1)を満たすように接着剤層を前記第三のフィルム原版の上から押し広げ(押圧工程(図8d〜f))、前記接着剤を硬化させることによって(硬化工程)、作製することができる。
1≦H+D≦100...(1)
In the case of a cylindrical original, at least one side is substantially linear, and a third film 84 (FIG. 8a) having a concavo-convex structure on the surface is provided on the cylindrical base 83 prepared in advance. Wrapping from the side opposite to one side so that the back surface is in contact with the cylindrical base material (so that the surface having the concavo-convex structure is outside) (winding step (FIG. 8b)), once the third film is After tightly winding around the cylindrical substrate so as not to sag, the adhesive film 85 is applied to the back surface in the vicinity of the opposite sides with the end of the winding slightly lifted, etc. Forming an adhesive layer crossing linearly (adhesive layer forming step), and then laminating the adhesive layer on the surface of the third film facing (lamination step (FIG. 8c)), From one side of the substantially linear shape of the third film A value H (μm) obtained by subtracting the height of the concavo-convex structure from the thickness of the third film and a thickness D (μm) of the adhesive layer so as not to protrude and the following formula (1) It can be produced by spreading the adhesive layer from above the third film original so as to fill (pressing step (FIGS. 8d to 8f)) and curing the adhesive (curing step).
1 ≦ H + D ≦ 100. . . (1)

なお、第三のフィルム84は、その1辺の長さlが、巻き芯とする前記円筒状基材83の長さL以下で、その辺に直交する辺の長さwが前記円筒状基材83の円周の長さよりも10mm以上長いような長方形のフィルムであることが好ましい。押圧工程においては、接着剤85が第三フィルム84の端(巻き終わり部分)からはみ出ないように注意しながら接着剤を押し広げ、接着剤層の厚さをある程度薄くする(図8d)。その後、上側のフィルム原版と下側のフィルム原版の境界を粘着テープ86等でしっかりと固定する(図8e)。次に上側のフィルムと下側のフィルムの境界まで再度接着剤を押し広げる(図8f)。この時、粘着テープ86等により接着剤が堰き止められるため、フィルムの端から接着剤が出ることを抑えることが出来る。この時にわずかでも接着剤がフィルムからはみ出てしまうと、その部分は凹凸構造の全部もしくは一部が接着剤に埋められるため欠陥となる。接着剤を硬化させた後、粘着テープを剥離することで、本発明に係る段差を有する円筒状原版を作製することができる(図8g)。
また、第三のフィルムを樹脂フィルムから作製していた場合には、このようにして作製した原版に特表2004−508585号公報記載の方法に従って、さらにニッケル等の電鋳処理を行うことによって、金属原版とすることもできる。
The third film 84 has a length l of one side which is not more than a length L of the cylindrical base material 83 serving as a winding core, and a length w of a side perpendicular to the side of the cylindrical base 83. A rectangular film that is longer by 10 mm or more than the circumferential length of the material 83 is preferable. In the pressing step, the adhesive 85 is spread out with care so that the adhesive 85 does not protrude from the end (winding end portion) of the third film 84, and the thickness of the adhesive layer is reduced to some extent (FIG. 8d). After that, the boundary between the upper film original plate and the lower film original plate is firmly fixed with an adhesive tape 86 or the like (FIG. 8e). Next, the adhesive is spread again to the boundary between the upper film and the lower film (FIG. 8f). At this time, since the adhesive is blocked by the adhesive tape 86 or the like, the adhesive can be prevented from coming out from the end of the film. At this time, if the adhesive protrudes slightly from the film, this part becomes a defect because all or part of the uneven structure is buried in the adhesive. After the adhesive is cured, the pressure-sensitive adhesive tape is peeled off to produce a cylindrical original plate having a step according to the present invention (FIG. 8g).
Moreover, when the third film was produced from a resin film, according to the method described in JP-T-2004-508585, the original plate produced in this way is further subjected to electroforming treatment such as nickel, It can also be a metal master.

(光拡散部材の製法)
次に、以上のようにして製造した原版を用いた光拡散部材の製造方法について説明する。
光拡散部材は、上記原版からの転写により製造することができる。転写方法としては、従来公知の方法が採用でき、例えば、原版が平板状である場合は、射出成形、ホットエンボス成形、紫外線照射賦形等が好ましく採用でき、また、原版が円筒状である場合は紫外線照射によるroll to roll連続賦形等が好ましく採用することができる。
これらの中で、円筒状の原版を用いた紫外線照射によるroll to roll連続賦形が、大量生産に適するために好ましく用いられる。
(Production method of light diffusion member)
Next, the manufacturing method of the light-diffusion member using the original plate manufactured as mentioned above is demonstrated.
The light diffusing member can be produced by transfer from the original plate. As the transfer method, a conventionally known method can be adopted. For example, when the original plate is flat, injection molding, hot embossing, ultraviolet irradiation shaping, etc. can be preferably adopted, and when the original plate is cylindrical Is preferably roll-to-roll continuous shaping by ultraviolet irradiation.
Among these, roll-to-roll continuous shaping by ultraviolet irradiation using a cylindrical original plate is preferably used because it is suitable for mass production.

次に、本発明の効果を明確にするために行った実施例及び比較例について説明するが、実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。
なお、実施例1〜3、5及び比較例1、2の凹凸構造は、平均ピッチが10μm、平均高さが8μmであり、実施例4の凹凸構造は、平均ピッチが3μm、平均高さが4μmである。
(実施例1)
原版を作製するためのフィルムとして、DCF80x1(スペックル露光法で作製された、長軸方向の拡散角度が1°で、短軸方向の拡散角度が80°の異方性凹凸構造を片面に有する基材厚み2μmの可撓性フィルム)を使用し、接着剤として、(有)グルーラボ社製のGL−1001を使用した。
前述した円筒状の原版を得る手法を用いて、長さ100mm、直径180mmの円筒状原版を作製した後、さらにこの原版を金属原版とした。なお、この原版は、凹凸構造の長軸方向と、段差がフィルムを横断する方向がほぼ一致するように作製した。
この円筒状原版を使用して、紫外線硬化樹脂を用いたroll to roll連続賦形により、大面積のフィルム状の光拡散部材を得た。この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図9)ところ、段差は略直線状に光拡散部材の表面を横断しており、凹凸構造の長軸方向と段差が表面を横断する方向がほぼ一致していた。また、段差をまたぐ任意10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は10μmで、最大高さは12μmあった。
この光拡散部材の外観検査を目視によって行ったところ、段差の上下で色味の変化は観察されず凹凸構造の境界は非常に目立ちにくかった。
Next, examples and comparative examples performed for clarifying the effects of the present invention will be described. However, the embodiments are not limited to the following examples unless they exceed the gist.
The uneven structures of Examples 1 to 3 and 5 and Comparative Examples 1 and 2 have an average pitch of 10 μm and an average height of 8 μm. The uneven structure of Example 4 has an average pitch of 3 μm and an average height of 10 μm. 4 μm.
Example 1
As a film for producing an original plate, DCF80x1 (having an anisotropic concavo-convex structure produced on a single side by a speckle exposure method having a major axis direction diffusion angle of 1 ° and a minor axis direction diffusion angle of 80 ° (Flexible film with a substrate thickness of 2 μm) was used, and GL-1001 manufactured by Glu Laboratories was used as the adhesive.
A cylindrical original plate having a length of 100 mm and a diameter of 180 mm was prepared using the above-described method for obtaining a cylindrical original plate, and this original plate was further used as a metal original plate. This original plate was prepared so that the major axis direction of the concavo-convex structure and the direction in which the step crosses the film substantially coincided.
Using this cylindrical original plate, a film-shaped light diffusion member having a large area was obtained by roll to roll continuous shaping using an ultraviolet curable resin. The surface shape of the light diffusing member was observed using an ultra-deep color 3D shape measurement microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 9). The major axis direction of the concavo-convex structure and the direction in which the step crosses the surface almost coincided with each other. Moreover, about the arbitrary 10 cross section which straddles a level | step difference, when it observed similarly to the surface shape and measured the height of the level | step difference, the average was 10 micrometers and the maximum height was 12 micrometers.
When visually inspecting the appearance of this light diffusing member, no change in color was observed above and below the step, and the boundary of the concavo-convex structure was very inconspicuous.

(実施例2)
原版を作製するためのフィルムとして、DCF80x1(基材厚み35μmである以外は実施例1と同じもの)を使用し、接着剤として、(有)グルーラボ社製のGL−1001を使用した。
前述した円筒状の原版を得る手法を用いて、長さ100mm、直径180mmの円筒状原版を作製した後、さらにこの原版を金属原版とした。なおこの原版は、凹凸構造の長軸方向と段差がフィルムを横断する方向がほぼ一致するように作製した。
この円筒状原版を使用して、紫外線硬化樹脂によるroll to roll連続賦形により、大面積のフィルム状の光拡散部材を得た。
この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図10)ところ、段差は略直線状に光拡散部材の表面を横断しており、凹凸構造の長軸方向と段差が表面を横断する方向がほぼ一致していた。また、段差をまたぐ任意の10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は50μmで、最大高さは55μmであった。
この光拡散部材の外観検査を目視によって行ったところ、段差の上下で色味の変化は観察されず凹凸構造の境界は非常に目立ちにくかった。
(Example 2)
DCF80x1 (same as Example 1 except that the substrate thickness is 35 μm) was used as a film for producing an original plate, and GL-1001 manufactured by Guru Lab Co., Ltd. was used as an adhesive.
A cylindrical original plate having a length of 100 mm and a diameter of 180 mm was prepared using the above-described method for obtaining a cylindrical original plate, and this original plate was further used as a metal original plate. This original plate was prepared so that the major axis direction of the concavo-convex structure and the direction in which the step crosses the film substantially coincided.
Using this cylindrical original plate, a film-shaped light diffusion member having a large area was obtained by roll-to-roll continuous shaping with an ultraviolet curable resin.
The surface shape of the light diffusing member was observed using an ultra-deep color 3D shape measuring microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 10). The major axis direction of the concavo-convex structure and the direction in which the step crosses the surface almost coincided with each other. Further, when any 10 cross sections across the step were observed in the same manner as the surface shape and the height of the step was measured, the average was 50 μm and the maximum height was 55 μm.
When visually inspecting the appearance of this light diffusing member, no change in color was observed above and below the step, and the boundary of the concavo-convex structure was very inconspicuous.

(実施例3)
原版を作製するためのフィルムとして、DCF80x1(基材厚み20μmである以外は実施例1と同じもの)を使用し、接着剤として、(有)グルーラボ社製のGL−1001を使用した。
前述した円筒状の原版を得る手法を用いて、長さ100mm、直径180mmの円筒状原版を作製した後、さらにこの原版を金属原版とした。なおこの原版は、凹凸構造の長軸方向と段差がフィルムを横断する方向がほぼ一致するように作製した。
この円筒状原版を使用して、紫外線硬化樹脂によるroll to roll連続賦形により、大面積のフィルム状の光拡散部材を得た。
この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図11)ところ、段差は略直線状に光拡散部材の表面を横断しており、凹凸構造の長軸方向と段差が表面を横断する方向がほぼ一致していた。また、段差をまたぐ任意の10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は30μmで、最大高さは37μmあった。また、段差の近傍に幅約40μmの欠陥が確認された。
この光拡散部材の外観検査を目視によって行ったところ、段差の上下で色味の変化は観察されず、欠陥も非常に目立ちにくく、凹凸構造の境界は非常に目立ちにくかった。
(Example 3)
DCF80x1 (same as Example 1 except that the substrate thickness is 20 μm) was used as a film for producing an original plate, and GL-1001 manufactured by Guru Lab Co., Ltd. was used as an adhesive.
A cylindrical original plate having a length of 100 mm and a diameter of 180 mm was prepared using the above-described method for obtaining a cylindrical original plate, and this original plate was further used as a metal original plate. This original plate was prepared so that the major axis direction of the concavo-convex structure and the direction in which the step crosses the film substantially coincided.
Using this cylindrical original plate, a film-shaped light diffusion member having a large area was obtained by roll-to-roll continuous shaping with an ultraviolet curable resin.
The surface shape of the light diffusing member was observed using an ultra-deep color 3D shape measuring microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 11). The major axis direction of the concavo-convex structure and the direction in which the step crosses the surface almost coincided with each other. Moreover, about 10 arbitrary cross sections straddling a level | step difference, when it observed similarly to the surface shape and measured the height of the level | step difference, the average was 30 micrometers and the maximum height was 37 micrometers. Further, a defect with a width of about 40 μm was confirmed in the vicinity of the step.
When the appearance of the light diffusing member was visually inspected, no change in color was observed above and below the level difference, the defect was very inconspicuous, and the boundary of the uneven structure was very inconspicuous.

(実施例4)
原版を作製するためのフィルムとして、DCF60x60(スペックル露光法で作製した、拡散角度が60°の等方性凹凸構造を片面に有する基材厚み2μmの可撓性フィルム)を使用し、接着剤として、(有)グルーラボ社製のGL−1001を使用した。
前述した円筒状の原版を得る手法を用いて、長さ100mm、直径180mmの円筒状原版を作製した後、この原版を金属原版とした。
この円筒状原版を使用して、紫外線硬化樹脂によるroll to roll連続賦形により、大面積のフィルム状の光拡散部材を得た。
この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図12)ところ、段差は略直線状に光拡散部材の表面を横断しており、凹凸構造の長軸方向と段差が表面を横断する方向がほぼ一致していた。また、段差をまたぐ任意の10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は15μmで、最大高さは18μmであった。また、段差の近傍に幅約40μmの欠陥が確認された。
この光拡散部材の外観検査を目視によって行ったところ、段差の上下で色味の変化は観察されず、欠陥も非常に目立ちにくく、凹凸構造の境界は非常に目立ちにくかった。
Example 4
DCF60x60 (flexible film with a substrate thickness of 2 μm having an isotropic concavo-convex structure with a diffusion angle of 60 ° on one side, produced by a speckle exposure method) is used as a film for producing an original plate, and an adhesive As a GL-1001 manufactured by Glu Laboratories.
A cylindrical original plate having a length of 100 mm and a diameter of 180 mm was prepared by using the above-described method for obtaining a cylindrical original plate, and this original plate was used as a metal original plate.
Using this cylindrical original plate, a film-shaped light diffusion member having a large area was obtained by roll-to-roll continuous shaping with an ultraviolet curable resin.
The surface shape of the light diffusing member was observed using an ultra-deep color 3D shape measuring microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 12). The major axis direction of the concavo-convex structure and the direction in which the step crosses the surface almost coincided with each other. Further, arbitrary 10 cross sections straddling the step were observed in the same manner as the surface shape, and the height of the step was measured. As a result, the average was 15 μm and the maximum height was 18 μm. Further, a defect with a width of about 40 μm was confirmed in the vicinity of the step.
When the appearance of the light diffusing member was visually inspected, no change in color was observed above and below the level difference, the defect was very inconspicuous, and the boundary of the uneven structure was very inconspicuous.

(実施例5)
原版を作製するためのフィルムとして、DCF80x1(基材厚み4μmである以外は実施例1と同じもの)を使用し、接着剤として、(有)グルーラボ社製のGL−1001を使用した。
前述した円筒状の原版を得る手法を用いて、長さ100mm、直径180mmの円筒状原版を作製した後、この原版を金属原版とした。なお、この原版は、凹凸構造の長軸方向と段差がフィルムを横断する方向のなす角がほぼ45°になるように作製した。そのため、凹凸構造が段差により途中で分断された。
この円筒状原版を使用して、紫外線硬化樹脂によるroll to roll連続賦形により、大面積のフィルム状の光拡散部材を得た。
この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図13)ところ、段差は略直線状に光拡散部材の表面を横断しており、凹凸構造の長軸方向と段差が表面を横断する方向のなす角は45°であった。また、段差をまたぐ任意の10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は20μmで、最大高さは25μmあった。
この光拡散部材の外観検査を目視によって行ったところ段差の上下で色味の変化は観察されなかった。また、段差が目視にてわずかに確認でき、実施例1の結果と比較すると凹凸構造の境界は目立ちやすかったが、問題のない範囲であった。実施例1の結果と比較して凹凸構造の境界は目立ちやすかった原因は、凹凸構造が段差により途中で分断されているために境界前後で滑らかにつながったように見えないためだと考えられる。
(Example 5)
DCF80x1 (same as Example 1 except that the substrate thickness is 4 μm) was used as a film for producing an original plate, and GL-1001 manufactured by Guru Lab Co., Ltd. was used as an adhesive.
A cylindrical original plate having a length of 100 mm and a diameter of 180 mm was prepared by using the above-described method for obtaining a cylindrical original plate, and this original plate was used as a metal original plate. In addition, this original plate was produced so that the angle | corner which the major axis direction of a concavo-convex structure and the level | step difference make the direction which crosses a film may be about 45 degrees. Therefore, the concavo-convex structure was divided in the middle by the step.
Using this cylindrical original plate, a film-shaped light diffusion member having a large area was obtained by roll-to-roll continuous shaping with an ultraviolet curable resin.
The surface shape of the light diffusing member was observed using an ultra-deep color 3D shape measuring microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 13). The angle between the major axis direction of the concavo-convex structure and the direction in which the step crosses the surface was 45 °. Moreover, about 10 arbitrary cross sections which straddle a level | step difference, when it observed similarly to the surface shape and measured the height of the level | step difference, the average was 20 micrometers and the maximum height was 25 micrometers.
When the appearance of the light diffusing member was visually inspected, no change in color was observed above and below the level difference. Moreover, the level | step difference could be confirmed slightly visually and compared with the result of Example 1, although the boundary of the concavo-convex structure was conspicuous, it was a range without a problem. The reason that the boundary of the concavo-convex structure is more conspicuous than the result of Example 1 is considered to be because the concavo-convex structure is divided in the middle by a step and thus does not appear to be smoothly connected before and after the boundary.

(比較例1)
原版を作製するためのフィルムとして、DCF80x1(基材厚み175μmである以外は実施例1と同じもの)を使用し、接着剤として、(有)グルーラボ社製のGL−1001を使用した。
前述の円筒状の原版を得る手法を用いて、長さ100mm、直径180mmの円筒状原版を作製した後、この原版を金属原版とした。
この円筒状原版を使用して紫外線硬化樹脂によるroll to roll連続賦形により、大面積のフィルム状の光拡散部材を得た。
この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図14)ところ、凹凸構造の長軸方向と段差がフィルムを横断する方向がほぼ一致していた。また、段差をまたぐ任意の10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は190μmで、最大高さは200μmであった。
この光拡散部材の外観検査を目視によって行ったところ段差の上下で色味の変化は観察されなかったが、段差が目視にて確認できてしまうために凹凸構造の境界は目立ちやすかった。
(Comparative Example 1)
DCF80x1 (same as Example 1 except that the substrate thickness is 175 μm) was used as a film for producing an original plate, and GL-1001 manufactured by Guru Lab Co., Ltd. was used as an adhesive.
A cylindrical original plate having a length of 100 mm and a diameter of 180 mm was prepared using the above-described method for obtaining a cylindrical original plate, and this original plate was used as a metal original plate.
Using this cylindrical original plate, a film-shaped light diffusion member having a large area was obtained by roll to roll continuous shaping with an ultraviolet curable resin.
The surface shape of the light diffusing member was observed using an ultra-deep color 3D shape measuring microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 14). The direction and the direction in which the step crosses the film almost coincided. Moreover, about 10 arbitrary cross sections which straddle a level | step difference, when it observed similarly to the surface shape and measured the height of the level | step difference, the average was 190 micrometers and the maximum height was 200 micrometers.
When visual inspection of the light diffusing member was performed, no change in color was observed above and below the level difference. However, since the level difference could be confirmed by visual observation, the boundary of the concavo-convex structure was easily noticeable.

(比較例2)
特許文献1に開示された手法によって、サイズ100mm×100mmの光拡散部材を作製した。このとき単位凹凸パターンとしてDCF80x1(基材厚み4μmである以外は実施例1と同じもの)を使用した。
この光拡散部材の表面形状を株式会社キーエンス製の超深度カラー3D形状測定顕微鏡(VK−9500)を用い、150倍の対物レンズを使用して観察した(図15)ところ、段差はミクロに見ても蛇行しており凹凸構造の長軸方向と段差がフィルムを横断する方向のなす角は一定ではなかった。また、段差をまたぐ任意の10断面について、表面形状と同様に観察し、段差の高さを測定したところ、その平均は15μmで、最大高さは20μmであった。
この光拡散部材の外観検査を目視によって行ったところ段差が大きく蛇行しており、段差の上下で色味の変化が観察されるため、凹凸構造の境界が非常に目立ちやすかった。
(Comparative Example 2)
A light diffusing member having a size of 100 mm × 100 mm was produced by the technique disclosed in Patent Document 1. At this time, DCF80 × 1 (the same as Example 1 except that the substrate thickness was 4 μm) was used as the unit uneven pattern.
The surface shape of this light diffusing member was observed using an ultra-deep color 3D shape measuring microscope (VK-9500) manufactured by Keyence Corporation using a 150 × objective lens (FIG. 15). However, the angle between the major axis direction of the concavo-convex structure and the direction in which the step crosses the film was not constant. Moreover, about 10 arbitrary cross sections which straddle a level | step difference, when it observed similarly to the surface shape and measured the height of the level | step difference, the average was 15 micrometers and the maximum height was 20 micrometers.
When the visual inspection of the light diffusing member was visually performed, the step was greatly meandering, and a change in color was observed above and below the step, so that the boundary of the concavo-convex structure was very conspicuous.

本発明は、例えば、各種電子機器に好適に利用可能である。具体的には携帯電話、デジタルカメラ、テレビ、パーソナルコンピューター用ディスプレイ、及びノートパソコン等の構成部材である光拡散部材として利用可能である。   The present invention can be suitably used for various electronic devices, for example. Specifically, it can be used as a light diffusing member which is a constituent member of a mobile phone, a digital camera, a television, a display for a personal computer, a notebook computer, and the like.

41 凹部又は凸部
61 平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンを有するフィルム
61a 第一のフィルム
61b 第二のフィルム
62 接着剤
63 粘着テープ
71 基材
72 凹凸構造層
83 円筒状基材
84 第三のフィルム
85 接着剤
86 粘着テープ
d フィルムの厚さ
h 凹凸構造の高さ
H フィルムの厚さから凹凸構造の高さを引いた値
D 接着剤層の厚さ
A 段差の高さ
α 凹凸構造の長軸方向と段差が表面を横断する方向のなす角
41 concave or convex portion 61 film 61a having an uneven pattern corresponding to an uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm first film 61b second film 62 adhesive 63 adhesive tape 71 base Material 72 Uneven structure layer 83 Cylindrical substrate 84 Third film 85 Adhesive 86 Adhesive tape d Film thickness h Uneven structure height H Value obtained by subtracting uneven structure height from film thickness D Adhesive Layer thickness A Step height α Angle between the major axis direction of the concavo-convex structure and the direction in which the step crosses the surface

Claims (11)

シート状の光拡散部材であって、
少なくとも一方の表面に、
平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造と、
平均高さが1〜100μm、最大高さが1〜100μmであり、前記表面を略直線状に横断する段差を有する光拡散部材。
A sheet-like light diffusing member,
On at least one surface,
An uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm;
A light diffusing member having an average height of 1 to 100 μm, a maximum height of 1 to 100 μm, and having a step which crosses the surface substantially linearly.
前記段差から発生し、前記段差と直交する方向に500μm以上の幅を有する欠陥が存在しない、請求項1に記載の光拡散部材。   The light diffusing member according to claim 1, wherein there is no defect that is generated from the step and has a width of 500 μm or more in a direction orthogonal to the step. 前記凹凸構造が異方性を有する請求項1または2に記載の光拡散部材。   The light diffusing member according to claim 1, wherein the uneven structure has anisotropy. 前記凹凸構造の長軸方向と、前記段差が前記表面を横断する方向とがなす角が10度以下である請求項3に記載の光拡散部材。   The light diffusing member according to claim 3, wherein an angle formed by a major axis direction of the concavo-convex structure and a direction in which the step crosses the surface is 10 degrees or less. 可撓性を有するフィルムである請求項1〜4のいずれか1項に記載の光拡散部材。   It is a film which has flexibility, The light-diffusion member of any one of Claims 1-4. 少なくとも一方の表面に、平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンと平均高さが1〜100μm、最大高さが1〜100μmであり前記表面を略直線状に横断する段差を有する、光拡散部材製造用平板状原版。   An at least one surface has an uneven pattern corresponding to an uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm, an average height of 1 to 100 μm, and a maximum height of 1 to 100 μm. A flat original plate for producing a light diffusing member, having a step that crosses substantially linearly. 外側表面に、平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンと、平均高さが1〜100μm、最大高さが1〜100μmであり前記表面を略直線状に横断する段差を有する、光拡散部材製造用円筒状原版。   The outer surface has an uneven pattern corresponding to an uneven structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm, an average height of 1 to 100 μm, a maximum height of 1 to 100 μm, A cylindrical original plate for producing a light diffusing member, having a step that crosses linearly. 表面に平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンを有する第一のフィルムと、表面にピッチが平均1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンを有し、少なくとも一辺が略直線状である第二のフィルムを用意する工程、
第一のフィルムの表面上に、該表面を略直線状に横断する接着剤層を形成する接着剤層形成工程、
前記接着剤層の上に第二のフィルムを裏面が前記接着剤層と接する向きに積層する積層工程、
前記接着剤が第二のフィルムの略直線状の一辺からはみ出さないように、かつ前記第二のフィルムの厚さから前記凹凸構造の高さを引いた値H(μm)と、前記接着剤層の厚さD(μm)が下記式(1)を満たすように、前記接着剤層を前記第二のフィルムの上から押し広げる押圧工程、及び
前記接着剤を硬化させる硬化工程、
を含む光拡散部材製造用平板状原版の製造方法。
1≦H+D≦100...(1)
A first film having a concavo-convex pattern corresponding to a concavo-convex structure having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm on the surface, and an average height of 1 to 150 μm and an average height of 1 to 150 μm on the surface A step of preparing a second film having a concavo-convex pattern corresponding to a certain concavo-convex structure and at least one side being substantially linear;
An adhesive layer forming step of forming an adhesive layer crossing the surface substantially linearly on the surface of the first film;
A laminating step of laminating the second film on the adhesive layer in a direction in which the back surface is in contact with the adhesive layer;
A value H (μm) obtained by subtracting the height of the concavo-convex structure from the thickness of the second film so that the adhesive does not protrude from one side of the substantially linear shape of the second film, and the adhesive A pressing step of spreading the adhesive layer from above the second film so that the thickness D (μm) of the layer satisfies the following formula (1), and a curing step of curing the adhesive,
A method for producing a flat plate precursor for producing a light diffusing member.
1 ≦ H + D ≦ 100. . . (1)
少なくとも一辺が略直線状であり、表面に平均ピッチが1〜150μm、平均高さが1〜150μmである凹凸構造に対応する凹凸パターンを有する第三のフィルムを用意する工程、
裏面が円筒状基材に、第三のフィルムを前記略直線状の一辺と対向する辺の側から巻きつける捲回工程、
第三のフィルムの前記略直線状の一辺近傍の裏面上に、該フィルムを略直線状に横断する接着剤層を形成する接着剤層形成工程、
前記接着剤層を第三のフィルムの表面に積層する積層工程、
前記接着剤が前記第三のフィルムの略直線状の一辺からはみ出さないように、かつ前記第三のフィルムの厚さから前記凹凸構造の高さを引いた値H(μm)と、前記接着剤層の厚さD(μm)が下記式(1)を満たすように、前記接着剤層を前記第三のフィルムの上から押し広げる押圧工程、及び
前記接着剤を硬化させる硬化工程、
を含む光拡散部材製造用円筒状原版の製造方法。
1≦H+D≦100...(1)
A step of preparing a third film having a concavo-convex pattern corresponding to a concavo-convex structure having at least one side substantially linear and having an average pitch of 1 to 150 μm and an average height of 1 to 150 μm on the surface;
A winding process in which the back surface is wound around the cylindrical base material from the side of the side opposite to the substantially linear side,
An adhesive layer forming step of forming an adhesive layer that crosses the film substantially linearly on the back surface of the third film near one side of the substantially linear shape;
A laminating step of laminating the adhesive layer on the surface of the third film;
A value H (μm) obtained by subtracting the height of the concavo-convex structure from the thickness of the third film so that the adhesive does not protrude from one side of the substantially linear shape of the third film, and the adhesion A pressing step of spreading the adhesive layer from above the third film so that the thickness D (μm) of the agent layer satisfies the following formula (1), and a curing step of curing the adhesive,
The manufacturing method of the cylindrical original plate for light diffusing member manufacture containing this.
1 ≦ H + D ≦ 100. . . (1)
前記第一、及び第二のフィルムの少なくとも1つが、シート状基材の片面に塗布した感光剤層を拡散板を通過させたレーザー光によりスペックル露光させて現像することによって得られたスペックルパターンからなる凹凸構造を有するか、前記スペックルパターンからなる凹凸構造を転写して得られた凹凸構造を有するものである、請求項8に記載の原版の製造方法。   At least one of the first and second films is a speckle obtained by developing a photosensitizer layer coated on one side of a sheet-like base material by speckle exposure with a laser beam that has passed through a diffusion plate. The method for producing an original according to claim 8, which has a concavo-convex structure composed of a pattern or has a concavo-convex structure obtained by transferring the concavo-convex structure composed of the speckle pattern. 前記第三のフィルムが、シート状基材の片面に塗布した感光剤層を拡散板を通過させたレーザー光によりスペックル露光させて現像することによって得られたスペックルパターンからなる凹凸構造を有するか、前記スペックルパターンからなる凹凸構造を転写して得られた凹凸構造を有するものである、請求項9に記載の原版の製造方法。   The third film has a concavo-convex structure composed of a speckle pattern obtained by developing a photosensitizer layer coated on one side of a sheet-like base material by speckle exposure with a laser beam passed through a diffusion plate. The method for producing an original plate according to claim 9, further comprising a concavo-convex structure obtained by transferring the concavo-convex structure comprising the speckle pattern.
JP2011122633A 2011-05-31 2011-05-31 Light diffusion member, original plate, and manufacturing method thereof Pending JP2012252058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122633A JP2012252058A (en) 2011-05-31 2011-05-31 Light diffusion member, original plate, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122633A JP2012252058A (en) 2011-05-31 2011-05-31 Light diffusion member, original plate, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012252058A true JP2012252058A (en) 2012-12-20

Family

ID=47524959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122633A Pending JP2012252058A (en) 2011-05-31 2011-05-31 Light diffusion member, original plate, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012252058A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003316241A (en) * 2002-04-23 2003-11-07 Dainippon Printing Co Ltd Method for manufacturing multi-surface duplicated master
JP2003345225A (en) * 2002-05-23 2003-12-03 Dainippon Printing Co Ltd Rugged pattern sheet, and multiface duplicated original plate and method for manufacturing the same
JP2004114419A (en) * 2002-09-25 2004-04-15 Fuji Photo Film Co Ltd Method and apparatus for manufacturing prism-like sheet
JP2004341389A (en) * 2003-05-19 2004-12-02 Toppan Printing Co Ltd Manufacturing method of unidirectional diffusion plate and surface relief type diffusion plate
JP2007271851A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Manufacturing method for multiface layout pattern form and multiface layout pattern form
JP2010079961A (en) * 2008-09-25 2010-04-08 Toppan Printing Co Ltd Stamper and transferred matter
JP2010122689A (en) * 2008-11-21 2010-06-03 Samsung Electronics Co Ltd Display apparatus
JP2012118520A (en) * 2010-11-09 2012-06-21 Asahi Kasei E-Materials Corp Fine concavo-convex pattern substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003316241A (en) * 2002-04-23 2003-11-07 Dainippon Printing Co Ltd Method for manufacturing multi-surface duplicated master
JP2003345225A (en) * 2002-05-23 2003-12-03 Dainippon Printing Co Ltd Rugged pattern sheet, and multiface duplicated original plate and method for manufacturing the same
JP2004114419A (en) * 2002-09-25 2004-04-15 Fuji Photo Film Co Ltd Method and apparatus for manufacturing prism-like sheet
JP2004341389A (en) * 2003-05-19 2004-12-02 Toppan Printing Co Ltd Manufacturing method of unidirectional diffusion plate and surface relief type diffusion plate
JP2007271851A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Manufacturing method for multiface layout pattern form and multiface layout pattern form
JP2010079961A (en) * 2008-09-25 2010-04-08 Toppan Printing Co Ltd Stamper and transferred matter
JP2010122689A (en) * 2008-11-21 2010-06-03 Samsung Electronics Co Ltd Display apparatus
JP2012118520A (en) * 2010-11-09 2012-06-21 Asahi Kasei E-Materials Corp Fine concavo-convex pattern substrate

Similar Documents

Publication Publication Date Title
TWI518376B (en) Peak-valley pattern formed sheet and method for producing the same
TWI400165B (en) Roll-to-roll method and system for micro-replication of a pattern of large relief three-dimensional microstructures
JP5696264B1 (en) Manufacturing method of light control panel provided with light reflecting portions arranged in parallel
JP2008201029A (en) Concavo-convex pattern forming sheet and its manufacturing method, and process sheet for manufacturing reflection preventing body, phase difference plate, and optical element
TW200848787A (en) Microlens array sheet used for backlight device and roll plate for manufacturing microlens array sheet
JP5569008B2 (en) Backlight and liquid crystal display device
JP2008532807A5 (en)
CN102009517B (en) Method for making metal mother board
US20130010243A1 (en) Manufacturing method of roller for phase retardation film, method for manufacturing phase retardation film by roller and phase retardation film thereform
Kwak et al. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface
JP5027583B2 (en) Microlens array sheet used for backlight device and roll plate for producing microlens array sheet
KR20120069796A (en) Pattern film and method of fabricating the same
JP2015182278A (en) Imprint transfer matter, imprint transfer mold, and imprint transfer method
JP2010005866A (en) Transfer roller and transfer apparatus
JP6274102B2 (en) Light diffusing sheet
JP2012252058A (en) Light diffusion member, original plate, and manufacturing method thereof
CN111727386B (en) Surface concave-convex sheet, screen, image display system and transfer roller
JP7360064B2 (en) Filler-filled film, sheet film, laminated film, laminate, and method for producing filler-filled film
JP2013000961A (en) Method for manufacturing roller mold and method for producing optical film as well as roller mold and optical film
JP5884555B2 (en) Imprint mold and method for forming fine structure
JP2007316292A (en) Optical sheet and light source using the same
JP2008170871A (en) Optical sheet, backlight unit using the same, display device and method for manufacturing the device
JP6293990B2 (en) Optical film, optical film transfer body, image display device, and optical film manufacturing mold
JP2019138850A (en) Method for installing displacement detection sheet, displacement detection sheet, and displacement detection method
JP2014071326A (en) Optical sheet and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150626