JP2012251697A - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
JP2012251697A
JP2012251697A JP2011123744A JP2011123744A JP2012251697A JP 2012251697 A JP2012251697 A JP 2012251697A JP 2011123744 A JP2011123744 A JP 2011123744A JP 2011123744 A JP2011123744 A JP 2011123744A JP 2012251697 A JP2012251697 A JP 2012251697A
Authority
JP
Japan
Prior art keywords
steam generator
primary fluid
steam
guide path
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011123744A
Other languages
Japanese (ja)
Inventor
Ryoji Kozuki
亮二 香月
Chikako Iwaki
智香子 岩城
Ken Uchida
憲 内田
Tetsuzo Yamamoto
哲三 山本
Kazuyoshi Aoki
一義 青木
Yoshio Kono
義雄 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011123744A priority Critical patent/JP2012251697A/en
Publication of JP2012251697A publication Critical patent/JP2012251697A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a steam generator improving the thermal efficiency of a nuclear reactor by decreasing the pressure loss of a primary fluid.SOLUTION: The steam generator 10 includes: an external tube 15 that inputs a secondary fluid from a water supply nozzle internally and outputs water vapor from a steam nozzle; a heat transfer tube 17 that causes the primary fluid 5 to flow inside the external tube 15 to make the secondary fluid water vapor by heat exchange; a supply nozzle 26 that supplies the primary fluid 5 to an inlet chamber 31 formed in the external tube 15 to communicate to an end of the heat transfer tube 17; and a guide passage 20 that guides the primary fluid 5 from a connection 24 of the supply nozzle 26 connected with the external tube 15 toward the direction of an end of the heat transfer tube 17.

Description

本発明は、高温の一次流体と熱交換することにより二次流体を蒸気にする蒸気発生器に関する。   The present invention relates to a steam generator that converts a secondary fluid into steam by exchanging heat with a high-temperature primary fluid.

加圧水型原子炉は、原子炉において核燃料を燃焼させ、加熱した一次流体(軽水)を循環させてこの燃焼熱を蒸気発生器に送る。そして、この一次流体は、蒸気発生器で熱交換して二次流体(軽水)を水蒸気にするとともに、原子炉に戻って核燃料の燃焼熱により再加熱される(例えば、特許文献1)。   The pressurized water reactor burns nuclear fuel in the nuclear reactor, circulates a heated primary fluid (light water), and sends this combustion heat to a steam generator. And this primary fluid is heat-exchanged with a steam generator, turns a secondary fluid (light water) into water vapor | steam, returns to a nuclear reactor, and is reheated with the combustion heat of nuclear fuel (for example, patent document 1).

この蒸気発生器から出力された水蒸気がタービンに送られて、水蒸気の熱エネルギーは、タービンの運動エネルギーに変換され、さらに発電機において電気エネルギーに変換される。そして、仕事を終えた水蒸気は、冷却されて凝縮して二次流体に復水し、蒸気発生器を循環する。   The steam output from the steam generator is sent to the turbine, and the thermal energy of the steam is converted into kinetic energy of the turbine, and further converted into electrical energy in the generator. The water vapor that has finished its work is cooled and condensed to condense into the secondary fluid, and circulate through the steam generator.

特開2002−333288号公報JP 2002-333288 A

この蒸気発生器の出力を向上させるためには、一次流体の流量を増加させる必要がある。また、この一次流体の流量を増加させるためには、循環ポンプの動力を増大させることが考えられるが、その動力の増大は逆に熱効率の低下を招来する。   In order to improve the output of the steam generator, it is necessary to increase the flow rate of the primary fluid. In order to increase the flow rate of the primary fluid, it is conceivable to increase the power of the circulation pump. However, the increase in the power causes a decrease in the thermal efficiency.

このような事情の下、一次流体の流量を増加させて熱効率を向上させるためには、蒸気発生器の流路における一次流体の圧力損失を低減させることが考えられる。この流路における一次流体の圧力損失は、炉心、蒸気発生器の伝熱管に続きその入口室において、大きな割合を占めると考えられている。
しかし、これまでにおいて、蒸気発生器の入口室における一次流体の圧力損失を低減させる施策については、特に検討されていなかった。
Under such circumstances, in order to increase the flow rate of the primary fluid and improve the thermal efficiency, it is conceivable to reduce the pressure loss of the primary fluid in the flow path of the steam generator. The pressure loss of the primary fluid in this flow path is considered to occupy a large proportion in the inlet chamber following the core and the heat transfer tubes of the steam generator.
However, until now, no particular consideration has been given to measures for reducing the pressure loss of the primary fluid in the inlet chamber of the steam generator.

本発明はこのような事情を考慮してなされたもので、入口室における一次流体の圧力損失を低減させることにより、原子炉の熱効率を向上させる蒸気発生器を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a steam generator that improves the thermal efficiency of a nuclear reactor by reducing the pressure loss of the primary fluid in the inlet chamber.

本発明の蒸気発生器は、給水ノズルから二次流体を内部に入力し蒸気ノズルから蒸気を出力する外胴と、前記外胴の内部において一次流体を流動させて熱交換により前記二次流体を前記蒸気にする伝熱管と、前記伝熱管の一端に連通するよう前記外胴に内部形成された入口室へ前記一次流体を供給する供給ノズルと、前記外胴に接続した前記供給ノズルの接続部から前記伝熱管の一端の方向に向かって前記一次流体を案内する案内路と、を備えることを特徴とする。   The steam generator according to the present invention includes an outer cylinder that inputs a secondary fluid from a water supply nozzle and outputs steam from the steam nozzle, and flows the primary fluid inside the outer cylinder to exchange the secondary fluid by heat exchange. A heat transfer tube for making the steam, a supply nozzle for supplying the primary fluid to an inlet chamber formed in the outer body so as to communicate with one end of the heat transfer tube, and a connection part of the supply nozzle connected to the outer body And a guide path for guiding the primary fluid toward the one end of the heat transfer tube.

本発明により、入口室における一次流体の圧力損失を低減させることにより、原子炉の熱効率を向上させる蒸気発生器が提供される。   The present invention provides a steam generator that improves the thermal efficiency of a nuclear reactor by reducing the pressure loss of the primary fluid in the inlet chamber.

本発明に係る蒸気発生器の実施形態を示す断面図。Sectional drawing which shows embodiment of the steam generator which concerns on this invention. (A)第1実施形態に係る蒸気発生器の下部の拡大断面図、(B)蒸気発生器の図2(A)B−B水平断面図、(C)その他の例を示す図2(A)B−B水平断面図。(A) Expanded sectional view of the lower part of the steam generator according to the first embodiment, (B) FIG. 2 (A) BB horizontal sectional view of the steam generator, (C) FIG. 2 (A) showing other examples ) BB horizontal sectional view. 第2実施形態に係る蒸気発生器の下部の拡大断面図。The expanded sectional view of the lower part of the steam generator which concerns on 2nd Embodiment. 第3実施形態に係る蒸気発生器の下部の拡大断面図。The expanded sectional view of the lower part of the steam generator which concerns on 3rd Embodiment.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように、蒸気発生器10は、給水ノズル14から二次流体6を内部に入力し蒸気ノズル11から水蒸気7を出力する外胴15と、この外胴15の内部において一次流体5を流動させて熱交換により二次流体6を水蒸気7にする伝熱管17と、この伝熱管17の一端に連通するよう外胴15に内部形成された入口室31へ一次流体5を供給する供給ノズル26(図2(A))と、外胴15に接続した供給ノズル26の接続部24から伝熱管17の一端の方向に向かって一次流体5を案内する案内路20と、を備えている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the steam generator 10 includes an outer cylinder 15 that inputs the secondary fluid 6 from the water supply nozzle 14 and outputs water vapor 7 from the steam nozzle 11, and the primary fluid 5 inside the outer cylinder 15. To supply the primary fluid 5 to the heat transfer tube 17 that converts the secondary fluid 6 into the water vapor 7 by heat exchange and the inlet chamber 31 formed in the outer body 15 so as to communicate with one end of the heat transfer tube 17. A nozzle 26 (FIG. 2A) and a guide path 20 that guides the primary fluid 5 from the connection portion 24 of the supply nozzle 26 connected to the outer cylinder 15 toward the one end of the heat transfer tube 17. .

外胴15は、円筒形を有し、タービンの復水器(図示略)から二次流体6が給水ノズル14より供給される。この外胴15の内面に沿って、ラッパー16が設けられている。給水ノズル14に供給された二次流体6は、外胴15とラッパー16との間の空間を通りぬけて熱交換領域18に導入される。   The outer cylinder 15 has a cylindrical shape, and the secondary fluid 6 is supplied from a water supply nozzle 14 from a condenser (not shown) of the turbine. A wrapper 16 is provided along the inner surface of the outer cylinder 15. The secondary fluid 6 supplied to the water supply nozzle 14 passes through the space between the outer cylinder 15 and the wrapper 16 and is introduced into the heat exchange region 18.

この熱交換領域18には、U字型の伝熱管17が多数設けられている(図1においては、一部のみが記載)。そして、このU字型の伝熱管17を高温側領域と低温側領域とに分離するように隔壁21が設けられている。
この隔壁21及び複数の伝熱管17は、熱交換領域18と入口室31及び出口室32とを仕切る管板22に設けられている。
This heat exchange region 18 is provided with a large number of U-shaped heat transfer tubes 17 (only a part is shown in FIG. 1). A partition wall 21 is provided so as to separate the U-shaped heat transfer tube 17 into a high temperature side region and a low temperature side region.
The partition wall 21 and the plurality of heat transfer tubes 17 are provided on a tube plate 22 that partitions the heat exchange region 18 from the inlet chamber 31 and the outlet chamber 32.

伝熱管17の両端は、管板22に開口接続し、仕切板23で仕切られた入口室31と出口室32とにそれぞれ連通している。入口室31には、接続部24に設けられた給水ノズル14から高温に加熱された一次流体5が原子炉(図示略)から供給される。この一次流体5は、入口室31を経由して伝熱管17に流入し、出口室32に導かれる。出口室32に到達した一次流体5は、接続部25に設けられたノズル27(図2)から原子炉(図示略)に戻される。   Both ends of the heat transfer tube 17 are open-connected to the tube plate 22 and communicated with the inlet chamber 31 and the outlet chamber 32 partitioned by the partition plate 23, respectively. The inlet chamber 31 is supplied with a primary fluid 5 heated to a high temperature from a water supply nozzle 14 provided in the connection portion 24 from a nuclear reactor (not shown). The primary fluid 5 flows into the heat transfer tube 17 through the inlet chamber 31 and is guided to the outlet chamber 32. The primary fluid 5 that has reached the outlet chamber 32 is returned to the nuclear reactor (not shown) from the nozzle 27 (FIG. 2) provided in the connection portion 25.

伝熱管17を通り抜ける一次流体5は、熱交換領域18に導入された二次流体6と熱交換して、二次流体6を加熱する。加熱された二次流体6は、一部が気化して気相と液相とが混合した気液二相流体となり、+z軸方向に流れてセパレータ13に導かれる。このセパレータ13は、気液二相流体の気相成分と液相成分とを分離して、湿分を含む蒸気である湿蒸気を生成する。この湿蒸気は、ドライヤ12に導入され、湿分が除去され乾燥した水蒸気7となり、蒸気ノズル11からタービン(図示略)に供給される。   The primary fluid 5 passing through the heat transfer tube 17 exchanges heat with the secondary fluid 6 introduced into the heat exchange region 18 to heat the secondary fluid 6. The heated secondary fluid 6 is partially vaporized to become a gas-liquid two-phase fluid in which the gas phase and the liquid phase are mixed, flows in the + z-axis direction, and is guided to the separator 13. The separator 13 separates the gas phase component and the liquid phase component of the gas-liquid two-phase fluid, and generates wet steam that is a steam containing moisture. This wet steam is introduced into the dryer 12 and the moisture is removed to form dry steam 7, which is supplied from the steam nozzle 11 to the turbine (not shown).

図2(A)に示すように、蒸気発生器10における案内路20は、一次流体5の流動方向に向かって断面が拡張するように形成されている。そして、供給ノズル26は、接続部24から鉛直方向下側に延びている。   As shown in FIG. 2A, the guide path 20 in the steam generator 10 is formed so that the cross section expands in the flow direction of the primary fluid 5. The supply nozzle 26 extends downward in the vertical direction from the connection portion 24.

そして、案内路20の終端の形状は、図2(B)(図2(A)B−B水平断面)に示すように楕円に形成されたり、図2(C)に示すように複数の伝熱管17における一端の配置形状(図では、半円状)にオーバーラップするように形成されたりする。   The end shape of the guide path 20 is formed into an ellipse as shown in FIG. 2B (horizontal cross section along BB in FIG. 2A), or a plurality of transmission lines as shown in FIG. The heat pipe 17 may be formed so as to overlap with the arrangement shape of one end (semicircular shape in the figure).

これにより、供給ノズル26から供給される一次流体5は、仕切板23等の入口室31の内壁に衝突することなく、伝熱管17の一端開口からその長さ方向に沿って流入する。したがって、入口室31の内部において一次流体5の流れによどみが形成されず、圧力損失の増加につながらない。よって、循環ポンプの動力を増大させることなく一次流体5の流量を増加させることができ、原子炉の熱効率を向上させることができる。   Thereby, the primary fluid 5 supplied from the supply nozzle 26 flows in along the length direction from one end opening of the heat exchanger tube 17 without colliding with the inner wall of the inlet chamber 31 such as the partition plate 23. Therefore, no stagnation is formed in the flow of the primary fluid 5 inside the inlet chamber 31, and the pressure loss does not increase. Therefore, the flow rate of the primary fluid 5 can be increased without increasing the power of the circulation pump, and the thermal efficiency of the nuclear reactor can be improved.

さらに、案内路20は、一次流体5の平均流速をw、鉛直方向座標をz、定数をcとする場合、d(w2)/dz=cの式を満たす内面形状となることが望ましい。
これにより、案内路20の広がり部における一次流体5の圧力損失がさらに低下して、原子炉の熱効率が向上する。
Furthermore, it is desirable that the guide path 20 has an inner surface shape that satisfies the formula d (w 2 ) / dz = c, where w is the average flow velocity of the primary fluid 5, z is the vertical coordinate, and c is a constant.
Thereby, the pressure loss of the primary fluid 5 in the expansion part of the guide path 20 further falls, and the thermal efficiency of a nuclear reactor improves.

(第2実施形態)
次に図3を参照して本発明における第2実施形態について説明する。なお、図3において図2と同一又は相当する部分は、同一符号で示し、重複する説明を省略する。
図3に示すように、第2実施形態に係る蒸気発生器10は、案内路20の終端の縁部分が入口室31の内壁に、例えば溶接点33等により結合している。そして、案内路20の裏側の空間に、振動を抑制する緩衝材34が充填されている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. 3 that are the same as or correspond to those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
As shown in FIG. 3, in the steam generator 10 according to the second embodiment, the end edge portion of the guide path 20 is coupled to the inner wall of the inlet chamber 31 by, for example, a welding point 33. The space behind the guide path 20 is filled with a cushioning material 34 that suppresses vibration.

一般に、入口室31には、一次流体5が10 m/s程度の流速で流入し、供給ノズル26を振動させる。案内路20の終端部分を入口室31の内壁に結合させたり、緩衝材34を充填したりすることによりこの振動を抑えることができる。この緩衝材34としては、例えばオイルやゴム、ステンレスの詰めものが適用される。
これにより、一次流体5の圧力損失がさらに低下して、原子炉の熱効率が向上する。
Generally, the primary fluid 5 flows into the inlet chamber 31 at a flow rate of about 10 m / s, and the supply nozzle 26 is vibrated. This vibration can be suppressed by coupling the end portion of the guide path 20 to the inner wall of the inlet chamber 31 or filling the buffer material 34. As the buffer material 34, for example, oil, rubber, or stainless steel stuffing is applied.
Thereby, the pressure loss of the primary fluid 5 further decreases, and the thermal efficiency of the nuclear reactor is improved.

(第3実施形態)
次に図4を参照して本発明における第3実施形態について説明する。なお、図4において図2と同一又は相当する部分は、同一符号で示し、重複する説明を省略する。
図4に示すように、第3実施形態に係る蒸気発生器10は、伝熱管17の長さ方向に対し斜め方向から一次流体5が流入するように供給ノズル26が入口室31に連通している。
案内路20は、この一次流体5の流れ方向が伝熱管17の長さ方向に一致するような曲面を有しており、一次流体5が仕切板23に衝突して圧力損失が大きくなることを回避している。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. 4 that are the same as or equivalent to those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
As shown in FIG. 4, in the steam generator 10 according to the third embodiment, the supply nozzle 26 communicates with the inlet chamber 31 so that the primary fluid 5 flows from an oblique direction with respect to the length direction of the heat transfer tube 17. Yes.
The guide path 20 has a curved surface such that the flow direction of the primary fluid 5 coincides with the length direction of the heat transfer tube 17, and the primary fluid 5 collides with the partition plate 23 to increase the pressure loss. It is avoiding.

なお、第3実施形態において案内路20は、第1実施形態や第2実施形態で示したように、供給ノズル26の先端を拡張して形成されたものでなく、入口室31の底部に充填された案内部材35の側面により形成されている。   In the third embodiment, the guide path 20 is not formed by expanding the tip of the supply nozzle 26 as shown in the first embodiment or the second embodiment, and fills the bottom of the inlet chamber 31. It is formed by the side surface of the guide member 35 made.

このような案内部材35が充填されることにより、入口室31の底部に死水領域が形成されないために、一次流体5の圧力損失の増大を回避して原子炉の熱効率を向上させる。なお、この案内部材35は取り外し可能な構造として、既存の蒸気発生器10に設置してその圧力損失を低減させることもできる。   By filling such a guide member 35, no dead water region is formed at the bottom of the inlet chamber 31, so that an increase in the pressure loss of the primary fluid 5 is avoided and the thermal efficiency of the reactor is improved. In addition, this guide member 35 can also be installed in the existing steam generator 10 as a structure which can be removed, and the pressure loss can also be reduced.

本発明は前記した実施形態に限定されるものでなく、共通する技術思想の範囲内において、適宜変形して実施することができる。   The present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented within the scope of the common technical idea.

5…一次流体、6…二次流体、7…水蒸気、10…蒸気発生器、11…蒸気ノズル、12…ドライヤ、13…セパレータ、14…給水ノズル、15…外胴、16…ラッパー、17…伝熱管、18…熱交換領域、20…案内路、21…隔壁、22…管板、23…仕切板、24,25…接続部、26…供給ノズル、31…入口室、32…出口室、33…溶接点、34…緩衝材、35…案内部材。   DESCRIPTION OF SYMBOLS 5 ... Primary fluid, 6 ... Secondary fluid, 7 ... Water vapor, 10 ... Steam generator, 11 ... Steam nozzle, 12 ... Dryer, 13 ... Separator, 14 ... Water supply nozzle, 15 ... Outer trunk, 16 ... Wrapper, 17 ... Heat transfer tube, 18 ... heat exchange region, 20 ... guideway, 21 ... partition wall, 22 ... tube plate, 23 ... partition plate, 24, 25 ... connection part, 26 ... supply nozzle, 31 ... inlet chamber, 32 ... outlet chamber, 33 ... welding point, 34 ... buffer material, 35 ... guide member.

Claims (8)

給水ノズルから二次流体を内部に入力し蒸気ノズルから蒸気を出力する外胴と、
前記外胴の内部において一次流体を流動させて熱交換により前記二次流体を前記蒸気にする伝熱管と、
前記伝熱管の一端に連通するよう前記外胴に内部形成された入口室へ前記一次流体を供給する供給ノズルと、
前記外胴に接続した前記供給ノズルの接続部から前記伝熱管の一端の方向に向かって前記一次流体を案内する案内路と、を備えることを特徴とする蒸気発生器。
An outer cylinder that inputs a secondary fluid from a water supply nozzle and outputs steam from a steam nozzle;
A heat transfer tube that causes the primary fluid to flow inside the outer body and converts the secondary fluid into the vapor by heat exchange; and
A supply nozzle for supplying the primary fluid to an inlet chamber formed in the outer body so as to communicate with one end of the heat transfer tube;
A steam generator, comprising: a guide path that guides the primary fluid from a connection portion of the supply nozzle connected to the outer body toward the one end of the heat transfer tube.
請求項2に記載の蒸気発生器において、
前記案内路は、前記一次流体の流動方向に向かって断面が拡張するように形成されることを特徴とする蒸気発生器。
The steam generator according to claim 2,
The steam generator according to claim 1, wherein the guide path is formed so that a cross section expands in a flow direction of the primary fluid.
請求項1又は請求項2に記載の蒸気発生器において、
前記供給ノズルは、前記接続部から鉛直方向下側に延びることを特徴とする蒸気発生器。
The steam generator according to claim 1 or 2,
The steam generator, wherein the supply nozzle extends downward in the vertical direction from the connection portion.
請求項1から請求項3のいずれか1項に記載の蒸気発生器において、
前記案内路の終端の形状を楕円とするか又は複数の前記伝熱管における一端の配置形状にオーバーラップするように形成することを特徴とする蒸気発生器。
The steam generator according to any one of claims 1 to 3,
A steam generator characterized in that an end shape of the guide path is an ellipse or overlaps with an arrangement shape of one end of the plurality of heat transfer tubes.
請求項1から請求項4のいずれか1項に記載の蒸気発生器において、
前記案内路の終端の縁部分が前記入口室の内壁に結合していることを特徴とする蒸気発生器。
The steam generator according to any one of claims 1 to 4,
A steam generator characterized in that an end edge portion of the guide path is coupled to an inner wall of the inlet chamber.
請求項5に記載の蒸気発生器において、
前記案内路の裏側の空間が充填されていることを特徴とする蒸気発生器。
The steam generator according to claim 5,
A steam generator, wherein a space on the back side of the guide path is filled.
請求項6に記載の蒸気発生器において、
前記案内路の裏側の空間は、振動を抑制する緩衝材が充填されていることを特徴とする蒸気発生器。
The steam generator according to claim 6.
The space behind the guide path is filled with a cushioning material that suppresses vibrations.
請求項2から請求項7のいずれか1項に記載の蒸気発生器において、
前記案内路は、前記一次流体の平均流速をw、鉛直方向座標をz、定数をcとする場合、d(w2)/dz=cの式を満たす内面形状であることを特徴とする蒸気発生器。
The steam generator according to any one of claims 2 to 7,
The steam is characterized in that the guide path has an inner surface shape satisfying the formula d (w 2 ) / dz = c, where w is an average flow velocity of the primary fluid, z is a vertical coordinate, and c is a constant. Generator.
JP2011123744A 2011-06-01 2011-06-01 Steam generator Withdrawn JP2012251697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123744A JP2012251697A (en) 2011-06-01 2011-06-01 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123744A JP2012251697A (en) 2011-06-01 2011-06-01 Steam generator

Publications (1)

Publication Number Publication Date
JP2012251697A true JP2012251697A (en) 2012-12-20

Family

ID=47524677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123744A Withdrawn JP2012251697A (en) 2011-06-01 2011-06-01 Steam generator

Country Status (1)

Country Link
JP (1) JP2012251697A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035253A1 (en) * 2013-09-05 2015-03-12 Enviro Power LLC On-demand steam generator and control system
US10598049B2 (en) 2017-10-03 2020-03-24 Enviro Power, Inc. Evaporator with integrated heat recovery
US11204190B2 (en) 2017-10-03 2021-12-21 Enviro Power, Inc. Evaporator with integrated heat recovery
US11261760B2 (en) 2013-09-05 2022-03-01 Enviro Power, Inc. On-demand vapor generator and control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035253A1 (en) * 2013-09-05 2015-03-12 Enviro Power LLC On-demand steam generator and control system
US10472992B2 (en) 2013-09-05 2019-11-12 Enviro Power LLC On-demand steam generator and control system
US11261760B2 (en) 2013-09-05 2022-03-01 Enviro Power, Inc. On-demand vapor generator and control system
US10598049B2 (en) 2017-10-03 2020-03-24 Enviro Power, Inc. Evaporator with integrated heat recovery
US11204190B2 (en) 2017-10-03 2021-12-21 Enviro Power, Inc. Evaporator with integrated heat recovery

Similar Documents

Publication Publication Date Title
US9593598B2 (en) Steam conditioning system
JP2012251697A (en) Steam generator
CN105683702B (en) Heat exchanger, heat exchanger operation method, the purposes of heat exchanger and nuclear facilities
CN107606974A (en) Integrated combination heat exchanger
CN101737107A (en) Combined cycle power plant
JP2005299644A (en) Nuclear power generation system
CN112071453A (en) Design scheme of direct-current countercurrent pore channel type heat exchanger/evaporator
JP2014016135A (en) Marine boiler
US9922740B2 (en) Nuclear power generation system
CN111664427A (en) Design scheme of ultra-high temperature and ultra-high pressure pore channel type heat exchanger/evaporator
KR20120027021A (en) Continuous evaporator
KR20110129886A (en) Continuous evaporator
CN106642040B (en) A kind of uniform compact steam generator of assignment of traffic
JP2014020729A (en) Clearance expansion tool for heat transfer pipe and method for additionally providing vibration suppression member
CN104457338A (en) Heat exchanging method for horizontal type heat exchanger for steam cooling with high degree of superheat
CN107270269A (en) Multiple-unit pipe type steam generator
CN206235196U (en) A kind of big coils steam generator device of upper end feedwater
KR101465047B1 (en) Heat recovery steam generator and method of manufacturing the same
CN106382611A (en) Coil tube type vapor generator capable of achieving grouped stable operation
KR102007794B1 (en) Noise reduction type double pipe heat exchanger
KR101662348B1 (en) Continuous evaporator
JP2018537641A (en) Steam generator
US4136644A (en) Tube heat exchanger with heating tubes
JP2009133820A (en) Nuclear power generation system of fast breeder reactor type
JP5595710B2 (en) Moisture separator heater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805