JP2012251490A - Gas accumulation method for internal combustion engine and the internal combustion engine - Google Patents

Gas accumulation method for internal combustion engine and the internal combustion engine Download PDF

Info

Publication number
JP2012251490A
JP2012251490A JP2011125065A JP2011125065A JP2012251490A JP 2012251490 A JP2012251490 A JP 2012251490A JP 2011125065 A JP2011125065 A JP 2011125065A JP 2011125065 A JP2011125065 A JP 2011125065A JP 2012251490 A JP2012251490 A JP 2012251490A
Authority
JP
Japan
Prior art keywords
gas
oxygen concentration
storage container
pressure
gas storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011125065A
Other languages
Japanese (ja)
Other versions
JP5824882B2 (en
Inventor
Yoshio Sekiyama
惠夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011125065A priority Critical patent/JP5824882B2/en
Publication of JP2012251490A publication Critical patent/JP2012251490A/en
Application granted granted Critical
Publication of JP5824882B2 publication Critical patent/JP5824882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas accumulation method for an internal combustion engine capable of maintaining an oxygen concentration of compressed gas in an accumulated gas container within a proper concentration range by accurately measuring the oxygen concentration of the gas stored in the accumulated gas container and suppressing variation in exhaust gas performance by supplying gas with a proper oxygen concentration stored in the accumulated gas container when performing supercharge-assist in a cylinder of an engine from the accumulated gas container, in the internal combustion engine using the compressed gas accumulated in the accumulated gas container for the supercharge-assist, and to provide the internal combustion engine.SOLUTION: In the control for adjusting an oxygen concentration Co in an accumulated gas container 27, a part Cp of gas C in the accumulated gas container 27 is led to a state closer to the atmospheric pressure in the measurement of the oxygen concentration Co of the gas C compressed in the accumulated gas container 27, and the oxygen concentration Coa of the gas Cp led to the state closer to the atmospheric pressure is measured. The measured value Coa is used as the measurement value Com of the oxygen concentration Co in the accumulated gas container 27.

Description

本発明は、内燃機関の過渡状態のときに、蓄ガス容器に蓄圧されたガスを、シリンダ内に供給してEGR率を高めることができる内燃機関の蓄ガス方法及び内燃機関に関する。   The present invention relates to a gas storage method for an internal combustion engine and an internal combustion engine that can increase the EGR rate by supplying gas stored in a gas storage container into a cylinder when the internal combustion engine is in a transient state.

ディーゼルエンジン等の内燃機関の排気ガス中のNOx(窒素酸化物)を低減するEGR(排気再循環)においては、過給システムを備えた内燃機関では、高圧EGR方式と低圧EGR方式とがある。この高圧EGR方式では、例えば、図11に示すように、高圧EGRシステムを備えた内燃機関1Xでは、ターボ式過給機14よりもエンジン本体11側にEGR通路17が設けられており、エンジン本体11の排気マニホールド11bから吸気マニホールド11aにEGR通路17経由でEGRガスGeを還流している。また、低圧EGR方式では、例えば、図12に示すように、低圧EGRシステムを備えた内燃機関1Yでは、ターボ式過給機14よりもエンジン本体11とは反対側にEGR通路17が設けられており、タービン14bの下流側からコンプレッサ14aの上流側にEGR通路17経由でEGRガスGeを還流している。   In EGR (exhaust gas recirculation) for reducing NOx (nitrogen oxide) in exhaust gas of an internal combustion engine such as a diesel engine, there are a high pressure EGR method and a low pressure EGR method in an internal combustion engine equipped with a supercharging system. In this high pressure EGR system, for example, as shown in FIG. 11, in an internal combustion engine 1X equipped with a high pressure EGR system, an EGR passage 17 is provided closer to the engine body 11 than the turbocharger 14, and the engine body The EGR gas Ge is recirculated from the 11 exhaust manifolds 11 b to the intake manifold 11 a via the EGR passage 17. In the low pressure EGR system, for example, as shown in FIG. 12, in the internal combustion engine 1Y provided with the low pressure EGR system, an EGR passage 17 is provided on the opposite side of the engine body 11 from the turbo-type supercharger 14. The EGR gas Ge is recirculated from the downstream side of the turbine 14b to the upstream side of the compressor 14a via the EGR passage 17.

これらのいずれのEGR方式でも、EGRガス量の制御には、MAF制御方式が一般的に使用されている。このMAF制御方式では、EGR無しでエンジンのシリンダ内に吸入される新気量(空気量)をMoとし、EGRを行うことでシリンダ内に吸入される新気量をMeとすると、還流されるEGRガス量のMegrがMegr=Mo−Meとなるので、これに基づいて、EGR弁21の弁開度により新気量Meを制御することで、EGRガス量Megrを制御している。   In any of these EGR systems, the MAF control system is generally used to control the amount of EGR gas. In this MAF control method, if the amount of fresh air (air amount) sucked into the cylinder of the engine without EGR is Mo and the amount of fresh air sucked into the cylinder by performing EGR is Me, it is recirculated. Since the EGR gas amount Megr is Megr = Mo−Me, the EGR gas amount Megr is controlled by controlling the fresh air amount Me based on the valve opening degree of the EGR valve 21 based on this.

つまり、エンジンの回転速度Neと燃料負荷Qをパラメータにして、各エンジンの運転状態に対する新気量Meを予め設定して作成した新気量Meのデータマップを基に、実際のエンジン運転時の回転速度Neと燃料負荷Qから目標の新気量Metを算出して、実際の新気量Meをこの目標の新気量Metになるように制御することで、EGRガス量Megrを制御している。   That is, based on the data map of the fresh air amount Me created by setting the fresh air amount Me for each engine operating state in advance using the engine rotational speed Ne and the fuel load Q as parameters, The target fresh air amount Met is calculated from the rotational speed Ne and the fuel load Q, and the actual fresh air amount Me is controlled to become the target fresh air amount Met, thereby controlling the EGR gas amount Megr. Yes.

しかしながら、ターボ式過給機を使用する場合には排気ガスのエネルギー(エンタルピ)を用いて過給を行うため、ターボ式過給機の応答遅れ(ターボラグ)を無くすことは不可能であり、このMAF制御方式では、このターボラグに起因する次のような問題がある。ターボラグにより負荷が急激に増加する過渡運転状態では、過給圧が定常運転時に設定した圧力まで上昇しないため、エンジンの吸入空気量が低下する。つまり、ターボ式過給機付きエンジンでも無過給エンジンと同程度の吸気量となってしまう。   However, when a turbocharger is used, the exhaust gas energy (enthalpy) is used for supercharging, so it is impossible to eliminate the response delay (turbo lag) of the turbocharger. The MAF control method has the following problems due to the turbo lag. In a transient operation state in which the load increases rapidly due to the turbo lag, the supercharging pressure does not increase to the pressure set during steady operation, so the intake air amount of the engine decreases. In other words, even an engine with a turbo-type supercharger has the same intake air amount as a non-supercharged engine.

従って、定常運転条件で設定した目標のEGR量に達成することができず、図13に示すように、急激な過渡運転を行う際にNOxの排出量が増加する。また、煤の発生量を制限するために、過給圧があるレベルより上がらない場合には煤が増加しない領域内に燃料の投入量が抑えられるというスモークリミット制御が行われる。その結果、図14及び図15に示すように、燃料噴射量Qと空気量(Mo、Me)が共に点線で示されるように抑えられ、加速時のパワーが抑えられてしまうという問題がある。そのために、加速時等の負荷が急激に増加する過渡運転時には、NOx排出量の増加や燃費の悪化が発生する。   Therefore, the target EGR amount set under the steady operation condition cannot be achieved, and as shown in FIG. 13, the NOx emission amount increases when performing a rapid transient operation. Further, in order to limit the amount of soot generated, smoke limit control is performed in which the amount of fuel input is suppressed in a region where the soot does not increase when the supercharging pressure does not rise above a certain level. As a result, as shown in FIGS. 14 and 15, both the fuel injection amount Q and the air amount (Mo, Me) are suppressed as indicated by the dotted lines, and there is a problem that the power during acceleration is suppressed. For this reason, during transient operation in which the load increases rapidly during acceleration or the like, an increase in NOx emissions and a deterioration in fuel consumption occur.

一方、エンジンのクランクシャフト等によって、過給機を直接駆動して過給を行う機械式過給装置を使用する場合では、過給の応答遅れをなくす事ができるが、エンジンの回転速度が決まると燃料量の多少に関わらず、過給量が決まるために、また、駆動に要する仕事量が大きいために、燃費が悪化するという問題がある。   On the other hand, in the case of using a mechanical supercharger that performs supercharging by directly driving the supercharger by an engine crankshaft or the like, the delay in the supercharging response can be eliminated, but the engine speed is determined. However, there is a problem that fuel efficiency deteriorates because the amount of supercharging is determined regardless of the amount of fuel and the amount of work required for driving is large.

この対策として、近年では、図16に示すような蓄ガス供給システムを備えた内燃機関1Zが研究されており、この蓄ガス供給システムでは、内燃機関1Zから排出される排気ガスGの一部Gpを空気Aaと混合した混合ガスCを容積型コンプレッサ(排気圧縮器)25で圧縮して高圧化し、この高圧化した混合ガスCを蓄ガス容器(圧力容器)27内に溜め込み、過渡時に放出電磁弁36を開弁して混合ガスCを調圧弁29経由で吸気弁(吸気スロットル)35の下流の吸気通路12に放出し、これにより、内燃機関1Zのシリンダ内への吸気量を過給機付きエンジン並みに増加させると共に、EGRの効果によるNOxの低減を図り、ターボラグの問題を解消している過給制御装置が提案されている(例えば、特許文献1参照)。   As a countermeasure, in recent years, an internal combustion engine 1Z having a storage gas supply system as shown in FIG. 16 has been studied, and in this storage gas supply system, a part Gp of the exhaust gas G discharged from the internal combustion engine 1Z. The mixed gas C mixed with air Aa is compressed by a positive displacement compressor (exhaust compressor) 25 to increase the pressure, and the increased mixed gas C is stored in a gas storage container (pressure container) 27 to release electromagnetic waves in a transient state. The valve 36 is opened and the mixed gas C is discharged to the intake passage 12 downstream of the intake valve (intake throttle) 35 via the pressure regulating valve 29, whereby the amount of intake air into the cylinder of the internal combustion engine 1Z is supercharged. There has been proposed a supercharging control device that increases the same level as an attached engine, reduces NOx by the effect of EGR, and solves the problem of turbo lag (see, for example, Patent Document 1).

この蓄ガス供給システムを採用した場合は、過渡時に加圧された混合ガスCをエンジン1Zの吸気通路12内に放出することで過給圧を上げて、シリンダ内への空気量を増加させることができるので燃料量も増やすことができる。その結果、加速性能が向上し、煤の排出も抑えることができる。また、過給圧は排気マニホールド11bの内圧よりも高くなるので、内燃機関1Zのポンピング損失が低下し燃費の向上を図ることができる。   When this storage gas supply system is adopted, the supercharging pressure is increased by releasing the gas mixture C pressurized during the transition into the intake passage 12 of the engine 1Z, thereby increasing the amount of air into the cylinder. Can increase the amount of fuel. As a result, acceleration performance is improved and soot discharge can be suppressed. Further, since the supercharging pressure is higher than the internal pressure of the exhaust manifold 11b, the pumping loss of the internal combustion engine 1Z is reduced, and the fuel efficiency can be improved.

しかしながら、蓄ガス容器内の蓄圧されたガスの組成を、排気ガスと空気の混合比を基にして調整している場合には、この混合比を一定にする制御はできても、排気ガスの酸素濃度がエンジンの運転状態によって変化する可能性があり、ガスの酸素濃度を一定に保てるとは限らない。   However, when the composition of the pressure-accumulated gas in the gas storage container is adjusted based on the mixture ratio of the exhaust gas and air, even if the mixture ratio can be controlled to be constant, The oxygen concentration may change depending on the operating state of the engine, and the oxygen concentration of the gas cannot always be kept constant.

特に、蓄ガス容器に導入する排気ガスを排気通路から導入するときに、エンジンの負荷状態によって排気ガス中の酸素濃度が低い場合や、酸素濃度が高い場合が発生する。従って、蓄ガス容器内のガスを排気ガスと空気の混合比一定で制御した場合には、ガスの酸素濃度がばらつくために、煤とNOx等の排気性能にばらつきが発生する可能性がある。   In particular, when exhaust gas to be introduced into the gas storage container is introduced from the exhaust passage, there are cases where the oxygen concentration in the exhaust gas is low or the oxygen concentration is high depending on the load state of the engine. Therefore, when the gas in the gas storage container is controlled at a constant mixing ratio of exhaust gas and air, the oxygen concentration of the gas varies, so that there may be variations in exhaust performance of soot and NOx.

これを防止するためには、蓄ガス容器の内部の酸素濃度を測定して、排気ガスと空気との混合比を制御することが、排気性能のばらつきを抑えるために有効であると考えられる。この蓄ガス容器の内部の酸素濃度を測定するために、酸素濃度計を用いることが考えられるが、酸素濃度計は圧力依存性が高く、蓄ガス容器内の圧力による影響を補正する必要があり、測定精度が悪いという問題がある。   In order to prevent this, it is considered effective to control the mixing ratio between the exhaust gas and air by measuring the oxygen concentration inside the gas storage container in order to suppress the variation in the exhaust performance. It is conceivable to use an oxygen concentration meter to measure the oxygen concentration inside this gas storage container, but the oxygen concentration meter is highly pressure dependent and it is necessary to correct the influence of the pressure in the gas storage container. There is a problem that the measurement accuracy is poor.

特開2011−21558号公報JP 2011-21558 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡状態のときに前記ガスをシリンダ内に一時的に供給して過渡状態のNOxの排出を抑制するとともに加速性能を向上させる内燃機関において、蓄ガス容器に貯蔵されたガスの酸素濃度を精度よく測定し、蓄ガス容器内のガスの酸素濃度を適切な濃度範囲内に維持でき、蓄ガス容器からエンジンのシリンダ内に過給補助を行うときに、蓄ガス容器内に蓄えられた適正な酸素濃度のガスを供給して、排気ガス性能のばらつきを抑えることができる内燃機関の蓄ガス方法及び内燃機関を提供することにある。   The present invention has been made in view of the above-described situation, and an object of the present invention is to store a part of exhaust gas, air, and any one of these mixed gases in a gas storage container using a gas compression device. Stored in a gas storage container in an internal combustion engine that suppresses the emission of transient NOx and improves acceleration performance by temporarily supplying the gas into the cylinder during a transient state in which the load suddenly increases Accurately measure the oxygen concentration of the gas, maintain the oxygen concentration of the gas in the storage container within the appropriate concentration range, and when supercharging assistance from the storage container to the engine cylinder, It is an object of the present invention to provide a gas storage method for an internal combustion engine and an internal combustion engine that can suppress variations in exhaust gas performance by supplying a gas having an appropriate oxygen concentration stored in the engine.

上記の目的を達成するための本発明の内燃機関の蓄ガス方法は、内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、該蓄ガス容器から前記ガスを吸気系通路に供給するための蓄ガス供給通路を備えた内燃機関の過給補助方法において、前記蓄ガス容器内の前記ガスの酸素濃度を調整する制御において、前記蓄ガス容器内の前記ガスの酸素濃度の計測で、前記蓄ガス容器内の前記ガスの一部を大気圧に近い状態に導いて、大気圧に近い状態に導いた前記ガスの酸素濃度を測定して、この測定値を前記蓄ガス容器内の前記ガスの酸素濃度の測定値とする酸素濃度測定方法を用いることを特徴とする方法である。   In order to achieve the above object, an internal combustion engine gas storage method according to the present invention includes an EGR passage for recirculating a part of exhaust gas of an internal combustion engine into a cylinder, a part of exhaust gas of the internal combustion engine, and air. And a gas compression device for compressing any one of these mixed gases, a gas storage container for storing the gas compressed by the gas compression device, and supplying the gas from the gas storage container to the intake system passage In the supercharging assist method for an internal combustion engine provided with a storage gas supply passage for controlling the oxygen concentration of the gas in the storage gas container, in the measurement of the oxygen concentration of the gas in the storage gas container, A part of the gas in the gas storage container is guided to a state close to atmospheric pressure, the oxygen concentration of the gas guided to a state close to atmospheric pressure is measured, and this measured value is stored in the gas storage container. Oxygen as measured value of gas oxygen concentration A method which comprises using a time measuring method.

この方法によれば、蓄ガス容器内のガスの酸素濃度を、測定時の圧力に大きな影響を受ける酸素濃度計で測定するために、測定する蓄ガス容器内の蓄圧されたガスの一部を、このガスを加圧するガス圧縮装置の入口側に戻して、又は、大気に開放して、略大気圧に減圧した状態にしてから、酸素濃度計でこのガスの酸素濃度を測定する。これにより、酸素濃度計の圧力依存性を排除して、蓄ガス容器内のガスの酸素濃度を精度よく測定することができる。   According to this method, in order to measure the oxygen concentration of the gas in the gas storage container with an oxygen concentration meter that is greatly affected by the pressure at the time of measurement, a part of the pressure-accumulated gas in the gas storage container to be measured is Then, after returning to the inlet side of the gas compression device for pressurizing the gas or opening it to the atmosphere and reducing the pressure to approximately atmospheric pressure, the oxygen concentration of the gas is measured with an oximeter. Thereby, the pressure dependence of the oxygen concentration meter can be eliminated, and the oxygen concentration of the gas in the gas storage container can be accurately measured.

従って、蓄ガス容器に貯蔵されたガスの酸素濃度を精度よく測定し、蓄ガス容器内のガスの酸素濃度を適切な濃度範囲内に維持でき、蓄ガス容器からエンジンのシリンダ内に過給補助を行うときに、蓄ガス容器内に蓄えられた適正な酸素濃度のガスを供給して、排気ガス性能のばらつきを抑えることができる。   Therefore, it is possible to accurately measure the oxygen concentration of the gas stored in the gas storage container, maintain the oxygen concentration of the gas in the gas storage container within an appropriate concentration range, and supercharge assist from the gas storage container into the engine cylinder. When performing the above, it is possible to supply the gas having an appropriate oxygen concentration stored in the gas storage container, and to suppress variations in the exhaust gas performance.

また、上記の内燃機関の蓄ガス方法において、前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときは空気を蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときは排気ガスを蓄圧すると、蓄ガス容器内のガスの酸素濃度と圧力を予め設定した範囲内の酸素濃度と予め設定した範囲内の圧力に効率よく維持することができる。   In the gas storage method for an internal combustion engine, when the pressure of the gas in the gas storage container is higher than a preset first upper limit pressure, the gas is released and exhaust gas or air is stored. When accumulating pressure in the gas container, the oxygen concentration of the gas in the gas storage container is measured in advance by measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measuring method. When the oxygen concentration is lower than the oxygen concentration, air is stored, and when the oxygen concentration of the gas in the storage gas container is higher than a preset first upper limit oxygen concentration, when the exhaust gas is stored, the oxygen concentration of the gas in the storage gas container The pressure can be efficiently maintained at an oxygen concentration within a preset range and a pressure within a preset range.

あるいは、上記の内燃機関の蓄ガス方法において、前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく空気を蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が前記第1下限酸素濃度より低い予め設定した第2下限酸素濃度より低いとき、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力より大きいときは、前記ガスを放出して空気を蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく排気ガスを蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が前記第1上限酸素濃度より高い予め設定した第2上限酸素濃度より高く、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第2上限圧力より高いときは、前記ガスを放出して排気ガスを蓄圧すると、蓄ガス容器内のガスの酸素濃度と圧力を予め設定した範囲内の酸素濃度と予め設定した範囲内の圧力に効率よく維持することができる。   Alternatively, in the gas storage method for an internal combustion engine, when the pressure of the gas in the gas storage container is higher than a first upper limit pressure set in advance, the gas is released and exhaust gas or air is stored. When accumulating pressure in the gas container, the oxygen concentration of the gas in the gas storage container is measured in advance by measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measuring method. When the pressure is lower than the oxygen concentration and the pressure of the gas in the gas storage container is equal to or lower than a preset second upper limit pressure lower than the first upper limit pressure, the air is stored without releasing the gas. And when the oxygen concentration of the gas in the gas storage container is lower than a preset second lower limit oxygen concentration lower than the first lower limit oxygen concentration, and the pressure of the gas in the gas storage container is the first Than the upper limit pressure When the gas pressure is larger than the preset second upper limit pressure, the gas is discharged to accumulate air, and when the oxygen concentration of the gas in the gas storage container is higher than the preset first upper limit oxygen concentration, and When the pressure of the gas in the gas storage container is equal to or lower than a preset second upper limit pressure lower than the first upper limit pressure, the exhaust gas is stored without releasing the gas, and the gas storage container When the oxygen concentration of the gas is higher than a preset second upper limit oxygen concentration higher than the first upper limit oxygen concentration and the pressure of the gas in the gas storage container is higher than the second upper limit pressure, When the exhaust gas is accumulated by releasing the gas, the oxygen concentration and pressure of the gas in the gas storage container can be efficiently maintained at the oxygen concentration within the preset range and the pressure within the preset range.

そして、上記の目的を達成するための内燃機関は、上記の内燃機関の蓄ガス方法を実施できる内燃機関であり、内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、該蓄ガス容器から前記ガスを吸気系通路に供給するための蓄ガス供給通路と、前記蓄ガス容器に排気ガスまたは空気を蓄圧するための装置を制御する制御装置を備えた内燃機関において、前記制御装置が、前記蓄ガス容器内の前記ガスの酸素濃度を調整する制御において、前記蓄ガス容器内の前記ガスの酸素濃度の計測で、前記蓄ガス容器内の前記ガスの一部を大気圧に近い状態に導いて、大気圧に近い状態に導いた前記ガスの酸素濃度を測定して、この測定値を前記蓄ガス容器内の前記ガスの酸素濃度の測定値とする酸素濃度測定方法を用いる制御を行うように構成される。 この構成によれば、蓄ガス容器内のガスの酸素濃度を、測定時の圧力に大きな影響を受ける酸素濃度計で測定するために、測定する蓄ガス容器内の蓄圧されたガスの一部を、このガスを加圧するガス圧縮装置の入口側に戻して、又は、大気に開放して、略大気圧に減圧した状態にしてから、酸素濃度計でこのガスの酸素濃度を測定する。これにより、酸素濃度計の圧力依存性を排除して、蓄ガス容器内のガスの酸素濃度を精度よく測定することができる。   An internal combustion engine for achieving the above object is an internal combustion engine capable of implementing the gas storage method of the internal combustion engine, and an EGR passage for recirculating a part of the exhaust gas of the internal combustion engine into the cylinder; A gas compression device for compressing a part of the exhaust gas of the internal combustion engine, air, and a mixed gas thereof, a gas storage container for storing the gas compressed by the gas compression device, and the gas storage gas An internal combustion engine comprising: a storage gas supply passage for supplying the gas from a container to an intake system passage; and a control device for controlling a device for accumulating exhaust gas or air in the storage gas container. In the control for adjusting the oxygen concentration of the gas in the gas storage container, a state in which a part of the gas in the gas storage container is close to atmospheric pressure by measuring the oxygen concentration of the gas in the gas storage container Lead to It is configured to perform control using an oxygen concentration measurement method that measures the oxygen concentration of the gas led to a state close to atmospheric pressure and uses the measured value as a measured value of the oxygen concentration of the gas in the gas storage container. The According to this configuration, in order to measure the oxygen concentration of the gas in the gas storage container with the oxygen concentration meter that is greatly affected by the pressure at the time of measurement, a part of the pressure-accumulated gas in the gas storage container is measured. Then, after returning to the inlet side of the gas compression device for pressurizing the gas or opening it to the atmosphere and reducing the pressure to approximately atmospheric pressure, the oxygen concentration of the gas is measured with an oximeter. Thereby, the pressure dependence of the oxygen concentration meter can be eliminated, and the oxygen concentration of the gas in the gas storage container can be accurately measured.

従って、蓄ガス容器に貯蔵されたガスの酸素濃度を精度よく測定し、蓄ガス容器内のガスの酸素濃度を適切な濃度範囲内に維持でき、蓄ガス容器からエンジンのシリンダ内に過給補助を行うときに、蓄ガス容器内に蓄えられた適正な酸素濃度のガスを供給して、排気ガス性能のばらつきを抑えることができる。   Therefore, it is possible to accurately measure the oxygen concentration of the gas stored in the gas storage container, maintain the oxygen concentration of the gas in the gas storage container within an appropriate concentration range, and supercharge assist from the gas storage container into the engine cylinder. When performing the above, it is possible to supply the gas having an appropriate oxygen concentration stored in the gas storage container, and to suppress variations in the exhaust gas performance.

上記の内燃機関において、前記制御装置が、前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときは空気を蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときは排気ガスを蓄圧する制御を行うように構成する。この構成により、蓄ガス容器内の蓄圧されたガスの酸素濃度と圧力を予め設定した範囲内の酸素濃度と予め設定した範囲内の圧力に効率よく維持することができる。   In the internal combustion engine, when the pressure of the gas in the gas storage container is higher than a preset first upper limit pressure, the control device releases the gas and converts the exhaust gas or air into the gas storage gas. When accumulating pressure in the container, the first lower limit oxygen in which the oxygen concentration of the gas in the gas storage container is set in advance while measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measuring method. When the concentration is lower than the concentration, air is stored, and when the oxygen concentration of the gas in the storage gas container is higher than a preset first upper limit oxygen concentration, control is performed to store the exhaust gas. With this configuration, the oxygen concentration and pressure of the accumulated gas in the gas storage container can be efficiently maintained at the oxygen concentration within the preset range and the pressure within the preset range.

あるいは、上記の内燃機関において、前記制御装置が、前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく空気を蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が前記第1下限酸素濃度より低い予め設定した第2下限酸素濃度より低いとき、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力より大きいときは、前記ガスを放出して空気を蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく排気ガスを蓄圧し、前記蓄ガス容器内の前記ガスの酸素濃度が前記第1上限酸素濃度より高い予め設定した第2上限酸素濃度より高く、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第2上限圧力より高いときは、前記ガスを放出して排気ガスを蓄圧する制御を行うように構成する。この構成により、蓄ガス容器内の蓄圧されたガスの酸素濃度と圧力を所定の範囲内の酸素濃度と所定の範囲内の圧力に効率よく維持することができる。   Alternatively, in the internal combustion engine, when the pressure of the gas in the gas storage container is higher than a preset first upper limit pressure, the control device releases the gas and supplies the exhaust gas or air to the When accumulating pressure in the gas storage container, the oxygen concentration of the gas in the gas storage container is set in advance while the oxygen concentration of the gas in the gas storage container is measured by the oxygen concentration measuring method. When the oxygen concentration is lower than the lower limit oxygen concentration and the pressure of the gas in the gas storage container is equal to or lower than a preset second upper limit pressure lower than the first upper limit pressure, the air is discharged without releasing the gas. And when the oxygen concentration of the gas in the gas storage container is lower than a preset second lower limit oxygen concentration lower than the first lower limit oxygen concentration, and the pressure of the gas in the gas storage container is the first 1 Upper limit pressure Is less than a preset second upper limit pressure, when the gas is discharged to accumulate air, and when the oxygen concentration of the gas in the gas storage container is higher than a preset first upper limit oxygen concentration, And when the pressure of the gas in the gas storage container is equal to or lower than a preset second upper limit pressure lower than the first upper limit pressure, the exhaust gas is stored without releasing the gas, and the gas storage container When the oxygen concentration of the gas in the gas is higher than a preset second upper limit oxygen concentration higher than the first upper limit oxygen concentration and the pressure of the gas in the gas storage container is higher than the second upper limit pressure, Control is performed to release the gas and accumulate the exhaust gas. With this configuration, the oxygen concentration and pressure of the accumulated gas in the gas storage container can be efficiently maintained at the oxygen concentration within a predetermined range and the pressure within the predetermined range.

本発明に係る内燃機関の蓄ガス方法及び内燃機関によれば、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡状態のときに前記ガスをシリンダ内に一時的に供給して過渡状態のNOxの排出を抑制するとともに加速性能を向上させる内燃機関において、蓄ガス容器に貯蔵されたガスの酸素濃度を精度よく測定し、蓄ガス容器内の蓄圧されたガスの酸素濃度を適切な濃度範囲に維持でき、蓄ガス容器からエンジンのシリンダ内に過給補助を行うときに、適正な酸素濃度のガスを供給して、排気ガス性能のばらつきを抑えることができる。   According to the internal combustion engine gas storage method and internal combustion engine according to the present invention, the gas compression device is used to store a part of the exhaust gas, air, and any one of these mixed gases in the gas storage container, and the load is increased. In an internal combustion engine that temporarily suppresses NOx emission in a transient state and improves acceleration performance in a transient state that increases rapidly, oxygen in the gas stored in the gas storage container Concentration can be measured accurately, the oxygen concentration of the accumulated gas in the gas storage container can be maintained in the appropriate concentration range, and when supercharging assistance is performed from the gas storage container to the engine cylinder, Variations in exhaust gas performance can be suppressed by supplying gas.

本発明に係る第1の実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of a 1st embodiment concerning the present invention. 本発明に係る第2の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 2nd Embodiment which concerns on this invention. 蓄ガス容器内の酸素濃度測定に関係する構成を示す図である。It is a figure which shows the structure relevant to the oxygen concentration measurement in a gas storage container. 蓄ガス容器内の酸素濃度測定に関係する他の構成を示す図である。It is a figure which shows the other structure relevant to the oxygen concentration measurement in a gas storage container. 本発明に係る第1の実施の形態の蓄ガス方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the gas storage method of 1st Embodiment which concerns on this invention. 本発明に係る第2の実施の形態の蓄ガス方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the gas storage method of 2nd Embodiment which concerns on this invention. 蓄ガス方法と過給補助方法と絡めた制御方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the control method intertwined with the gas storage method and the supercharging assistance method. 蓄ガス用のガス圧縮装置の駆動を説明するための図である。It is a figure for demonstrating the drive of the gas compression apparatus for stored gas. 三方切替弁で構成された流路切替装置の構造を吸気ラインが連通された状態で示す図である。It is a figure which shows the structure of the flow-path switching apparatus comprised with the three-way switching valve in the state by which the intake line was connected. 三方切替弁で構成された流路切替装置の構造を蓄ガス供給ラインが連通された状態で示す図である。It is a figure which shows the structure of the flow-path switching apparatus comprised with the three-way switching valve in the state by which the stored gas supply line was connected. 従来技術の高圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a high pressure EGR system of a prior art. 従来技術の低圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the low pressure EGR type internal combustion engine of a prior art. 車速の変化と瞬時NOx排出量の関係を示す図である。It is a figure which shows the relationship between the change of a vehicle speed, and instantaneous NOx discharge | emission amount. 全負荷における燃料噴射量の特性と過渡時の動きを示す図である。It is a figure which shows the characteristic of the fuel injection quantity in a full load, and the movement at the time of transition. 過渡時のターボ式過給機の応答遅れとEGRの関係を示す図である。It is a figure which shows the response delay of the turbo supercharger at the time of transition, and the relationship of EGR. 先行技術の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a prior art.

以下、本発明に係る実施の形態の内燃機関の蓄ガス方法及び内燃機関について、図面を参照しながら説明する。   Hereinafter, an internal combustion engine gas storage method and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明に係る第1の実施の形態のエンジン(内燃機関)1は、エンジン本体11と吸気マニホールド11aに接続する吸気通路12と排気マニホールド11bに接続する排気通路13を有して構成される。この吸気マニホールド11aと吸気通路12とで吸気系通路を形成し、排気マニホールド11bと排気通路13とで排気系通路を形成する。   As shown in FIG. 1, an engine (internal combustion engine) 1 according to a first embodiment of the present invention includes an intake passage 12 connected to an engine body 11, an intake manifold 11a, and an exhaust passage 13 connected to an exhaust manifold 11b. It is configured. The intake manifold 11a and the intake passage 12 form an intake system passage, and the exhaust manifold 11b and the exhaust passage 13 form an exhaust system passage.

吸気通路12には、ターボ式過給機14のコンプレッサ14aが設けられ、排気通路13には、ターボ式過給機14のタービン14bと、ディーゼルパティキュレートフィルタ(DPF)装置15とNOx吸蔵還元型触媒等で形成されるNOx浄化触媒16が設けられている。   The intake passage 12 is provided with a compressor 14a of a turbocharger 14, and the exhaust passage 13 is provided with a turbine 14b of a turbocharger 14, a diesel particulate filter (DPF) device 15, and a NOx occlusion reduction type. A NOx purification catalyst 16 formed of a catalyst or the like is provided.

また、タービン14bの上流側の排気通路13からEGR通路17が分岐され、コンプレッサ14aの上流側の吸気通路12にEGR合流部18で合流している。このEGR通路17には上流側から、ディーゼルパティキュレートフィルタ(DPF)装置19とEGRクーラ20とEGR弁21が設けられている。   Further, an EGR passage 17 is branched from the exhaust passage 13 on the upstream side of the turbine 14b, and merges with the intake passage 12 on the upstream side of the compressor 14a at the EGR merging portion 18. The EGR passage 17 is provided with a diesel particulate filter (DPF) device 19, an EGR cooler 20, and an EGR valve 21 from the upstream side.

更に、NOx浄化触媒16の下流側の排気通路13から分岐して、排気ガス導入通路22が設けられている。この排気ガス導入通路22にはEGRクーラ23と三方弁24が設けられ、この排気ガス導入通路22は機械式の容積型過給機(往復動式が望ましい)等で形成されるガス圧縮装置25に接続されている。このガス圧縮装置25は、圧縮ガス供給通路26により圧力容器等で形成される蓄ガス容器27に接続されている。また、この蓄ガス容器27は蓄ガス供給通路28により吸気通路12と接続されている。この排気ガス導入通路22と圧縮ガス供給通路26と蓄ガス供給通路28で蓄圧ガス系通路を形成する。   Further, an exhaust gas introduction passage 22 is provided so as to branch from the exhaust passage 13 on the downstream side of the NOx purification catalyst 16. The exhaust gas introduction passage 22 is provided with an EGR cooler 23 and a three-way valve 24, and the exhaust gas introduction passage 22 is formed by a mechanical positive displacement turbocharger (preferably a reciprocating type) or the like. It is connected to the. The gas compression device 25 is connected to a gas storage container 27 formed of a pressure container or the like by a compressed gas supply passage 26. The gas storage container 27 is connected to the intake passage 12 by a stored gas supply passage 28. The exhaust gas introduction passage 22, the compressed gas supply passage 26 and the stored gas supply passage 28 form a pressure accumulation gas system passage.

図8に示すように、このガス圧縮装置25は、エンジン1を搭載した車両の車軸31から歯車32、33と、電磁クラッチ34を経由してガス圧縮装置25の駆動軸に動力を伝達する。この電磁クラッチ34をONにして接続することにより、ガス圧縮装置25を駆動して、排気ガス導入通路22からの排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを、圧縮して高圧化して蓄ガス容器27に供給し、貯蔵する。なお、蓄ガス供給通路28には、調圧弁29が配置され、流路切替装置30に供給されるガスCの圧力を調整する。このとき、三方弁24で、排気ガスGの一部Gpの量と空気Aaの量を調整して、蓄ガス容器27で貯蔵されるガスCにおける酸素濃度を略一定に保つことが好ましく、これにより、EGRを行うときの制御を単純化することができる。   As shown in FIG. 8, the gas compression device 25 transmits power from an axle 31 of a vehicle on which the engine 1 is mounted to a drive shaft of the gas compression device 25 via gears 32 and 33 and an electromagnetic clutch 34. When the electromagnetic clutch 34 is turned on and connected, the gas compressor 25 is driven, and part of the exhaust gas G Gp from the exhaust gas introduction passage 22, the air Aa, and any one of these mixed gases C Is compressed and pressurized to be supplied to the gas storage container 27 and stored. A pressure regulating valve 29 is disposed in the stored gas supply passage 28 to adjust the pressure of the gas C supplied to the flow path switching device 30. At this time, the three-way valve 24 preferably adjusts the amount of part Gp of the exhaust gas G and the amount of air Aa to keep the oxygen concentration in the gas C stored in the gas storage container 27 substantially constant. Thus, the control when performing EGR can be simplified.

そして、上記の機器類の制御を行うために、エンジンコントロールユニット(ECU)と呼ばれるエンジン1の運転の全般を制御する制御装置40を設け、この制御装置40で蓄ガス容器27内の圧力Pmやエンジン回転速度Neやアクセル開度Ac等を検出して、その結果に基づいて電磁クラッチ34や三方弁24を制御して、蓄ガス容器27内のガスCの量(圧力)と排気ガスGpと空気Aaの混合比率を調整制御する。   In order to control the above devices, a control device 40 called an engine control unit (ECU) that controls the overall operation of the engine 1 is provided, and the control device 40 controls the pressure Pm in the gas storage container 27. The engine rotation speed Ne, the accelerator opening degree Ac, and the like are detected, and the electromagnetic clutch 34 and the three-way valve 24 are controlled based on the results, and the amount (pressure) of the gas C in the gas storage container 27 and the exhaust gas Gp The mixing ratio of the air Aa is adjusted and controlled.

そして、図3に示すように、この蓄ガス容器27の内部の最大圧を調整する電磁開閉弁27aを蓄ガス容器27に設ける。更に、蓄ガス容器27の内部のガスCの酸素濃度を測定するために、蓄ガス容器27に連通する酸素濃度測定通路51を設けて、この酸素濃度測定通路51には、上流側から、すなわち、蓄ガス容器27側から電磁開閉弁52と酸素濃度計53を設ける。この酸素濃度測定通路は51は、ガス圧縮装置25の上流側の排気ガス導入通路22に連通させて、酸素濃度を測定した後のガスCをガス圧縮装置25の入口側に戻すように構成してもよく、図4に示すように、大気開放として酸素濃度を測定した後のガスCを大気中に放出するように構成してもよい。また、蓄ガス容器27には、蓄ガス容器27の内部のガスCの温度を計測するための温度計54と圧力計55を設ける。   As shown in FIG. 3, an electromagnetic on-off valve 27 a that adjusts the maximum pressure inside the gas storage container 27 is provided in the gas storage container 27. Further, in order to measure the oxygen concentration of the gas C inside the gas storage container 27, an oxygen concentration measurement passage 51 that communicates with the gas storage container 27 is provided. An electromagnetic on-off valve 52 and an oxygen concentration meter 53 are provided from the gas storage container 27 side. The oxygen concentration measurement passage 51 is configured to communicate with the exhaust gas introduction passage 22 upstream of the gas compression device 25 so that the gas C after the oxygen concentration is measured is returned to the inlet side of the gas compression device 25. Alternatively, as shown in FIG. 4, the gas C after measuring the oxygen concentration may be configured to be released into the atmosphere as being open to the atmosphere. The gas storage container 27 is provided with a thermometer 54 and a pressure gauge 55 for measuring the temperature of the gas C inside the gas storage container 27.

つまり、エンジン1は、排気ガスGの一部Geをシリンダ内に再循環するためのEGR通路17と、エンジン1の排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを圧縮するガス圧縮装置25と、このガス圧縮装置25で圧縮されたガスCを貯蓄する蓄ガス容器27と、この蓄ガス容器27と吸気通路12を接続する蓄ガス供給通路28を備えて構成される。   That is, the engine 1 has an EGR passage 17 for recirculating a part Ge of the exhaust gas G into the cylinder, a part Gp of the exhaust gas G of the engine 1, the air Aa, and any one of these mixed gases. A gas compression device 25 that compresses C, a gas storage container 27 that stores the gas C compressed by the gas compression device 25, and a gas storage supply passage 28 that connects the gas storage container 27 and the intake passage 12 are provided. Composed.

そして、吸気通路12と蓄ガス供給通路28は流路切替装置30を介して接続される。また、流路切替装置30は吸気通路12の下流側の通路側を開放したまま、蓄ガス供給通路28側と吸気通路12の上流側の通路側とを切り替えるように構成される。   The intake passage 12 and the stored gas supply passage 28 are connected via a flow path switching device 30. The flow switching device 30 is configured to switch between the stored gas supply passage 28 side and the upstream passage side of the intake passage 12 while the downstream passage side of the intake passage 12 is open.

この流路切替装置30は、図9及び図10に示すような三方切替弁で構成することができる。また、図示しないが、吸気系通路12に設けた吸気弁と、蓄ガス供給通路28に設けた開閉弁で構成することもできる。つまり、流路切替装置30を用いずに、吸気通路12を吸気弁(吸気スロットル)等で閉塞する方式の場合には、吸気弁(図示しない)の上流にEGR合流部18を設けて、EGRガスGeをEGR弁21と吸気弁(図示しない)とで2段構えで遮断する。   The flow path switching device 30 can be constituted by a three-way switching valve as shown in FIGS. In addition, although not shown, the intake valve provided in the intake system passage 12 and the opening / closing valve provided in the stored gas supply passage 28 may be used. That is, in the case of a system in which the intake passage 12 is closed with an intake valve (intake throttle) or the like without using the flow path switching device 30, an EGR merging portion 18 is provided upstream of the intake valve (not shown), and EGR Gas Ge is shut off in two stages by an EGR valve 21 and an intake valve (not shown).

図9及び図10に示す流路切替装置30では、駆動用ガスApを入れてピストンの背面の空気Aeを抜くことで、高速駆動用のシリンダ30aのロッド30bを移動させることにより、シャッター部30cを移動させて、図9に示すように、蓄ガス供給通路28側を閉じて、吸気通路12の上流側12aと下流側12bを連通させ、また、図10に示すように、吸気通路12の上流側12a側を閉じて、蓄ガス供給通路28と吸気通路12の下流側12bを連通させる。   In the flow path switching device 30 shown in FIGS. 9 and 10, the shutter gas 30p is moved by moving the rod 30b of the cylinder 30a for high speed driving by inserting the driving gas Ap and extracting the air Ae on the back surface of the piston. 9, the stored gas supply passage 28 side is closed, and the upstream side 12a and the downstream side 12b of the intake passage 12 are communicated with each other, and as shown in FIG. The upstream side 12 a side is closed, and the stored gas supply passage 28 and the downstream side 12 b of the intake passage 12 are communicated.

次に、本発明に係る第2の実施の形態のエンジン(内燃機関)1Aについて説明する。図2に示すように、この第2の実施の形態のエンジン1Aでは、EGR通路17がNOx浄化触媒16の下流側の排気通路13から分岐し、このEGR通路17から排気ガス導入通路22が分岐している点が、EGR通路17がターボ式過給機14のタービン14bの上流側の排気通路13から分岐して、排気ガス導入通路22がNOx浄化触媒15の下流側の排気通路13から分岐している第1の実施の形態と異なっている。その他の点は、第1の実施の形態と同じである。   Next, an engine (internal combustion engine) 1A according to a second embodiment of the present invention will be described. As shown in FIG. 2, in the engine 1A of the second embodiment, the EGR passage 17 branches from the exhaust passage 13 downstream of the NOx purification catalyst 16, and the exhaust gas introduction passage 22 branches from the EGR passage 17. The EGR passage 17 branches from the exhaust passage 13 upstream of the turbine 14 b of the turbocharger 14, and the exhaust gas introduction passage 22 branches from the exhaust passage 13 downstream of the NOx purification catalyst 15. This is different from the first embodiment. Other points are the same as in the first embodiment.

つまり、EGR通路17に流入する排気ガスGeが、第1の実施の形態のエンジン1では、ターボ式過給機14のタービン14bを通過する前の排気ガスGの一部となっているのに対して、この第2の実施の形態のエンジン1Aでは、ターボ式過給機14のタービン14bを通過した後の排気ガスGの一部となっている。言い換えれば、第1の実施の形態のエンジン1では、高圧EGR方式が採用されており、第2の実施の形態のエンジン1Aでは低圧EGR方式が採用されている。   That is, the exhaust gas Ge flowing into the EGR passage 17 is a part of the exhaust gas G before passing through the turbine 14b of the turbocharger 14 in the engine 1 of the first embodiment. On the other hand, in the engine 1A of the second embodiment, it becomes a part of the exhaust gas G after passing through the turbine 14b of the turbocharger 14. In other words, the engine 1 of the first embodiment employs the high pressure EGR method, and the engine 1A of the second embodiment employs the low pressure EGR method.

次に、エンジン(内燃機関)1、1Aの制御装置40で行う、内燃機関の蓄ガス方法について説明する。この内燃機関の蓄ガス方法は、上記の構成のエンジン1、1Aで実施できる方法である。先ず、内燃機関の過給補助方法について説明する。この内燃機関の過給補助方法は、エンジン1、1Aの排気通路(排気系通路)13の排気ガスGの一部Gpを空気Aaとこれらの混合ガスのいずれかのガスCを圧縮して貯蓄する。   Next, a gas storage method for the internal combustion engine performed by the control device 40 of the engine (internal combustion engine) 1 or 1A will be described. This internal combustion engine gas storage method is a method that can be implemented by the engine 1 or 1A having the above-described configuration. First, a supercharging assistance method for an internal combustion engine will be described. In this supercharging assist method for an internal combustion engine, a part of the exhaust gas G in the exhaust passage (exhaust system passage) 13 of the engine 1, 1A is compressed and stored by compressing the air Aa and any one of these mixed gases C. To do.

それと共に、過給補助方法では、エンジン1、1Aの過渡運転でないときには、エンジン1、1Aの排気ガスGの一部Geを、EGR通路17を経由してシリンダ内に再循環し、エンジン1、1Aの過渡運転であるときには、ガス容器27から蓄圧されたガスCを一時的に吸気通路(吸気系通路)12に供給する。つまり、エンジン1、1Aの運転状態が過渡状態であるときには、EGR通路17からのEGRガスGeと、吸気通路12からの新気Aとを流路切替装置30で遮断して、ガスCのみを吸気通路12に供給する。 At the same time, in the supercharging assist method, when the engine 1, 1A is not in a transient operation, a part Ge of the exhaust gas G of the engine 1, 1A is recirculated into the cylinder via the EGR passage 17, and the engine 1, 1A is recirculated. During the transient operation of 1A, the gas C accumulated from the gas storage container 27 is temporarily supplied to the intake passage (intake system passage) 12. That is, when the operating state of the engines 1 and 1A is in a transient state, the EGR gas Ge from the EGR passage 17 and the fresh air A from the intake passage 12 are shut off by the flow path switching device 30, and only the gas C is discharged. Supply to the intake passage 12.

また、この内燃機関の過給補助方法において、EGRガスGeと新気Aとの遮断、及びガスCの供給を、図9と図10で示すような三方切替弁で構成した流路切替装置30で行うか、あるいは、EGRガスGeと新気Aとの遮断、及びガスCの供給を、吸気通路(吸気系通路)12に設けた吸気弁(図示しない)と、蓄ガス供給通路28に設けた開閉弁(図示しない)で行う。   Further, in this supercharging assist method for the internal combustion engine, the flow path switching device 30 configured by a three-way switching valve as shown in FIGS. 9 and 10 for shutting off the EGR gas Ge and fresh air A and supplying the gas C. Or the EGR gas Ge and the fresh air A are shut off and the gas C is supplied to an intake valve (not shown) provided in the intake passage (intake system passage) 12 and to the stored gas supply passage 28. Open / close valve (not shown).

これらの制御においては制御装置40で、エンジン回転速度Ne、エンジン空気量(Mo、Me)、エンジン燃料量(燃料噴射量)Q、蓄ガス容器27の内部の圧力Pm等の検出値等に基づいて、調圧弁29とEGR弁21と流路切替装置30を制御する。   In these controls, the control device 40 is based on detected values such as the engine speed Ne, the engine air amount (Mo, Me), the engine fuel amount (fuel injection amount) Q, the pressure Pm inside the gas storage container 27, and the like. Thus, the pressure regulating valve 29, the EGR valve 21, and the flow path switching device 30 are controlled.

次に、第1の実施の形態の内燃機関の蓄ガス方法について、図5に例示するフローチャートに基づいて説明する。この第1の実施の形態の内燃機関の蓄ガス方法は、制御装置40によって例えば、図5に例示されるような制御フローによって実施されるものである。図5の制御フローは、エンジン1、1Aの運転開始と共に、上位の制御フローから呼ばれて、スタートし、ステップS11〜ステップS12、又は、ステップS11〜ステップS15、又は、ステップS11〜ステップS17を繰り返し実施し、エンジン1、1Aの運転停止により、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻って、この制御フローの実施が停止するものとして示してある。   Next, the gas storage method for the internal combustion engine of the first embodiment will be described based on the flowchart illustrated in FIG. The gas storage method for the internal combustion engine of the first embodiment is performed by the control device 40 according to a control flow as exemplified in FIG. The control flow of FIG. 5 is called from the upper control flow together with the start of operation of the engines 1 and 1A and starts, and steps S11 to S12, or steps S11 to S15, or steps S11 to S17 are performed. Repeatedly, an interruption is generated by stopping the operation of the engines 1 and 1A, the return is performed from the middle of the flow, the control flow is returned to the upper control flow, and the execution of this control flow is stopped.

図5の制御フローが呼ばれると、ステップS11で、圧力計55で測定した、蓄ガス容器27の内部のガスCの圧力である測定圧力Pmが予め設定した第1上限圧力P1より高いか否かを判定する。測定圧力Pmが第1上限圧力P1より高い(Pm>P1)の場合には(YES)、ステップS12にて電磁開閉弁52を閉弁したまま、電磁開閉弁27aを予め設定した放出時間Tdbの間、開弁してガスCを放出し、蓄ガス容器27内のガスCの圧力を下げて、蓄ガス容器27に更に排気ガスG又は空気Aaを蓄圧できるようにする。この放出時間Tdbの値は実験で設定する。測定圧力Pmが第1上限圧力P1以下(Pm≦P1)場合には(NO)、ステップS13〜ステップS17で、空気Aa又は排気ガスGの一部Gpを蓄ガス容器27内に蓄圧する。   When the control flow of FIG. 5 is called, whether or not the measured pressure Pm, which is the pressure of the gas C inside the storage gas container 27 measured by the pressure gauge 55, is higher than the preset first upper limit pressure P1 in step S11. Determine. If the measured pressure Pm is higher than the first upper limit pressure P1 (Pm> P1) (YES), the electromagnetic on / off valve 27a is closed in advance while the electromagnetic on / off valve 52 is closed in step S12. Meanwhile, the valve C is opened to release the gas C, and the pressure of the gas C in the gas storage container 27 is lowered so that the exhaust gas G or the air Aa can be further stored in the gas storage container 27. The value of this release time Tdb is set by experiment. When the measurement pressure Pm is equal to or lower than the first upper limit pressure P1 (Pm ≦ P1) (NO), a part Gp of the air Aa or the exhaust gas G is stored in the gas storage container 27 in steps S13 to S17.

ステップS13では、蓄ガス容器27の内部のガスCの酸素濃度Coを測定する。この蓄ガス容器27内のガスCの酸素濃度Coを計測するための酸素濃度測定方法では、蓄ガス容器27内のガスCの一部Cpを大気圧に近い状態に導いて、大気圧に近い状態に導いたガスCpの酸素濃度Coaを測定する。この測定値Coaを蓄ガス容器27内のガスCの酸素濃度Coの測定値Comとする。   In step S13, the oxygen concentration Co of the gas C inside the gas storage container 27 is measured. In the oxygen concentration measurement method for measuring the oxygen concentration Co of the gas C in the gas storage container 27, a part Cp of the gas C in the gas storage container 27 is led to a state close to atmospheric pressure, and close to atmospheric pressure. The oxygen concentration Coa of the gas Cp led to the state is measured. This measured value Coa is defined as a measured value Com of the oxygen concentration Co of the gas C in the gas storage container 27.

つまり、電磁開閉弁27aを閉弁したまま、蓄ガス容器27の酸素濃度測定通路51の電磁開閉弁52を予め設定した開放時間Tdaの間だけ開弁し、蓄ガス容器27内のガスCの一部Cpを短時間、ガス圧縮装置25の入口側上流に導入(図3の構成)、又は大気中に(図4の構成)開放することで、測定する蓄ガス容器27内のガスCの一部Cpを略大気圧とし、この略大気圧になったガスCの一部Cpの酸素濃度Coを酸素濃度計53で測定し、この測定値Coaを蓄ガス容器27内のガスCの酸素濃度Coの測定値Comとする。この開放時間Tdaの値は、実験で酸素濃度計53の応答性を考慮して決定するが、極力短い時間とすることが好ましい。   That is, with the electromagnetic on / off valve 27a closed, the electromagnetic on / off valve 52 of the oxygen concentration measurement passage 51 of the gas storage container 27 is opened for a preset open time Tda, and the gas C in the gas storage container 27 is opened. A part of Cp is introduced into the upstream side of the inlet side of the gas compression device 25 (configuration shown in FIG. 3) or opened to the atmosphere (configuration shown in FIG. 4) to open the gas C in the gas storage container 27 to be measured. The partial Cp is set to be substantially atmospheric pressure, the oxygen concentration Co of the partial Cp of the gas C that has become substantially atmospheric pressure is measured by the oxygen concentration meter 53, and this measured value Coa is measured as oxygen of the gas C in the gas storage container 27. The measured value Com of the concentration Co is assumed to be. The value of the opening time Tda is determined in consideration of the responsiveness of the oximeter 53 in an experiment, but it is preferable to set the time as short as possible.

次のステップS14で、酸素濃度Comが予め設定した第1下限酸素濃度Cb1より低いか否かの判定(下限判定)を行う。このステップS14の判定で、酸素濃度Comが第1下限酸素濃度Cb1以上(Com≧Cb1)の場合には(NO)、ステップS16に行き、酸素濃度Comが第1下限酸素濃度Cb1より低い(Com<Cb1)場合には(YES)、ステップS15に行き、空気Aaを蓄圧する。   In the next step S14, it is determined whether or not the oxygen concentration Com is lower than a preset first lower limit oxygen concentration Cb1 (lower limit determination). If it is determined in step S14 that the oxygen concentration Com is equal to or higher than the first lower limit oxygen concentration Cb1 (Com ≧ Cb1) (NO), the process goes to step S16, where the oxygen concentration Com is lower than the first lower limit oxygen concentration Cb1 (Com In the case of <Cb1) (YES), go to step S15 and accumulate air Aa.

ステップS15の空気Aaの蓄圧では、三方弁24を空気Aa側とガス圧縮装置25側が連通するように切り替えると共に、ガス圧縮装置25を駆動して、予め設定した供給時間Tseの間空気Aaを蓄ガス容器27に供給する。この供給時間Tseの値は実験などで設定する。その後、ステップS11に戻る。   In the accumulation of air Aa in step S15, the three-way valve 24 is switched so that the air Aa side and the gas compression device 25 side communicate with each other, and the gas compression device 25 is driven to accumulate the air Aa for a preset supply time Tse. Supply to the gas container 27. The value of the supply time Tse is set by an experiment or the like. Then, it returns to step S11.

ステップS16では、酸素濃度Comが予め設定した第1上限酸素濃度Cc1より高いか否かの判定を行う。このステップS16の判定で、酸素濃度Comが第1上限酸素濃度Cc1より高い(Com>Cc1)の場合には(YES)、ステップS17に行き、排気ガスGを蓄圧し、酸素濃度Comが第1上限酸素濃度Cc1以下(Com≦Cc1)場合には(NO)、そのまま、ステップS11に戻る。   In step S16, it is determined whether or not the oxygen concentration Com is higher than a preset first upper limit oxygen concentration Cc1. If it is determined in step S16 that the oxygen concentration Com is higher than the first upper limit oxygen concentration Cc1 (Com> Cc1) (YES), the process goes to step S17 to accumulate the exhaust gas G, and the oxygen concentration Com is the first. If the upper limit oxygen concentration is less than or equal to Cc1 (Com ≦ Cc1) (NO), the process directly returns to step S11.

ステップS17の排気ガスGの蓄圧、厳密には、排気ガスGの一部Gpの蓄圧では、三方弁24を排気ガスGの一部Gp側とガス圧縮装置25側が連通するように切り替えると共に、ガス圧縮装置25を駆動して、予め設定した供給時間Tseの間排気ガスGの一部Gpを蓄ガス容器27に供給する。その後、ステップS11に戻る。   In the accumulated pressure of the exhaust gas G in step S17, strictly speaking, in the accumulated pressure of a part Gp of the exhaust gas G, the three-way valve 24 is switched so that the part Gp side of the exhaust gas G and the gas compression device 25 side communicate with each other. The compressor 25 is driven to supply a part Gp of the exhaust gas G to the gas storage container 27 for a preset supply time Tse. Then, it returns to step S11.

このステップS11〜ステップS17を繰り返すことで、蓄ガス容器27内のガスCの酸素濃度Coを目標とする範囲内(Cb1≦Co≦Cc1)に維持する。そして、エンジン1、1Aの運転停止により、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻って、この上位の制御フローの停止と共に、この制御フローも停止する。   By repeating Step S11 to Step S17, the oxygen concentration Co of the gas C in the gas storage container 27 is maintained within a target range (Cb1 ≦ Co ≦ Cc1). Then, an interruption occurs due to the stop of the operation of the engines 1 and 1A, a return is made from the middle of the flow, the control flow is returned to the upper control flow, and this control flow is stopped together with the stop of the upper control flow.

次に、第2の実施の形態の内燃機関の蓄ガス方法について、図6に例示するフローチャートに基づいて説明する。この第2の実施の形態の内燃機関の蓄ガス方法は、制御装置40によって例えば、図6に例示されるような制御フローによって実施されるものである。図6の制御フローは、エンジン1、1Aの運転開始と共に、上位の制御フローから呼ばれて、スタートし、ステップS21〜ステップS22、又は、ステップS21〜ステップS28、又は、ステップS21〜ステップS30を繰り返し実施し、エンジン1、1Aの運転停止により、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻って、この制御フローの実施が停止するものとして示してある。   Next, a gas storage method for an internal combustion engine according to a second embodiment will be described based on a flowchart illustrated in FIG. The gas storage method for the internal combustion engine of the second embodiment is performed by the control device 40 according to a control flow as exemplified in FIG. The control flow of FIG. 6 is called from the upper control flow together with the start of operation of the engines 1 and 1A, and starts. Steps S21 to S22, or steps S21 to S28, or steps S21 to S30 are performed. Repeatedly, an interruption is generated by stopping the operation of the engines 1 and 1A, the return is performed from the middle of the flow, the control flow is returned to the upper control flow, and the execution of this control flow is stopped.

図6の制御フローが呼ばれると、ステップS21で、第1の実施の形態の蓄ガス方法の図5のステップS11と同様に、圧力計55で測定した、蓄ガス容器27の内部のガスCの圧力である測定圧力Pmが予め設定した第1上限圧力P1より高いか否かを判定する。測定圧力Pmが第1上限圧力P1より高い(Pm>P1)の場合には(YES)、ステップS22にて電磁開閉弁52を閉弁したまま、電磁開閉弁27aを予め設定した放出時間Tdbの間、開弁してガスCを放出し、蓄ガス容器27内のガスCの圧力を下げて、蓄ガス容器27に更に排気ガスG又は空気Aaを蓄圧できるようにする。この放出時間Tdbの値は実験で設定する。測定圧力Pmが第1上限圧力P1以下(Pm≦P1)場合には(NO)、ステップS23〜ステップS30で、空気Aa又は排気ガスGを蓄ガス容器27内に蓄圧する。   When the control flow of FIG. 6 is called, in step S21, the gas C inside the gas storage container 27 measured by the pressure gauge 55 is measured as in step S11 of FIG. 5 of the gas storage method of the first embodiment. It is determined whether or not the measured pressure Pm, which is a pressure, is higher than a preset first upper limit pressure P1. When the measured pressure Pm is higher than the first upper limit pressure P1 (Pm> P1) (YES), the electromagnetic on / off valve 27a is set to the preset release time Tdb while the electromagnetic on / off valve 52 is closed in step S22. Meanwhile, the valve C is opened to release the gas C, and the pressure of the gas C in the gas storage container 27 is lowered so that the exhaust gas G or the air Aa can be further stored in the gas storage container 27. The value of this release time Tdb is set by experiment. When the measurement pressure Pm is equal to or lower than the first upper limit pressure P1 (Pm ≦ P1) (NO), the air Aa or the exhaust gas G is accumulated in the gas storage container 27 in steps S23 to S30.

ステップS23では、蓄ガス容器27の内部の蓄圧されたガスCの酸素濃度Coを測定する。この蓄ガス容器27内のガスCの酸素濃度Coを計測するための酸素濃度測定方法は、第1の実施の形態の酸素濃度測定方法と同じであり、ステップS13と同じである。   In step S23, the oxygen concentration Co of the gas C stored in the gas storage container 27 is measured. The oxygen concentration measurement method for measuring the oxygen concentration Co of the gas C in the gas storage container 27 is the same as the oxygen concentration measurement method of the first embodiment, and is the same as step S13.

次のステップS24で、第1の判定を行う。この第1の判定では、蓄ガス容器27内のガスCの酸素濃度Comが予め設定した第1下限酸素濃度Cb1より低いときで、かつ、蓄ガス容器27内のガスCの圧力Pmが予め設定した第1上限圧力P1よりも低い予め設定した第2上限圧力P2以下であるか否かを判定する。酸素濃度Comが第1下限酸素濃度Cd1より低い(Com≧Cb1)ときで、かつ、圧力Pmが第2上限圧力P2以下である(Pm≦P2)場合には(YES)、蓄ガス容器27に蓄ガスする余裕があるとして、ガスCを放出することなく、ステップS28で空気Aaを蓄圧する。このステップS28の空気Aaの蓄圧は、第1の実施の形態の蓄ガス方法のステップS15と同じである。そうでない場合は(NO)ステップS25に行く。   In the next step S24, a first determination is made. In the first determination, when the oxygen concentration Com of the gas C in the gas storage container 27 is lower than the first lower limit oxygen concentration Cb1 set in advance, and the pressure Pm of the gas C in the gas storage container 27 is set in advance. It is determined whether or not the preset second upper limit pressure P2 is lower than the first upper limit pressure P1. When the oxygen concentration Com is lower than the first lower limit oxygen concentration Cd1 (Com ≧ Cb1) and the pressure Pm is equal to or lower than the second upper limit pressure P2 (Pm ≦ P2) (YES), the gas storage container 27 is filled. Assuming that there is room for storing gas, the air Aa is stored in step S28 without releasing the gas C. The pressure accumulation of the air Aa in step S28 is the same as step S15 of the gas storage method of the first embodiment. If not (NO), go to step S25.

ステップS25では、第2の判定を行う。この第2の判定では、蓄ガス容器27内のガスCの酸素濃度Comが第1下限酸素濃度Cb1より低い予め設定した第2下限酸素濃度Cb2より低いとき、かつ、蓄ガス容器27内のガスCの圧力Pmが第1上限圧力P1よりも低い予め設定した第2上限圧力P2より大きいか否かを判定する。酸素濃度Comが第2下限酸素濃度Cb2より低い(Com<Cb2)とき、かつ、圧力Pmが第2上限圧力P2より大きい(Pm>P2)場合には(YES)、蓄ガス容器27に蓄ガスする余裕が無いとして、ステップS29で、電磁開閉弁52を閉弁したまま、電磁開閉弁27aを予め設定した放出時間Tdbの間、開弁して蓄圧されたガスCを放出してから、ステップS28に行き、空気Aaを蓄圧する。そうでない場合は(NO)ステップS26に行く。   In step S25, a second determination is made. In this second determination, when the oxygen concentration Com of the gas C in the gas storage container 27 is lower than the preset second lower limit oxygen concentration Cb2 lower than the first lower limit oxygen concentration Cb1, and the gas in the gas storage container 27 It is determined whether the pressure Pm of C is larger than a preset second upper limit pressure P2 that is lower than the first upper limit pressure P1. When the oxygen concentration Com is lower than the second lower limit oxygen concentration Cb2 (Com <Cb2) and the pressure Pm is higher than the second upper limit pressure P2 (Pm> P2) (YES), the gas storage container 27 stores gas. In step S29, the electromagnetic on-off valve 27a is opened for a preset release time Tdb, and the accumulated gas C is released in step S29. Go to S28 and accumulate air Aa. If not (NO), go to step S26.

ステップS26では、第3の判定を行う。この第3の判定では、蓄ガス容器27内のガスCの酸素濃度Comが予め設定した第1上限酸素濃度Cc1より高いときで、かつ、蓄ガス容器27内のガスCの圧力Pmが第1上限圧力P1よりも低い予め設定した第2上限圧力P2以下であるか否かを判定する。酸素濃度Comが第1上限酸素濃度Cc1より高いときで、かつ、圧力Pmが第2上限圧力P2以下である場合には、蓄ガス容器27に蓄ガスする余裕があるとして、蓄圧されたガスCを放出することなく、ステップS30で排気ガスGを蓄圧する。このステップS30の排気ガスGの蓄圧は、第1の実施の形態の蓄ガス方法のステップS17と同じである。そうでない場合は(NO)ステップS27に行く。   In step S26, a third determination is made. In the third determination, when the oxygen concentration Com of the gas C in the gas storage container 27 is higher than the preset first upper limit oxygen concentration Cc1, and the pressure Pm of the gas C in the gas storage container 27 is the first. It is determined whether or not it is equal to or lower than a preset second upper limit pressure P2 lower than the upper limit pressure P1. When the oxygen concentration Com is higher than the first upper limit oxygen concentration Cc1 and the pressure Pm is equal to or lower than the second upper limit pressure P2, it is assumed that there is room for storing gas in the gas storage container 27, and the accumulated gas C Without exhausting the exhaust gas G, the exhaust gas G is accumulated in step S30. The pressure accumulation of the exhaust gas G in step S30 is the same as step S17 of the gas storage method of the first embodiment. If not (NO), go to step S27.

ステップS27では、第4の判定を行う。この第4の判定では、蓄ガス容器27内のガスCの酸素濃度Comが第1上限酸素濃度Cc1より高い予め設定した第2上限酸素濃度Cc2より高く、かつ、蓄ガス容器27内のガスCの圧力Pmが第2上限圧力P2より高いか否かを判定する。酸素濃度Comが第2上限酸素濃度Cc2より高く、かつ、圧力Pmが第2上限圧力P2より高い場合には(YES)、蓄ガス容器27に蓄ガスする余裕が無いとして、ステップS31で、電磁開閉弁52を閉弁したまま、電磁開閉弁27aを予め設定した放出時間Tdbの間、開弁して蓄圧されたガスCを放出してから、ステップS30に行き、排気ガスGを蓄圧する。そうでない場合は(NO)ステップS21に戻る。   In step S27, a fourth determination is made. In the fourth determination, the oxygen concentration Com of the gas C in the gas storage container 27 is higher than a preset second upper limit oxygen concentration Cc2 higher than the first upper limit oxygen concentration Cc1, and the gas C in the gas storage container 27 It is determined whether or not the pressure Pm is higher than the second upper limit pressure P2. If the oxygen concentration Com is higher than the second upper limit oxygen concentration Cc2 and the pressure Pm is higher than the second upper limit pressure P2 (YES), it is determined that there is no room for storing gas in the gas storage container 27, and in step S31, electromagnetic With the on-off valve 52 closed, the electromagnetic on-off valve 27a is opened for a preset release time Tdb to release the accumulated gas C, and then the process goes to step S30 to accumulate the exhaust gas G. Otherwise (NO), the process returns to step S21.

このステップS21〜ステップS22、又は、ステップS21〜ステップS28、又は、ステップS21〜ステップS30を繰り返すことで、蓄ガス容器27内のガスCの酸素濃度Coを目標とする範囲内(Cb1≦Co≦Cc1)に維持する。そして、エンジン1、1Aの運転停止により、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻って、この上位の制御フローの停止と共に、この制御フローも停止する。   By repeating Step S21 to Step S22, Step S21 to Step S28, or Step S21 to Step S30, the oxygen concentration Co of the gas C in the gas storage container 27 is within a target range (Cb1 ≦ Co ≦ Cc1). Then, an interruption occurs due to the stop of the operation of the engines 1 and 1A, a return is made from the middle of the flow, the control flow is returned to the upper control flow, and this control flow is stopped together with the stop of the upper control flow.

次に、上記の第1及び第2の実施の形態の内燃機関の蓄ガス方法と過給補助方法を絡めた制御について、図7に例示するフローチャートに基づいて説明する。この制御は、蓄ガス容器27からエンジン1、1Aのシリンダ内に蓄圧されたガスCを供給する(過給補助する)過給補助と蓄ガスとの関係に関するものである。   Next, control involving the gas storage method and the supercharging assist method for the internal combustion engine according to the first and second embodiments will be described with reference to a flowchart illustrated in FIG. This control relates to the relationship between the supercharging assistance that supplies the gas C stored in the cylinders of the engines 1 and 1A from the gas storage container 27 (supercharging assistance) and the stored gas.

この制御は、制御装置40によって例えば、図7に例示されるような制御フローによって実施されるものである。図7の制御フローは、エンジン1、1Aの運転開始と共に、上位の制御フローから呼ばれて、スタートし、ステップS41〜ステップS43、又は、ステップS41〜ステップS44を繰り返し実施し、エンジン1、1Aの運転停止により、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻って、この制御フローの実施が停止するものとして示してある。   This control is performed by the control device 40 according to a control flow as exemplified in FIG. The control flow in FIG. 7 is called from the upper control flow when the operation of the engine 1 or 1A starts, starts, and repeats step S41 to step S43 or step S41 to step S44 to execute the engine 1, 1A. An interruption is generated by stopping the operation, and a return is made from the middle of the flow to return to a higher control flow, and execution of this control flow is stopped.

図7の制御フローが呼ばれると、ステップS41で、過給補助を実施したか否かを判定する。過給補助をしていない場合は(NO)、次のステップS42で、蓄ガス容器27内の蓄圧されたガスCの状態の判定をする。この判定では、蓄ガス容器27内のガスCの酸素濃度Comが目標とする予め設定した酸素濃度の範囲内(Cd1≦Com≦Cc1)に収まり、つまり、目標とする設定濃度Ctに対し、ΔCの幅内に収まっており(Cd1=Ct−ΔC,Cc1=Ct+ΔC)、同時に、蓄ガス容器27のガスCの内圧Pmが目標とする設定圧力Ptに対し、ΔPの範囲内に収まっているか否かを判定する。このΔCはエンジンの性能の酸素濃度に対する感度より決定し、ΔPは、例えば、過給補助の継続時間(例えば、1秒)を経過した後の蓄ガス容器27のガスCの内圧Pmと補機類等を動かすのに必要な最小圧力とから決定する。   If the control flow of FIG. 7 is called, it will be determined whether supercharging assistance was implemented by step S41. When supercharging assistance is not performed (NO), the state of the gas C stored in the gas storage container 27 is determined in the next step S42. In this determination, the oxygen concentration Com of the gas C in the gas storage container 27 falls within the target oxygen concentration range (Cd1 ≦ Com ≦ Cc1), that is, ΔC with respect to the target set concentration Ct. (Cd1 = Ct−ΔC, Cc1 = Ct + ΔC), and at the same time, whether the internal pressure Pm of the gas C in the gas storage container 27 is within the range of ΔP with respect to the target set pressure Pt. Determine whether. This ΔC is determined from the sensitivity of the engine performance to the oxygen concentration, and ΔP is, for example, the internal pressure Pm of the gas C in the gas storage container 27 and the auxiliary equipment after the duration of supercharging assistance (for example, 1 second) has elapsed. Determined from the minimum pressure required to move the class.

このステップS42の判定で、ガスCの酸素濃度と圧力が設定範囲内にあれば(YES)、ステップS43に行き、蓄ガスのための制御を行わずに所定の時間(ステップS41の過給補助の判定のインターバルに関係する時間)の間そのまま経過する。ガスCの酸素濃度Comと圧力Pmのいずれかが設定範囲内に無ければ、ステップS44に行き、蓄ガスのための制御を行う。この蓄ガスのための制御としては、図5の制御又は図6の制御を用いることができる。   If it is determined in step S42 that the oxygen concentration and pressure of the gas C are within the set range (YES), the process goes to step S43, and the control for storing gas is not performed for a predetermined time (supercharging assistance in step S41). Elapses for a period of time related to the determination interval). If either the oxygen concentration Com or the pressure Pm of the gas C is not within the set range, the process goes to step S44 to perform control for storing gas. As control for this gas storage, the control of FIG. 5 or the control of FIG. 6 can be used.

また、ステップS41の判定で、過給補助を実施していれば(YES)、蓄ガス容器27内の蓄圧されたガスCがエンジン1、1Aのシリンダ内に供給された後に、ステップS44に行き、蓄ガスのための制御を行う。   If supercharging assistance is performed in the determination of step S41 (YES), the stored gas C in the storage gas container 27 is supplied into the cylinders of the engines 1 and 1A, and then the process goes to step S44. Control for gas storage.

このステップS41〜ステップS43、又は、ステップS41〜ステップS44を繰り返し実施し、エンジン1、1Aの運転停止により、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻り、上位の制御フローの停止と共に、この制御フローも停止する。この図7の制御により、蓄圧されたガスCを用いた過給補助を実施したか否かを判定して、蓄ガスのための制御を実施するか否かを判定することができる。   This step S41 to step S43 or step S41 to step S44 is repeatedly performed, and an interruption occurs due to the operation stop of the engine 1 or 1A. The process returns to the middle of the flow, returns to the upper control flow, and returns to the upper control flow. This control flow is also stopped when the control flow is stopped. With the control in FIG. 7, it is possible to determine whether or not supercharging assistance using the accumulated gas C is performed, and whether or not to perform control for storing gas.

上記の内燃機関の蓄ガス方法及びエンジン(内燃機関)1、1Aによれば、蓄ガス容器27内のガスCの酸素濃度Coを、測定時の圧力に大きな影響を受ける酸素濃度計53で測定するために、測定する蓄ガス容器27内のガスCの一部Cpを、ガス圧縮装置25の入口側に戻して、又は、大気に開放して、略大気圧に減圧した状態にしてから、酸素濃度計53でこのガスCpの酸素濃度Coaを測定する。これにより、酸素濃度計53の圧力依存性を排除して、蓄ガス容器27内のガスCの酸素濃度Coを精度よく測定することができる。   According to the gas storage method for the internal combustion engine and the engines (internal combustion engines) 1 and 1A, the oxygen concentration Co of the gas C in the gas storage container 27 is measured by the oxygen concentration meter 53 that is greatly influenced by the pressure at the time of measurement. In order to do this, after returning a part Cp of the gas C in the gas storage container 27 to be measured to the inlet side of the gas compression device 25 or opening it to the atmosphere and reducing the pressure to approximately atmospheric pressure, The oxygen concentration meter 53 measures the oxygen concentration Coa of the gas Cp. Thereby, the pressure dependence of the oxygen concentration meter 53 can be eliminated, and the oxygen concentration Co of the gas C in the gas storage container 27 can be accurately measured.

従って、蓄ガス容器27に貯蔵されたガスCの酸素濃度Coを精度よく測定し、蓄ガス容器27内のガスCの酸素濃度Coを適切な濃度範囲内に維持でき、蓄ガス容器27からエンジン1、1Aのシリンダ内に過給補助を行うときに、蓄ガス容器27内に蓄えられた適正な酸素濃度CoのガスCを供給して、排気ガス性能のばらつきを抑えることができる。   Therefore, the oxygen concentration Co of the gas C stored in the gas storage container 27 can be accurately measured, and the oxygen concentration Co of the gas C in the gas storage container 27 can be maintained within an appropriate concentration range. When supercharging assistance is performed in the cylinders of 1 and 1A, the gas C having an appropriate oxygen concentration Co stored in the gas storage container 27 can be supplied to suppress variations in exhaust gas performance.

また、蓄ガス容器27内の蓄圧されたガスCの酸素濃度Coと圧力Pmを予め設定した範囲内の酸素濃度と予め設定した範囲内の圧力に効率よく維持することができる。   Further, the oxygen concentration Co and the pressure Pm of the stored gas C in the gas storage container 27 can be efficiently maintained at the oxygen concentration within a preset range and the pressure within the preset range.

本発明の内燃機関の蓄ガス方法及び内燃機関は、蓄ガスを用いる過給補助を行う内燃機関において、蓄ガス容器に貯蔵されたガスの酸素濃度を精度よく測定し、蓄ガス容器内のガスの酸素濃度を適切な濃度範囲内に維持でき、蓄ガス容器からエンジンのシリンダ内に過給補助を行うときに、蓄ガス容器内に蓄えられた適正な酸素濃度のガスを供給して、排気ガス性能のばらつきを抑えることができるので、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に蓄圧されたガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させる、トラックやバスや乗用車等に搭載する内燃機関の蓄ガス方法及び内燃機関で利用できる。   The internal combustion engine and the internal combustion engine according to the present invention are the internal combustion engine that performs supercharging assistance using the stored gas, accurately measures the oxygen concentration of the gas stored in the storage gas container, and the gas in the storage gas container The oxygen concentration can be maintained within the appropriate concentration range, and when supercharging assistance is performed from the gas storage container into the engine cylinder, the gas with the appropriate oxygen concentration stored in the gas storage container is supplied and exhausted. Because variation in gas performance can be suppressed, a part of the exhaust gas, air, and one of these mixed gases are stored in the gas storage container, and the accumulated gas during the transient operation where the load increases rapidly is stored in the cylinder. It can be used in a gas storage method for an internal combustion engine mounted on a truck, a bus, a passenger car, etc., and an internal combustion engine that can be temporarily supplied to suppress NOx emission during transient operation and improve acceleration performance.

1、1A、1X、1Y、1Z エンジン(内燃機関)
11 エンジン本体
11a 吸気マニホールド(吸気系通路)
11b 排気マニホールド(排気系通路)
12 吸気通路(吸気系通路)
13 排気通路(排気系通路)
14 ターボ式過給機
17 EGR通路
21 EGR弁
22 排気ガス導入通路
25 ガス圧縮装置
26 圧縮ガス供給通路
27 蓄ガス容器
27a 電磁開閉弁
28 蓄ガス供給通路
30 流路切替装置
31 車両の車軸
34 電磁クラッチ
35 吸気弁(吸気スロットル)
40 制御装置
51 酸素濃度測定通路
52 電磁開閉弁
53 酸素濃度計
54 温度計
55 圧力計
A 新気
Aa 空気
Ac アクセル開度
C ガス
Cb1 第1下限酸素濃度
Cb2 第2下限酸素濃度
Cc1 第1上限酸素濃度
Cc2 第2上限酸素濃度
Co ガスの酸素濃度
Coa 大気圧に近い状態に導いたガスの酸素濃度
Com 蓄ガス容器内の酸素濃度の測定値
Cp 蓄ガス容器内のガスの一部
Ct 目標設定酸素濃度
G 排気ガス
Ge EGRガス
Gp 排気ガスの一部
Ne エンジン回転速度
P 吸気圧
P1 第1上限圧力
P2 第2上限圧力
Pm 蓄ガス容器の内圧(測定圧力)
Pt 設定圧力
Tda 開放時間
Tdb 放出時間
Tse 供給時間
1, 1A, 1X, 1Y, 1Z engine (internal combustion engine)
11 Engine body 11a Intake manifold (intake system passage)
11b Exhaust manifold (exhaust system passage)
12 Intake passage (intake system passage)
13 Exhaust passage (exhaust system passage)
14 Turbocharger 17 EGR passage 21 EGR valve 22 Exhaust gas introduction passage 25 Gas compression device 26 Compressed gas supply passage 27 Gas storage container 27a Electromagnetic on-off valve 28 Gas storage supply passage 30 Channel switching device 31 Vehicle axle 34 Electromagnetic Clutch 35 Intake valve (intake throttle)
40 Control Device 51 Oxygen Concentration Measuring Path 52 Electromagnetic On-Off Valve 53 Oxygen Concentrator 54 Thermometer 55 Pressure Gauge A Fresh Air Aa Air Ac Accelerator Opening C Gas Cb1 First Lower Limit Oxygen Concentration Cb2 Second Lower Limit Oxygen Concentration Cc1 First Upper Limit Oxygen Concentration Cc2 Second upper limit oxygen concentration Co Gas oxygen concentration Coa Oxygen concentration of gas led to a state close to atmospheric pressure Com Measured value of oxygen concentration in gas storage container Cp Part of gas in gas storage container Ct Target set oxygen Concentration G Exhaust gas Ge EGR gas Gp Exhaust gas part Ne Engine rotation speed P Intake pressure P1 First upper limit pressure P2 Second upper limit pressure Pm Internal pressure (measurement pressure) of gas storage container
Pt Set pressure Tda Release time Tdb Release time Tse Supply time

Claims (6)

内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、
内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、
該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、
該蓄ガス容器から前記ガスを吸気系通路に供給するための蓄ガス供給通路を備えた内燃機関の過給補助方法において、
前記蓄ガス容器内の前記ガスの酸素濃度を調整する制御において、前記蓄ガス容器内の前記ガスの酸素濃度の計測で、前記蓄ガス容器内の前記ガスの一部を大気圧に近い状態に導いて、大気圧に近い状態に導いた前記ガスの酸素濃度を測定して、この測定値を前記蓄ガス容器内の前記ガスの酸素濃度の測定値とする酸素濃度測定方法を用いることを特徴とする内燃機関の蓄ガス方法。
An EGR passage for recirculating a portion of the exhaust gas of the internal combustion engine into the cylinder;
A gas compression device for compressing a part of the exhaust gas of the internal combustion engine, air, and any of these mixed gases;
A gas storage container for storing the gas compressed by the gas compression device;
In the supercharging assistance method for an internal combustion engine comprising a storage gas supply passage for supplying the gas from the gas storage container to the intake system passage,
In the control for adjusting the oxygen concentration of the gas in the gas storage container, by measuring the oxygen concentration of the gas in the gas storage container, a part of the gas in the gas storage container is brought into a state close to atmospheric pressure. An oxygen concentration measurement method is used in which the oxygen concentration of the gas led to a state close to atmospheric pressure is measured, and the measured value is used as a measurement value of the oxygen concentration of the gas in the gas storage container. A gas storage method for an internal combustion engine.
前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、
排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときは空気を蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときは排気ガスを蓄圧することを特徴とする請求項1記載の内燃機関の蓄ガス方法。
When the pressure of the gas in the gas storage container becomes higher than a preset first upper limit pressure, the gas is released,
When accumulating exhaust gas or air in the gas storage container, while measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measurement method,
When the oxygen concentration of the gas in the gas storage container is lower than a preset first lower limit oxygen concentration, air is stored,
2. The gas storage method for an internal combustion engine according to claim 1, wherein when the oxygen concentration of the gas in the gas storage container is higher than a preset first upper limit oxygen concentration, the exhaust gas is stored.
前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、
排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく空気を蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が前記第1下限酸素濃度より低い予め設定した第2下限酸素濃度より低いとき、かつ、前記蓄ガス容器内の前記ガスの圧力が前記1上限圧力よりも低い予め設定した第2上限圧力より大きいときは、前記ガスを放出して空気を蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく排気ガスを蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が前記第1上限酸素濃度より高い予め設定した第2上限酸素濃度より高く、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第2上限圧力より高いときは、前記ガスを放出して排気ガスを蓄圧することを特徴とする請求項1記載の内燃機関の蓄ガス方法。
When the pressure of the gas in the gas storage container becomes higher than a preset first upper limit pressure, the gas is released,
When accumulating exhaust gas or air in the gas storage container, while measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measurement method,
When the oxygen concentration of the gas in the gas storage container is lower than a preset first lower limit oxygen concentration, and the pressure of the gas in the gas storage container is lower than a preset first upper limit pressure. When the pressure is below the second upper limit pressure, air is accumulated without releasing the gas,
When the oxygen concentration of the gas in the gas storage container is lower than a preset second lower limit oxygen concentration lower than the first lower limit oxygen concentration, and the pressure of the gas in the gas storage container is higher than the first upper limit pressure. Less than the preset second upper limit pressure, the gas is released to accumulate air,
When the oxygen concentration of the gas in the gas storage container is higher than a preset first upper limit oxygen concentration, the gas pressure in the gas storage container is lower than the first upper limit pressure. When the pressure is below 2 upper limit pressure, the exhaust gas is accumulated without releasing the gas,
The oxygen concentration of the gas in the gas storage container is higher than a preset second upper limit oxygen concentration higher than the first upper limit oxygen concentration, and the pressure of the gas in the gas storage container is higher than the second upper limit pressure. 2. The gas storage method for an internal combustion engine according to claim 1, wherein when the temperature is high, the gas is discharged and the exhaust gas is stored.
内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、
内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、
該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、
該蓄ガス容器から前記ガスを吸気系通路に供給するための蓄ガス供給通路と、
前記蓄ガス容器に排気ガスまたは空気を蓄圧するための装置を制御する制御装置を備えた内燃機関において、
前記制御装置が、前記蓄ガス容器内の前記ガスの酸素濃度を調整する制御において、前記蓄ガス容器内の前記ガスの酸素濃度の計測で、前記蓄ガス容器内の前記ガスの一部を大気圧に近い状態に導いて、大気圧に近い状態に導いた前記ガスの酸素濃度を酸素濃度計で測定して、この測定値を前記蓄ガス容器内の前記ガスの酸素濃度の測定値とする酸素濃度測定方法を用いる制御を行うことを特徴とする内燃機関。
An EGR passage for recirculating a portion of the exhaust gas of the internal combustion engine into the cylinder;
A gas compression device for compressing a part of the exhaust gas of the internal combustion engine, air, and any of these mixed gases;
A gas storage container for storing the gas compressed by the gas compression device;
A stored gas supply passage for supplying the gas from the gas storage container to the intake system passage;
In an internal combustion engine comprising a control device for controlling a device for accumulating exhaust gas or air in the gas storage container,
In the control in which the control device adjusts the oxygen concentration of the gas in the storage gas container, a part of the gas in the storage gas container is increased by measuring the oxygen concentration of the gas in the storage gas container The oxygen concentration of the gas led to a state close to atmospheric pressure and the state close to atmospheric pressure is measured with an oxygen concentration meter, and this measurement value is used as a measurement value of the oxygen concentration of the gas in the gas storage container. An internal combustion engine characterized by performing control using an oxygen concentration measurement method.
前記制御装置が、前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、
排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときは空気を蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときは排気ガスを蓄圧する制御を行うことを特徴とする請求項4記載の内燃機関。
When the pressure of the gas in the gas storage container is higher than a preset first upper limit pressure, the control device releases the gas,
When accumulating exhaust gas or air in the gas storage container, while measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measurement method,
When the oxygen concentration of the gas in the gas storage container is lower than a preset first lower limit oxygen concentration, air is stored,
5. The internal combustion engine according to claim 4, wherein when the oxygen concentration of the gas in the gas storage container is higher than a preset first upper limit oxygen concentration, control for accumulating exhaust gas is performed.
前記制御装置が、
前記蓄ガス容器内の前記ガスの圧力が予め設定した第1上限圧力より高くなったときは、前記ガスを放出し、
排気ガス又は空気を前記蓄ガス容器内に蓄圧する際には、前記蓄ガス容器内の前記ガスの酸素濃度を前記酸素濃度測定方法で測定しながら、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1下限酸素濃度より低いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく空気を蓄圧し、 前記蓄ガス容器内の前記ガスの酸素濃度が前記第1下限酸素濃度より低い予め設定した第2下限酸素濃度より低いとき、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力より大きいときは、前記ガスを放出して空気を蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が予め設定した第1上限酸素濃度より高いときで、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第1上限圧力よりも低い予め設定した第2上限圧力以下のときは、前記ガスを放出することなく排気ガスを蓄圧し、
前記蓄ガス容器内の前記ガスの酸素濃度が前記第1上限酸素濃度より高い予め設定した第2上限酸素濃度より高く、かつ、前記蓄ガス容器内の前記ガスの圧力が前記第2上限圧力より高いときは、前記ガスを放出して排気ガスを蓄圧する制御を行うことを特徴とする請求項4記載の内燃機関。
The control device is
When the pressure of the gas in the gas storage container becomes higher than a preset first upper limit pressure, the gas is released,
When accumulating exhaust gas or air in the gas storage container, while measuring the oxygen concentration of the gas in the gas storage container by the oxygen concentration measurement method,
When the oxygen concentration of the gas in the gas storage container is lower than a preset first lower limit oxygen concentration, and the gas pressure in the gas storage container is lower than the first upper limit pressure. When the pressure is below 2 upper limit pressure, the air is stored without releasing the gas, and the oxygen concentration of the gas in the gas storage container is lower than a preset second lower limit oxygen concentration lower than the first lower limit oxygen concentration. And when the pressure of the gas in the gas storage container is higher than a preset second upper limit pressure lower than the first upper limit pressure, the gas is discharged to accumulate air,
When the oxygen concentration of the gas in the gas storage container is higher than a preset first upper limit oxygen concentration, the gas pressure in the gas storage container is lower than the first upper limit pressure. When the pressure is below 2 upper limit pressure, the exhaust gas is accumulated without releasing the gas,
The oxygen concentration of the gas in the gas storage container is higher than a preset second upper limit oxygen concentration higher than the first upper limit oxygen concentration, and the pressure of the gas in the gas storage container is higher than the second upper limit pressure. 5. The internal combustion engine according to claim 4, wherein when it is high, control is performed to release the gas and accumulate the exhaust gas.
JP2011125065A 2011-06-03 2011-06-03 Gas storage method for internal combustion engine and internal combustion engine Expired - Fee Related JP5824882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125065A JP5824882B2 (en) 2011-06-03 2011-06-03 Gas storage method for internal combustion engine and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125065A JP5824882B2 (en) 2011-06-03 2011-06-03 Gas storage method for internal combustion engine and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012251490A true JP2012251490A (en) 2012-12-20
JP5824882B2 JP5824882B2 (en) 2015-12-02

Family

ID=47524521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125065A Expired - Fee Related JP5824882B2 (en) 2011-06-03 2011-06-03 Gas storage method for internal combustion engine and internal combustion engine

Country Status (1)

Country Link
JP (1) JP5824882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086810A (en) * 2013-10-31 2015-05-07 いすゞ自動車株式会社 Turbocharger auxiliary system of internal combustion engine and turbocharger auxiliary method of internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967542U (en) * 1982-10-29 1984-05-08 いすゞ自動車株式会社 Internal combustion engine with compressor function
JP2003003903A (en) * 2001-06-19 2003-01-08 Denso Corp Control device for internal combustion engine
JP2007205171A (en) * 2006-01-31 2007-08-16 Mazda Motor Corp Diesel engine
JP2010071193A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Pressure storage device
JP2010077928A (en) * 2008-09-26 2010-04-08 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967542U (en) * 1982-10-29 1984-05-08 いすゞ自動車株式会社 Internal combustion engine with compressor function
JP2003003903A (en) * 2001-06-19 2003-01-08 Denso Corp Control device for internal combustion engine
JP2007205171A (en) * 2006-01-31 2007-08-16 Mazda Motor Corp Diesel engine
JP2010071193A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Pressure storage device
JP2010077928A (en) * 2008-09-26 2010-04-08 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086810A (en) * 2013-10-31 2015-05-07 いすゞ自動車株式会社 Turbocharger auxiliary system of internal combustion engine and turbocharger auxiliary method of internal combustion engine

Also Published As

Publication number Publication date
JP5824882B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
US8522756B2 (en) Interstage exhaust gas recirculation system for a dual turbocharged engine having a turbogenerator system
US8522757B2 (en) Metering exhaust gas recirculation system for a dual turbocharged engine having a turbogenerator system
US8056339B2 (en) Warming intake air using EGR cooler in dual-throttle boosted engine system
US8353275B2 (en) Dual throttle for improved tip-out stability in boosted engine system
US8230675B2 (en) Discharging stored EGR in boosted engine system
KR101664069B1 (en) Engine having low pressure egr system and the method thereof
US20110094224A1 (en) Metering exhaust gas recirculation system for a turbocharged engine having a turbogenerator system
KR100962160B1 (en) Boost pressure control
JP5444996B2 (en) Internal combustion engine and control method thereof
US20150260114A1 (en) Controlling apparatus for engine
JP6060492B2 (en) Internal combustion engine and control method thereof
KR101563831B1 (en) Control apparatus for internal combustion engine
JP2013057289A (en) Supercharging system of internal combustion engine
JP5824882B2 (en) Gas storage method for internal combustion engine and internal combustion engine
JP2009191667A (en) Supercharging device and supercharging engine system
JP5742484B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5845640B2 (en) Flow path switching valve and internal combustion engine provided with the same
JP2012233412A (en) Compressed air supply method for internal combustion engine and internal combustion engine
KR102417386B1 (en) System and control method for discharging moisture in intake system for engine
JP5834505B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5824881B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5830946B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
US20200158038A1 (en) Pre-compressor valve equipped low pressure cooled exhaust gas recirculation tracking error management
JP5811577B2 (en) Internal combustion engine and EGR method for internal combustion engine
JP5903778B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5824882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees