JP2012251329A - Revolving type work machine - Google Patents

Revolving type work machine Download PDF

Info

Publication number
JP2012251329A
JP2012251329A JP2011123307A JP2011123307A JP2012251329A JP 2012251329 A JP2012251329 A JP 2012251329A JP 2011123307 A JP2011123307 A JP 2011123307A JP 2011123307 A JP2011123307 A JP 2011123307A JP 2012251329 A JP2012251329 A JP 2012251329A
Authority
JP
Japan
Prior art keywords
turning
motor
swing
hydraulic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011123307A
Other languages
Japanese (ja)
Other versions
JP5071572B1 (en
Inventor
Koji Ueda
浩司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2011123307A priority Critical patent/JP5071572B1/en
Priority to US14/007,978 priority patent/US8826656B2/en
Priority to EP12779820.5A priority patent/EP2706152B1/en
Priority to CN201280021510.6A priority patent/CN103534419B/en
Priority to PCT/JP2012/002724 priority patent/WO2012150653A1/en
Application granted granted Critical
Publication of JP5071572B1 publication Critical patent/JP5071572B1/en
Publication of JP2012251329A publication Critical patent/JP2012251329A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a revolution type work machine having increased revolving energy regenerating efficiency by exerting regenerating action not only during revolving deceleration but also during power run, and also having improved operability by preventing a pressure fluctuation.SOLUTION: Communication valves 26, 27 are provided between both-motor-side ducts 14, 15 for communicating a motor-outlet-side duct with a tank T during revolving operation, and a revolving electric motor 30 and a battery 31 are provided which are driven by a revolving hydraulic motor 11. Thus, the communication valve opposite to the operation side is normally opened during revolving operation to reduce back pressure, and regenerating electric power equivalent to a reduction of the back pressure is generated by the revolving electric motor 30 and stored in the battery 31.

Description

本発明はショベル等の旋回式作業機械に関するものである。   The present invention relates to a swivel work machine such as an excavator.

ショベルを例にとって背景技術を説明する。   The background art will be described using an excavator as an example.

ショベルは、図5に示すようにクローラ式の下部走行体1上に上部旋回体2が地面に対して鉛直な軸Xまわりに旋回自在に搭載され、この上部旋回体2に掘削アタッチメント3が装着されて構成される。   As shown in FIG. 5, the excavator is mounted on a crawler-type lower traveling body 1 so that an upper swing body 2 can swing around an axis X perpendicular to the ground, and an excavation attachment 3 is attached to the upper swing body 2. Configured.

掘削アタッチメント3は、起伏自在なブーム4と、このブーム4の先端に取付けられたアーム5と、このアーム5の先端に取付けられたバケット6、それにこれらを作動させるブーム、アーム、バケット各シリンダ(油圧シリンダ)7,8,9によって構成される。   The excavation attachment 3 includes an up and down boom 4, an arm 5 attached to the tip of the boom 4, a bucket 6 attached to the tip of the arm 5, and a boom, an arm, and a bucket cylinder for operating them ( (Hydraulic cylinder) 7,8,9.

このショベルにおいて、上部旋回体2を旋回駆動する旋回駆動システムとして特許文献1に記載されたものが公知である。   In this excavator, a swing drive system described in Patent Document 1 is known as a swing drive system that swings the upper swing body 2.

この公知技術においては、駆動源としての旋回用油圧モータに電動機を接続するとともに、モータ両側管路とコントロールバルブとの間に、モータ両側管路を短絡可能な短絡切換弁を設け、旋回減速時に、短絡切換弁によりモータ吐出油をモータ入口側に戻すとともに、電動機に発電機作用を行わせて回生発電し、発生した回生電力を蓄電器に蓄える構成がとられている。   In this known technique, an electric motor is connected to a turning hydraulic motor as a drive source, and a short-circuit switching valve capable of short-circuiting the motor both-side pipes is provided between the motor both-side pipes and the control valve. In addition, the motor discharge oil is returned to the motor inlet side by the short-circuit switching valve, and the electric motor performs a generator action to generate regenerative power, and the generated regenerative power is stored in the capacitor.

この構成によると、短絡切換弁により旋回減速時にモータ出口側に作用する背圧を小さくして油圧モータの連れ回り負荷を低減し、これによって慣性運動エネルギーの回収(回生)効率を上げることができる。   According to this configuration, the back pressure acting on the motor outlet side when the vehicle is decelerated by the short-circuit switching valve is reduced to reduce the accompanying load of the hydraulic motor, thereby increasing the recovery (regeneration) efficiency of inertial kinetic energy. .

なお、この構成をとる場合、モータ両側管路間に設けられた一対のリリーフ弁等から成る油圧ブレーキ装置は、旋回減速時には働かず、旋回停止直後の停止保持機能のみを果たす。   When this configuration is adopted, the hydraulic brake device including a pair of relief valves provided between the motor both-side pipelines does not work at the time of turning deceleration and performs only the stop holding function immediately after the turning stop.

特開2010−65510号公報JP 2010-65510 A

ところが、公知技術によると、上記のように旋回減速時の回生効率の向上には役立つが、旋回力行時、つまり起動を含む加速時及び定常運転時には回生作用は行われないため、旋回エネルギーの回生効率においてなお不十分であった。   However, according to the known technology, as described above, it helps to improve the regeneration efficiency during turning deceleration, but the regenerative action is not performed during turning power running, that is, during acceleration including start-up and steady operation. It was still insufficient in efficiency.

また、短絡切換弁は旋回力行時には開通位置にあり、回生時(減速時)に短絡位置に切換わるため、この切換わる瞬間に大きな圧力変動が生じ、この点で操作性が悪くなるという問題もあった。   In addition, the short-circuit switching valve is in the open position during turning power operation, and is switched to the short-circuit position during regeneration (during deceleration) .Therefore, a large pressure fluctuation occurs at the moment of switching, and the operability deteriorates at this point. there were.

そこで本発明は、旋回減速時だけでなく力行時にも回生作用を働かせて旋回エネルギーの回生効率を向上させることができ、しかも公知技術のような大きな圧力変動を無くして操作性を改善することができる旋回式作業機械を提供するものである。   Therefore, the present invention can improve the regenerative efficiency of the turning energy not only at the time of turning deceleration but also at the time of power running and improve the operability by eliminating the large pressure fluctuation as in the known art. Provided is a swivel type working machine.

上記課題を解決する手段として、本発明においては、下部走行体と、この下部走行体上に旋回自在に搭載された上部旋回体と、この上部旋回体の旋回駆動源としての旋回用の油圧モータと、この油圧モータにより回転駆動される旋回電動機と、蓄電器と、上記油圧モータの圧油供給源としての油圧ポンプと、旋回の加速、定常運転、減速、停止を指令する旋回操作手段と、この旋回操作手段の操作に基づいて上記油圧モータに対する圧油の給排を制御するコントロールバルブとを備えた旋回式作業機械において、上記旋回操作手段の操作を検出する旋回操作検出手段と、モータ出口側管路をタンクに連通させる連通位置とこの連通を遮断する連通遮断位置との間で作動する連通弁と、上記旋回操作検出手段からの信号に基づいて上記旋回電動機の回生作用及び上記連通弁の作動を制御する制御手段とを備え、上記制御手段は、上記上部旋回体の旋回動作時に、上記連通弁を連通位置にセットするとともに、この連通弁による背圧の低減分に相当する回生量を上記旋回電動機に指令する回生制御を行うように構成したものである。   As means for solving the above-mentioned problems, in the present invention, a lower traveling body, an upper swing body that is pivotably mounted on the lower traveling body, and a turning hydraulic motor as a swing drive source of the upper swing body A swing motor that is rotationally driven by the hydraulic motor, a capacitor, a hydraulic pump as a pressure oil supply source of the hydraulic motor, a swing operation means that commands acceleration, steady operation, deceleration, and stop of the swing, In a swing type work machine having a control valve for controlling supply and discharge of pressure oil to and from the hydraulic motor based on the operation of the swing operation means, a swing operation detection means for detecting the operation of the swing operation means, and a motor outlet side A communication valve that operates between a communication position for communicating the pipe line with the tank and a communication cutoff position for blocking the communication, and the swing electric motor based on a signal from the swing operation detecting means. Control means for controlling the regenerative action and the operation of the communication valve, and the control means sets the communication valve at the communication position during the turning operation of the upper-part turning body, and the back pressure generated by the communication valve. The regenerative control is performed so that the regenerative amount corresponding to the reduced amount is commanded to the swing electric motor.

このように、力行時、減速時を問わず、旋回動作中を通じて、連通弁により、モータ吐出油をタンクに戻すことによって背圧を低減し、この背圧低減分に相当するだけの回生電力を発生させる構成であるため、旋回力行時のポンプ動力を上げずに回生効率を向上させ、トータルでの省エネ効果を高めることができる。   In this way, the back pressure is reduced by returning the motor discharge oil to the tank by the communication valve regardless of whether it is powering or decelerating, and the regenerative power corresponding to this back pressure reduction is reduced. Since it is the structure to generate | occur | produce, regeneration efficiency can be improved without raising the pump power at the time of turning power running, and the total energy-saving effect can be heightened.

また、旋回動作中は、終始、連通弁を開いた状態とするため、特許文献1の技術のような切換弁の切換えによる圧力変動がなく、良好な操作性を確保することができる。   Further, since the communication valve is kept open throughout the turning operation, there is no pressure fluctuation due to switching of the switching valve as in the technique of Patent Document 1, and good operability can be ensured.

この場合、旋回速度を検出する旋回速度検出手段と、上記油圧モータの出口側圧力を検出する圧力検出手段とを設け、上記制御手段は、上記旋回操作手段の操作量によって決まる上記コントロールバルブのメータアウト開口面積と、旋回速度によって決まるモータ流量とから、上記連通弁が無いものとしたときのモータ出口側圧力を算出し、この算出値からモータ出口側圧力の検出値を引いて背圧の低減分を求めるように構成するのが望ましい(請求項2)。   In this case, a turning speed detecting means for detecting the turning speed and a pressure detecting means for detecting the outlet side pressure of the hydraulic motor are provided, and the control means is a meter of the control valve determined by an operation amount of the turning operation means. Calculate the motor outlet side pressure when there is no communication valve from the out opening area and the motor flow rate determined by the turning speed, and reduce the back pressure by subtracting the detected value of the motor outlet side pressure from this calculated value. It is desirable that the minutes be obtained (claim 2).

この構成によれば、背圧低減分を正確に割り出し、回生電力の過不足のない適正な回生制御を行うことができる。   According to this configuration, it is possible to accurately determine the amount of back pressure reduction and perform appropriate regenerative control without excessive or insufficient regenerative power.

ところで、旋回式作業機械においては、通常、旋回用油圧モータを含めた複数の油圧アクチュエータを一つの油圧ポンプで駆動する構成がとられる。   By the way, in a turning type work machine, the structure which drives several hydraulic actuators including the hydraulic motor for turning normally with one hydraulic pump is taken.

この構成において、旋回単独操作時には、元々、旋回力行中のポンプ圧がさほど高くならず、背圧も低い半面、この状態で回生作用を行わせるとポンプ圧が上昇するため、全旋回動作を通じたトータルでの省エネ効果が下がる可能性がある。   In this configuration, when turning alone, the pump pressure during turning power is not so high and the back pressure is low. On the other hand, if the regenerative operation is performed in this state, the pump pressure rises. The total energy saving effect may be reduced.

一方、複合操作時には、他の油圧アクチュエータの作動圧によってポンプ圧が上昇し、背圧低減のメリットも回生効率の向上効果も大きくなるため、トータルでの省エネ効果が高くなる。   On the other hand, during combined operation, the pump pressure increases due to the operating pressure of the other hydraulic actuators, and the merit of reducing the back pressure and the effect of improving the regeneration efficiency are increased, so the total energy saving effect is increased.

そこで、油圧ポンプを、旋回用の油圧モータを含む複数の油圧アクチュエータで共用する構成をとる場合に、上記制御手段は、上記旋回用の油圧モータのみが作動する旋回単独操作時には上記回生制御を行わず、上記旋回用の油圧モータと他の油圧アクチュエータとが同時に作動する複合操作時のみに上記回生制御を行うように構成するのが望ましい(請求項3)。   Therefore, when a configuration is adopted in which the hydraulic pump is shared by a plurality of hydraulic actuators including a turning hydraulic motor, the control means performs the regenerative control at the time of the turning single operation in which only the turning hydraulic motor operates. It is desirable that the regenerative control be performed only during the combined operation in which the turning hydraulic motor and the other hydraulic actuator are simultaneously operated.

このように回生制御を旋回単独操作時には行わず、複合操作時のみに行うことで省エネ効果を最大限に高めることができる。   As described above, the regenerative control is not performed at the time of the single turning operation, but is performed only at the time of the combined operation, so that the energy saving effect can be maximized.

本発明によると、旋回減速時だけでなく力行時にも回生作用を働かせて旋回エネルギーの回生効率を向上させることができ、しかも公知技術のような大きな圧力変動がなくて操作性を改善することができる。   According to the present invention, the regenerative action can be applied not only during turning deceleration but also during power running to improve the revolving efficiency of turning energy, and the operability can be improved without the large pressure fluctuation as in the known art. it can.

本発明の実施形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of the present invention. 実施形態の作用を説明するためのフローチャートである。It is a flowchart for demonstrating the effect | action of embodiment. 連通弁を設けない従来の旋回駆動システムにおける旋回操作量とコントロールバルブのメータアウト開口面積の関係を示す図である。It is a figure which shows the relationship between the amount of turning operations and the meter-out opening area of a control valve in the conventional turning drive system which does not provide a communicating valve. 本発明の第2実施形態を示すフローチャートである。It is a flowchart which shows 2nd Embodiment of this invention. 本発明の適用対象であるショベルの概略側面図である。1 is a schematic side view of an excavator to which the present invention is applied.

本発明の第1及び第2両実施形態を図1〜図4によって説明する。実施形態はショベルを適用対象としている。   First and second embodiments of the present invention will be described with reference to FIGS. The embodiment is applied to an excavator.

図1は両実施形態に係る旋回駆動システムの全体構成を示す。   FIG. 1 shows the overall configuration of a turning drive system according to both embodiments.

図1において、10は図示しないエンジンによって駆動される油圧源としての油圧ポンプ、11はこの油圧ポンプ10からの圧油により回転して図5の上部旋回体2を旋回駆動する旋回用の油圧モータで、油圧ポンプ10及びタンクTとこの油圧モータ11との間に、旋回操作手段としてのリモコン弁12(12aは操作用のレバーである)によって操作される油圧パイロット式の切換弁であるコントロールバルブ13が設けられている。   In FIG. 1, 10 is a hydraulic pump as a hydraulic source driven by an engine (not shown), and 11 is a turning hydraulic motor that is rotated by pressure oil from the hydraulic pump 10 to drive the upper swing body 2 of FIG. Thus, a control valve which is a hydraulic pilot type switching valve operated between the hydraulic pump 10 and the tank T and the hydraulic motor 11 by a remote control valve 12 (12a is an operation lever) as a turning operation means. 13 is provided.

リモコン弁12は、中立位置と左右の旋回位置との間で操作され、このリモコン弁12からのパイロット圧によりコントロールバルブ13が図示の中立位置イと左、右両旋回位置ロ,ハとの間で切換わり動作して油圧モータ11に対する圧油の給排、すなわち、旋回の起動を含む加速、速度一定での定常運転、減速、停止の各動作、そして回転方向と回転速度が制御される。   The remote control valve 12 is operated between the neutral position and the left and right turning positions. The pilot pressure from the remote control valve 12 causes the control valve 13 to move between the neutral position A and the left and right turning positions B and C shown in the figure. The operation is switched to control the supply and discharge of pressure oil to and from the hydraulic motor 11, that is, acceleration including turning start, steady operation at a constant speed, deceleration and stop, and the rotation direction and rotation speed.

一方、コントロールバルブ13と油圧モータ11とを結ぶモータ両側管路(以下、図左側を左旋回管路、右側を右旋回管路という場合がある)14,15間には、それぞれ一対のリリーフ弁16,17とチェック弁18,19を備えた油圧ブレーキ装置20が設けられている。   On the other hand, there is a pair of reliefs between the motor both-side pipes connecting the control valve 13 and the hydraulic motor 11 (hereinafter, the left side in the drawing may be referred to as the left turning pipe and the right side as the right turning pipe). A hydraulic brake device 20 including valves 16 and 17 and check valves 18 and 19 is provided.

なお、両リリーフ弁16,17同士をつなぐリリーフ弁回路21と、チェック弁18,19同士をつなぐチェック弁回路22とが通路23で接続され、この通路23が油吸い上げ用のメークアップライン24によってタンクTに接続されている。25はメークアップライン24に設けられた背圧弁である。   A relief valve circuit 21 that connects the relief valves 16 and 17 and a check valve circuit 22 that connects the check valves 18 and 19 are connected by a passage 23, and the passage 23 is connected by a makeup line 24 for sucking up oil. Connected to the tank T. Reference numeral 25 denotes a back pressure valve provided in the makeup line 24.

ここまでの構成は従来の油圧ショベルの旋回駆動システムと同じであり、上記構成のみによる作用は次の通りである。   The configuration up to this point is the same as that of a conventional hydraulic excavator turning drive system, and the operation of the above configuration alone is as follows.

リモコン弁12が操作されないとき(レバー12aが中立のとき)はコントロールバルブ13が図示の中立位置イにセットされ、リモコン弁操作時にコントロールバルブ13が中立位置イから図左側の位置(左旋回位置)ロまたは右側の位置(右旋回位置)ハにリモコン弁操作量に応じたストロークで作動する。   When the remote control valve 12 is not operated (when the lever 12a is neutral), the control valve 13 is set to the neutral position shown in the figure, and when the remote control valve is operated, the control valve 13 is positioned from the neutral position A to the left side of the figure (left turn position). Operates at a stroke corresponding to the operation amount of the remote control valve at the right or right position (right turn position) c.

コントロールバルブ13の中立位置イでは、両旋回管路14,15がポンプ10に対してブロックされるため、油圧モータ11は回転しない。   At the neutral position (a) of the control valve 13, since both the swirl lines 14 and 15 are blocked with respect to the pump 10, the hydraulic motor 11 does not rotate.

この状態から、リモコン弁12が左または右旋回側に操作されてコントロールバルブ13が左旋回位置ロまたは右旋回位置ハに切換えられると、ポンプ10から左旋回管路14または右旋回管路15に圧油が供給される。   From this state, when the remote control valve 12 is operated to the left or right turning side and the control valve 13 is switched to the left turning position B or the right turning position C, the pump 10 supplies the left turning line 14 or the right turning pipe. Pressure oil is supplied to the passage 15.

これにより、油圧モータ11が左または右に回転して旋回力行、すなわち起動を含む加速または速度一定の定常運転状態となる。   As a result, the hydraulic motor 11 rotates to the left or right to enter a steady operation state in which the turning power running, that is, acceleration or constant speed including start-up.

この場合、油圧モータ11から吐出された油はコントロールバルブ13経由でタンクTに戻る。   In this case, the oil discharged from the hydraulic motor 11 returns to the tank T via the control valve 13.

また、たとえば右旋回力行中、リモコン弁12が減速操作(中立復帰、または中立側への戻し操作)されると、メータアウト側である左旋回管路14に圧力が立ち、これが一定値に達すると油圧ブレーキ装置20が働いて上部旋回体2が減速し停止する。   Further, for example, when the remote control valve 12 is decelerated (returning to neutral or returning to neutral) during a right turning power running, pressure is generated in the left turning pipeline 14 on the meter-out side, and this becomes a constant value. When it reaches, the hydraulic brake device 20 works to decelerate and stop the upper swing body 2.

左旋回からの減速/停止時もこれと同じである。   The same applies to deceleration / stop from a left turn.

また、この減速中、旋回管路14または15が負圧傾向になると、メークアップライン24、通路23、チェック弁回路22のルートで旋回管路14または15にタンク油が吸い上げられてキャビテーションが防止される。   Also, during this deceleration, if the turning pipeline 14 or 15 tends to have a negative pressure, tank oil is sucked into the turning pipeline 14 or 15 along the route of the makeup line 24, the passage 23, and the check valve circuit 22 to prevent cavitation. Is done.

実施形態においては、上記構成に加えて、両旋回管路14,15とタンクTとの間に左側及び右側両連通弁26,27が設けられている。   In the embodiment, in addition to the above-described configuration, both the left and right communication valves 26 and 27 are provided between the swivel conduits 14 and 15 and the tank T.

連通弁26,27は、制御手段としてのコントローラ28からの信号によって開き位置aと閉じ位置bとの間で切換わる電磁切換弁として構成され、入口側が旋回管路14,15に、出口側が通路29を介して油圧ブレーキ装置20の通路23にそれぞれ接続されている。   The communication valves 26 and 27 are configured as electromagnetic switching valves that are switched between an open position a and a closed position b in response to a signal from a controller 28 serving as a control means, with an inlet side being a swirl line 14 and 15 and an outlet side being a passage. 29 are connected to the passages 23 of the hydraulic brake device 20 respectively.

ここで、通路23は、メークアップライン24を介してタンクTに接続されているため、連通弁26,27が開き位置aにセットされると、両旋回管路14,15がコントロールバルブ13を介さずに直接タンクTに連通する。   Here, since the passage 23 is connected to the tank T via the make-up line 24, when the communication valves 26 and 27 are set to the open position a, both the swirling pipelines 14 and 15 connect the control valve 13. It communicates directly with the tank T without any intervention.

また、油圧モータ11によって回転駆動される旋回電動機30と、蓄電器31とが設けられ、旋回電動機30の回生作用によってに発生した回生電力が蓄電器31に蓄えられるように構成されている。   In addition, a swing electric motor 30 that is rotationally driven by the hydraulic motor 11 and a capacitor 31 are provided, and the regenerative power generated by the regenerative action of the swing motor 30 is stored in the capacitor 31.

一方、検出手段として、リモコン弁12からのパイロット圧を通じてリモコン弁12の操作(中立か左または右旋回操作されたか)を検出する旋回操作検出手段としての圧力センサ32,33と、旋回電動機30の回転速度(旋回速度)を検出する旋回速度検出手段としての速度センサ34と、油圧モータ11の両側ポート圧力(旋回動作時のモータ出口側圧力)を検出する圧力検出手段としての圧力センサ35,36とが設けられ、これらからの信号(操作信号、速度信号、圧力信号)がコントローラ28に入力される。   On the other hand, as the detecting means, pressure sensors 32 and 33 as turning operation detecting means for detecting the operation of the remote control valve 12 (whether the turning operation is neutral or left or right) through the pilot pressure from the remote control valve 12, and the turning electric motor 30 A speed sensor 34 as a turning speed detecting means for detecting the rotation speed (turning speed) of the motor, and a pressure sensor 35 as a pressure detecting means for detecting both side port pressures of the hydraulic motor 11 (motor outlet side pressure during the turning operation), 36, and signals (operation signal, speed signal, pressure signal) from these are input to the controller 28.

コントローラ28は、各センサ32〜36からの信号に基づいて旋回動作状態か停止状態かを判断し、旋回動作時、つまり起動を含む加速時、定常運転時、減速時を通じて旋回動作中は常に、連通弁26,27のうち操作された側と反対側のもの(右旋回時には左側連通弁26を、左旋回時には右側連通弁27.以下、反対側連通弁という)を開き位置aに切換える。   The controller 28 determines whether the turning operation state or the stop state based on the signals from the sensors 32 to 36, and always during the turning operation during the turning operation, that is, during acceleration including startup, steady operation, and deceleration. Of the communication valves 26 and 27, the one on the opposite side to the operated side (the left communication valve 26 when turning right, the right communication valve 27. hereinafter referred to as the opposite communication valve when turning left) is switched to the open position a.

従って、旋回動作時には、油圧モータ11から吐出された油は、コントロールバルブ13を通らずに、反対側両連通弁26または27を通るルートでタンクTに直接戻される。   Therefore, during the turning operation, the oil discharged from the hydraulic motor 11 is directly returned to the tank T through a route passing through the opposite communication valves 26 or 27 without passing through the control valve 13.

たとえば右旋回時には、油圧モータ11、左旋回管路14、左側連通弁26、通路29、通路23、メークアップライン24のルートでタンクTに戻る。このため、戻り油はコントロール13での絞り作用を受けない。   For example, when turning right, the tank returns to the tank T through the route of the hydraulic motor 11, the left turning pipeline 14, the left communication valve 26, the passage 29, the passage 23, and the makeup line 24. For this reason, the return oil is not subjected to the squeezing action in the control 13.

これにより、旋回動作時のメータアウト側に作用する背圧を低減してメータイン側の圧力を落とし、ポンプ圧を低下させることができるため、油圧ポンプ10の動力損失を抑えることができる。   As a result, the back pressure acting on the meter-out side during the turning operation can be reduced, the pressure on the meter-in side can be reduced, and the pump pressure can be lowered, so that the power loss of the hydraulic pump 10 can be suppressed.

この旋回動作中、旋回電動機30は油圧モータ11により駆動されて所謂連れ回り回転し、この間、コントローラ28からの回生指令に基づいて発電機(回生)作用を行う。   During the turning operation, the turning electric motor 30 is driven by the hydraulic motor 11 and rotates in a so-called manner, and during this time, a generator (regeneration) action is performed based on a regeneration command from the controller 28.

この回生作用により、旋回動作中、常に蓄電器31が充電されるとともに、減速時には回生ブレーキにより油圧モータ11が制動されて上部旋回体が減速/停止する。   Due to this regenerative action, the battery 31 is always charged during the turning operation, and at the time of deceleration, the hydraulic motor 11 is braked by the regenerative brake, and the upper turning body is decelerated / stopped.

そして、旋回停止後、コントローラ28からの指令によって連通弁26,27が閉じ位置bに切換わる。   Then, after the turning is stopped, the communication valves 26 and 27 are switched to the closed position b by a command from the controller 28.

この旋回停止状態で油圧ブレーキ装置20のブレーキ作用によって図5の上部旋回体2が停止保持される。   In this turning stop state, the upper turning body 2 of FIG. 5 is stopped and held by the braking action of the hydraulic brake device 20.

図1中、37はメインリリーフ弁である。   In FIG. 1, reference numeral 37 denotes a main relief valve.

第1実施形態におけるコントローラ28の作用を図2のフローチャートによって説明する。   The operation of the controller 28 in the first embodiment will be described with reference to the flowchart of FIG.

制御開始後、ステップS1で旋回操作信号があるか(旋回操作されたか)否かが判断され、YESの場合にステップS2で旋回速度信号があるか否か(旋回動作中か)が判断される。   After the start of control, it is determined in step S1 whether there is a turning operation signal (whether turning operation has been performed). If YES, it is determined in step S2 whether there is a turning speed signal (whether turning operation is being performed). .

ステップS1でNO(旋回操作されていない)のときは、ステップS3で旋回速度信号があるか否かが判断され、ここでYESのときは、旋回減速のために旋回リモコン弁12が中立復帰操作されているが上部旋回体2はなお慣性で旋回しているとしてステップS2に移行する。   If NO in step S1 (no turning operation), it is determined in step S3 whether or not there is a turning speed signal. If YES in this case, the turning remote control valve 12 is operated to return to neutral for turning deceleration. However, it is assumed that the upper-part turning body 2 is still turning due to inertia, and the process proceeds to step S2.

ステップS2では旋回速度信号が有るか否かが判断され、YESのときにステップS4で反対側連通弁26または27を開く。   In step S2, it is determined whether or not there is a turning speed signal. If YES, the opposite communication valve 26 or 27 is opened in step S4.

続くステップS5〜S7では、旋回操作量と旋回速度から、連通弁26,27が無い(従来回路と同じ)とした場合のモータ出口側圧力ΔPを算出するとともに、この出口側圧力の算出値ΔPからモータ出口側圧力の検出値P1を引いて背圧の低減分を求め、この背圧低減分に相当する回生量(回生トルク)を決定して旋回電動機30に指令する。   In subsequent steps S5 to S7, the motor outlet side pressure ΔP when the communication valves 26 and 27 are not provided (same as in the conventional circuit) is calculated from the swing operation amount and the swing speed, and the calculated value ΔP of the outlet side pressure is calculated. From this, the detected value P1 of the motor outlet side pressure is subtracted to obtain a reduction amount of the back pressure, and a regenerative amount (regenerative torque) corresponding to this back pressure reduction amount is determined and commanded to the swing motor 30.

詳述すると、コントローラ28には、図3に示す、旋回操作量とコントロールバルブ13のメータアウト開口面積の関係を表す開口特性が予め記憶され、この開口特性と、検出された旋回操作量からメータアウト開口面積Aを算出する。   More specifically, the controller 28 stores in advance an opening characteristic representing the relationship between the turning operation amount and the meter-out opening area of the control valve 13 shown in FIG. 3, and a meter is calculated from the opening characteristic and the detected turning operation amount. The out opening area A is calculated.

また、検出された旋回速度から油圧モータ11に流れる流量(旋回流量)Qを算出するとともに、この旋回流量Qと、上記算出されたメータアウト開口面積Aを用いて、下記式により出口側圧力ΔPを算出する(ステップS5)。   Further, the flow rate (swing flow rate) Q flowing to the hydraulic motor 11 is calculated from the detected turning speed, and the outlet side pressure ΔP is calculated by the following equation using the turning flow rate Q and the calculated meter-out opening area A. Is calculated (step S5).

Q=Cd・A√(2ΔPb/ρ)
Cd:流量係数
ρ :流体密度
そして、出口側圧力の算出値ΔPと検出値P1から、
ΔP−P1
により、連通弁26,27による背圧の低減分を求め、この背圧低減分に相当する回生量を決定し(ステップS6)、ステップS7でこの回生量を旋回電動機30に指令してステップS1に戻る。
Q = Cd · A√ (2ΔPb / ρ)
Cd: Flow coefficient
ρ: fluid density And from the calculated value ΔP of the outlet side pressure and the detected value P1,
ΔP-P1
Thus, a reduction amount of the back pressure by the communication valves 26 and 27 is obtained, a regeneration amount corresponding to the back pressure reduction amount is determined (step S6), and the regeneration amount is commanded to the swing motor 30 in step S7, and step S1 is performed. Return to.

なお、ステップS3でNO(旋回操作されていないし旋回速度も出ていない)のときは、旋回停止状態であるとしてステップS8で連通弁26,27を閉じた後、またステップS2でNO(旋回操作されているが旋回速度は出ていない)のときは、押し付け作業等によって実際の旋回動作が行われていないとして直接、それぞれステップS9に移行し、旋回電動機30への回生指令無しとしてステップS1に戻る。   If NO in step S3 (turning operation is not performed and the turning speed is not output), it is determined that the turning is stopped, and the communication valves 26 and 27 are closed in step S8, and then NO (turning operation is performed in step S2). When the turning speed is not output), it is determined that the actual turning operation is not performed by the pressing work or the like, and the process directly proceeds to step S9, and the regeneration command to the turning motor 30 is not provided, and the process proceeds to step S1. Return.

このこのように、力行時、減速時を問わず、旋回動作中を通じて、連通弁26,27により、モータ吐出油をタンクTに戻すことによって背圧を低減するとともに、旋回電動機30によってこの背圧低減分に相当するだけの回生電力を発生させる構成であるため、旋回力行時のポンプ動力を上げずに回生効率を向上させ、トータルでの省エネ効果を高めることができる。   As described above, the back pressure is reduced by returning the motor discharge oil to the tank T by the communication valves 26 and 27 during the turning operation regardless of the power running or the deceleration, and the back electric motor 30 reduces the back pressure. Since it is the structure which generate | occur | produces the regenerative electric power equivalent to a reduction | decrease part, regenerative efficiency can be improved without raising the pump power at the time of turning power running, and the total energy saving effect can be heightened.

また、旋回動作中は、終始、反対側連通弁26または27を開いた状態とするため、特許文献1記載の公知技術のような切換弁の切換えによる圧力変動がなく、良好な操作性を確保することができる。   Further, since the opposite side communication valve 26 or 27 is kept open throughout the turning operation, there is no pressure fluctuation due to switching of the switching valve as in the known technique described in Patent Document 1, and good operability is ensured. can do.

また、旋回操作量によって決まるコントロールバルブ13のメータアウト開口面積Aと、旋回速度によって決まるモータ流量Qとから、連通弁26,27が無いものとしたときのモータ出口側圧力ΔPを算出し、この算出値ΔPからモータ出口側圧力の検出値P1を引いて背圧の低減分を求めるため、背圧低減分を正確に割り出し、回生電力の過不足のない適正な回生制御を行うことができる。   Further, from the meter-out opening area A of the control valve 13 determined by the swing operation amount and the motor flow rate Q determined by the swing speed, the motor outlet side pressure ΔP when the communication valves 26 and 27 are not provided is calculated. By subtracting the detected value P1 of the motor outlet side pressure from the calculated value ΔP to obtain a reduction amount of the back pressure, the back pressure reduction amount can be accurately calculated, and appropriate regenerative control without excess or deficiency of regenerative power can be performed.

次に、図4によって第2実施形態を説明する。   Next, a second embodiment will be described with reference to FIG.

ショベルにおいては、通常、旋回用油圧モータ11を含めた複数の油圧アクチュエータを一つの油圧ポンプで駆動する構成がとられる。   In general, the excavator is configured to drive a plurality of hydraulic actuators including the turning hydraulic motor 11 with a single hydraulic pump.

この構成において、旋回単独操作時には、元々、旋回力行中のポンプ圧がさほど高くならず、背圧も低い半面、この状態で旋回電動機30に回生作用を行わせるとポンプ圧が上昇するため、全旋回動作を通じたトータルでの省エネ効果が下がる可能性がある。   In this configuration, at the time of the single turning operation, the pump pressure during the turning power running is not so high and the back pressure is low, but if the regenerative action is performed on the turning electric motor 30 in this state, the pump pressure increases. There is a possibility that the total energy saving effect through the turning motion will decrease.

一方、複合操作時には、旋回用油圧モータ11以外の油圧アクチュエータの作動圧によってポンプ圧が上昇し、背圧低減のメリットも回生効率の向上効果も大きくなるため、トータルでの省エネ効果が高くなる。   On the other hand, during the combined operation, the pump pressure is increased by the operating pressure of the hydraulic actuator other than the turning hydraulic motor 11, and the merit of reducing the back pressure and the effect of improving the regeneration efficiency are increased, so that the total energy saving effect is increased.

そこで、第2実施形態においては、油圧ポンプ10を旋回用の油圧モータ11を含む複数の油圧アクチュエータで共用する構成をとる場合に、旋回用油圧モータ11のみが作動する旋回単独操作時には上記した回生制御を行わず、旋回用油圧モータ11と他の油圧アクチュエータとが同時に作動する複合操作時のみに上記回生制御を行うように構成されている。   Therefore, in the second embodiment, when the hydraulic pump 10 is configured to be shared by a plurality of hydraulic actuators including the turning hydraulic motor 11, the above-described regenerative operation is performed at the time of the turning single operation in which only the turning hydraulic motor 11 is operated. The regenerative control is performed only during the combined operation in which the turning hydraulic motor 11 and the other hydraulic actuators operate simultaneously without performing the control.

詳述すると、図4中のステップS11〜S13は図2中(第1実施形態)のステップS1〜S3と同じである。   More specifically, steps S11 to S13 in FIG. 4 are the same as steps S1 to S3 in FIG. 2 (first embodiment).

ステップS14で他のアクチュエータ操作が有る(複合操作)か否かが判断され、YESの場合は、ステップS15〜S18で、図2のステップS4〜S7と同様に連通弁開き、モータ出口側圧力ΔP算出、旋回電動機30の回生量決定、旋回電動機30への回生指令の各処理を行う。   In step S14, it is determined whether or not there is another actuator operation (combined operation). If YES, in steps S15 to S18, the communication valve is opened as in steps S4 to S7 in FIG. Each process of calculation, the regeneration amount determination of the turning electric motor 30, and the regeneration instruction | command to the turning electric motor 30 is performed.

ステップS13でNO(旋回操作も旋回速度も無い)のときは、旋回停止状態であるとしてステップS19で連通弁26,27を閉じた後、またステップS12及びステップS14でNOの場合は直接、それぞれステップS20に移り、旋回電動機30への回生指令無しとしてステップS11に戻る。   If NO in step S13 (no turning operation or turning speed), it is assumed that the turning is stopped, and the communication valves 26 and 27 are closed in step S19, and if NO in step S12 and step S14, respectively. It moves to step S20 and returns to step S11 as there is no regeneration command to the turning electric motor 30.

このように、回生制御を旋回単独操作時には行わず、複合操作時のみに行うことで省エネ効果を最大限に高めることができる。   Thus, the energy saving effect can be maximized by performing the regenerative control only during the combined operation, not during the turning single operation.

他の実施形態
(1) 上記実施形態では、連通弁26,27の出口側を通路29を介して油圧ブレーキ装置20の通路23に接続する構成、すなわち、メークアップライン24を、連通弁26,27の出口側をタンクTにつなぐラインとして共用する構成をとったが、連通弁26,27の出口側を専用のタンク接続ラインでタンクTに接続する構成をとってもよい。
Other embodiments
(1) In the embodiment described above, the outlet side of the communication valves 26 and 27 is connected to the passage 23 of the hydraulic brake device 20 via the passage 29, that is, the makeup line 24 is connected to the outlet side of the communication valves 26 and 27. However, a configuration in which the outlet sides of the communication valves 26 and 27 are connected to the tank T by a dedicated tank connection line may be employed.

(2) 上記実施形態では、モータ両側管路14,15ごとに連通弁26,27を設けたが、両側管路14,15に共用される一つの連通弁を設け、この連通弁を閉じ位置(中立位置)の左右の開き位置との間で切換制御する構成をとってもよい。   (2) In the above embodiment, the communication valves 26 and 27 are provided for each of the motor both-side pipe lines 14 and 15, but one communication valve shared by the both-side pipe lines 14 and 15 is provided, and this communication valve is closed. A configuration may be adopted in which switching control is performed between the left and right open positions (neutral position).

(3) 本発明はショベルに限らず、ショベルを母体として構成される解体機や破砕機等の他の旋回式作業機械にも上記同様に適用することができる。   (3) The present invention is not limited to the excavator, and can be similarly applied to other swivel work machines such as a dismantling machine and a crusher configured with the excavator as a base.

1 下部走行体
2 上部旋回体
11 旋回用油圧モータ
12 旋回操作手段としての旋回リモコン弁
13 コントロールバルブ
14,15 モータ両側管路
26,27 連通弁
28 制御手段としてのコントローラ
30 旋回電動機
31 蓄電器
32,33 旋回操作検出手段としての圧力センサ
34 旋回速度検出手段としての旋回速度センサ
35,36 モータ出口側圧力を検出する圧力センサ
DESCRIPTION OF SYMBOLS 1 Lower traveling body 2 Upper revolving body 11 Turning hydraulic motor 12 Swing remote control valve as turning operation means 13 Control valve 14, 15 Motor both-side pipe lines 26, 27 Communication valve 28 Controller as control means 30 Turning electric motor 31 Capacitor 32, 33 Pressure sensor as turning operation detection means 34 Turning speed sensor 35 as turning speed detection means 35, 36 Pressure sensor for detecting motor outlet side pressure

Claims (3)

下部走行体と、この下部走行体上に旋回自在に搭載された上部旋回体と、この上部旋回体の旋回駆動源としての旋回用の油圧モータと、この油圧モータにより回転駆動される旋回電動機と、蓄電器と、上記油圧モータの圧油供給源としての油圧ポンプと、旋回の加速、定常運転、減速、停止を指令する旋回操作手段と、この旋回操作手段の操作に基づいて上記油圧モータに対する圧油の給排を制御するコントロールバルブとを備えた旋回式作業機械において、上記旋回操作手段の操作を検出する旋回操作検出手段と、モータ出口側管路をタンクに連通させる連通位置とこの連通を遮断する連通遮断位置との間で作動する連通弁と、上記旋回操作検出手段からの信号に基づいて上記旋回電動機の回生作用及び上記連通弁の作動を制御する制御手段とを備え、上記制御手段は、上記上部旋回体の旋回動作時に、上記連通弁を連通位置にセットするとともに、この連通弁による背圧の低減分に相当する回生量を上記旋回電動機に指令する回生制御を行うように構成したことを特徴とする旋回式作業機械。   A lower traveling body, an upper swinging body that is rotatably mounted on the lower traveling body, a swing hydraulic motor as a swing drive source of the upper swing body, and a swing motor that is rotationally driven by the hydraulic motor; A capacitor, a hydraulic pump as a pressure oil supply source of the hydraulic motor, a turning operation means for commanding acceleration, steady operation, deceleration, and stop of turning, and a pressure applied to the hydraulic motor based on the operation of the turning operation means In a swivel work machine having a control valve for controlling oil supply and discharge, a swivel operation detecting means for detecting the operation of the swivel operation means, a communication position for communicating the motor outlet side pipe line with the tank, and this communication. A control valve that operates between the communication cutoff position to be shut off, and a control unit that controls the regenerative action of the swing motor and the operation of the communication valve based on a signal from the swing operation detecting means. The control means sets the communication valve at the communication position during the swing operation of the upper swing body and commands the swing motor to generate a regenerative amount corresponding to a reduction in back pressure by the communication valve. A swivel working machine configured to perform regenerative control. 旋回速度を検出する旋回速度検出手段と、上記油圧モータの出口側圧力を検出する圧力検出手段とを設け、上記制御手段は、上記旋回操作手段の操作量によって決まる上記コントロールバルブのメータアウト開口面積と、旋回速度によって決まるモータ流量とから、上記連通弁が無いものとしたときのモータ出口側圧力を算出し、この算出値からモータ出口側圧力の検出値を引いて背圧の低減分を求めるように構成したことを特徴とする請求項1記載の旋回式作業機械。   A turning speed detecting means for detecting a turning speed and a pressure detecting means for detecting an outlet side pressure of the hydraulic motor are provided, and the control means has a meter-out opening area of the control valve determined by an operation amount of the turning operation means. And the motor flow rate determined by the turning speed, the motor outlet side pressure when there is no communication valve is calculated, and the detected value of the motor outlet side pressure is subtracted from this calculated value to obtain the reduced back pressure. The revolving work machine according to claim 1, which is configured as described above. 上記油圧ポンプは、旋回用の油圧モータを含む複数の油圧アクチュエータに共用され、上記制御手段は、上記旋回用の油圧モータのみが作動する旋回単独操作時には上記回生制御を行わず、上記旋回用の油圧モータと他の油圧アクチュエータとが同時に作動する複合操作時のみに上記回生制御を行うように構成したことを特徴とする請求項1または2記載の旋回式作業機械。   The hydraulic pump is shared by a plurality of hydraulic actuators including a turning hydraulic motor, and the control means does not perform the regenerative control during the turning single operation in which only the turning hydraulic motor operates, and does not perform the regenerative control. The revolving control machine according to claim 1 or 2, wherein the regenerative control is performed only during a combined operation in which a hydraulic motor and another hydraulic actuator operate simultaneously.
JP2011123307A 2011-05-02 2011-06-01 Swivel work machine Active JP5071572B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011123307A JP5071572B1 (en) 2011-06-01 2011-06-01 Swivel work machine
US14/007,978 US8826656B2 (en) 2011-05-02 2012-04-19 Slewing type working machine
EP12779820.5A EP2706152B1 (en) 2011-05-02 2012-04-19 Slewing type working machine
CN201280021510.6A CN103534419B (en) 2011-05-02 2012-04-19 Swinging engineering machinery
PCT/JP2012/002724 WO2012150653A1 (en) 2011-05-02 2012-04-19 Rotation-type working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123307A JP5071572B1 (en) 2011-06-01 2011-06-01 Swivel work machine

Publications (2)

Publication Number Publication Date
JP5071572B1 JP5071572B1 (en) 2012-11-14
JP2012251329A true JP2012251329A (en) 2012-12-20

Family

ID=47277837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123307A Active JP5071572B1 (en) 2011-05-02 2011-06-01 Swivel work machine

Country Status (1)

Country Link
JP (1) JP5071572B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940560B (en) * 2018-07-16 2024-04-02 江阴双马重工装备有限公司 Remote control system of crusher for field unmanned operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200305A (en) * 1995-01-27 1996-08-06 Hitachi Constr Mach Co Ltd Hydraulic circuit for driving inertial body
JP2005344431A (en) * 2004-06-04 2005-12-15 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Revolving electric motor equipment
JP2010065510A (en) * 2008-09-12 2010-03-25 Sumitomo (Shi) Construction Machinery Co Ltd Driving device for working machine
JP2012127123A (en) * 2010-12-15 2012-07-05 Sumitomo Heavy Ind Ltd Hybrid construction machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200305A (en) * 1995-01-27 1996-08-06 Hitachi Constr Mach Co Ltd Hydraulic circuit for driving inertial body
JP2005344431A (en) * 2004-06-04 2005-12-15 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Revolving electric motor equipment
JP2010065510A (en) * 2008-09-12 2010-03-25 Sumitomo (Shi) Construction Machinery Co Ltd Driving device for working machine
JP2012127123A (en) * 2010-12-15 2012-07-05 Sumitomo Heavy Ind Ltd Hybrid construction machine

Also Published As

Publication number Publication date
JP5071572B1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5333511B2 (en) Swivel work machine
JP5687150B2 (en) Construction machinery
JP5667830B2 (en) Construction machine having a rotating body
WO2012150653A1 (en) Rotation-type working machine
JP5858818B2 (en) Construction machinery
WO2015122213A1 (en) Hydraulic drive device for construction machine
WO2010128645A1 (en) Control device for hybrid construction machine
JP2011220390A (en) Control device of hydraulic working machine
JPWO2013099710A1 (en) Power regeneration device for work machine and work machine
US9777463B2 (en) Construction machine
JP6013503B2 (en) Construction machinery
JP5992886B2 (en) Work machine
JP5590074B2 (en) Swivel work machine
JP5071572B1 (en) Swivel work machine
JP2016038074A (en) Control device for turning type work machine
JP5071571B1 (en) Swivel work machine
JP5864309B2 (en) Excavator
JP5201239B2 (en) Swivel work machine
JP5197231B2 (en) Energy recovery device for work machines
JP5723947B2 (en) Construction machine having a rotating body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3