JP2012250226A - Water-treating solid-liquid separation method - Google Patents

Water-treating solid-liquid separation method Download PDF

Info

Publication number
JP2012250226A
JP2012250226A JP2011134587A JP2011134587A JP2012250226A JP 2012250226 A JP2012250226 A JP 2012250226A JP 2011134587 A JP2011134587 A JP 2011134587A JP 2011134587 A JP2011134587 A JP 2011134587A JP 2012250226 A JP2012250226 A JP 2012250226A
Authority
JP
Japan
Prior art keywords
wastewater
oxygen
oxygen compound
metal ion
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011134587A
Other languages
Japanese (ja)
Inventor
Taiichi Wada
泰一 和田
Sachiko Yahagi
紗智子 矢萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FILTER KK
Original Assignee
NIPPON FILTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FILTER KK filed Critical NIPPON FILTER KK
Priority to JP2011134587A priority Critical patent/JP2012250226A/en
Publication of JP2012250226A publication Critical patent/JP2012250226A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform coagulation/sedimentation treatment by suppressing that heavy metals such as complex ions not performed with sedimentation treatment elute as ions to increase sedimentation speed when performing the coagulation/sedimentation treatment of heavy metal ion wastewater by use of iron ions heretofore.SOLUTION: By previously dissolving not only a coagulant containing iron ions but also an inorganic oxygen compound metal ions as water-treating solid-liquid separating agent, the heavy metal ions are coagulated by use of the effect of coprecipitation of the dissolved coagulant containing the iron ions, so that the sedimentation rate is increased to suppress the elution of the heavy metal ions into the wastewater.

Description

本発明は、金属表面処理など重金属を含有する排水を対象とした水処理用固液分離剤と分離方法に関する。  The present invention relates to a solid-liquid separation agent for water treatment and a separation method for wastewater containing heavy metals such as metal surface treatment.

従来、金属表面処理では銅、ニッケル、亜鉛、クロム、マンガン、アルミニウム、スズ、カドミウム、鉛、ヒ素、水銀などの重金属を含有する排水処理に固液分離剤として、硫酸第二鉄、塩化第二鉄、またはポリ硫酸第二鉄等の鉄塩を添加し、水酸化ナトリウムまたは水酸化カルシウムにてpH調整する凝集沈殿法が用いられてきた。同様な処理として例えば、ダストの水洗時に発生する排水から重金属類を除去する排水処理方法(特許文献1)が提案されているが、表面処理剤に含まれる錯形成物質として、グルコン酸、エチレンジアミン四酢酸、カルボン酸化合物、アンモニア、アミン化合物などが用いられている場合には重金属が十分に固液分離することができず、一部処理水中に流出することが多かった。また、鉄塩系凝集剤に酸化剤を添加することで凝集沈殿する方法(特許文献2)が提案されているが、沈殿分離した固形スラッジ量が増加すると、廃棄物量の増加を招く欠点があった。  Conventionally, in metal surface treatment, ferrous sulfate, ferric chloride as a solid-liquid separation agent for wastewater treatment containing heavy metals such as copper, nickel, zinc, chromium, manganese, aluminum, tin, cadmium, lead, arsenic, mercury, etc. A coagulation precipitation method in which iron or an iron salt such as polyferric sulfate is added and the pH is adjusted with sodium hydroxide or calcium hydroxide has been used. As a similar treatment, for example, a wastewater treatment method (Patent Document 1) for removing heavy metals from wastewater generated during washing with dust has been proposed, but gluconic acid, ethylenediamine quaternary can be used as complex-forming substances contained in the surface treatment agent. When acetic acid, a carboxylic acid compound, ammonia, an amine compound, etc. are used, the heavy metal cannot be sufficiently separated into solid and liquid, and partly flows out into the treated water. In addition, a method of coagulating and precipitating by adding an oxidizing agent to an iron salt-based coagulant (Patent Document 2) has been proposed. However, there is a drawback in that the amount of waste increases when the amount of solid sludge that has been separated by precipitation increases. It was.

鉄塩系凝集剤の代わりに、またはそれと併用して硫化ナトリウムや硫化物系処理剤を使用する方法(特許文献3)が提案されているが、臭気や、酸性下での有毒ガスの発生などの問題があり、添加量の厳密な管理が必要であった。また、これらを用いて凝集沈殿により生成したフロックは沈降速度が遅いため、フロックが排水の流れに随伴して流出し、結果として重金属の排水規制値を越えてしまう欠点があった。  A method of using sodium sulfide or a sulfide-based treatment agent in place of or in combination with an iron salt-based flocculant (Patent Document 3) has been proposed. Odor, generation of toxic gases under acidic conditions, etc. Therefore, strict control of the amount added was necessary. In addition, flocs produced by coagulation sedimentation using these have a slow sedimentation speed, so that the flocs flow out along with the flow of the drainage, resulting in exceeding the drainage regulation value for heavy metals.

特開2009−112986JP2009-112986A 特開2007−38196JP2007-38196 特開2009−106853JP2009-108553

従来、金属表面処理など重金属を含有する排水処理において、硫酸第二鉄、塩化第二鉄、またはポリ硫酸第二鉄等の鉄塩系凝集剤のみでは、重金属の十分な処理効果が得られず、さらにはスラッジ量の増加を招く排水処理、また、硫化ナトリウムや硫化物系処理剤の使用では、凝集沈殿における沈降性が良好でない排水処理に用いる。  Conventionally, in wastewater treatment containing heavy metals such as metal surface treatment, a sufficient treatment effect of heavy metals cannot be obtained only with iron salt-based flocculants such as ferric sulfate, ferric chloride, or polyferric sulfate. In addition, wastewater treatment that causes an increase in the amount of sludge, and use of sodium sulfide or a sulfide-based treatment agent is used for wastewater treatment that does not have good sedimentation in coagulation sedimentation.

本発明は、重金属イオン排水に鉄イオンを用いて凝集沈降処理する際、沈降処理されなかった錯イオンなどの重金属がイオンとして溶出することを抑制させ、沈降速度を増加させて凝集沈降処理することで、重金属の処理を可能とする固液分離剤および分離方法を提供するものである。  The present invention suppresses the elution of heavy metals such as complex ions that have not been subjected to sedimentation as ions when performing agglomeration and sedimentation using iron ions in heavy metal ion wastewater, and increases the sedimentation rate to perform aggregation and sedimentation. Thus, the present invention provides a solid-liquid separation agent and a separation method that enable treatment of heavy metals.

上述目的を達成するため、本発明は以下のような特徴的な構成を備える。  In order to achieve the above object, the present invention has the following characteristic configuration.

(1)金属イオン添加剤及び無機酸素化合物添加剤を用いた共沈凝集剤であって、pHを3以下の酸性にすることを特徴とする水処理用固液分離剤と分離法。
(2)金属イオン添加剤としては、リチウム、バリウム、カルシウム、ストロンチウム、マグネシウム、亜鉛、カドミウム、アルミニウム、ガリウム、ナトリウム、インジウム、イットリウム、セリウム、チタン、ジルコニウム、スズ、鉄、コバルト、ニッケル、バナジウム、ニオブ、タングステン、クロム、モリブデン、マンガン、鉄、銅、銀、アンチモンなどのうち少なくとも一つを含むことを特徴とする水処理用固液分離剤。
(3)無機酸素化合物添加剤としては、亜鉛酸素化合物、カドミウム酸素化合物、アルミニウム酸素化合物、ガリウム酸素化合物、インジウム酸素化合物、イットリウム酸素化合物、セリウム酸素化合物、チタン酸素化合物、ジルコニウム酸素化合物、スズ酸素化合物、鉄酸素化合物、コバルト酸素化合物、ニッケル酸素化合物、バナジウム酸素化合物、ニオブ酸素化合物、タングステン酸素化合物、クロム酸素化合物、モリブデン酸素化合物、マンガン酸素化合物、銅酸素化合物、アンチモン酸素化合物、ケイ素酸素化合物、カルシウム酸素化合物、マグネシウム酸素化合物などのうち少なくとも一つを含むことを特徴とする水処理用固液分離剤。
(1) A solid-liquid separation agent for water treatment and a separation method, wherein the coprecipitation flocculant uses a metal ion additive and an inorganic oxygen compound additive and has an acidic pH of 3 or less.
(2) As metal ion additives, lithium, barium, calcium, strontium, magnesium, zinc, cadmium, aluminum, gallium, sodium, indium, yttrium, cerium, titanium, zirconium, tin, iron, cobalt, nickel, vanadium, A solid-liquid separation agent for water treatment comprising at least one of niobium, tungsten, chromium, molybdenum, manganese, iron, copper, silver, antimony and the like.
(3) Inorganic oxygen compound additives include zinc oxygen compound, cadmium oxygen compound, aluminum oxygen compound, gallium oxygen compound, indium oxygen compound, yttrium oxygen compound, cerium oxygen compound, titanium oxygen compound, zirconium oxygen compound, tin oxygen compound , Iron oxygen compound, cobalt oxygen compound, nickel oxygen compound, vanadium oxygen compound, niobium oxygen compound, tungsten oxygen compound, chromium oxygen compound, molybdenum oxygen compound, manganese oxygen compound, copper oxygen compound, antimony oxygen compound, silicon oxygen compound, calcium A solid-liquid separation agent for water treatment, comprising at least one of an oxygen compound, a magnesium oxygen compound and the like.

金属イオン添加剤および無機酸素化合物添加剤としては、鉄鋼製錬排水、非鉄金属製錬排水、研磨加工排水、脱脂洗浄排水、酸洗浄排水、染料排水、顔料排水、窯業排水、土木排水、建築排水、ごみ処理排水、上水処理廃棄物排水、下水処理廃棄物排水などに含まれる成分であり、少なくとも一種類以上の排水、廃水または廃棄物を利用する。  Metal ion additives and inorganic oxygen compound additives include steel smelting wastewater, non-ferrous metal smelting wastewater, polishing wastewater, degreasing wastewater, acid washwater, dye wastewater, pigment wastewater, ceramic wastewater, civil engineering wastewater, and building wastewater. It is a component contained in wastewater treatment wastewater, wastewater from wastewater treatment wastewater, wastewater from wastewater treatment wastewater, etc., and uses at least one kind of wastewater, wastewater or wastewater.

本発明の固液分離剤を用いる処理において、上記固液分離剤だけの添加でも効果はあるが、鉄塩系凝集剤を同時に添加するとさらに効果がある。また、鉄塩系凝集剤は、硫酸第二鉄、塩化第二鉄、またはポリ硫酸第二鉄のいずれであっても良い。鉄として10〜1000mg/Lの添加が好ましい。  In the treatment using the solid-liquid separation agent of the present invention, the addition of only the solid-liquid separation agent is effective, but the addition of the iron salt-based flocculant is more effective. Further, the iron salt-based flocculant may be ferric sulfate, ferric chloride, or polyferric sulfate. Addition of 10 to 1000 mg / L as iron is preferable.

金属イオン添加剤及び無機酸素化合物添加剤の添加順序は、特に制限されるべきものではないが、無機酸素化合物添加剤をpH3以下の酸性下で添加した後に金属イオン添加剤を添加することが好ましい。  The order of addition of the metal ion additive and the inorganic oxygen compound additive is not particularly limited, but it is preferable to add the metal ion additive after adding the inorganic oxygen compound additive under an acidic pH of 3 or less. .

本発明によれば、排水中の重金属を不溶化し固液分離することが可能である。また、従来の凝集剤に比較して、より粗大なフロックが生成でき、沈降速度が増して清澄な処理水を得ることができる。  According to the present invention, heavy metals in waste water can be insolubilized and solid-liquid separated. Moreover, compared with the conventional flocculant, a coarser floc can be produced | generated, the sedimentation rate can increase, and clear treated water can be obtained.

また、本発明は、カルシウム化合物やアルミニウム化合物などの無機凝集剤の添加が不要または少量で済むため、環境に調和した水処理が可能になる。  Further, the present invention does not require or requires a small amount of an inorganic flocculant such as a calcium compound or an aluminum compound, so that water treatment in harmony with the environment becomes possible.

以下に、本発明による固液分離剤について、その効果を確認するために次のような実験を行った。  The following experiment was conducted to confirm the effect of the solid-liquid separating agent according to the present invention.

実施例1、比較例1
実施例1に使用した亜鉛系めっき排水はジンケート浴、亜鉛−ニッケル合金めっき浴の水洗水が混在している排水であり、処理前の亜鉛濃度は96mg/Lであった。亜鉛系めっき排水1Lについて、pH3以下の酸性雰囲気を保持した状態で金属製錬排水および研磨加工排水を各1ml添加した。次いで、水酸化ナトリウムにてpHを9〜10に調整した(実施例1)。また、これとの比較のため、同様に、上記亜鉛めっき系排水について、pH3以下の酸性雰囲気下にて鉄塩系凝集剤を添加し、水酸化ナトリウムにてpHを9〜10に調整した。鉄塩は塩化第二鉄とし、鉄として300mg/Lを添加した(比較例1)。
Example 1 and Comparative Example 1
The zinc-based plating waste water used in Example 1 is a waste water in which washing water of a zincate bath and a zinc-nickel alloy plating bath is mixed, and the zinc concentration before treatment was 96 mg / L. About 1 L of zinc-based plating wastewater, 1 ml each of metal smelting wastewater and polishing wastewater was added while maintaining an acidic atmosphere of pH 3 or lower. Next, the pH was adjusted to 9-10 with sodium hydroxide (Example 1). For comparison with this, similarly, an iron salt-based flocculant was added to the galvanized wastewater in an acidic atmosphere at pH 3 or lower, and the pH was adjusted to 9-10 with sodium hydroxide. The iron salt was ferric chloride, and 300 mg / L was added as iron (Comparative Example 1).

処理後の水は原子吸光光度法により亜鉛を定量した。表1は本発明の固液分離剤、および鉄塩系凝集剤による亜鉛の処理試験結果を示す。

Figure 2012250226
The treated water was quantified with zinc by atomic absorption spectrophotometry. Table 1 shows the results of zinc treatment tests with the solid-liquid separation agent and the iron salt-based flocculant of the present invention.
Figure 2012250226

実施例2、比較例2
実施例2に使用した亜鉛系めっき排水はアンモニウム浴、亜鉛−ニッケル合金めっき浴の水洗水が混在している排水であり、処理前の亜鉛濃度は413mg/Lであった。亜鉛系めっき排水1Lについて、pH3以下の酸性雰囲気を保持した状態で金属製錬排水および研磨加工排水を各1ml添加した。次いで、水酸化ナトリウムにてpHを9〜10に調整した(実施例2)。また、これとの比較のため、同様に、上記亜鉛めっき系排水について、pH3以下の酸性雰囲気下にて鉄塩系凝集剤を添加し、水酸化ナトリウムにてpHを9〜10に調整した。鉄塩は塩化第二鉄とし、鉄として300mg/Lを添加した(比較例2)。
Example 2 and Comparative Example 2
The zinc-based plating wastewater used in Example 2 was wastewater in which flush water of an ammonium bath and a zinc-nickel alloy plating bath was mixed, and the zinc concentration before treatment was 413 mg / L. About 1 L of zinc-based plating wastewater, 1 ml each of metal smelting wastewater and polishing wastewater was added while maintaining an acidic atmosphere of pH 3 or lower. Next, the pH was adjusted to 9-10 with sodium hydroxide (Example 2). For comparison with this, similarly, an iron salt-based flocculant was added to the galvanized wastewater in an acidic atmosphere at pH 3 or lower, and the pH was adjusted to 9-10 with sodium hydroxide. The iron salt was ferric chloride, and 300 mg / L was added as iron (Comparative Example 2).

処理後の水は原子吸光光度法により亜鉛を定量した。表2は本発明の固液分離剤、および鉄塩系凝集剤による亜鉛の処理試験結果を示す。

Figure 2012250226
The treated water was quantified with zinc by atomic absorption spectrophotometry. Table 2 shows the results of a test for treating zinc with the solid-liquid separating agent and the iron salt-based flocculant of the present invention.
Figure 2012250226

鉄塩系凝集剤のみの場合と比較すると、本発明の固液分離剤を添加した処理では凝集性、共沈性が良好で、沈降速度が増し、明らかに処理効果が向上した。  Compared with the case of using only the iron salt-based flocculant, the treatment with the solid-liquid separation agent of the present invention showed good coagulation and coprecipitation, increased the sedimentation rate, and clearly improved the treatment effect.

金属表面処理で銅、ニッケル、亜鉛、クロム、マンガン、アルミニウム、スズ、カドミウム、鉛、ヒ素、水銀などの重金属を含有する排水処理において、固液分離剤として、硫酸第二鉄、塩化第二鉄、またはポリ硫酸第二鉄等の鉄塩を添加し、水酸化ナトリウムまたは水酸化カルシウムにてpH調整し凝集沈降処理する際に沈降性の良くない排水を処理することが可能である。  Ferric sulfate and ferric chloride as solid-liquid separators in wastewater treatment containing heavy metals such as copper, nickel, zinc, chromium, manganese, aluminum, tin, cadmium, lead, arsenic, and mercury in metal surface treatment Alternatively, it is possible to treat wastewater with poor sedimentation properties by adding an iron salt such as polyferric sulfate and adjusting the pH with sodium hydroxide or calcium hydroxide for coagulation sedimentation treatment.

Claims (7)

重金属イオン排水に鉄イオンを用いて凝集沈降処理する際、金属イオンおよび無機酸素化合物を溶解しておくことによる水処理用固液分離剤の使用方法。  A method of using a solid-liquid separation agent for water treatment by dissolving metal ions and inorganic oxygen compounds when aggregating and sedimenting using heavy iron ion wastewater with iron ions. 前記重金属イオン排水に対して排水中で凝集共沈効果を与えることを特徴とする水処理用固液分離剤の使用方法。  A method for using a solid-liquid separation agent for water treatment, wherein the coagulation coprecipitation effect is provided in the wastewater to the heavy metal ion wastewater. 前記凝集共沈効果を与える添加剤として、金属イオン添加剤を含む無機酸素化合物添加剤を用いることを特徴とする請求項1または2に記載の重金属イオン排水への水処理用固液分離剤の使用方法。  3. The solid-liquid separation agent for water treatment to heavy metal ion wastewater according to claim 1, wherein an inorganic oxygen compound additive containing a metal ion additive is used as the additive that gives the coagulation coprecipitation effect. how to use. 前項金属イオン添加剤としては、リチウム、バリウム、カルシウム、ストロンチウム、マグネシウム、亜鉛、カドミウム、アルミニウム、ガリウム、ナトリウム、インジウム、イットリウム、セリウム、チタン、ジルコニウム、スズ、コバルト、ニッケル、バナジウム、ニオブ、タングステン、クロム、モリブデン、マンガン、鉄、銅、銀、アンチモンなどのイオンのうち少なくとも一つを含むことを特徴とする重金属イオン排水への水処理用固液分離剤の使用方法。  As the metal ion additive in the previous paragraph, lithium, barium, calcium, strontium, magnesium, zinc, cadmium, aluminum, gallium, sodium, indium, yttrium, cerium, titanium, zirconium, tin, cobalt, nickel, vanadium, niobium, tungsten, A method of using a solid-liquid separation agent for water treatment in heavy metal ion wastewater, comprising at least one of ions of chromium, molybdenum, manganese, iron, copper, silver, antimony and the like. 請求項3の無機酸素化合物添加剤としては、亜鉛酸素化合物、カドミウム酸素化合物、アルミニウム酸素化合物、ガリウム酸素化合物、インジウム酸素化合物、イットリウム酸素化合物、セリウム酸素化合物、チタン酸素化合物、ジルコニウム酸素化合物、スズ酸素化合物、鉄酸素化合物、コバルト酸素化合物、ニッケル酸素化合物、バナジウム酸素化合物、ニオブ酸素化合物、タングステン酸素化合物、クロム酸素化合物、モリブデン酸素化合物、マンガン酸素化合物、銅酸素化合物、アンチモン酸素化合物、ケイ素酸素化合物、カルシウム酸素化合物、マグネシウム酸素化合物などのうち少なくとも一つを含むことを特徴とする重金属イオン排水への水処理用固液分離剤の使用方法。  The inorganic oxygen compound additive of claim 3 includes zinc oxygen compound, cadmium oxygen compound, aluminum oxygen compound, gallium oxygen compound, indium oxygen compound, yttrium oxygen compound, cerium oxygen compound, titanium oxygen compound, zirconium oxygen compound, tin oxygen Compounds, iron oxygen compounds, cobalt oxygen compounds, nickel oxygen compounds, vanadium oxygen compounds, niobium oxygen compounds, tungsten oxygen compounds, chromium oxygen compounds, molybdenum oxygen compounds, manganese oxygen compounds, copper oxygen compounds, antimony oxygen compounds, silicon oxygen compounds, A method of using a solid-liquid separation agent for water treatment in heavy metal ion wastewater, comprising at least one of a calcium oxygen compound and a magnesium oxygen compound. 金属イオン、無機酸素化合物添加剤の添加量はそれぞれ0.001重量%以上10重量%以下であることを特徴とする請求項1乃至5のいずれかに記載の重金属イオン排水への水処理用固液分離剤の使用方法。  The amount of metal ion and inorganic oxygen compound additive added is 0.001 wt% or more and 10 wt% or less, respectively. How to use liquid separation agent. 請求項1乃至6に記載の発明における前記重金属イオン排水への水処理用固液分離剤は、鉄鋼製錬排水、非鉄金属製錬排水、研磨加工排水、脱脂洗浄排水、酸洗浄排水、染料排水、顔料排水、窯業排水、土木排水、建築排水、ごみ処理排水、上水処理廃棄物排水、下水処理廃棄物排水などに含まれる成分のうち少なくとも一種類以上の排水、廃水または廃棄物を利用することを特徴とする添加剤。    The solid-liquid separating agent for water treatment to heavy metal ion wastewater according to any one of claims 1 to 6 is steel smelting wastewater, non-ferrous metal smelting wastewater, polishing wastewater, degreasing washing wastewater, acid washing wastewater, dye wastewater. , Use at least one type of wastewater, wastewater or waste contained in components such as pigment wastewater, ceramic wastewater, civil engineering wastewater, building wastewater, wastewater treatment wastewater, wastewater from wastewater treatment wastewater, wastewater from wastewater treatment wastewater An additive characterized by that.
JP2011134587A 2011-06-01 2011-06-01 Water-treating solid-liquid separation method Withdrawn JP2012250226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134587A JP2012250226A (en) 2011-06-01 2011-06-01 Water-treating solid-liquid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134587A JP2012250226A (en) 2011-06-01 2011-06-01 Water-treating solid-liquid separation method

Publications (1)

Publication Number Publication Date
JP2012250226A true JP2012250226A (en) 2012-12-20

Family

ID=47523555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134587A Withdrawn JP2012250226A (en) 2011-06-01 2011-06-01 Water-treating solid-liquid separation method

Country Status (1)

Country Link
JP (1) JP2012250226A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723852A (en) * 2013-12-04 2014-04-16 刘军亮 Sewage treatment method based on inorganic and organic heavy metal absorbents
CN103739135A (en) * 2013-12-14 2014-04-23 灵宝金源矿业股份有限公司 Copper smelting wastewater processing technology
WO2015093363A1 (en) * 2013-12-16 2015-06-25 住友金属鉱山株式会社 Method for suppressing elution of manganese
WO2019214065A1 (en) * 2018-05-11 2019-11-14 哈尔滨工业大学 Method for removing heavy metal pollutants in water with divalent manganese strengthened ferrate
CN113072151A (en) * 2021-04-23 2021-07-06 重庆理工大学 Method for preparing iron-titanium-vanadium ternary polymeric flocculant from vanadium titano-magnetite through one-step method by acid dissolution of hydrochloric acid
CN113896519A (en) * 2021-10-09 2022-01-07 郑州大学 Method for preparing wave-absorbing sludge ceramic material by using zinc-cobalt-manganese mixed wastewater of zinc smelting system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723852A (en) * 2013-12-04 2014-04-16 刘军亮 Sewage treatment method based on inorganic and organic heavy metal absorbents
CN103723852B (en) * 2013-12-04 2015-04-08 刘军亮 Sewage treatment method based on inorganic and organic heavy metal absorbents
CN103739135A (en) * 2013-12-14 2014-04-23 灵宝金源矿业股份有限公司 Copper smelting wastewater processing technology
CN103739135B (en) * 2013-12-14 2015-09-23 灵宝金源矿业股份有限公司 A kind of wastewater from copper smelter treatment process
WO2015093363A1 (en) * 2013-12-16 2015-06-25 住友金属鉱山株式会社 Method for suppressing elution of manganese
WO2019214065A1 (en) * 2018-05-11 2019-11-14 哈尔滨工业大学 Method for removing heavy metal pollutants in water with divalent manganese strengthened ferrate
CN113072151A (en) * 2021-04-23 2021-07-06 重庆理工大学 Method for preparing iron-titanium-vanadium ternary polymeric flocculant from vanadium titano-magnetite through one-step method by acid dissolution of hydrochloric acid
CN113896519A (en) * 2021-10-09 2022-01-07 郑州大学 Method for preparing wave-absorbing sludge ceramic material by using zinc-cobalt-manganese mixed wastewater of zinc smelting system

Similar Documents

Publication Publication Date Title
US11685681B2 (en) Method for treatment of mixed electroplating wasterwater without cyanide and phosphorus-containing reductant
JP2012250226A (en) Water-treating solid-liquid separation method
CN101088938B (en) Process of treating heavy metal containing sewage
JPS62253738A (en) Removal of dangerous metal waste sludge
JP5962177B2 (en) Cyanogen-containing wastewater treatment method and treatment agent
CN102167436B (en) Electroplating wastewater treating agent
JP2000202461A (en) Treatment of heavy metal complex-containing waste liquid
JP5206453B2 (en) Cement kiln extraction dust processing method
CN110981018B (en) Method for treating electroplating wastewater of potassium chloride cadmium cobalt alloy
WO2007057521A1 (en) Method for removing substances from aqueous solution
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP2005152741A (en) Treatment method for dust in cement kiln extraction gas
CN110818123B (en) Treatment method of trivalent chromium plating waste water
JP5205089B2 (en) Waste electrolyte treatment method
CN106365225A (en) Electroplating wastewater treating agent
JP2017159222A (en) Method for removing arsenic
JP6597349B2 (en) Blast furnace wastewater treatment method
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
CN110790417B (en) Treatment method of hardware and electronic electroplating wastewater
JP2009136873A (en) Treatment method for dust in cement kiln extraction gas
CN110759512B (en) Method for treating potassium chloride cyanide-free cadmium plating wastewater
JP4862191B2 (en) Method for treating selenium-containing water
JP6555182B2 (en) Wastewater treatment method
JP7259620B2 (en) Method for treating lead-containing outside water
JP7259619B2 (en) Method for treating lead-containing outside water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805