JP2012250143A - Carbon monoxide methanation catalyst - Google Patents

Carbon monoxide methanation catalyst Download PDF

Info

Publication number
JP2012250143A
JP2012250143A JP2011122537A JP2011122537A JP2012250143A JP 2012250143 A JP2012250143 A JP 2012250143A JP 2011122537 A JP2011122537 A JP 2011122537A JP 2011122537 A JP2011122537 A JP 2011122537A JP 2012250143 A JP2012250143 A JP 2012250143A
Authority
JP
Japan
Prior art keywords
carbon monoxide
porous silica
reaction
methanation catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011122537A
Other languages
Japanese (ja)
Other versions
JP5989306B2 (en
Inventor
Yasuhiro Okubo
泰宏 大久保
Katsuyuki Miyazaki
勝行 宮▲崎▼
Kazuo Shimizu
一雄 清水
Hironobu Nanbu
宏暢 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP2011122537A priority Critical patent/JP5989306B2/en
Publication of JP2012250143A publication Critical patent/JP2012250143A/en
Application granted granted Critical
Publication of JP5989306B2 publication Critical patent/JP5989306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CO methanation catalyst which has an activity to subject CO to methanation and then to eliminate in a wide temperature range from a low temperature while having a high reaction selectivity to the CO even if an introduced gas contains CO; and to provide a method for eliminating the CO in hydrogen using the catalyst.SOLUTION: The carbon monoxide methanation catalyst is constituted of: porous silica having 1-49 mass% of titanium; and ruthenium.

Description

本発明は、水素中に含まれる微量の一酸化炭素を効率的に除去するための触媒および除去方法に関するものである。   The present invention relates to a catalyst and a removal method for efficiently removing a trace amount of carbon monoxide contained in hydrogen.

燃料電池における電気化学反応に供する水素リッチな燃料ガスは、通常都市ガスやプロパンガスを化学分解して得られる改質ガスが使用される。これら改質ガス中には、上記化学分解の工程で生じる1%前後の一酸化炭素(CO)が含まれている。水素を燃料とする固体高分子形燃料電池などは電極部に白金系の触媒を備えているが、燃料ガス中にCOが含まれると白金触媒が被毒され電池効率が低下する問題がある。   The hydrogen-rich fuel gas used for the electrochemical reaction in the fuel cell is usually a reformed gas obtained by chemically decomposing city gas or propane gas. These reformed gases contain about 1% carbon monoxide (CO) generated in the chemical decomposition step. A polymer electrolyte fuel cell using hydrogen as a fuel is provided with a platinum-based catalyst in the electrode portion. However, if the fuel gas contains CO, the platinum catalyst is poisoned, resulting in a problem that the cell efficiency is lowered.

この問題の解決には、改質ガスを燃料電池に供給するに際し予めCOを選択的に低減する方法が有効である。このとき、COの濃度は、少なくとも100ppm以下、望ましくは10ppm以下にすることが必要であると言われている。
COを除去するのには選択酸化触媒が広く利用されている。COの酸化反応は式1に示すような単純な反応であるが、大過剰の水素中で行う反応であるため式2に示す水素の酸化反応も同時に起こり得る。水素の消費は燃料電池の発電効率の低下に直結するため、水素に優先してCOを選択的に酸化させる高いCO選択性が要望される。ところが、十分に満足される選択性を持つ一酸化炭素選択酸化触媒はなかった。また、酸素を導入するためのブロワー等の機器を設置しなければならず、燃料改質器のスシステムが煩雑化・大型化してしまう問題があった。
In order to solve this problem, a method of selectively reducing CO in advance when supplying the reformed gas to the fuel cell is effective. At this time, it is said that the concentration of CO needs to be at least 100 ppm or less, desirably 10 ppm or less.
Selective oxidation catalysts are widely used to remove CO. Although the oxidation reaction of CO is a simple reaction as shown in Formula 1, since it is a reaction performed in a large excess of hydrogen, the oxidation reaction of hydrogen shown in Formula 2 can occur simultaneously. Since the consumption of hydrogen directly leads to a decrease in the power generation efficiency of the fuel cell, a high CO selectivity that selectively oxidizes CO in preference to hydrogen is required. However, there has been no carbon monoxide selective oxidation catalyst having sufficiently satisfactory selectivity. In addition, a device such as a blower for introducing oxygen has to be installed, resulting in a problem that the fuel reformer system becomes complicated and large.

そこで近年、水素で還元することでCOをメタン化し除去する方法が考案されている。COのメタネーション反応は式3に示すようにCOと水素からメタンと水を生成する反応で、水蒸気改質の逆反応である。酸素を必要としないCO除去方式であるため空気の供給機類を省略できる。メタンを含む水素を燃料電池の水素極に供給した後、オフガスとして燃料改質器にリサイクルし、メタンを水蒸気改質反応により再び水素に転換するシステムを組むことで、燃料効率の低下を抑えることができる。
COのメタン化触媒は、無機担体にルテニウムやニッケルを担持する方法が知られているが(例えば、特許文献1参照。)、触媒は活性を発現するには220℃〜250℃以上にしなければならない。反応改質器において、CO除去部に導入される前段の水性ガスシフト反応の排気温度は約200℃であるため、加熱装置を別途設置する必要があり、燃料改質器のコストを上げてしまうという問題があった。そこで200℃以下の低温でCOを除去し得る触媒が提案されている(例えば、特許文献2参照。)。しかし水性ガスシフト反応により共される水素ガスにはCO以外に20%前後の二酸化炭素(CO)が含まれており、式4に示すように副反応であるCOのメタン化反応が起こることで、水素が消費されて望ましくないばかりでなく、発熱反応による反応の暴走が生じ危険性が高いという問題があった。以上のことから、200℃以下の低い反応温度域で、COの除去効率と高い反応選択性を両立する性能を有する一酸化炭素メタン化触媒が望まれている。
Therefore, in recent years, a method has been devised in which CO is methanated and removed by reduction with hydrogen. The methanation reaction of CO is a reaction for generating methane and water from CO and hydrogen as shown in Equation 3, and is the reverse reaction of steam reforming. Since it is a CO removal system that does not require oxygen, it is possible to omit air supply machines. After supplying hydrogen containing methane to the hydrogen electrode of the fuel cell, it is recycled to the fuel reformer as off-gas, and a system that converts methane to hydrogen again by the steam reforming reaction is built to suppress the decrease in fuel efficiency. Can do.
As a CO methanation catalyst, a method in which ruthenium or nickel is supported on an inorganic carrier is known (see, for example, Patent Document 1). Don't be. In the reaction reformer, since the exhaust temperature of the water gas shift reaction in the previous stage introduced into the CO removal unit is about 200 ° C., it is necessary to separately install a heating device, which increases the cost of the fuel reformer. There was a problem. Therefore, a catalyst capable of removing CO at a low temperature of 200 ° C. or lower has been proposed (see, for example, Patent Document 2). However, the hydrogen gas that is shared by the water gas shift reaction contains about 20% of carbon dioxide (CO 2 ) in addition to CO, and the side reaction CO 2 methanation occurs as shown in Equation 4. In addition, hydrogen is consumed, which is not desirable, and there is a problem in that the reaction is runaway due to an exothermic reaction and the risk is high. In view of the above, a carbon monoxide methanation catalyst having the ability to achieve both CO removal efficiency and high reaction selectivity in a low reaction temperature range of 200 ° C. or lower is desired.

特開2004−97859号公報JP 2004-97859 A 特開2007−252990号公報JP 2007-252990 A

本発明は、上記事情に鑑みてなされたものであり、その目的は、低温から広い反応温度域でCOをメタン化して除去できる活性を有するとともに、導入ガス中にCOが含まれていてもCOに対して高い反応選択性を有する一酸化炭素メタン化触媒を提供すること、およびこの触媒を用いた水素中のCOの除去方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to have an activity capable of removing CO by methanation in a wide reaction temperature range from a low temperature, and even if CO 2 is contained in the introduced gas. An object of the present invention is to provide a carbon monoxide methanation catalyst having high reaction selectivity with respect to CO, and to provide a method for removing CO in hydrogen using the catalyst.

本発明者らは鋭意研究の結果、チタニウムを含有するシリカ多孔体にルテニウムを粒径1〜5nmの粒子状に担持させることにより、上記本発明の目的を効果的に達成しうることを見出し、本発明を完成させるに至った。
すなわち、本発明は、下記の通りである。
(1)チタニウムの含有量が1〜49質量%であるシリカ多孔体と、ルテニウムから構成されることを特徴とする一酸化炭素メタン化触媒。
(2)シリカ多孔体が1〜10nmの平均細孔直径を有し、400〜2000m/gの比表面積を有し、かつX線回折のd間隔が2.0nmより大きいに位置に少なくとも1つのピークを有することを特徴とする前記(1)記載の一酸化炭素メタン化触媒。
(3)触媒中のルテニウムの含有量が0.5〜20重量%の範囲であり、シリカ多孔体の細孔内に粒径1〜5nmの粒子状に担持されていることを特徴とする前記(1)または(2)記載の一酸化炭素メタン化触媒。
(4)前記(1)〜(3)いずれか記載の一酸化炭素メタン化触媒に、水素と一酸化炭素と二酸化炭素を含有する混合ガスを接触させ一酸化炭素を選択的にメタン化することを特徴とする一酸化炭素除去方法。
As a result of intensive studies, the present inventors have found that the object of the present invention can be effectively achieved by supporting ruthenium in a particle form having a particle size of 1 to 5 nm on a porous silica containing titanium. The present invention has been completed.
That is, the present invention is as follows.
(1) A carbon monoxide methanation catalyst comprising a porous silica having a titanium content of 1 to 49% by mass and ruthenium.
(2) The porous silica has an average pore diameter of 1 to 10 nm, a specific surface area of 400 to 2000 m 2 / g, and at least 1 in the position where the d interval of X-ray diffraction is larger than 2.0 nm. The carbon monoxide methanation catalyst according to (1), which has two peaks.
(3) The content of ruthenium in the catalyst is in the range of 0.5 to 20% by weight, and is supported in the form of particles having a particle diameter of 1 to 5 nm in the pores of the porous silica. The carbon monoxide methanation catalyst according to (1) or (2).
(4) The carbon monoxide methanation catalyst according to any one of (1) to (3) is contacted with a mixed gas containing hydrogen, carbon monoxide, and carbon dioxide to selectively methanate carbon monoxide. A carbon monoxide removal method characterized by the above.

本発明によれば、水素ガスを主成分とし微量のCOを含有する改質ガスを、チタニウムを含有するシリカ多孔体にルテニウムを粒径1〜5nmの粒子状に担持させた一酸化炭素メタン化触媒と接触させることにより、低温から広い反応温度域でCOをメタン化して除去できる活性を有するとともに、導入ガス中にCOが含まれていてもCOに対して高い反応選択性を有することができ、燃料電池に供給する水素の精製において安定した性能を付与することができる。 According to the present invention, carbon monoxide methanation in which a reformed gas containing hydrogen gas as a main component and containing a small amount of CO is supported by ruthenium supported in the form of particles having a particle diameter of 1 to 5 nm on a porous silica containing titanium. By contacting with a catalyst, it has an activity capable of methanating and removing CO from a low temperature to a wide reaction temperature range, and has high reaction selectivity with respect to CO even if CO 2 is contained in the introduced gas. In addition, stable performance can be imparted in the purification of hydrogen supplied to the fuel cell.

図1は、シリカ多孔体Aの細孔分布の図である。FIG. 1 is a diagram of the pore distribution of the silica porous body A. FIG. 図2は、シリカ多孔体AのX線回折の図である。FIG. 2 is an X-ray diffraction pattern of the porous silica material A. 図3は、シリカ多孔体A1の細孔分布の図である。FIG. 3 is a diagram showing the pore distribution of the porous silica A1. 図4は、シリカ多孔体A1のX線回折の図である。FIG. 4 is an X-ray diffraction pattern of the porous silica A1. 図5は、一酸化炭素メタン化触媒A1の透過電子顕微鏡写真の図である。FIG. 5 is a transmission electron micrograph of the carbon monoxide methanation catalyst A1. 図6は、一酸化炭素メタン化触媒A1の透過電子顕微鏡写真の図である。FIG. 6 is a transmission electron micrograph of the carbon monoxide methanation catalyst A1. 図7は、シリカ多孔体A2の細孔分布の図である。FIG. 7 is a diagram showing the pore distribution of the porous silica A2. 図8は、シリカ多孔体A2のX線回折の図である。FIG. 8 is an X-ray diffraction diagram of the porous silica A2. 図9は、一酸化炭素メタン化触媒A2の透過電子顕微鏡写真の図である。FIG. 9 is a transmission electron micrograph of the carbon monoxide methanation catalyst A2. 図10は、一酸化炭素メタン化触媒Cの透過電子顕微鏡写真の図である。FIG. 10 is a transmission electron micrograph of the carbon monoxide methanation catalyst C. FIG. 図11は、微粒子シリカと酸化チタンの混合紛体のX線回折の図である。FIG. 11 is an X-ray diffraction pattern of a mixed powder of fine particle silica and titanium oxide.

次に、本発明の実施形態について説明するが、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。
本発明の触媒は、チタニウムを含有するシリカ多孔体とルテニウムから構成される。
Next, embodiments of the present invention will be described, but the technical scope of the present invention is not limited by these embodiments, and can be implemented in various forms without changing the gist of the invention. . Further, the technical scope of the present invention extends to an equivalent range.
The catalyst of the present invention is composed of a porous silica containing titanium and ruthenium.

本発明におけるシリカ多孔体とは、多孔質構造を持つケイ素酸化物を主成分とする物質を意味する。シリカ多孔体はメタン化触媒活性、CO反応選択性を向上させる観点でチタニウムを含有することが望ましい。チタニウムの含有量は1〜49質量%が好ましく、5〜40質量%がより好ましく、20〜40質量%が最も好ましい。チタニウムの含有量が少ないとメタン化触媒活性、CO反応選択性の向上効果が少なく、含有量が多いとシリカ多孔体の比表面積、細孔容積が減少するため、ルテニウムを高分散に担持できなくなってしまい、結果メタン化触媒活性が低下してしまう。チタニウムの含有量はX線蛍光分析装置により測定した。   The porous silica in the present invention means a substance mainly composed of a silicon oxide having a porous structure. The porous silica preferably contains titanium from the viewpoint of improving methanation catalyst activity and CO reaction selectivity. The titanium content is preferably 1 to 49% by mass, more preferably 5 to 40% by mass, and most preferably 20 to 40% by mass. If the titanium content is low, the effect of improving the methanation catalyst activity and CO reaction selectivity will be small. If the content is high, the specific surface area and pore volume of the porous silica material will decrease, making it impossible to support ruthenium in a highly dispersed state. As a result, the methanation catalyst activity decreases. The titanium content was measured with an X-ray fluorescence analyzer.

シリカ多孔体へのチタニウムの導入方法としては液相法、気相法等が挙げられる。液相法においてはチタニウムを含有する金属塩、金属アルコキシド等を水、エタノール、ベンゼン等の溶媒に溶解させ、その溶液中にシリカ多孔体を加えて撹拌混合することによりチタニウムがシリカ多孔体へ導入される。また、気相法では、チタニウムアルコキシド等の蒸気を発生するものや昇華しやすいものを前駆体に用い、それらの蒸気をシリカ多孔体と接触させることによりチタニウムが導入される。
チタニウム原料としてはチタンイソプロポキシド、チタンメトキドなどのチタンアルコキシド、4塩化チタンなどが利用できる。
Examples of a method for introducing titanium into the porous silica include a liquid phase method and a gas phase method. In the liquid phase method, titanium is introduced into the porous silica by dissolving a metal salt, metal alkoxide, etc. containing titanium in a solvent such as water, ethanol, benzene, etc., adding the porous silica to the solution, and mixing with stirring. Is done. In the vapor phase method, titanium alkoxide or the like that generates vapor or easily sublimates is used as a precursor, and titanium is introduced by bringing the vapor into contact with the porous silica.
As the titanium raw material, titanium alkoxides such as titanium isopropoxide and titanium methoxide, and titanium tetrachloride can be used.

本発明におけるシリカ多孔体の平均細孔直径は1〜10nmの範囲内、好ましくは1〜5nmの範囲内である。平均細孔直径が1nm未満だとガスの拡散が制限されてしまい、反応が効率的に進行しないので好ましくない。また、平均細孔直径が10nmを超えるものはルテニウムを担持する際に粒径1〜5nmの粒子状に制御するのが困難なため好ましくない。本発明におけるシリカ多孔体の平均細孔直径は、公知の窒素吸脱着により算出した。すなはち、平均細孔直径は公知のBJH法により算出した。   The average pore diameter of the porous silica in the present invention is in the range of 1 to 10 nm, preferably in the range of 1 to 5 nm. If the average pore diameter is less than 1 nm, gas diffusion is limited, and the reaction does not proceed efficiently. Further, those having an average pore diameter exceeding 10 nm are not preferable because it is difficult to control the particles to have a particle diameter of 1 to 5 nm when ruthenium is supported. The average pore diameter of the porous silica in the present invention was calculated by known nitrogen adsorption / desorption. That is, the average pore diameter was calculated by a known BJH method.

シリカ多孔体の比表面積は400〜2000m/g以上、好ましくは600〜2000m/gの範囲内である。比表面積が400m/gより小さいとルテニウムを高分散に担持できない場合がある。また、比表面積が2000m/gより大きいのものは、製造するのが実質的に困難である。本発明におけるシリカ多孔体の比表面積は、公知の窒素吸脱着により算出した。 The specific surface area of the porous silica material 400~2000m 2 / g or more, preferably in the range of 600~2000m 2 / g. If the specific surface area is less than 400 m 2 / g, ruthenium may not be supported in a highly dispersed state. In addition, those having a specific surface area greater than 2000 m 2 / g are substantially difficult to produce. The specific surface area of the porous silica in the present invention was calculated by known nitrogen adsorption / desorption.

さらに、シリカ多孔体はそのX線回折パターンにおいてd間隔が2.0nmより大きいに位置に少なくとも1つのピークを有する。X線回折ピークはそのピーク角度に相当するd値の周期構造が試料中にあることを意味する。したがって、2nm以上のd値に相当する回折角度に1本以上のピークがあることは、細孔が2nm以上の間隔で規則的に配列していることを意味する。本発明におけるシリカ多孔体のX線回折パターンは全自動X線回折装置により測定した。   Further, the porous silica has at least one peak at a position where the d interval is larger than 2.0 nm in the X-ray diffraction pattern. The X-ray diffraction peak means that a periodic structure having a d value corresponding to the peak angle is present in the sample. Therefore, having one or more peaks at a diffraction angle corresponding to a d value of 2 nm or more means that the pores are regularly arranged at intervals of 2 nm or more. The X-ray diffraction pattern of the porous silica in the present invention was measured by a fully automatic X-ray diffractometer.

本発明におけるシリカ多孔体の製造方法としては、特に限定されるものではないが、例えば次のようにして製造できる。まず、無機原料と有機原料を混合し、反応させることにより、有機物を鋳型としてそのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成させる。次いで、得られた複合体から有機物を除去することにより、シリカ多孔体を製造する。   Although it does not specifically limit as a manufacturing method of the silica porous body in this invention, For example, it can manufacture as follows. First, an inorganic raw material and an organic raw material are mixed and reacted to form an organic matter-inorganic matter composite in which an inorganic matter skeleton is formed around the organic matter as a template. Next, a silica porous body is produced by removing organic substances from the obtained composite.

無機系骨格成分としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のアルコキシシラン、ケイ酸ソーダ、カネマイト(kanemite、NaHSi・3HO)あるいはシリカを用いることができる。これらの骨格成分はシリケート骨格を形成する。これらは、単独で又は2種以上を混合して用いることができる。 As the inorganic skeleton component, alkoxysilane such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane, sodium silicate, kanemite (NaHSi 2 O 5 .3H 2 O), or silica can be used. These skeletal components form a silicate skeleton. These can be used alone or in admixture of two or more.

鋳型として使用される有機原料は、特に限定されるものではないが、例えば界面活性剤が挙げられる。界面活性剤は陽イオン性、陰イオン性、非イオン性のうちのいずれであってもよく、具体的には、アルキルトリメチルアンモニウム(好ましくはアルキル基の炭素数が8〜18のアルキルトリメチルアンモニウム)、アルキルアンモニウム、ジアルキルジメチルアンモニウム、ベンジルアンモニウムの塩化物、臭化物、ヨウ化物あるいは水酸化物の他、脂肪酸塩、アルキルスルホン酸塩、アルキルリン酸塩、ポリエチレンオキサイド系非イオン性界面活性剤、一級アルキルアミン、トリブロックコポリマー型のポリアルキレンオキサイド等が挙げられる。
上記の界面活性剤のうちの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Although the organic raw material used as a casting_mold | template is not specifically limited, For example, surfactant is mentioned. The surfactant may be any of cationic, anionic, and nonionic, specifically, alkyltrimethylammonium (preferably alkyltrimethylammonium having an alkyl group having 8 to 18 carbon atoms). , Alkyl ammonium, dialkyl dimethyl ammonium, benzyl ammonium chloride, bromide, iodide or hydroxide, fatty acid salt, alkyl sulfonate, alkyl phosphate, polyethylene oxide nonionic surfactant, primary alkyl Examples include amines and triblock copolymer type polyalkylene oxides.
One of the above surfactants may be used alone, or two or more may be used in combination.

無機原料と有機原料を混合する場合、適当な溶媒を用いることができる。溶媒としては、特に限定されるものではないが、例えば水、有機溶媒、水と有機溶媒との混合物等をが挙げられる。
無機物と有機物の複合体の形成方法は特に限定されるのものではないが、例えば、有機原料を溶媒に溶解後、無機原料を添加し、所定のpHに調製した後に、反応混合物を所定の温度に保持して縮重合反応を行う方法が挙げられる。縮重合反応の反応温度は使用する有機原料や無機原料の種類や濃度によって異なるが、通常0℃〜100℃であり、好ましくは35℃〜80℃である。
縮重合反応の反応時間は通常、8時間〜24時間である。また、上記の縮重合反応は、静置状態、撹拌状態のいずれで行ってもよく、またそれらを組み合わせて行ってもよい。
When mixing an inorganic raw material and an organic raw material, a suitable solvent can be used. Although it does not specifically limit as a solvent, For example, the mixture of water, an organic solvent, water, and an organic solvent etc. are mentioned.
The method of forming the complex of inorganic and organic is not particularly limited. For example, after dissolving the organic raw material in a solvent, adding the inorganic raw material and adjusting to a predetermined pH, the reaction mixture is then heated to a predetermined temperature. And a method in which the condensation polymerization reaction is carried out. The reaction temperature of the polycondensation reaction varies depending on the kind and concentration of the organic raw material and inorganic raw material to be used, but is usually 0 ° C to 100 ° C, preferably 35 ° C to 80 ° C.
The reaction time of the condensation polymerization reaction is usually 8 hours to 24 hours. In addition, the above condensation polymerization reaction may be performed either in a stationary state or in a stirring state, or may be performed in combination.

上記縮重合反応後に得られる複合体から有機原料を除去することによって、シリカ多孔体を得ることができる。ここで、有機物と無機物の複合体からの有機物の除去は、400〜800℃で焼成する方法、水やアルコール等の溶媒で処理する方法等により行うことができる。   A porous silica material can be obtained by removing the organic raw material from the composite obtained after the condensation polymerization reaction. Here, the removal of the organic substance from the complex of the organic substance and the inorganic substance can be performed by a method of baking at 400 to 800 ° C., a method of treating with a solvent such as water or alcohol, and the like.

本発明において、ルテニウムはシリカ多孔体の細孔内に粒径1〜5nmの粒子状に担持されていることが望ましい。粒子径が1nmより小さい場合、及び5nmより大きい場合はメタン化触媒活性が低下して好ましくない。また、シリカ多孔体の細孔外に担持した場合は、金属の粒子成長が進行し粗大な粒子となりメタン化触媒活性が低下して好ましくない。   In the present invention, ruthenium is desirably supported in the form of particles having a particle diameter of 1 to 5 nm in the pores of the porous silica. When the particle diameter is smaller than 1 nm or larger than 5 nm, the methanation catalytic activity is lowered, which is not preferable. In addition, when supported outside the pores of the porous silica, metal particle growth proceeds to become coarse particles, which is not preferable because the methanation catalyst activity is lowered.

本発明において、ルテニウム原料としては塩化ルテニウム、硝酸ルテニウム等が使用できる。
ルテニウムをシリカ多孔体の細孔内に粒径1〜5nmの粒子状に担持する方法として、特に制限はないが、通常、ルテニウム原料を含む水溶液を調製し、シリカ多孔体に担体に含浸させ、ついで乾燥する。乾燥条件は特に制限はないが、通常80〜200℃で乾燥する。乾燥した後、還元して一酸化炭素メタン化用触媒を得ることができる。
In the present invention, ruthenium chloride, ruthenium nitrate and the like can be used as the ruthenium raw material.
The method for supporting ruthenium in the pores of the porous silica material in the form of particles having a particle diameter of 1 to 5 nm is not particularly limited. Then dry. The drying conditions are not particularly limited, but are usually dried at 80 to 200 ° C. After drying, it can be reduced to obtain a carbon monoxide methanation catalyst.

還元方法として、還元剤、熱、光等で処理する方法を用いることができる。いずれの処理方法を用いるかは金属原料の種類にもよるが、金属原料である塩、錯塩が分解して金属粒子を生成する条件を設定する。また、過度の処理は生成したルテニウム粒子のシンタリングによる粒子径の増大の可能性があるので、適当な条件の設定が必要である。
例えば塩化ルテニウムを用いた場合では、還元剤として水素を使用し、200℃以上で処理を行う。
As the reduction method, a method of treating with a reducing agent, heat, light or the like can be used. Which treatment method is used depends on the type of the metal raw material, but the conditions under which the metal raw material salt or complex salt decomposes to form metal particles are set. Moreover, since excessive treatment may increase the particle diameter due to sintering of the produced ruthenium particles, it is necessary to set appropriate conditions.
For example, when ruthenium chloride is used, hydrogen is used as a reducing agent and the treatment is performed at 200 ° C. or higher.

本発明の一酸化炭素メタン化触媒をCOとCOを含む水素ガスと接触させることで、選択的にCOをメタンに変換して除去することができる。接触方式は特に制限されないが、固定床方式が望ましい。反応温度は100〜400℃が好ましく、120〜300℃がさらに好ましく、130〜250℃が最も好ましい。反応温度が低すぎるとCOの転化率が充分ではない場合があり、反応温度が高すぎるとCOの反応選択性が充分ではない場合がある。
次に、実施例を示しつつ、本発明を更に詳細に説明するが、本発明の技術的範囲は下記実施例によっては限定されない。
By contacting the carbon monoxide methanation catalyst of the present invention with hydrogen gas containing CO and CO 2 , CO can be selectively converted to methane and removed. The contact method is not particularly limited, but a fixed bed method is desirable. The reaction temperature is preferably 100 to 400 ° C, more preferably 120 to 300 ° C, and most preferably 130 to 250 ° C. If the reaction temperature is too low, the CO conversion rate may not be sufficient, and if the reaction temperature is too high, the CO reaction selectivity may not be sufficient.
Next, the present invention will be described in more detail with reference to examples, but the technical scope of the present invention is not limited by the following examples.

製造例1(シリカ多孔体の合成)
水ガラス(1号珪酸ソーダ)(SiO/NaO=2.00)50gにドコシルトリメチルアンモニウムブロマイドを0.1mol含むイオン交換水1Lに添加し70℃にて溶解した。さらに2NのHClを添加して、pHを8.5に調整し70℃で3時間撹拌した。その後水洗を5回繰り返し、40℃で乾燥した。この乾燥粉末を窒素ガス中450℃で3時間加熱した後、空気中550℃にて6時間焼成し、シリカ多孔体Aを得た。
Production Example 1 (Synthesis of porous silica)
50 g of water glass (No. 1 sodium silicate) (SiO 2 / Na 2 O = 2.00) was added to 1 L of ion-exchanged water containing 0.1 mol of docosyltrimethylammonium bromide and dissolved at 70 ° C. Further, 2N HCl was added to adjust the pH to 8.5, and the mixture was stirred at 70 ° C. for 3 hours. Thereafter, washing with water was repeated 5 times and dried at 40 ° C. The dried powder was heated in nitrogen gas at 450 ° C. for 3 hours and then fired in air at 550 ° C. for 6 hours to obtain porous silica A.

得られたシリカ多孔体Aの細孔分布をQuantachrome社製窒素吸着装置(Quadrasorb SI)で測定し、BJH法により求めたところ、平均細孔径は4.2nmであった(図1)。また、得られたシリカ多孔体をX線蛍光分析装置で測定したところ、チタニウムの含有量は0.05重量%以下であった。また、シリカ多孔体Aをリガク社製X線回折装置(RINT2000)で分析したところ、X線回折のd間隔が5.0nmの位置にピークを有していた(図2)。さらに、シリカ多孔体Aの比表面積を窒素吸脱着法により算出したところ970m/gであった。 When the pore distribution of the obtained porous silica A was measured with a nitrogen adsorption device (Quadrasorb SI) manufactured by Quantachrome and determined by the BJH method, the average pore diameter was 4.2 nm (FIG. 1). Further, when the obtained porous silica was measured with an X-ray fluorescence analyzer, the titanium content was 0.05% by weight or less. Further, when the porous silica material A was analyzed with an X-ray diffractometer (RINT2000) manufactured by Rigaku Corporation, it had a peak at a position where the d interval of X-ray diffraction was 5.0 nm (FIG. 2). Furthermore, it was 970 m < 2 > / g when the specific surface area of the silica porous body A was computed by the nitrogen adsorption / desorption method.

製造例2(シリカ多孔体への液相法によるチタニウムの導入)
製造例1で得たシリカ多孔体A 5gに、2.5gのチタンイソプロポキシドを含むn‐イソプロパノール溶液5mlを含浸させ120℃で24時間乾燥させる工程を2度繰り返し、チタニウムを含有するシリカ多孔体A1を得た。
得られたシリカ多孔体A1の細孔分布をQuantachrome社製窒素吸着装置(Quadrasorb SI)で測定し、BJH法により求めたところ、平均細孔径は3.7nmであった(図3)。また、得られたシリカ多孔体A1のチタニウム含量をX線蛍光分析装置で測定したところ、33.0重量%であった。また、シリカ多孔体A1をリガク社製X線回折装置(RINT2000)で分析したところ、X線回折のd間隔が4.9nmの位置にピークを有していた(図4)。さらに、シリカ多孔体A1の比表面積を窒素吸脱着法により算出したところ741m/gであった。
Production Example 2 (Introduction of titanium into the porous silica by the liquid phase method)
The process of impregnating 5 g of porous silica A obtained in Production Example 1 with 5 ml of n-isopropanol solution containing 2.5 g of titanium isopropoxide and drying at 120 ° C. for 24 hours was repeated twice to obtain porous silica containing titanium. Body A1 was obtained.
When the pore distribution of the obtained porous silica A1 was measured with a nitrogen adsorption device (Quadrasorb SI) manufactured by Quantachrome and determined by the BJH method, the average pore diameter was 3.7 nm (FIG. 3). Moreover, it was 33.0 weight% when the titanium content of obtained silica porous body A1 was measured with the X-ray fluorescence analyzer. Further, when the porous silica A1 was analyzed with an Rigaku X-ray diffractometer (RINT2000), it had a peak at a position where the d interval of X-ray diffraction was 4.9 nm (FIG. 4). Furthermore, it was 741 m < 2 > / g when the specific surface area of the silica porous body A1 was computed by the nitrogen adsorption / desorption method.

実施例1(一酸化炭素メタン化触媒の製造)
製造例2で得たシリカ多孔体A1を3g、シュレンク管に入れて100℃に加熱し、1×10−4mmHgで2時間真空脱気を行った。
50mlナス型フラスコに塩化ルテニウムn水和物(RuCl・nHO)0.18gと6N塩酸4.8mlとを入れて60℃で加温溶解し、塩化ルテニウム水溶液を調製した。
Example 1 (Production of carbon monoxide methanation catalyst)
3 g of the porous silica A1 obtained in Production Example 2 was placed in a Schlenk tube, heated to 100 ° C., and vacuum degassed at 1 × 10 −4 mmHg for 2 hours.
In a 50 ml eggplant-shaped flask, 0.18 g of ruthenium chloride n-hydrate (RuCl 3 · nH 2 O) and 4.8 ml of 6N hydrochloric acid were added and dissolved by heating at 60 ° C. to prepare an aqueous ruthenium chloride solution.

得られた塩化ルテニウム水溶液に水80mlを加え、さらにシリカ多孔体A1を加えて24時間撹拌した。その後、70℃に加熱しながらエバポレータを用いて水を留去し、さらに110℃のオーブンで24時間乾燥した。
次に、得られた残留物を空気中200℃で2時間焼成し、乾燥水素気流中350℃で3時間還元することにより本発明の一酸化炭素メタン化触媒A1を得た。一酸化炭素メタン化触媒A1のルテニウム担持量は、全自動蛍光X線分析装置(XRF−1700WS)で測定した結果5質量%であった。透過電子顕微鏡観察により粒径2〜3nmのルテニウム粒子が細孔に沿って一定の間隔で並んでいる様子が観察された(図5,6)。
80 ml of water was added to the obtained aqueous ruthenium chloride solution, and further, porous silica A1 was added and stirred for 24 hours. Then, water was distilled off using an evaporator while heating to 70 ° C., and further dried in an oven at 110 ° C. for 24 hours.
Next, the obtained residue was calcined in air at 200 ° C. for 2 hours, and reduced in a dry hydrogen stream at 350 ° C. for 3 hours to obtain a carbon monoxide methanation catalyst A1 of the present invention. The amount of ruthenium supported by the carbon monoxide methanation catalyst A1 was 5% by mass as measured by a fully automatic X-ray fluorescence analyzer (XRF-1700WS). By observation with a transmission electron microscope, it was observed that ruthenium particles having a particle diameter of 2 to 3 nm were arranged at regular intervals along the pores (FIGS. 5 and 6).

製造例3
製造例1で得たシリカ多孔体に、塩化チタンを原料としてCVD法によりチタニウムを導入し、チタニウムを含有するシリカ多孔体A2を得た。得られたシリカ多孔体A2の平均細孔径は3.9nmであった(図7)。また、得られたシリカ多孔体A2のチタニウム含量をX線蛍光分析装置で測定したところ、8.8重量%であった。また、シリカ多孔体A2をリガク社製X線回折装置(RINT2000)で分析したところ、X線回折のd間隔が4.9nmの位置にピークを有していた(図8)。さらに、シリカ多孔体A2の比表面積を窒素吸脱着法により算出したところ835m/gであった。
Production Example 3
Titanium was introduced into the porous silica obtained in Production Example 1 by the CVD method using titanium chloride as a raw material to obtain porous silica A2 containing titanium. The obtained porous silica body A2 had an average pore diameter of 3.9 nm (FIG. 7). Moreover, it was 8.8 weight% when the titanium content of the obtained silica porous body A2 was measured with the X ray fluorescence analyzer. Further, when the porous silica A2 was analyzed with an X-ray diffractometer (RINT2000) manufactured by Rigaku Corporation, it had a peak at a position where the d interval of X-ray diffraction was 4.9 nm (FIG. 8). Furthermore, it was 835 m < 2 > / g when the specific surface area of the silica porous body A2 was computed by the nitrogen adsorption / desorption method.

実施例2
シリカ多孔体A1に代えて、シリカ多孔体A2を用いた以外は実施例1と同様の方法で一酸化炭素メタン化触媒A2を得た。透過電子顕微鏡観察により粒径2〜3nmのルテニウム粒子が細孔に沿って一定の間隔で並んでいる様子が観察された(図9)。
Example 2
A carbon monoxide methanation catalyst A2 was obtained in the same manner as in Example 1 except that the porous silica A2 was used instead of the porous silica A1. Observation of the transmission electron microscope showed that ruthenium particles having a particle diameter of 2 to 3 nm were arranged at regular intervals along the pores (FIG. 9).

製造例4
ドコシルトリメチルアンモニウムブロマイドに代えて、ヘキサデシルトリメチルアンモニウムブロマイドを用いた以外は実施例1と同様の方法でシリカ多孔体Bを得た。続いてシリカ多孔体Aに代えてシリカ多孔体Bを用いる以外は製造例2と同様の方法でシリカ多孔体B1を得た。得られたシリカ多孔体B1の平均細孔径は2.3nmであった。また、チタニウム含量をX線蛍光分析装置で測定したところ、32.7重量%であった。また、リガク社製X線回折装置(RINT2000)で分析したところ、X線回折のd間隔が3.7nmの位置にピークを有していた。さらに、シリカ多孔体B1の比表面積を窒素吸脱着法により算出したところ734m/gであった。
Production Example 4
Porous silica B was obtained in the same manner as in Example 1 except that hexadecyltrimethylammonium bromide was used instead of docosyltrimethylammonium bromide. Subsequently, porous silica B1 was obtained in the same manner as in Production Example 2 except that porous silica B was used instead of porous silica A. The obtained porous silica body B1 had an average pore diameter of 2.3 nm. Moreover, it was 32.7 weight% when the titanium content was measured with the X ray fluorescence analyzer. Moreover, when it analyzed with the Rigaku X-ray-diffraction apparatus (RINT2000), it had a peak in the position where d space | interval of X-ray diffraction was 3.7 nm. Furthermore, it was 734 m < 2 > / g when the specific surface area of the silica porous body B1 was computed by the nitrogen adsorption / desorption method.

実施例3
シリカ多孔体A1に代えて、シリカ多孔体B1を用いた以外は実施例1と同様の方法で一酸化炭素メタン化触媒Bを得た。透過電子顕微鏡観察により粒径2〜3nmのルテニウム粒子が細孔に沿って一定の間隔で並んでいる様子が観察された。
Example 3
A carbon monoxide methanation catalyst B was obtained in the same manner as in Example 1 except that the porous silica B1 was used instead of the porous silica A1. By observation with a transmission electron microscope, it was observed that ruthenium particles having a particle diameter of 2 to 3 nm were arranged at regular intervals along the pores.

比較例1
シリカ多孔体A1に代えて、製造例1で得たチタニウムを含有しないシリカ多孔体を用いた以外は実施例1と同様の方法で一酸化炭素メタン化触媒Cを得た。透過電子顕微鏡観察により粒径2〜3nmのルテニウム粒子が細孔に沿って一定の間隔で並んでいる様子が観察された(図10)。
Comparative Example 1
A carbon monoxide methanation catalyst C was obtained in the same manner as in Example 1 except that the porous silica material not containing titanium obtained in Production Example 1 was used in place of the porous silica material A1. Observation of the transmission electron microscope showed that ruthenium particles having a particle diameter of 2 to 3 nm were arranged at regular intervals along the pores (FIG. 10).

比較例2
微粒子シリカ(アエロジル300(日本アエロジル株式会社製))1.35gと微粒酸化チタン(和光純薬製)1.65gをよく混合しシリカと酸化チタンの混合粉体を得た。この混合粉体のチタニウム含量をX線蛍光分析装置で測定したところ、32.7重量%であった。また、この混合粉体をリガク社製X線回折装置(RINT2000)で分析したところ、X線回折のd間隔が2nmより大きいところにピークが存在しなかった(図11)。さらに、混合粉体の比表面積を窒素吸脱着法により算出したところ162m/gであった。
Comparative Example 2
1.35 g of fine particle silica (Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd.)) and 1.65 g of fine titanium oxide (manufactured by Wako Pure Chemical Industries) were mixed well to obtain a mixed powder of silica and titanium oxide. The titanium content of the mixed powder was measured by an X-ray fluorescence analyzer and found to be 32.7% by weight. Further, when this mixed powder was analyzed with an Rigaku X-ray diffractometer (RINT2000), there was no peak where the d-interval of X-ray diffraction was larger than 2 nm (FIG. 11). Furthermore, it was 162 m < 2 > / g when the specific surface area of mixed powder was computed by the nitrogen adsorption / desorption method.

シリカ多孔体A1に代えて、上記のシリカと酸化チタンの混合粉体を用いた以外は実施例1と同様の方法で一酸化炭素メタン化触媒Dを得た。透過電子顕微鏡観察により凝集したルテニウム粒子がシリカおよび酸化チタンの外表面に担持されている様子が観察された。   A carbon monoxide methanation catalyst D was obtained in the same manner as in Example 1 except that the above mixed powder of silica and titanium oxide was used in place of the porous silica A1. It was observed that the aggregated ruthenium particles were supported on the outer surfaces of silica and titanium oxide by transmission electron microscope observation.

試験例1(一酸化炭素メタン化触媒を用いたCO除去反応)
直径8mmのSUS製反応管に石英ウールを入れて、ガラスビーズ1.5gと一酸化炭素メタン化触媒0.1gを混合して充填し、反応管の外周にヒーターを設置して一酸化炭素メタン化器を作成した。触媒層の温度は、触媒層に埋設した熱電対でモニタし、前記ヒーターにより触媒層の温度を調節した。
Test Example 1 (CO removal reaction using carbon monoxide methanation catalyst)
Put quartz wool into a SUS reaction tube with a diameter of 8 mm, mix and fill 1.5 g of glass beads and 0.1 g of carbon monoxide methanation catalyst, and install a heater on the outer periphery of the reaction tube to install carbon monoxide methane. A calibrator was created. The temperature of the catalyst layer was monitored by a thermocouple embedded in the catalyst layer, and the temperature of the catalyst layer was adjusted by the heater.

触媒層は反応開始前に、水素気流下350℃で2時間前処理を行った後、室温まで冷却することで活性化を行った。
その後反応管に、模擬反応ガス(CO;0.6%、CO;20.0%、水素バランスの混合ガス)を、マスフローメーターを用いてガス流量3000ml/(h・g―触媒)で導入し、触媒層において反応を行った。
The catalyst layer was pretreated at 350 ° C. for 2 hours under a hydrogen stream before starting the reaction, and then activated by cooling to room temperature.
Thereafter, a simulated reaction gas (CO; 0.6%, CO 2 ; 20.0%, hydrogen balance mixed gas) is introduced into the reaction tube at a gas flow rate of 3000 ml / (h · g —catalyst ) using a mass flow meter. The reaction was carried out in the catalyst layer.

なお反応中には、石鹸膜流量計で所定の流量が流れているのか確認を行った。
触媒層温度を140℃〜230℃に変化させて一酸化炭素メタン化反応を行い、反応管出口でガス組成を、ガスクロマトグラフによって測定した結果を表1に示した。
なお、CO選択率は下記式により算出した。
During the reaction, it was confirmed whether a predetermined flow rate was flowing with a soap film flow meter.
Table 1 shows the results obtained by conducting carbon monoxide methanation reaction while changing the catalyst layer temperature from 140 ° C to 230 ° C and measuring the gas composition at the outlet of the reaction tube by gas chromatography.
The CO selectivity was calculated by the following formula.

CO濃度<10ppm、選択率>50%となった反応条件を太字で標記した   Reaction conditions with CO concentration <10 ppm, selectivity> 50% are marked in bold.

比較例1、2に示した一酸化炭素メタン化触媒C、DではCOの除去活性が低く、また、COの反応選択率が悪くCOのメタン化反応が進行し、水素が浪費されてしまった。これに対し実施例に示した一酸化炭素メタン化触媒A1は反応温度150℃より高い温度では一酸化炭素を100%除去することができ、さらに210℃まで50%以上という高いCO反応選択率を維持することができた。また、実施例2および3に示した一酸化炭素メタン化触媒A2、一酸化炭素メタン化触媒Bもこれに近い性能を示した。 In the carbon monoxide methanation catalysts C and D shown in Comparative Examples 1 and 2, CO removal activity is low, CO reaction selectivity is poor, CO 2 methanation proceeds, and hydrogen is wasted. It was. On the other hand, the carbon monoxide methanation catalyst A1 shown in the examples can remove 100% of carbon monoxide at a temperature higher than the reaction temperature of 150 ° C., and has a high CO reaction selectivity of 50% or more up to 210 ° C. Could be maintained. Further, the carbon monoxide methanation catalyst A2 and the carbon monoxide methanation catalyst B shown in Examples 2 and 3 also showed performance close to this.

このように本発明の一酸化炭素メタン化触媒は従来の触媒と比較し、低温から広い反応温度域でCOをメタン化して除去できる活性を有するとともに、導入ガス中にCOが含まれていてもCOに対して高い反応選択性を有することができ、燃料電池の水素精製において安定した性能を付与することができる。 As described above, the carbon monoxide methanation catalyst of the present invention has an activity capable of methanating and removing CO in a wide reaction temperature range from a low temperature as compared with the conventional catalyst, and the introduced gas contains CO 2. Can also have high reaction selectivity with respect to CO, and can provide stable performance in hydrogen purification of fuel cells.

本発明の、一酸化炭素選択メタン化触媒は、低温から広い反応温度域でCOをメタン化して除去できるとともに、導入ガス中にCOが含まれていてもCOに対して高い反応選択性を有することができ、燃料電池に供給する水素の精製において安定した性能を付与することができき、産業上貢献大である。 The carbon monoxide selective methanation catalyst of the present invention can remove CO by methanation in a wide reaction temperature range from low temperature, and has high reaction selectivity with respect to CO even if CO 2 is contained in the introduced gas. It can have a stable performance in the purification of hydrogen supplied to the fuel cell, and contributes greatly to the industry.

Claims (4)

チタニウムの含有量が1〜49質量%であるシリカ多孔体と、ルテニウムから構成されることを特徴とする一酸化炭素メタン化触媒。   A carbon monoxide methanation catalyst comprising a porous silica having a titanium content of 1 to 49% by mass and ruthenium. シリカ多孔体が1〜10nmの平均細孔直径を有し、400〜2000m/gの比表面積を有し、X線回折のd間隔が2.0nmより大きいに位置に少なくとも1つのピークを有することを特徴とする請求項1記載の一酸化炭素メタン化触媒。 The porous silica has an average pore diameter of 1 to 10 nm, a specific surface area of 400 to 2000 m 2 / g, and at least one peak at a position where the d-spacing of X-ray diffraction is larger than 2.0 nm. The carbon monoxide methanation catalyst according to claim 1. 触媒中のルテニウムの含有量が0.5〜20重量%の範囲であり、シリカ多孔体の細孔内に粒径1〜5nmの粒子状に担持されていることを特徴とする請求項1または2に記載の一酸化炭素メタン化触媒。   The ruthenium content in the catalyst is in the range of 0.5 to 20 wt%, and is supported in the form of particles having a particle diameter of 1 to 5 nm in the pores of the porous silica. 2. The carbon monoxide methanation catalyst according to 2. 請求項1〜3いずれかに記載の一酸化炭素メタン化触媒に、水素と一酸化炭素と二酸化炭素を含有する混合ガスを接触させ一酸化炭素を選択的にメタン化することを特徴とする一酸化炭素除去方法。   A carbon monoxide methanation catalyst according to any one of claims 1 to 3 is contacted with a mixed gas containing hydrogen, carbon monoxide, and carbon dioxide to selectively methanate carbon monoxide. Carbon oxide removal method.
JP2011122537A 2011-05-31 2011-05-31 Carbon monoxide methanation catalyst Active JP5989306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122537A JP5989306B2 (en) 2011-05-31 2011-05-31 Carbon monoxide methanation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122537A JP5989306B2 (en) 2011-05-31 2011-05-31 Carbon monoxide methanation catalyst

Publications (2)

Publication Number Publication Date
JP2012250143A true JP2012250143A (en) 2012-12-20
JP5989306B2 JP5989306B2 (en) 2016-09-07

Family

ID=47523485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122537A Active JP5989306B2 (en) 2011-05-31 2011-05-31 Carbon monoxide methanation catalyst

Country Status (1)

Country Link
JP (1) JP5989306B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158095A1 (en) * 2013-03-28 2014-10-02 Agency For Science, Technology And Research Methanation catalyst
JP2016507876A (en) * 2013-02-05 2016-03-10 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Use of anode catalyst layer
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
JP7570830B2 (en) 2020-06-10 2024-10-22 三菱重工業株式会社 Method for producing methane-rich gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212104A (en) * 1997-01-27 1998-08-11 Asahi Chem Ind Co Ltd Method for purifying hydrogen for fuel cell
JP2001240402A (en) * 2000-02-29 2001-09-04 Asahi Kasei Corp Method for refining hydrogen
JP2006239551A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Co methanizing catalyst, co removing catalyst device and fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212104A (en) * 1997-01-27 1998-08-11 Asahi Chem Ind Co Ltd Method for purifying hydrogen for fuel cell
JP2001240402A (en) * 2000-02-29 2001-09-04 Asahi Kasei Corp Method for refining hydrogen
JP2006239551A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Co methanizing catalyst, co removing catalyst device and fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507876A (en) * 2013-02-05 2016-03-10 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Use of anode catalyst layer
JP2016511507A (en) * 2013-02-05 2016-04-14 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Use of anode catalyst layer
JP2016511920A (en) * 2013-02-05 2016-04-21 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Use of anode catalyst layer
JP2019083198A (en) * 2013-02-05 2019-05-30 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Use of anode catalyst layer
US10938038B2 (en) 2013-02-05 2021-03-02 Johnson Matthey Fuel Cells Limited Use of an anode catalyst layer
WO2014158095A1 (en) * 2013-03-28 2014-10-02 Agency For Science, Technology And Research Methanation catalyst
JP2016515470A (en) * 2013-03-28 2016-05-30 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Methanation catalyst
US9802872B2 (en) 2013-03-28 2017-10-31 Agency For Science, Technology And Research Methanation catalyst
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
JP7570830B2 (en) 2020-06-10 2024-10-22 三菱重工業株式会社 Method for producing methane-rich gas

Also Published As

Publication number Publication date
JP5989306B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
Huang et al. Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: Influence of support morphologies
JP5691098B2 (en) Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
Bai et al. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts
Majewski et al. Nickel–silica core@ shell catalyst for methane reforming
Cai et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties
Martavaltzi et al. Parametric study of the CaO− Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation
JP6145921B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
Li et al. A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite
Ren et al. Ruthenium supported on nitrogen-doped ordered mesoporous carbon as highly active catalyst for NH3 decomposition to H2
CN102275963B (en) Preparation method of aluminium oxide material
Zhao et al. In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for coking-and sintering-resistant dry reforming of methane
US20180043339A1 (en) Carbon nanotube-coated catalyst particle
Tian et al. Electrodeposition synthesis of 3D-NiO1-δ flowers grown on Ni foam monolithic catalysts for efficient catalytic ozonation of VOCs
TW200922692A (en) Catalyst and production process thereof, and chlorine production using the catalyst
Kalekar et al. Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol
Jiang et al. Establishing high-performance Au/cobalt oxide interfaces for low-temperature benzene combustion
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
JP5989306B2 (en) Carbon monoxide methanation catalyst
Miyao et al. Preparation and catalytic activity of a mesoporous silica-coated Ni-alumina-based catalyst for selective CO methanation
Fu et al. A highly efficient and stable catalyst for liquid phase catalytic exchange of hydrogen isotopes in a microchannel reactor
Wang et al. Experimental and computational studies on copper–cerium catalysts supported on nitrogen-doped porous carbon for preferential oxidation of CO
Ding et al. Boosted photothermal synergistic CO2 methanation over Ru doped Ni/ZrO2 catalyst: From experimental to DFT studies
Yin et al. Facilely preparing highly dispersed Ni-based CO2 methanation catalysts via employing the amino-functionalized KCC-1 support
Khan et al. Synthesis of cobalt loaded double perovskite Sr2TiFeO6‐δ (STF) as a stable catalyst for enhanced hydrogen production via methane decomposition
JP2009061372A (en) Catalyst for selective oxidation of carbon monoxide and method of removing carbon monoxide in hydrogen by using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5989306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250