JP2012248828A - Rare earth permanent magnet and method for producing the same - Google Patents

Rare earth permanent magnet and method for producing the same Download PDF

Info

Publication number
JP2012248828A
JP2012248828A JP2012094453A JP2012094453A JP2012248828A JP 2012248828 A JP2012248828 A JP 2012248828A JP 2012094453 A JP2012094453 A JP 2012094453A JP 2012094453 A JP2012094453 A JP 2012094453A JP 2012248828 A JP2012248828 A JP 2012248828A
Authority
JP
Japan
Prior art keywords
sintered magnet
magnet body
rare earth
sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094453A
Other languages
Japanese (ja)
Other versions
JP6019695B2 (en
Inventor
Hiroaki Nagata
浩昭 永田
Tadao Nomura
忠雄 野村
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012094453A priority Critical patent/JP6019695B2/en
Publication of JP2012248828A publication Critical patent/JP2012248828A/en
Application granted granted Critical
Publication of JP6019695B2 publication Critical patent/JP6019695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an R-Fe-B-based sintered magnet that has high productivity, high performance, uses a little amount of Tb or Dy, and has an increased coercive force while suppressing decrease in remanent flux density by use of a powder mixture of alloy powder mainly containing intermetallic compound and an oxide of a rare earth element in a material for application and diffusion on a sintered magnetic body, and a method for producing the same.SOLUTION: In a method for producing a rare earth permanent magnet, heat treatment is performed on a sintered magnetic body at a temperature of the sintering temperature or below of the sintered magnetic body in a state where a powder mixture is disposed on a surface of the sintered magnetic body, the sintered magnetic body having the composition RTMB(R represents a rare earth element, Trepresents Fe or Co, M represents Al or the like, B represents boron, and a, b, c and d represent atomic percentages while 12≤a≤20, 0≤c≤10 and 4.0≤d≤7.0 are satisfied and b represents the balance), and the powder mixture containing an Roxide (Rrepresents a rare earth element) and alloy powder having the composition MM(Mand Meach represents Al or the like, and d and e represent atomic percentages while 0.1≤e≤99.9 is satisfied and d represents the balance) and containing 70 vol. % or more of an intermetallic compound phase. Accordingly, one or two or more elements selected from among R, Mand Mare caused to be diffused to grain boundaries in the interior of the sintered magnetic body or near grain boundaries within the sintered magnetic body primary phase grains.

Description

本発明は、金属間化合物と希土類酸化物を混合して塗布した磁石体に拡散のための熱処理を施すことで、焼結磁石体の残留磁束密度の低減を抑制しながら保磁力を増大させたR−Fe−B系永久磁石及びその製造方法に関する。   The present invention increases the coercive force while suppressing the reduction of the residual magnetic flux density of the sintered magnet body by applying a heat treatment for diffusion to the magnet body coated with a mixture of intermetallic compound and rare earth oxide. The present invention relates to an R—Fe—B permanent magnet and a method for producing the same.

Nd−Fe−B系永久磁石は、その優れた磁気特性のために、ますます用途が広がってきている。近年、環境問題への対応から、家電をはじめ、産業機器、電気自動車、風力発電へ磁石の応用が広がったことに伴い、Nd−Fe−B系磁石の高性能化が要求されている。   Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. In recent years, in response to environmental problems, Nd—Fe—B magnets have been required to have higher performance as the application of magnets has expanded to household appliances, industrial equipment, electric vehicles, and wind power generation.

磁石の性能の指標として、残留磁束密度と保磁力の大きさを挙げることができる。Nd−Fe−B系焼結磁石の残留磁束密度増大は、Nd2Fe14B化合物の体積率増大と結晶配向度向上により達成され、これまでに種々の改善が行われてきている。保磁力の増大に関しては、結晶粒の微細化を図る、Nd量を増やした組成合金を用いる、あるいはAl、Gaなど高保磁力化の効果のある元素を添加する等があるが、現在最も一般的な方法はDyやTbでNdの一部を置換した組成合金を用いることである。 As the performance index of the magnet, the residual magnetic flux density and the coercive force can be cited. The increase in the residual magnetic flux density of the Nd—Fe—B based sintered magnet has been achieved by increasing the volume fraction of the Nd 2 Fe 14 B compound and improving the degree of crystal orientation, and various improvements have been made so far. Regarding the increase in coercive force, there are methods such as reducing the grain size, using a composition alloy with an increased amount of Nd, or adding an element having an effect of increasing the coercive force, such as Al and Ga. One method is to use a composition alloy in which a part of Nd is substituted with Dy or Tb.

Nd−Fe−B磁石の保磁力機構はニュークリエーションタイプであり、結晶粒界面での逆磁区の核生成が保磁力を支配するといわれている。一般に、結晶粒の界面では、結晶構造の乱れが生じるが、磁石の主相であるNd2Fe14B化合物結晶粒の界面近傍では、深さ方向に数nm程度の結晶構造の乱れがあると結晶磁気異方性の低下を引き起こし、逆磁区の生成を助長して保磁力を低下させる(非特許文献1)。Nd2Fe14B化合物のNdをDyやTb元素で置換することで、化合物相の異方性磁界は増大するため、保磁力を増大することができる。しかし、通常の方法でDyやTbを添加した場合、主相の界面近傍だけでなく、主相の内部までDyやTbで置換されるため、残留磁束密度の低下が避けられない。更に、高価なTbやDyを多く使用しなければならないという問題があった。 The coercive force mechanism of the Nd—Fe—B magnet is a new creation type, and it is said that nucleation of reverse magnetic domains at the crystal grain interface dominates the coercive force. In general, the crystal structure is disturbed at the crystal grain interface, but the crystal structure is disturbed by several nm in the depth direction near the interface of the Nd 2 Fe 14 B compound crystal grain, which is the main phase of the magnet. This causes a decrease in magnetocrystalline anisotropy, promotes the generation of reverse magnetic domains, and reduces the coercive force (Non-patent Document 1). By substituting Nd of the Nd 2 Fe 14 B compound with Dy or Tb element, the anisotropic magnetic field of the compound phase increases, so that the coercive force can be increased. However, when Dy or Tb is added by a normal method, not only the vicinity of the interface of the main phase but also the inside of the main phase is replaced with Dy and Tb, so a decrease in residual magnetic flux density is inevitable. Furthermore, there is a problem that a lot of expensive Tb and Dy must be used.

これに対し、Nd−Fe−B磁石の保磁力を増大させるため、これまでにも様々な試みが行われている。例えば、2種類の組成の異なった合金粉体を混合、焼結してNd−Fe−B磁石を製造することもその1つである(2合金法)。即ち、R2Fe14B主相(ここで、RはNd、Prを主体とする)からなる合金Aの粉末と、DyやTbをはじめとする種々の添加元素(Dy、Tb、Ho、Er、Al、Ti、V、Mo等)を含む合金Bの粉末を混合した後、微粉砕、磁界中成形、焼結、時効処理を経て、Nd−Fe−B磁石を作製する。得られた焼結磁石は、R2Fe14B化合物主相結晶粒の中心部にDyやTbを含まず、結晶粒の粒界部近傍にDy、Tb等の添加元素が偏在することで、残留磁束密度の低下を抑制しつつ、高い保磁力を得ることができる(特許文献1,2)。しかしこの方法では、焼結中にDyやTbが主相粒内部に拡散していくため、粒界部近傍のDy,Tbが偏在する厚みは1μm程度以上となり、逆磁区の核生成を生じる深さに比べて著しく厚くなってしまい、その効果はまだ十分とはいえない。 On the other hand, various attempts have been made so far in order to increase the coercivity of the Nd—Fe—B magnet. For example, an Nd—Fe—B magnet is produced by mixing and sintering two kinds of alloy powders having different compositions (two alloy method). That is, a powder of an alloy A composed of an R 2 Fe 14 B main phase (where R is mainly composed of Nd and Pr) and various additive elements (Dy, Tb, Ho, Er, etc.) including Dy and Tb. , Al, Ti, V, Mo, etc.) are mixed, and then an Nd—Fe—B magnet is produced through fine grinding, forming in a magnetic field, sintering, and aging treatment. The obtained sintered magnet does not contain Dy or Tb in the central part of the R 2 Fe 14 B compound main phase crystal grains, and additional elements such as Dy and Tb are unevenly distributed in the vicinity of the grain boundary part of the crystal grains. A high coercive force can be obtained while suppressing a decrease in the residual magnetic flux density (Patent Documents 1 and 2). However, in this method, since Dy and Tb diffuse into the main phase grains during sintering, the thickness of the uneven distribution of Dy and Tb in the vicinity of the grain boundary portion is about 1 μm or more, which is a depth that causes nucleation of reverse magnetic domains. Compared to this, the thickness is significantly increased, and the effect is not yet sufficient.

最近、特定の元素をR−Fe−B焼結体の表面から内部へ拡散させて特性を向上させる手段がいくつか開発されている。例えば、蒸着やスパッタリング法を用いて、Nd−Fe−B磁石表面にYb、Dy、Pr、Tb等の希土類金属やAl、Ta等を成膜した後、熱処理を行う方法や(特許文献3〜5、非特許文献2,3)、焼結体表面にフッ化物や酸化物等の希土類無機化合物粉末を塗布した後、熱処理を施す方法等である(特許文献6)。これらの手法を用いると、例えば焼結体表面に設置されたDyやTb等の元素は、熱処理によって焼結体組織の粒界部を経路として焼結体の内部まで拡散していく。   Recently, several means for improving the characteristics by diffusing specific elements from the surface to the inside of the R—Fe—B sintered body have been developed. For example, a method of performing a heat treatment after depositing a rare earth metal such as Yb, Dy, Pr, or Tb, Al, Ta, or the like on the surface of an Nd—Fe—B magnet by vapor deposition or sputtering (Patent Documents 3 to 3). 5, Non-Patent Documents 2 and 3), a method of applying a heat treatment after applying a rare earth inorganic compound powder such as fluoride or oxide on the surface of the sintered body (Patent Document 6). When these methods are used, for example, elements such as Dy and Tb installed on the surface of the sintered body are diffused to the inside of the sintered body through the grain boundary portion of the sintered body structure as a path by heat treatment.

これにより、DyやTbを粒界部や焼結体主相粒内の粒界部近傍に極めて高濃度に濃化させることが可能であり、前述の2合金法の場合と比べてより理想的な組織形態となる。磁石特性もこの組織形態を反映して、残留磁束密度の低下抑制と高保磁力化が更に顕著に発現する。しかし、特に蒸着やスパッタリング法を用いる方法は、設備や工程等の観点から量産するには問題点が多く、生産性が悪いという欠点があった。   Thereby, Dy and Tb can be concentrated at a very high concentration in the vicinity of the grain boundary part and the grain boundary part in the sintered body main phase grains, which is more ideal than in the case of the above-described two alloy method. Organization form. Reflecting the structure of the magnet, the magnetic characteristics are further remarkably manifested in suppressing the decrease in residual magnetic flux density and increasing the coercive force. However, in particular, the method using vapor deposition or sputtering has many drawbacks for mass production from the viewpoint of equipment, process, etc., and has the disadvantage of poor productivity.

上記の方法以外にも、焼結体表面にフッ化物や酸化物等の希土類無機化合物粉末を塗布した後、熱処理を施す方法(特許文献6)や、Al、Cu、Zn粉とフッ化物を混合し磁石に塗布した後、熱処理を施す方法(特許文献8)が開示されている。この方法では、非金属系無機化合物粉末を水に分散させ、そこに磁石を浸して乾燥させるというスパッタや蒸着と比較して極めて簡便なコーティング工程であり、熱処理時にワークを大量に充填しても磁石同士が溶着することがないなど生産性が高いことが特徴に挙げられる。しかし、DyやTbは粉末と磁石成分との置換反応により拡散するためにそれらを多量に磁石内に導入することは困難であるという欠点があった。   In addition to the above method, after applying rare earth inorganic compound powder such as fluoride or oxide on the surface of the sintered body, heat treatment (Patent Document 6) or mixing Al, Cu, Zn powder and fluoride A method (Patent Document 8) is disclosed in which heat treatment is performed after coating on a magnet. This method is a very simple coating process compared to sputtering or vapor deposition in which a non-metallic inorganic compound powder is dispersed in water and a magnet is immersed in the powder to dry it. The feature is that the productivity is high such that the magnets are not welded to each other. However, since Dy and Tb diffuse by the substitution reaction between the powder and the magnet component, it is difficult to introduce a large amount of them into the magnet.

更に、DyやTbの酸化物やフッ化物にカルシウム又は水酸化カルシウム粉末を混合して磁石に塗布する方法(特許文献7)も開示されている。この方法では、カルシウム還元反応を利用して熱処理時にDyやTbを還元させてから拡散させている。DyやTbを多量に導入するという観点からは優れた手法であるといえるが、カルシウムあるいは水素化カルシウム粉末の取り扱いが容易ではなく、生産性がよいとはいえない。   Furthermore, a method of applying calcium or calcium hydroxide powder to an oxide or fluoride of Dy or Tb and applying it to a magnet (Patent Document 7) is also disclosed. In this method, a calcium reduction reaction is used to reduce and diffuse Dy and Tb during heat treatment. Although it can be said to be an excellent method from the viewpoint of introducing a large amount of Dy and Tb, it is not easy to handle calcium or calcium hydride powder, and it cannot be said that productivity is good.

焼結体表面にフッ化物や酸化物等の希土類無機化合物粉末を塗布する替わりに金属合金を塗布し、熱処理を施す方法等がある(特許文献9〜13)。これらの金属合金のみを塗布する方法では、金属合金を磁石表面に多量にかつ均一に塗布するのが難しいという欠点がある。特許文献14,15ではDy及び又はTbを含む金属粉末を母合金に拡散させているが、母合金の酸素濃度を0.5質量%以下に規定し、インパクトメディアを容器の中で振動攪拌させるバレルペインティング法によって希土類を含む金属粉を母合金に密着させて拡散を行っている。この方法だと本特許の金属間化合物と希土類酸化物の混合粉を溶媒中に分散して母合金磁石に塗布する方法と比べて工程数が多く、時間もかかるため工業化上有用ではない。   There is a method in which a metal alloy is applied instead of applying a rare earth inorganic compound powder such as fluoride or oxide to the surface of the sintered body, and heat treatment is performed (Patent Documents 9 to 13). In the method of applying only these metal alloys, there is a drawback that it is difficult to apply a large amount and a uniform amount of metal alloy to the magnet surface. In Patent Documents 14 and 15, metal powder containing Dy and / or Tb is diffused into the master alloy, but the oxygen concentration of the master alloy is regulated to 0.5% by mass or less, and the impact media is vibrated and stirred in the container. Diffusion is performed by bringing a rare earth-containing metal powder into close contact with the mother alloy by the barrel painting method. This method is not useful for industrialization because it requires more steps and takes more time than the method in which the mixed powder of intermetallic compound and rare earth oxide in this patent is dispersed in a solvent and applied to the master alloy magnet.

特許第1820677号公報Japanese Patent No. 1820677 特許第3143156号公報Japanese Patent No. 3143156 特開2004−296973号公報JP 2004-296773 A 特許第3897724号公報Japanese Patent No. 3897724 特開2005−11973号公報Japanese Patent Laid-Open No. 2005-11973 特許第4450239号公報Japanese Patent No. 4450239 特許第4548673号公報Japanese Patent No. 4548673 特開2007−287874号公報JP 2007-287874 A 特許第4656323号公報Japanese Patent No. 4656323 特許第4482769号公報Japanese Patent No. 4482769 特開2008−263179号公報JP 2008-263179 A 特開2009−289994号公報JP 2009-289994 A 特開2010−238712号公報JP 2010-238712 A WO2008/032426WO2008 / 032426 WO2008/139690WO2008 / 139690

K.−D.Durst and H.Kronmuller,“THE CORCIVE FIELD OF SINTERED AND MELT−SPUN Nd−Fe−B MAGNETS”,Journal of Magnetism and Magnetic Materials 68(1987)63−75K. -D. Durst and H.M. Kronmuller, “THE CORCIVE FIELD OF SINTERED AND MELT-SPUN Nd-Fe-B MAGNETS”, Journal of Magnetics and Magnetic Materials 68 (1987) 63-75. K.T.Park,K.Hiraga and M.Sagawa,“Effect of Metal−Coating and Consecutive Heat Treatment on Coercivity of Thin Nd−Fe−B Sintered Magnets”,Proceedings of the Sixteenth International Workshop on Rare−Earth Magnets and Their Applications,Sendai,p.257(2000)K. T.A. Park, K.M. Hiraga and M.M. Sagawa, "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceedings of the Sixteenth International Workshop on Rare-Earth Magnets and Their Applications, Sendai, p. 257 (2000) 町田憲一、川嵜尚志、鈴木俊治、伊東正浩、堀川高志、“Nd−Fe−B系焼結磁石の粒界改質と磁気特性”、粉体粉末冶金協会講演概要集平成16年度春季大会、p.202Kenichi Machida, Naoshi Kawamata, Toshiharu Suzuki, Masahiro Ito, Takashi Horikawa, “Granular boundary modification and magnetic properties of Nd-Fe—B based sintered magnets”, Powder and Powder Metallurgy Association Presentation Summary, 2004 Spring Meeting, p . 202

本発明は、上述した従来の問題点に鑑みなされたもので、焼結磁石体上に塗布、拡散処理する材料に金属間化合物を主体とする合金粉末と希土類の酸化物の混合粉体を用いることによって、生産性に優れ、高性能で、かつTbあるいはDyの使用量が少なく、残留磁束密度の低減を抑制しながら保磁力を増大させたR−Fe−B系焼結磁石及びその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and uses a mixed powder of an alloy powder mainly composed of an intermetallic compound and a rare earth oxide as a material to be applied and diffused on a sintered magnet body. R-Fe-B sintered magnet having excellent productivity, high performance, low amount of Tb or Dy, increased coercive force while suppressing reduction of residual magnetic flux density, and method for producing the same Is intended to provide.

本発明者らは、かかる課題を解決するために、R−Fe−B系焼結体の表面に、生産性の観点から最も優れている希土類酸化物の塗布に対し、拡散量を増大させるべく創意工夫した結果、DyやTb等の希土類を含有した酸化物に金属間化合物又は金属の粉末を混合させることで熱処理時に酸化物が部分的に還元され、フッ化物や酸化物等の希土類無機化合物粉末を塗布した後に熱処理を施す方法と比較して、より多量のDyやTbを粒界部を経路として磁石内の主相粒の界面近傍に導入することが可能であることを見出し、残留磁束密度の低下を抑制しつつ保磁力を増大できることを見出し、従来の方法に比べて生産性に優れると共に、この発明を完成したものである。   In order to solve such a problem, the inventors of the present invention should increase the diffusion amount on the surface of the R—Fe—B based sintered body with respect to the rare earth oxide coating most excellent from the viewpoint of productivity. As a result of ingenuity, the oxide is partially reduced during heat treatment by mixing an intermetallic compound or metal powder with an oxide containing rare earth such as Dy or Tb, and a rare earth inorganic compound such as fluoride or oxide. Compared with the method of applying a heat treatment after applying the powder, it has been found that a larger amount of Dy and Tb can be introduced near the interface of the main phase grains in the magnet through the grain boundary part as a residual magnetic flux. The present inventors have found that the coercive force can be increased while suppressing the decrease in density, and are excellent in productivity as compared with the conventional method, and have completed the present invention.

即ち、生産性の観点から最も優れている酸化物の塗布に対し、拡散量を増大させるべく創意工夫した結果、DyやTb等の希土類を含有した酸化物に金属間化合物、又は金属粉を混合させることで熱処理時に酸化物が部分的に還元され、フッ化物や酸化物等の希土類無機化合物粉末を塗布した後に熱処理を施す方法と比較して、より多量のDyやTbを磁石内に導入することが可能であることを見出し、本発明に至った。   That is, as a result of creative ingenuity to increase the amount of diffusion for the most excellent oxide coating from the viewpoint of productivity, intermetallic compounds or metal powders are mixed with oxides containing rare earth such as Dy and Tb. As a result, the oxide is partially reduced during the heat treatment, and a larger amount of Dy or Tb is introduced into the magnet as compared with the method of applying the heat treatment after applying a rare earth inorganic compound powder such as fluoride or oxide. The present invention has been found to be possible.

即ち、本発明は、以下の希土類永久磁石及びその製造方法を提供する。
請求項1:
組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部で、a+b+c+d=100)からなる焼結磁石体に対し、組成M1 d2 e(M1、M2はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上であるが、M1とM2とは互いに相違する。d、eは原子百分率を示し、0.1≦e≦99.9、dは残部で、d+e=100)からなり、かつ金属間化合物相を70体積%以上含む平均粒子径500μm以下の合金の粉末と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1、M2の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させることを特徴とする希土類永久磁石の製造方法。
請求項2:
組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素で、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部でa+b+c+d=100)からなる焼結磁石体に対し、平均粒子径500μm以下のM1の粉末(M1はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上)と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させることを特徴とする希土類永久磁石の製造方法。
請求項3:
熱処理を、焼結磁石体の焼結温度TS℃に対し(TS−10)℃以下200℃以上の温度で1分〜30時間とすることを特徴とする請求項1又は2記載の希土類永久磁石の製造方法。
請求項4:
混合粉体を有機溶媒もしくは水中に分散させたスラリーに焼結磁石体を浸してから引き上げた後乾燥させることで混合粉体を焼結磁石体表面に塗布し、熱処理を施すことを特徴とする請求項1乃至3のいずれか1項記載の希土類永久磁石の製造方法。
請求項5:
熱処理される焼結磁石体の最小部の寸法が20mm以下の形状を有する請求項1乃至4のいずれか1項記載の希土類永久磁石の製造方法。
請求項6:
組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部で、a+b+c+d=100)からなる焼結磁石体に対し、組成M1 d2 e(M1、M2はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上であるが、M1とM2とは互いに相違する。d、eは原子百分率を示し、0.1≦e≦99.9、dは残部で、d+e=100)からなり、かつ金属間化合物相を70体積%以上含む平均粒子径500μm以下の合金の粉末と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1、M2の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させたことを特徴とする希土類永久磁石。
請求項7:
組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部でa+b+c+d=100)からなる焼結磁石体に対し、平均粒子径500μm以下のM1の粉末(M1はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上)と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させたことを特徴とする希土類永久磁石。
That is, the present invention provides the following rare earth permanent magnet and method for producing the same.
Claim 1:
Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance , A + b + c + d = 100), the composition M 1 d M 2 e (M 1 , M 2 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, One or more selected from Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi M 1 and M 2 are different from each other, d and e are atomic percentages, 0.1 ≦ e ≦ 99.9, d is the balance, d + e = 100), and the intermetallic compound phase and an average particle diameter 500μm or less of the alloy powder containing 70 vol% or more, average particle diameter of less oxide of R 1 100 [mu] m (R 1 is at least one element selected from rare earth elements inclusive of Sc and Y) In a state where the mixed powder containing 10% by mass or more is present on the surface of the sintered magnet body, the sintered magnet body and the mixed powder are vacuumed at a temperature lower than the sintering temperature of the sintered magnet body. Alternatively, by performing heat treatment in an inert gas, one or more elements of R 1 , M 1 , and M 2 are converted into grain boundary portions inside the sintered magnet body and / or sintered magnet body. A method for producing a rare earth permanent magnet, characterized by diffusing in the vicinity of a grain boundary in a main phase grain.
Claim 2:
Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance in a + b + c + d = 100) made of a sintered magnet body to the mean of the powder (M 1 particle size 500μm following M 1 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, One kind selected from Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Is a mixed powder containing 10% by mass or more of R 1 oxide (R 1 is one or more selected from rare earth elements including Sc and Y) having an average particle size of 100 μm or less. The sintered magnet body and the mixed powder are subjected to a heat treatment in a vacuum or an inert gas at a temperature lower than the sintering temperature of the sintered magnet body in a state where the sintered magnet body is present on the surface of the sintered magnet body. To diffuse one or more elements of R 1 and M 1 in the vicinity of the grain boundary in the sintered magnet body and / or in the vicinity of the grain boundary in the main phase grain of the sintered magnet body. A method for producing a rare earth permanent magnet.
Claim 3:
The rare earth according to claim 1 or 2, wherein the heat treatment is performed for 1 minute to 30 hours at a temperature of (T S -10) ° C. or lower and 200 ° C. or higher with respect to a sintering temperature T S of the sintered magnet body. A method for manufacturing a permanent magnet.
Claim 4:
The mixed powder is applied to the surface of the sintered magnet body by dipping the sintered magnet body in a slurry in which the mixed powder is dispersed in an organic solvent or water, and then dried, followed by heat treatment. The method for producing a rare earth permanent magnet according to any one of claims 1 to 3.
Claim 5:
The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein a size of a minimum part of the sintered magnet body to be heat-treated has a shape of 20 mm or less.
Claim 6:
Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance , A + b + c + d = 100), the composition M 1 d M 2 e (M 1 , M 2 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, One or more selected from Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi M 1 and M 2 are different from each other, d and e are atomic percentages, 0.1 ≦ e ≦ 99.9, d is the balance, d + e = 100), and the intermetallic compound phase and an average particle diameter 500μm or less of the alloy powder containing 70 vol% or more, average particle diameter of less oxide of R 1 100 [mu] m (R 1 is at least one element selected from rare earth elements including Sc and Y) In a state where the mixed powder containing 10% by mass or more is present on the surface of the sintered magnet body, the sintered magnet body and the mixed powder are vacuumed at a temperature lower than the sintering temperature of the sintered magnet body. Alternatively, by performing heat treatment in an inert gas, one or more elements of R 1 , M 1 , and M 2 are converted into grain boundary portions inside the sintered magnet body and / or sintered magnet body. A rare earth permanent magnet characterized by being diffused in the vicinity of a grain boundary in a main phase grain.
Claim 7:
Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance M 1 powder having an average particle diameter of 500 μm or less (M 1 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) for a sintered magnet body made of a + b + c + d = 100) , Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi And two or more), an average particle diameter of the oxide of the following R 1 100 [mu] m (R 1 is a powder mixture containing one or more) more than 10 wt% selected from rare earth elements inclusive of Sc and Y By subjecting the sintered magnet body and the mixed powder to heat treatment in a vacuum or an inert gas at a temperature equal to or lower than the sintering temperature of the sintered magnet body in the state of being present on the surface of the sintered magnet body. , R 1 , M 1 , or two or more elements are diffused near the grain boundary in the sintered magnet body and / or in the vicinity of the grain boundary in the sintered magnet body main phase grain. Rare earth permanent magnet characterized by

本発明によれば、R−Fe−B系焼結磁石体の表面に、生産性の観点から最も優れている希土類酸化物の塗布に対し、拡散量を増大させるべく創意工夫した結果、DyやTb等の希土類元素を含有した酸化物に金属間化合物を混合させることで、熱処理時に酸化物が部分的に還元され、フッ化物や酸化物等の希土類無機化合物粉末を塗布した後に熱処理を施す方法と比較して、より多量のDyやTb等の希土類元素を粒界部を経路として磁石内の主相粒の界面近傍に導入することが可能で、残留磁束密度の低下を抑制しつつ保磁力を増大でき、従来の方法に比べて生産性に優れると共に、高性能で、かつTbあるいはDyの使用量の少ない、残留磁束密度の低減を抑制しながら保磁力を増大させたR−Fe−B系焼結磁石を提供することができる。   According to the present invention, as a result of creative ingenuity to increase the amount of diffusion on the surface of the R—Fe—B based sintered magnet body, which is the most excellent rare earth oxide coating from the viewpoint of productivity, A method in which an intermetallic compound is mixed with an oxide containing a rare earth element such as Tb, whereby the oxide is partially reduced during the heat treatment, and the heat treatment is performed after applying a rare earth inorganic compound powder such as fluoride or oxide. Compared to the above, a larger amount of rare earth elements such as Dy and Tb can be introduced in the vicinity of the interface of the main phase grains in the magnet through the grain boundary part as a path, and the coercive force is suppressed while suppressing the decrease in residual magnetic flux density R-Fe-B, which has higher productivity than conventional methods, has high performance and uses less Tb or Dy, and has increased coercive force while suppressing reduction of residual magnetic flux density To provide sintered magnets That.

本発明は、焼結磁石体上に金属間化合物を主体とする合金粉末と希土類の酸化物の混合粉体又は金属粉末と希土類の酸化物の混合粉体を塗布して拡散処理を施すことによって得られる、高性能で、かつTbあるいはDyの使用量の少ない、R−Fe−B系焼結磁石及びその製造方法に関するものである。   The present invention applies a diffusion treatment by applying a mixed powder of an alloy powder mainly composed of an intermetallic compound and a rare earth oxide or a mixed powder of a metal powder and a rare earth oxide on a sintered magnet body. The present invention relates to an obtained R-Fe-B sintered magnet having high performance and a small amount of Tb or Dy and a method for producing the same.

本発明において、母材となるRa1 bcd焼結磁石体において、RはSc及びYを含む希土類元素から選ばれる1種又は2種以上で、具体的にはSc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはNd及び/又はPrを主体とする。これらSc及びYを含む希土類元素は、焼結体全体の12〜20原子%(12≦a≦20)、特に、13〜18原子%(13≦a≦18)であることが好ましい。この場合、Nd、Prは希土類全体の50〜100原子%、特に70〜100原子%であることが好ましい。T1はFe、Coのうちの1種又は2種である。MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上で焼結体全体の0〜10原子%(0≦c≦10)、特に、0〜5原子%(0≦c≦5)が好ましい。Bはボロン元素であり、焼結体全体の4〜7原子%(4≦d≦7)が好ましい。特に5〜6原子%(5≦d≦6)のときは、拡散処理による保磁力の向上が大きい。なお、残部はT1であるが、60〜84原子%(60≦b≦84)、特に、70〜82原子%(70≦b≦82)であることが好ましい(なおa+b+c+d=100である)。 In the present invention, in the R a T 1 b M c B d sintered magnet body as the base material, R is one or more selected from rare earth elements including Sc and Y, specifically, Sc, Y La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu, preferably Nd and / or Pr. These rare earth elements including Sc and Y are preferably 12 to 20 atomic% (12 ≦ a ≦ 20), particularly 13 to 18 atomic% (13 ≦ a ≦ 18) of the entire sintered body. In this case, Nd and Pr are preferably 50 to 100 atomic%, particularly 70 to 100 atomic% of the whole rare earth. T 1 is one or two of Fe and Co. M is Al, Si, C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, One or two or more selected from Bi is preferably 0 to 10 atomic% (0 ≦ c ≦ 10), particularly 0 to 5 atomic% (0 ≦ c ≦ 5) of the whole sintered body. B is a boron element and is preferably 4 to 7 atomic% (4 ≦ d ≦ 7) of the entire sintered body. In particular, in the case of 5 to 6 atomic% (5 ≦ d ≦ 6), the coercive force is greatly improved by the diffusion treatment. The balance is T 1 but is preferably 60 to 84 atomic% (60 ≦ b ≦ 84), particularly preferably 70 to 82 atomic% (70 ≦ b ≦ 82) (note that a + b + c + d = 100). .

焼結磁石体母材作製用の合金は、原料金属あるいは合金を真空又は不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、あるいはストリップキャスト法により鋳造することで得られる。また、本系合金の主相であるR2Fe14B化合物組成に近い合金と焼結温度で補助助剤となる希土類に富む合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる2合金法も本発明には適用可能である。但し、主相組成に近い合金に対しては、鋳造時の冷却速度や合金組成に依存して初晶のα−Feが残存し易く、R2Fe14B化合物相の量を増やす目的で必要に応じて均質化処理を施す。その条件は真空あるいはAr雰囲気中にて700〜1,200℃で1時間以上熱処理する。又は、ストリップキャスト法により主相組成に近い合金を作ることもできる。液相助剤となる希土類に富む合金については上記鋳造法のほかに、いわゆる液体急冷法や、ストリップキャスト法も適用できる。 An alloy for producing a sintered magnet base material is prepared by melting a raw metal or alloy in a vacuum or an inert gas, preferably in an Ar atmosphere, and then casting it in a flat mold or a book mold, or by a strip casting method. It is obtained with. Also, an alloy close to the composition of the R 2 Fe 14 B compound, which is the main phase of this alloy, and a rare earth-rich alloy that serves as an auxiliary aid at the sintering temperature are separately prepared, and weighed and mixed after coarse pulverization. Alloy methods are also applicable to the present invention. However, for alloys close to the main phase composition, primary α-Fe tends to remain depending on the cooling rate during casting and the alloy composition, and is necessary for the purpose of increasing the amount of R 2 Fe 14 B compound phase. A homogenization process is performed according to the conditions. The conditions are heat treatment at 700 to 1,200 ° C. for 1 hour or more in a vacuum or Ar atmosphere. Alternatively, an alloy close to the main phase composition can be made by a strip casting method. In addition to the above casting method, a so-called liquid quenching method or a strip casting method can be applied to the rare earth-rich alloy serving as the liquid phase aid.

上記合金は、通常0.05〜3mm、特に0.05〜1.5mmに粗粉砕される。粗粉砕工程にはブラウンミルあるいは水素粉砕が用いられ、ストリップキャストにより作製された合金の場合は水素粉砕が好ましい。粗粉は、例えば高圧窒素を用いたジェットミルにより通常0.2〜30μm、特に0.5〜20μmに微粉砕される。   The alloy is generally coarsely pulverized to 0.05 to 3 mm, particularly 0.05 to 1.5 mm. Brown mill or hydrogen pulverization is used for the coarse pulverization process, and hydrogen pulverization is preferable in the case of an alloy produced by strip casting. The coarse powder is usually finely pulverized to 0.2 to 30 μm, particularly 0.5 to 20 μm, for example, by a jet mill using high-pressure nitrogen.

微粉末は磁界中圧縮成形機で成形され、焼結炉に投入される。焼結は真空又は不活性ガス雰囲気中、通常900〜1,250℃、特に1,000〜1,100℃で行われる。得られた焼結磁石体は、正方晶R2Fe14B化合物を主相として60〜99体積%、特に好ましくは80〜98体積%含有し、残部は0.5〜20体積%の希土類に富む相、0.1〜10体積%の希土類の酸化物及び不可避的不純物により生成した炭化物、窒化物、水酸化物のうち少なくとも1種あるいはこれらの混合物又は複合物を含む。 The fine powder is formed by a compression molding machine in a magnetic field and put into a sintering furnace. Sintering is usually performed at 900 to 1,250 ° C., particularly 1,000 to 1,100 ° C. in a vacuum or an inert gas atmosphere. The obtained sintered magnet body contains 60 to 99% by volume, particularly preferably 80 to 98% by volume of a tetragonal R 2 Fe 14 B compound as a main phase, and the balance is 0.5 to 20% by volume of rare earth. It contains at least one of a rich phase, 0.1 to 10% by volume of rare earth oxides and carbides, nitrides and hydroxides produced by inevitable impurities, or a mixture or composite thereof.

得られた焼結磁石体ブロックは所定形状に研削加工することができる。本発明において焼結磁石体内部に拡散するM1、M2及びR1は焼結磁石体表面より供給されるため、焼結磁石体母材の最小部の寸法が大きすぎる場合、本発明の効果を達成できなくなる。そのため、最小部の寸法が20mm以下、好ましくは10mm以下、その下限は0.1mm以上であることが求められる。また、特に焼結磁石体母材の最大部の寸法に上限はないが、200mm以下が望ましい。 The obtained sintered magnet body block can be ground into a predetermined shape. In the present invention, M 1 , M 2, and R 1 diffusing into the sintered magnet body are supplied from the surface of the sintered magnet body. Therefore, when the dimension of the minimum part of the sintered magnet body base material is too large, The effect cannot be achieved. Therefore, it is required that the dimension of the minimum part is 20 mm or less, preferably 10 mm or less, and the lower limit is 0.1 mm or more. Moreover, there is no upper limit to the dimension of the maximum part of the sintered magnet body base material, but it is preferably 200 mm or less.

次いで、焼結磁石体母材上に塗布して拡散処理させる材料としては、M1 d2 eの組成からなり、かつ金属間化合物相を70体積%以上含む平均粒子径500μm以下の合金(以後、この合金を拡散合金と称する)粉末又は平均粒子径500μm以下の金属粉末と平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を混合粉体全体の10質量%以上含有した混合粉体を当該焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、希土類酸化物に金属間化合物又は金属粉末を混合させることで酸化物を部分的に還元し、従来より多量のM1、M2及びR1の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させることができる。 Next, as a material to be applied onto the sintered magnet body base material and subjected to diffusion treatment, an alloy having an average particle diameter of 500 μm or less having a composition of M 1 d M 2 e and containing 70% by volume or more of an intermetallic compound phase ( Hereinafter, this alloy is referred to as a diffusion alloy) or a metal powder having an average particle size of 500 μm or less and an R 1 oxide having an average particle size of 100 μm or less (R 1 is one selected from rare earth elements including Sc and Y The sintered magnet body and the mixed powder are put into the sintered magnet body in a state where the mixed powder containing 10% by mass or more of the whole mixed powder is present on the surface of the sintered magnet body. The oxide is partially reduced by mixing the intermetallic compound or the metal powder with the rare earth oxide by performing a heat treatment in a vacuum or an inert gas at a temperature equal to or lower than the sintering temperature. 1, one of M 2 and R 1 or Inside the grain boundary portion of the seed or more elements the sintered magnet body, and / or can be diffused into the vicinity of the grain boundaries of the sintered magnet body main phase grains.

ここで、M1 d2 e合金において、M1、M2はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上であるが、M1とM2とは互いに相違する。M1 d2 e合金においてd、eは原子百分率を示し、0.1≦e≦99.9、好ましくは10≦e≦90、さらに好ましくは20≦e≦80であり、dは残部である。
また、M1の金属粉においては、M1はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上である。
Here, in the M 1 d M 2 e alloy, M 1 and M 2 are Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, One or more selected from Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, and Bi, but M 1 and M 2 are different from each other. In the M 1 d M 2 e alloy, d and e represent atomic percentages, and 0.1 ≦ e ≦ 99.9, preferably 10 ≦ e ≦ 90, more preferably 20 ≦ e ≦ 80, and d is the balance. is there.
In the metal powder M 1, M 1 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag , In, Sn, Sb, Hf, Ta, W, Pb, and Bi.

これらの拡散合金は、窒素(N)、酸素(O)等の不可避的な不純物も含み得るが、許容量は合計量で4原子%以下、好ましくは2原子%以下、更に好ましくは1原子%以下である。   These diffusion alloys may contain inevitable impurities such as nitrogen (N) and oxygen (O), but the allowable amount is 4 atomic% or less, preferably 2 atomic% or less, more preferably 1 atomic% in total. It is as follows.

前記M1 d2 eで表される金属間化合物相を70体積%以上含む拡散合金は、焼結磁石体母材作製用の合金と同じく、原料金属あるいは合金を真空又は不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、あるいは高周波溶解法、ストリップキャスト法により鋳造することで得られる。この合金はブラウンミルや水素粉砕等の手段を用いて通常0.05〜3mm、特に0.05〜1.5mm程度に粗粉砕された後、更に例えばボールミル、振動ミルや高圧窒素を用いたジェットミルにより微粉砕される。この粉末の粒径は小さいほど拡散効率が高くなるので、M1 d2 eで表される金属間化合物相は、その平均粒子径は500μm以下、好ましくは300μm以下、更に好ましくは100μm以下であることが好ましい。しかし、粒径が細かすぎる場合は、表面酸化の影響が大きく、取り扱いも危険となるので、その平均粒子径の下限は、1μm以上であることが好ましい。なお、本発明において、平均粒子径は、例えばレーザー回折法等による粒度分布測定装置等を用いて質量平均値D50(即ち、累積質量が50%になるときの粒子径又はメジアン径)等として求めることができる。 The diffusion alloy containing 70% by volume or more of the intermetallic compound phase represented by M 1 d M 2 e is the same as the alloy for producing a sintered magnet base material, and the raw metal or alloy is vacuum or inert gas, preferably Can be obtained by melting in an Ar atmosphere and then casting into a flat mold or book mold, or by high frequency melting or strip casting. This alloy is usually coarsely pulverized to about 0.05 to 3 mm, particularly about 0.05 to 1.5 mm using means such as a brown mill or hydrogen pulverization, and then, for example, a ball mill, a vibration mill or a jet using high-pressure nitrogen. It is pulverized by a mill. The smaller the particle size of this powder, the higher the diffusion efficiency. Therefore, the intermetallic compound phase represented by M 1 d M 2 e has an average particle size of 500 μm or less, preferably 300 μm or less, more preferably 100 μm or less. Preferably there is. However, if the particle size is too small, the effect of surface oxidation is great and handling becomes dangerous. Therefore, the lower limit of the average particle size is preferably 1 μm or more. In the present invention, the average particle diameter is, for example, as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass becomes 50%) using a particle size distribution measuring device by a laser diffraction method or the like. Can be sought.

また、前記M1で表される金属粉は金属塊をジョークラッシャーやブラウンミル等の手段を用いて通常0.05〜3mm、特に0.05〜1.5mm程度に粗粉砕された後、更に例えばボールミル、振動ミルや高圧窒素を用いたジェットミルによって微粉砕することができる。あるいは金属溶湯を小孔より噴出させて高圧ガスにより霧状にするアトマイズ法により微粉砕することもできる。M1の金属粉の平均粒子径は500μm以下、好ましくは300μm以下、更に好ましくは100μm以下であることが好ましい。しかし、粒径が細かすぎる場合は、表面酸化の影響が大きく、取り扱いも危険となるので、その平均粒子径の下限は、1μm以上であることが好ましい。なお、本発明において、平均粒子径は、例えばレーザー回折法などによる粒度分布測定装置等を用いて質量平均値D50(即ち、累積質量が50%になるときの粒子径又はメジアン径)などとして求めることができる。 In addition, the metal powder represented by M 1 is roughly pulverized into a metal lump usually 0.05 to 3 mm, particularly 0.05 to 1.5 mm using means such as a jaw crusher or a brown mill. For example, it can be finely pulverized by a ball mill, a vibration mill or a jet mill using high-pressure nitrogen. Alternatively, the molten metal can be finely pulverized by an atomizing method in which a molten metal is ejected from a small hole and is made into a mist by high pressure gas. The average particle diameter of the metal powder of M 1 is 500 μm or less, preferably 300 μm or less, more preferably 100 μm or less. However, if the particle size is too small, the effect of surface oxidation is great and handling becomes dangerous. Therefore, the lower limit of the average particle size is preferably 1 μm or more. In the present invention, the average particle diameter is, for example, as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass is 50%) using a particle size distribution measuring apparatus by a laser diffraction method or the like. Can be sought.

一方、R1の酸化物としては、Y及びScを含む希土類元素の酸化物であればよいが、Dy又はTbを含む酸化物が好ましい。その平均粒子径は100μm以下、好ましくは50μm以下であり、更に好ましくは20μm以下である。上記R1の酸化物の使用量は、上記拡散合金粉末の混合粉体全体の10質量%以上であり、好ましくは20質量%以上、更に好ましくは30質量%以上である。10質量%より少ないと、希土類酸化物の混合効果が少なくなる。なお、R1の酸化物の使用量上限は99質量%以下、特に90質量%以下である。 On the other hand, the oxide of R 1 may be any rare-earth oxide containing Y and Sc, but is preferably an oxide containing Dy or Tb. The average particle diameter is 100 μm or less, preferably 50 μm or less, and more preferably 20 μm or less. The amount of the R 1 oxide used is 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass or more, based on the entire mixed powder of the diffusion alloy powder. When the content is less than 10% by mass, the mixing effect of the rare earth oxide is reduced. The upper limit of the amount of R 1 oxide used is 99% by mass or less, particularly 90% by mass or less.

上記拡散合金の粉末又は上記M1の金属粉と平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を混合粉体の10質量%以上含有した混合粉体を当該焼結磁石体母材の表面に存在させ、拡散合金粉末とR1の酸化物の混合粉体を表面に存在させた焼結磁石体を真空あるいはAr、He等の不活性ガス雰囲気中で焼結温度以下の温度にて熱処理する。以後、この処理を拡散処理と称する。拡散処理により希土類酸化物に金属間化合物を混合させることで酸化物を部分的に還元し、従来より多量に混合粉体のR1、M1、M2は焼結磁石体内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散される。 The oxide of the diffusion alloy powder or the M 1 metal powder with an average particle size of less 100 [mu] m R 1 (R 1 is at least one element selected from rare earth elements inclusive of Sc and Y) a powder mixture The mixed powder containing 10% by mass or more of the above is present on the surface of the sintered magnet body base material, and the sintered magnet body in which the mixed powder of the diffusion alloy powder and the oxide of R 1 is present on the surface is vacuum or Heat treatment is performed at a temperature equal to or lower than the sintering temperature in an inert gas atmosphere such as Ar or He. Hereinafter, this processing is referred to as diffusion processing. The oxide is partially reduced by mixing the intermetallic compound with the rare earth oxide by diffusion treatment, and R 1 , M 1 , and M 2 of the mixed powder are larger than conventional ones at the grain boundary portion inside the sintered magnet body. And / or diffused in the vicinity of the grain boundary in the sintered magnet body main phase grains.

上記拡散合金の粉末又はM1の金属粉とR1の酸化物の混合粉体を焼結体母材の表面上に存在させる方法としては、例えば混合粉体を有機溶剤あるいは水に分散させ、このスラリーに焼結磁石体母材を浸した後に熱風や真空により乾燥させたり、あるいは自然乾燥させたりすればよい。この他にスプレーによる塗布等も可能である。なお、スラリー中における上記混合粉体の含有量は、1〜90質量%とすればよく、特に5〜70質量%とするのが好ましい。 As a method of allowing the powder of the diffusion alloy or the mixed powder of M 1 metal powder and R 1 oxide to exist on the surface of the sintered body base material, for example, the mixed powder is dispersed in an organic solvent or water, After immersing the sintered magnet base material in this slurry, it may be dried by hot air or vacuum, or naturally dried. In addition, application by spraying is also possible. In addition, what is necessary is just to make content of the said mixed powder in a slurry into 1-90 mass%, and it is especially preferable to set it as 5-70 mass%.

拡散処理の条件は、混合粉体の種類や構成元素によって異なるが、R1、M1、M2が焼結磁石体内部の粒界部や焼結磁石体主相粒内の粒界部近傍に濃化するような条件が好ましい。拡散処理温度は焼結磁石体母材の焼結温度以下である。処理温度の限定理由は以下の通りである。当該焼結磁石体母材の焼結温度(TS℃と称する)より高い温度で処理すると、(1)焼結磁石体の組織が変質し、高い磁気特性が得られなくなる、(2)熱変形により焼結磁石体の加工寸法が維持できなくなる等の問題が生じるために、処理温度は焼結温度以下、好ましくは(TS−10)℃以下とする。その下限は200℃以上、特に350℃以上とすることが好ましく、600℃以上であれば、更によい。拡散処理時間は1分〜30時間である。1分未満では拡散処理が完了せず、30時間を超えると、焼結磁石体の組織が変質したり、不可避的な酸化や成分の蒸発が磁気特性に悪い影響を与えたり、あるいはR1、M1、M2が粒界部や焼結磁石体主相粒内の粒界部近傍だけに濃化せずに主相粒の内部まで拡散したりする問題が生じる。より好ましくは1分〜10時間、更に好ましくは10分〜6時間である。 Diffusion treatment conditions vary depending on the type and constituent elements of the mixed powder, but R 1 , M 1 , and M 2 are near the grain boundary in the sintered magnet body and in the sintered magnet body main phase grains. The conditions for thickening are preferable. The diffusion treatment temperature is equal to or lower than the sintering temperature of the sintered magnet body base material. The reasons for limiting the treatment temperature are as follows. When treated at a temperature higher than the sintering temperature of the sintered magnet body base material (referred to as T S ° C), (1) the structure of the sintered magnet body is altered and high magnetic properties cannot be obtained. (2) Heat Since problems such as the inability to maintain the processed dimensions of the sintered magnet body occur due to deformation, the processing temperature is set to the sintering temperature or lower, preferably (T S -10) ° C. or lower. The lower limit is preferably 200 ° C or higher, particularly 350 ° C or higher, and more preferably 600 ° C or higher. The diffusion treatment time is 1 minute to 30 hours. If less than 1 minute, the diffusion treatment is not completed, and if it exceeds 30 hours, the structure of the sintered magnet body is altered, unavoidable oxidation or evaporation of components adversely affects the magnetic properties, or R 1 , There arises a problem that M 1 and M 2 do not concentrate only in the vicinity of the grain boundary part or the grain boundary part in the main phase grain of the sintered magnet body but diffuse to the inside of the main phase grain. More preferably, it is 1 minute-10 hours, More preferably, it is 10 minutes-6 hours.

焼結磁石体母材の表面に塗布された混合粉体の構成元素R1、M1、M2は、最適な拡散処理を施すことによって、焼結磁石体組織のうち粒界部を主な経路として焼結磁石体内部に拡散していく。これにより、R1、M1、M2が焼結磁石体内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に濃化した組織が得られる。 The constituent elements R 1 , M 1 , and M 2 of the mixed powder applied to the surface of the sintered magnet body base material are mainly subjected to an optimum diffusion treatment, so that the grain boundary portion of the sintered magnet body structure is mainly used. It diffuses inside the sintered magnet body as a path. Thereby, a structure in which R 1 , M 1 , and M 2 are concentrated in the vicinity of the grain boundary portion in the sintered magnet body and / or in the vicinity of the grain boundary portion in the sintered magnet body main phase grain is obtained.

以上のようにして得られた永久磁石は、R1、M1、M2の拡散によって組織内部の主相粒界面近傍の構造が改質され、主相粒界面の結晶磁気異方性の低下が抑制されたり、あるいは粒界部に新たな相が形成されたりすることで、保磁力が向上する。また、これらの拡散合金元素は主相粒の内部までは拡散していないため、残留磁束密度の低下を抑制することができ、高性能な永久磁石として用いることができる。更に、保磁力の増大効果を増すため、上記の拡散処理を施した磁石体に対して更に200〜900℃の温度で時効処理を施してもよい。 In the permanent magnet obtained as described above, the structure in the vicinity of the main phase grain interface inside the structure is modified by the diffusion of R 1 , M 1 and M 2 , and the magnetocrystalline anisotropy of the main phase grain interface is lowered. Is suppressed, or a new phase is formed at the grain boundary, thereby improving the coercive force. Further, since these diffusion alloy elements are not diffused to the inside of the main phase grains, it is possible to suppress a decrease in residual magnetic flux density and to be used as a high-performance permanent magnet. Furthermore, in order to increase the effect of increasing the coercive force, the magnet body subjected to the above diffusion treatment may be further subjected to an aging treatment at a temperature of 200 to 900 ° C.

以下、本発明の具体的な内容について実施例及び比較例をもって詳述するが、本発明の内容はこれに限定されるものではない。   Hereinafter, although the specific content of this invention is explained in full detail with an Example and a comparative example, the content of this invention is not limited to this.

[実施例1、比較例1,2]
純度99質量%以上のNd、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するいわゆるストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが12.8原子%、Coが1.0原子%、Alが0.5原子%、Bが6.0原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に純度99質量%以上のNd、Dy、Fe、Co、Al、Cuメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが23原子%、Dyが12原子%、Feが25原子%、Bが6原子%、Alが0.5原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕された。
[Example 1, Comparative Examples 1 and 2]
Nd, Co, Al, Fe metal having a purity of 99% by mass or more and ferroboron are weighed in predetermined amounts and melted at high frequency in an Ar atmosphere, and this molten alloy is poured into a single copper roll in an Ar atmosphere by a so-called strip casting method. A thin plate-like alloy was used. The composition of the obtained alloy was 12.8 atomic% Nd, 1.0 atomic% Co, 0.5 atomic% Al, 6.0 atomic% B, and the balance Fe. Called. The alloy A was occluded with hydrogen and then heated to 500 ° C. while being evacuated to partially release hydrogen, so that a coarse powder of 30 mesh or less was obtained by so-called hydrogen pulverization. Further, Nd, Dy, Fe, Co, Al, Cu metal having a purity of 99% by mass or more and ferroboron were weighed in predetermined amounts, melted by high frequency in an Ar atmosphere, and then cast. The composition of the resulting alloy is Nd 23 atom%, Dy 12 atom%, Fe 25 atom%, B 6 atom%, Al 0.5 atom%, Cu 2 atom%, and Co as the balance. This is referred to as Alloy B. Alloy B was coarsely pulverized to 30 mesh or less using a brown mill in a nitrogen atmosphere.

続いて、合金A粉末を94質量%、合金B粉末を6質量%秤量して、窒素置換したVブレンダー中で30分間混合した。
この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結し、10mm×20mm×厚み15mm寸法の磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより4mm×4mm×2mm(磁気異方性化した方向)に全面研削加工した。
研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。各洗浄の前後には純水による洗浄工程が含まれている。
これを焼結磁石体母材とした。その組成は、Nd13.3Dy0.5FebalCo2.4Cu0.1Al0.56.0であった。
Subsequently, 94% by mass of alloy A powder and 6% by mass of alloy B powder were weighed and mixed for 30 minutes in a V-blender purged with nitrogen.
This mixed powder was finely pulverized to a mass median particle size of 4 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into a sintering furnace in an Ar atmosphere and sintered at 1,060 ° C. for 2 hours to produce a magnet block having dimensions of 10 mm × 20 mm × thickness 15 mm. The magnet block was ground on the whole surface to 4 mm × 4 mm × 2 mm (direction of magnetic anisotropy) with a diamond cutter.
The ground magnet body was washed with an alkaline solution, and then washed with an acid and dried. A cleaning process with pure water is included before and after each cleaning.
This was used as a sintered magnet base material. The composition was Nd 13.3 Dy 0.5 Fe bal Co 2.4 Cu 0.1 Al 0.5 B 6.0 .

純度99質量%以上のAl、Coメタルを用いて、Ar雰囲気中で高周波溶解し、組成がAl50Co50で、AlCoの金属間化合物相を主とする拡散合金を作製した。この合金を有機溶媒を用いたボールミルにより、粉末の質量中位粒径8.9μmに微粉砕した。なお、この合金はEPMA観察により、AlCo金属間化合物相が94体積%であった。
次にAl50Co50拡散合金と平均粉末粒径が1μmの酸化テルビウムを質量比1対1で混合したのち質量分率50%で純水と混合し、これに超音波を印加しながら磁石体を30秒間浸した。引き上げた磁石は直ちに熱風により乾燥させた。これをAr雰囲気中900℃で8時間という条件で拡散処理を施し、更に500℃で1時間時効処理して急冷することで、実施例1の磁石体を得た。
更に平均粉末粒径が1μmの酸化テルビウムを質量分率50%で純水と混合し、これに超音波を印加しながら磁石体を30秒間浸した。引き上げた磁石は直ちに熱風により乾燥させた。これをAr雰囲気中900℃で8時間という条件で拡散処理を施し、更に500℃で1時間時効処理して急冷することで、比較例1の磁石体を得た。また、混合した拡散粉末を存在させずに焼結体母材のみを同じく真空中900℃で8時間熱処理して比較例2とした。
Using Al and Co metals having a purity of 99% by mass or more, high frequency melting was performed in an Ar atmosphere, and a diffusion alloy having a composition of Al 50 Co 50 and mainly composed of an intermetallic compound phase of AlCo was produced. This alloy was finely pulverized to a mass median particle size of 8.9 μm by a ball mill using an organic solvent. This alloy had an AlCo intermetallic phase of 94% by volume as observed by EPMA.
Next, Al 50 Co 50 diffusion alloy and terbium oxide having an average powder particle size of 1 μm are mixed at a mass ratio of 1: 1, and then mixed with pure water at a mass fraction of 50%, and an ultrasonic wave is applied to the magnet body. Was soaked for 30 seconds. The magnet pulled up was immediately dried with hot air. This was subjected to a diffusion treatment at 900 ° C. for 8 hours in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body of Example 1.
Further, terbium oxide having an average powder particle size of 1 μm was mixed with pure water at a mass fraction of 50%, and the magnet body was immersed for 30 seconds while applying ultrasonic waves thereto. The magnet pulled up was immediately dried with hot air. This was subjected to a diffusion treatment in an Ar atmosphere at 900 ° C. for 8 hours, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body of Comparative Example 1. Moreover, only the sintered compact base material was similarly heat-treated at 900 ° C. for 8 hours in vacuum without using the mixed diffusion powder, so that Comparative Example 2 was obtained.

実施例1及び比較例1,2における焼結磁石体母材と拡散合金、拡散希土類酸化物の組成、拡散混合粉体混合比(質量)を表1に、またそれらの拡散処理温度(℃)、拡散処理時間(h)、磁気特性を表2に示した。本発明による実施例1の磁石の保磁力は比較例1の磁石と比べて90kAm-1の増大が認められた。また、残留磁束密度の低下は比較例1と較べてわずか3mTであった。更に本発明による実施例1の磁石の保磁力は比較例2の磁石と比べて1,040kAm-1の増大が認められた。また、残留磁束密度の低下は4mTであった。 Table 1 shows the composition of sintered magnet body base material and diffusion alloy, diffusion rare earth oxide, and diffusion mixture powder mixing ratio (mass) in Example 1 and Comparative Examples 1 and 2, and their diffusion treatment temperature (° C.). Table 2 shows the diffusion treatment time (h) and magnetic characteristics. The coercive force of the magnet of Example 1 according to the present invention was found to be increased by 90 kAm −1 compared to the magnet of Comparative Example 1. Further, the decrease in residual magnetic flux density was only 3 mT as compared with Comparative Example 1. Furthermore, the coercive force of the magnet of Example 1 according to the present invention was found to increase by 1,040 kAm −1 compared to the magnet of Comparative Example 2. The decrease in residual magnetic flux density was 4 mT.

Figure 2012248828
Figure 2012248828

Figure 2012248828
Figure 2012248828

[実施例2、比較例3]
純度99質量%以上のNd、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するいわゆるストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが12.8原子%、Coが1.0原子%、Alが0.5原子%、Bが6.0原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に純度99質量%以上のNd、Dy、Fe、Co、Al、Cuメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが23原子%、Dyが12原子%、Feが25原子%、Bが6原子%、Alが0.5原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕された。
[Example 2, Comparative Example 3]
Nd, Co, Al, Fe metal having a purity of 99% by mass or more and ferroboron are weighed in predetermined amounts and melted at high frequency in an Ar atmosphere, and this molten alloy is poured into a single copper roll in an Ar atmosphere by a so-called strip casting method. A thin plate-like alloy was used. The composition of the obtained alloy was 12.8 atomic% Nd, 1.0 atomic% Co, 0.5 atomic% Al, 6.0 atomic% B, and the balance Fe. Called. The alloy A was occluded with hydrogen and then heated to 500 ° C. while being evacuated to partially release hydrogen, so that a coarse powder of 30 mesh or less was obtained by so-called hydrogen pulverization. Further, Nd, Dy, Fe, Co, Al, Cu metal having a purity of 99% by mass or more and ferroboron were weighed in predetermined amounts, melted by high frequency in an Ar atmosphere, and then cast. The composition of the resulting alloy is Nd 23 atom%, Dy 12 atom%, Fe 25 atom%, B 6 atom%, Al 0.5 atom%, Cu 2 atom%, and Co as the balance. This is referred to as Alloy B. Alloy B was coarsely pulverized to 30 mesh or less using a brown mill in a nitrogen atmosphere.

続いて、合金A粉末を94質量%、合金B粉末を6質量%秤量して、窒素置換したVブレンダー中で30分間混合した。
この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4.1μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結し、10mm×20mm×厚み15mm寸法の磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより4mm×4mm×2mm(磁気異方性化した方向)に全面研削加工した。
研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。各洗浄の前後には純水による洗浄工程が含まれている。
これを焼結磁石体母材とした。その組成は、Nd13.3Dy0.5FebalCo2.4Cu0.1Al0.56.0であった。
Subsequently, 94% by mass of alloy A powder and 6% by mass of alloy B powder were weighed and mixed for 30 minutes in a V-blender purged with nitrogen.
This mixed powder was finely pulverized to a mass median particle size of 4.1 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into a sintering furnace in an Ar atmosphere and sintered at 1,060 ° C. for 2 hours to produce a magnet block having dimensions of 10 mm × 20 mm × thickness 15 mm. The magnet block was ground on the whole surface to 4 mm × 4 mm × 2 mm (direction of magnetic anisotropy) with a diamond cutter.
The ground magnet body was washed with an alkaline solution, and then washed with an acid and dried. A cleaning process with pure water is included before and after each cleaning.
This was used as a sintered magnet base material. The composition was Nd 13.3 Dy 0.5 Fe bal Co 2.4 Cu 0.1 Al 0.5 B 6.0 .

純度99質量%以上のNi、Alメタルを用いて、Ar雰囲気中で高周波溶解し、組成がNi25Al75で、NiAl3の金属間化合物相を主とする拡散合金を作製した。この合金を有機溶媒を用いたボールミルにより、粉末の質量中位粒径9.3μmに微粉砕した。なお、この合金はEPMA観察により、NiAl3金属間化合物相が94体積%であった。
次にNi25Al75拡散合金を平均粉末粒径が1μmのTb47を質量比1対1で混合したのち質量分率50%で純水と混合し、これに超音波を印加しながら磁石体を30秒間浸した。引き上げた磁石は直ちに熱風により乾燥させた。これをAr雰囲気中900℃で8時間という条件で拡散処理を施し、更に500℃で1時間時効処理して急冷することで、実施例2の磁石体を得た。更に混合した拡散粉末を存在させずに焼結磁石体母材のみを同じく真空中900℃で8時間熱処理して比較例3とした。
Using a Ni or Al metal having a purity of 99% by mass or more, high frequency melting was performed in an Ar atmosphere, and a diffusion alloy having a composition of Ni 25 Al 75 and mainly including an intermetallic compound phase of NiAl 3 was produced. This alloy was finely pulverized to a mass median particle size of 9.3 μm by a ball mill using an organic solvent. This alloy had a NiAl 3 intermetallic compound phase of 94% by volume as observed by EPMA.
Next, Ni 25 Al 75 diffusion alloy was mixed with Tb 4 O 7 having an average powder particle diameter of 1 μm at a mass ratio of 1: 1, and then mixed with pure water at a mass fraction of 50%, while applying ultrasonic waves thereto. The magnet body was immersed for 30 seconds. The magnet pulled up was immediately dried with hot air. This was subjected to a diffusion treatment in an Ar atmosphere at 900 ° C. for 8 hours, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body of Example 2. Further, only the sintered magnet body base material was heat-treated at 900 ° C. for 8 hours in the same vacuum without using the mixed diffusion powder, and Comparative Example 3 was obtained.

実施例2及び比較例3における焼結磁石体母材と拡散合金、拡散希土類酸化物の組成、拡散混合粉体混合比(質量)を表3に、またそれらの拡散処理温度(℃)、拡散処理時間(h)、磁気特性を表4に示した。本発明による実施例2の磁石の保磁力は比較例3の磁石と比べて1,010kAm-1の増大が認められた。また、残留磁束密度の低下は4mTであった。 The composition of sintered magnet body and diffusion alloy, diffusion rare earth oxide, diffusion mixture powder mixing ratio (mass) in Example 2 and Comparative Example 3 are shown in Table 3, diffusion treatment temperature (° C.), diffusion Table 4 shows the processing time (h) and magnetic characteristics. The coercive force of the magnet of Example 2 according to the present invention was increased by 1,010 kAm −1 compared to the magnet of Comparative Example 3. The decrease in residual magnetic flux density was 4 mT.

Figure 2012248828
Figure 2012248828

Figure 2012248828
Figure 2012248828

[実施例3〜41]
実施例1と同様に、種々の焼結体母材に種々の拡散合金と希土類酸化物を混合した粉体を塗布し、種々の拡散処理温度、時間を施した。そのときの焼結体母材と拡散合金又は金属、拡散希土類酸化物の組成、拡散混合粉体混合比(質量)を表5に、またそれらの拡散処理温度(℃)、拡散処理時間(h、min)、磁気特性を表6に示す。なお、下記拡散合金の金属間化合物量はいずれも70体積%以上であった。
[Examples 3 to 41]
In the same manner as in Example 1, powders in which various diffusion alloys and rare earth oxides were mixed were applied to various sintered base materials, and various diffusion treatment temperatures and times were applied. Table 5 shows the composition of the sintered body base material and the diffusion alloy or metal, the diffusion rare earth oxide, and the mixing ratio (mass) of the diffusion mixed powder. The diffusion processing temperature (° C.) and the diffusion processing time (h) , Min) and magnetic properties are shown in Table 6. In addition, the amount of intermetallic compounds in the following diffusion alloys was 70% by volume or more.

Figure 2012248828
Figure 2012248828

Figure 2012248828
Figure 2012248828

Claims (7)

組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部で、a+b+c+d=100)からなる焼結磁石体に対し、組成M1 d2 e(M1、M2はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上であるが、M1とM2とは互いに相違する。d、eは原子百分率を示し、0.1≦e≦99.9、dは残部で、d+e=100)からなり、かつ金属間化合物相を70体積%以上含む平均粒子径500μm以下の合金の粉末と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1、M2の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させることを特徴とする希土類永久磁石の製造方法。 Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance , A + b + c + d = 100), the composition M 1 d M 2 e (M 1 , M 2 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, One or more selected from Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi M 1 and M 2 are different from each other, d and e are atomic percentages, 0.1 ≦ e ≦ 99.9, d is the balance, d + e = 100), and the intermetallic compound phase and an average particle diameter 500μm or less of the alloy powder containing 70 vol% or more, average particle diameter of less oxide of R 1 100 [mu] m (R 1 is at least one element selected from rare earth elements inclusive of Sc and Y) In a state where the mixed powder containing 10% by mass or more is present on the surface of the sintered magnet body, the sintered magnet body and the mixed powder are vacuumed at a temperature lower than the sintering temperature of the sintered magnet body. Alternatively, by performing heat treatment in an inert gas, one or more elements of R 1 , M 1 , and M 2 are converted into grain boundary portions inside the sintered magnet body and / or sintered magnet body. A method for producing a rare earth permanent magnet, characterized by diffusing in the vicinity of a grain boundary in a main phase grain. 組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素で、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部でa+b+c+d=100)からなる焼結磁石体に対し、平均粒子径500μm以下のM1の粉末(M1はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上)と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させることを特徴とする希土類永久磁石の製造方法。 Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance in a + b + c + d = 100) made of a sintered magnet body to the mean of the powder (M 1 particle size 500μm following M 1 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, One kind selected from Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Is a mixed powder containing 10% by mass or more of R 1 oxide (R 1 is one or more selected from rare earth elements including Sc and Y) having an average particle size of 100 μm or less. The sintered magnet body and the mixed powder are subjected to a heat treatment in a vacuum or an inert gas at a temperature lower than the sintering temperature of the sintered magnet body in a state where the sintered magnet body is present on the surface of the sintered magnet body. To diffuse one or more elements of R 1 and M 1 in the vicinity of the grain boundary in the sintered magnet body and / or in the vicinity of the grain boundary in the main phase grain of the sintered magnet body. A method for producing a rare earth permanent magnet. 熱処理を、焼結磁石体の焼結温度TS℃に対し(TS−10)℃以下200℃以上の温度で1分〜30時間とすることを特徴とする請求項1又は2記載の希土類永久磁石の製造方法。 The rare earth according to claim 1 or 2, wherein the heat treatment is performed for 1 minute to 30 hours at a temperature of (T S -10) ° C. or lower and 200 ° C. or higher with respect to a sintering temperature T S of the sintered magnet body. A method for manufacturing a permanent magnet. 混合粉体を有機溶媒もしくは水中に分散させたスラリーに焼結磁石体を浸してから引き上げた後乾燥させることで混合粉体を焼結磁石体表面に塗布し、熱処理を施すことを特徴とする請求項1乃至3のいずれか1項記載の希土類永久磁石の製造方法。   The mixed powder is applied to the surface of the sintered magnet body by dipping the sintered magnet body in a slurry in which the mixed powder is dispersed in an organic solvent or water, and then dried, followed by heat treatment. The method for producing a rare earth permanent magnet according to any one of claims 1 to 3. 熱処理される焼結磁石体の最小部の寸法が20mm以下の形状を有する請求項1乃至4のいずれか1項記載の希土類永久磁石の製造方法。   The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein a size of a minimum part of the sintered magnet body to be heat-treated has a shape of 20 mm or less. 組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部で、a+b+c+d=100)からなる焼結磁石体に対し、組成M1 d2 e(M1、M2はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上であるが、M1とM2とは互いに相違する。d、eは原子百分率を示し、0.1≦e≦99.9、dは残部で、d+e=100)からなり、かつ金属間化合物相を70体積%以上含む平均粒子径500μm以下の合金の粉末と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1、M2の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させたことを特徴とする希土類永久磁石。 Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance , A + b + c + d = 100), the composition M 1 d M 2 e (M 1 , M 2 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, One or more selected from Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi M 1 and M 2 are different from each other, d and e are atomic percentages, 0.1 ≦ e ≦ 99.9, d is the balance, d + e = 100), and the intermetallic compound phase and an average particle diameter 500μm or less of the alloy powder containing 70 vol% or more, average particle diameter of less oxide of R 1 100 [mu] m (R 1 is at least one element selected from rare earth elements inclusive of Sc and Y) In a state where the mixed powder containing 10% by mass or more is present on the surface of the sintered magnet body, the sintered magnet body and the mixed powder are vacuumed at a temperature lower than the sintering temperature of the sintered magnet body. Alternatively, by performing heat treatment in an inert gas, one or more elements of R 1 , M 1 , and M 2 are converted into grain boundary portions inside the sintered magnet body and / or sintered magnet body. A rare earth permanent magnet characterized by being diffused in the vicinity of a grain boundary in a main phase grain. 組成Ra1 bcd(RはY及びScを含む希土類元素から選ばれる1種又は2種以上、T1はFe及びCoのうちの1種又は2種、MはAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部でa+b+c+d=100)からなる焼結磁石体に対し、平均粒子径500μm以下のM1の粉末(M1はAl、Si、C、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上)と、平均粒子径が100μm以下のR1の酸化物(R1はSc及びYを含む希土類元素から選ばれる1種又は2種以上)を10質量%以上含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、当該焼結磁石体及び当該混合粉体を当該焼結磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、R1、M1の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させたことを特徴とする希土類永久磁石。 Composition R a T 1 b Mc B d (R is one or more selected from rare earth elements including Y and Sc, T 1 is one or two of Fe and Co, M is Al, Si 1 selected from C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi Species or 2 or more types, B is boron, a, b, c, d are atomic percentages, 12 ≦ a ≦ 20, 0 ≦ c ≦ 10, 4.0 ≦ d ≦ 7.0, b is the balance M 1 powder with an average particle diameter of 500 μm or less (M 1 is Al, Si, C, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) , Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi And two or more), an average particle diameter of the oxide of the following R 1 100 [mu] m (R 1 is a powder mixture containing one or more) more than 10 wt% selected from rare earth elements inclusive of Sc and Y By subjecting the sintered magnet body and the mixed powder to heat treatment in a vacuum or an inert gas at a temperature equal to or lower than the sintering temperature of the sintered magnet body in the state of being present on the surface of the sintered magnet body. , R 1 , M 1 , or two or more elements are diffused near the grain boundary in the sintered magnet body and / or in the vicinity of the grain boundary in the sintered magnet body main phase grain. Rare earth permanent magnet characterized by
JP2012094453A 2011-05-02 2012-04-18 Rare earth permanent magnet manufacturing method Active JP6019695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094453A JP6019695B2 (en) 2011-05-02 2012-04-18 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011102789 2011-05-02
JP2011102789 2011-05-02
JP2012094453A JP6019695B2 (en) 2011-05-02 2012-04-18 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2012248828A true JP2012248828A (en) 2012-12-13
JP6019695B2 JP6019695B2 (en) 2016-11-02

Family

ID=47468971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094453A Active JP6019695B2 (en) 2011-05-02 2012-04-18 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP6019695B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147711A (en) 2014-04-25 2016-12-23 히다찌긴조꾸가부시끼가이사 Method for producing r-t-b sintered magnet
JP2019075426A (en) * 2017-10-13 2019-05-16 日立金属株式会社 R-t-b based sintered magnet and manufacturing method thereof
US10410776B2 (en) 2014-12-12 2019-09-10 Hitachi Metals, Ltd. Production method for R-T-B-based sintered magnet
US10418171B2 (en) 2014-12-12 2019-09-17 Hitachi Metals, Ltd. Production method for R—T—B-based sintered magnet
US10510483B2 (en) 2014-09-11 2019-12-17 Hitachi Metals, Ltd. Production method for R-T-B sintered magnet
US10593472B2 (en) 2014-09-11 2020-03-17 Hitachi Metals, Ltd. Production method for R-T-B sintered magnet
CN111937095A (en) * 2018-03-29 2020-11-13 Tdk 株式会社 Samarium-iron-nitrogen-based magnet powder and method for producing same, and samarium-iron-nitrogen-based magnet and method for producing same
CN112820528A (en) * 2020-05-06 2021-05-18 廊坊京磁精密材料有限公司 Method for improving coercive force of sintered neodymium iron boron
JP2021087010A (en) * 2019-11-28 2021-06-03 煙台首鋼磁性材料株式有限公司 RARE EARTH ELEMENT DIFFUSION PROCESSING METHOD FOR Nd-Fe-B BASED SINTERED PERMANENT MAGNETIC MATERIAL
US11062844B2 (en) 2016-08-08 2021-07-13 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284738A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet material
JP2008235343A (en) * 2007-03-16 2008-10-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet and manufacturing method
JP2010098115A (en) * 2008-10-16 2010-04-30 Daido Steel Co Ltd Method of manufacturing rare earth magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284738A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet material
JP2008235343A (en) * 2007-03-16 2008-10-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet and manufacturing method
JP2010098115A (en) * 2008-10-16 2010-04-30 Daido Steel Co Ltd Method of manufacturing rare earth magnet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563295B2 (en) 2014-04-25 2020-02-18 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
KR20160147711A (en) 2014-04-25 2016-12-23 히다찌긴조꾸가부시끼가이사 Method for producing r-t-b sintered magnet
US10510483B2 (en) 2014-09-11 2019-12-17 Hitachi Metals, Ltd. Production method for R-T-B sintered magnet
US10593472B2 (en) 2014-09-11 2020-03-17 Hitachi Metals, Ltd. Production method for R-T-B sintered magnet
US10418171B2 (en) 2014-12-12 2019-09-17 Hitachi Metals, Ltd. Production method for R—T—B-based sintered magnet
US10410776B2 (en) 2014-12-12 2019-09-10 Hitachi Metals, Ltd. Production method for R-T-B-based sintered magnet
US11062844B2 (en) 2016-08-08 2021-07-13 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet
JP2019075426A (en) * 2017-10-13 2019-05-16 日立金属株式会社 R-t-b based sintered magnet and manufacturing method thereof
CN111937095A (en) * 2018-03-29 2020-11-13 Tdk 株式会社 Samarium-iron-nitrogen-based magnet powder and method for producing same, and samarium-iron-nitrogen-based magnet and method for producing same
CN111937095B (en) * 2018-03-29 2024-05-21 Tdk株式会社 Samarium-iron-nitrogen-based magnet powder, method for producing same, and samarium-iron-nitrogen-based magnet and method for producing same
JP2021087010A (en) * 2019-11-28 2021-06-03 煙台首鋼磁性材料株式有限公司 RARE EARTH ELEMENT DIFFUSION PROCESSING METHOD FOR Nd-Fe-B BASED SINTERED PERMANENT MAGNETIC MATERIAL
JP7137907B2 (en) 2019-11-28 2022-09-15 煙台東星磁性材料株式有限公司 Rare earth element diffusion treatment method for Nd--Fe--B system sintered permanent magnetic material
CN112820528A (en) * 2020-05-06 2021-05-18 廊坊京磁精密材料有限公司 Method for improving coercive force of sintered neodymium iron boron

Also Published As

Publication number Publication date
JP6019695B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
US11791093B2 (en) Rare earth permanent magnets and their preparation
JP5742776B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP5093485B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP6019695B2 (en) Rare earth permanent magnet manufacturing method
TWI431644B (en) Rare earth permanent magnet and manufacturing method thereof
KR101123176B1 (en) Method for producing rare earth permanent magnet material
JP4656323B2 (en) Method for producing rare earth permanent magnet material
JP4605396B2 (en) Method for producing rare earth permanent magnet material
JP5057111B2 (en) Rare earth magnet manufacturing method
JP4482769B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP4702549B2 (en) Rare earth permanent magnet
JP6090589B2 (en) Rare earth permanent magnet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150