JP2012248493A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2012248493A
JP2012248493A JP2011121221A JP2011121221A JP2012248493A JP 2012248493 A JP2012248493 A JP 2012248493A JP 2011121221 A JP2011121221 A JP 2011121221A JP 2011121221 A JP2011121221 A JP 2011121221A JP 2012248493 A JP2012248493 A JP 2012248493A
Authority
JP
Japan
Prior art keywords
concentration
fuel
liquid level
mixing tank
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011121221A
Other languages
Japanese (ja)
Inventor
Shinsuke Ando
慎輔 安藤
Akira Fujita
顕 藤田
Yoichiro Anami
洋一郎 阿南
Masakazu Koizumi
正和 小泉
Takeshi Miitsu
健 三井津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011121221A priority Critical patent/JP2012248493A/en
Publication of JP2012248493A publication Critical patent/JP2012248493A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system that manages a fuel concentration and a liquid level in a mixing tank in order to continue a stable power generation at a desired output for which DMFC is required.SOLUTION: A fuel cell system includes: a mixing tank for storing fuel; high concentration fuel supply means for supplying high concentration fuel to the mixing tank; water supply means for supplying water to the mixing tank; concentration detection means for detecting a concentration of fuel supplied to a fuel cell; liquid surface detection means for detecting a liquid surface position of the mixing tank; and control means. When the liquid surface position detected by the liquid surface detection means is located above a predetermined liquid surface position, the control means outputs a supply command signal only to the high concentration fuel supply means on the basis of the concentration detected by the concentration detection means. When the liquid surface position detected by the liquid surface detection means is located below the predetermined liquid surface position, the control means outputs the supply command signal to only one of the high concentration fuel supply means and the water supply means on the basis of the concentration detected by the concentration detection means.

Description

本発明は、液体有機化合物を燃料とする燃料電池に関し、燃料電池に循環供給する燃料の量および濃度を制御する方法に関する。   The present invention relates to a fuel cell using a liquid organic compound as a fuel, and to a method for controlling the amount and concentration of fuel circulated and supplied to the fuel cell.

液体有機化合物を燃料とする燃料電池には、メタノール,エタノール,ジメチルエーテルなどの液体有機化合物を燃料とする固体高分子形燃料電池は、騒音が小さく、運転温度が低い(約70〜80℃)、燃料の補給が容易であることなどの特長を有する。そのため、可搬式電源,電気自動車の電源、あるいは電動バイクやアシスト式自転車、さらには医療介護用の車椅子やシニアカーなどの軽車両用電源として、幅広い用途が期待されている。   In a fuel cell using a liquid organic compound as a fuel, a solid polymer fuel cell using a liquid organic compound such as methanol, ethanol, dimethyl ether as a fuel has low noise and a low operating temperature (about 70 to 80 ° C.). It has features such as easy refueling. Therefore, a wide range of uses are expected as a portable power source, a power source for an electric vehicle, or a power source for an electric motorcycle, an assist type bicycle, a light vehicle such as a medical care wheelchair or a senior car.

これらの用途の中で、メタノールを燃料とする直接メタノール型燃料電池(以下、DMFCと称する。)は、改質器を省略できる点、燃料を室温で補給できる点、出力に対する燃料コストがガソリン等よりも安い点、50〜70℃の比較的低温で発電できるので起動時間が短い点などの利点を有している。特に、燃料をポンプ等により強制的に流通させるアクティブ式DMFCは、数十Wから数百Wの高い出力が得られ、電子機器,照明器具などの比較的低電力機器の給電に適している。また、セルサイズの大型化,積層セル数の増加により1kW以上のDMFCを用いれば、移動体にも適用可能である。   Among these applications, a direct methanol fuel cell (hereinafter referred to as DMFC) using methanol as a fuel can omit a reformer, can supply fuel at room temperature, and has a fuel cost relative to output such as gasoline. Since it can generate power at a relatively low temperature of 50 to 70 ° C., it has advantages such as a short start-up time. In particular, an active DMFC that forcibly circulates fuel by a pump or the like can obtain a high output of several tens of watts to several hundred watts, and is suitable for feeding relatively low power devices such as electronic devices and lighting fixtures. In addition, if a DMFC of 1 kW or more is used due to an increase in cell size and an increase in the number of stacked cells, it can also be applied to a moving body.

アクティブ式DMFCでは、燃料水溶液を循環手段によって燃料電池に循環供給される。このような、循環型の燃料電池システムでは、発電反応により燃料と水が消費されるため、アノード極へ供給する燃料水溶液の燃料濃度を適正な範囲に保つこと、及び、アノード極へ燃料を送り込む混合タンク内の液量を適正に保つことが重要である。従来、燃料濃度と液量を制御するためのシステムとしては、例えば特許文献1では、高濃度燃料タンクからの燃料供給量と水タンクからの水の供給量を操作して混合液の濃度を制御するシステムを提案している。   In the active DMFC, an aqueous fuel solution is circulated and supplied to the fuel cell by a circulation means. In such a circulation type fuel cell system, since fuel and water are consumed by the power generation reaction, the fuel concentration of the aqueous fuel solution supplied to the anode electrode is maintained within an appropriate range, and the fuel is sent to the anode electrode. It is important to maintain an appropriate amount of liquid in the mixing tank. Conventionally, as a system for controlling the fuel concentration and the liquid amount, for example, in Patent Document 1, the concentration of the mixed liquid is controlled by operating the fuel supply amount from the high concentration fuel tank and the water supply amount from the water tank. A system to do this is proposed.

特開2005−11633号公報JP 2005-11633 A

本発明は、以下の技術課題を克服する。以下の説明では、液体有機化合物としてメタノールを例とするが、エタノール等の他の液体有機燃料を用いた燃料電池にも応用可能である。   The present invention overcomes the following technical problems. In the following description, methanol is used as an example of the liquid organic compound, but the present invention can also be applied to fuel cells using other liquid organic fuels such as ethanol.

本発明により解決する課題は、燃料電池の要求された発電出力、燃料電池温度や外気温の変化に応じて、メタノールあるいは水を混合タンクへの供給する量を適正に制御することである。   The problem to be solved by the present invention is to appropriately control the amount of methanol or water supplied to the mixing tank in accordance with the required power generation output of the fuel cell, changes in the fuel cell temperature and the outside air temperature.

DMFCの電池反応(式1)は、アノード(燃料極)上の酸化反応(式2)とカソード(空気極)上での還元反応(式3)の半電池反応式の和であり、1セル当たり6電子の授受によりCO2が1モル生成されることを意味する。
CH3OH+3/2O2 → CO2+2H2O ・・・・・ (式1)
CH3OH+H2O → CO2+6H++6e- ・・・・・ (式2)
3/2O2+6H++6e- → 3H2O ・・・・・ (式3)
したがって、要求された出力にするためにDMFCの電流を変化させると、発電で消費されるメタノールや水、生成されるCO2の量が変化する。理論上は上記反応式から発電により消費されたメタノールと水の量が決まり、このメタノールと水の消費量と混合タンクのメタノール濃度の関係に基づき、混合タンクにメタノールと水を供給すれば混合タンク内の液量とメタノール濃度を所定の範囲に維持することができる。
The DMFC battery reaction (formula 1) is the sum of the half-cell reaction formula of the oxidation reaction (formula 2) on the anode (fuel electrode) and the reduction reaction (formula 3) on the cathode (air electrode). It means that 1 mol of CO 2 is generated by giving and receiving 6 electrons per hit.
CH 3 OH + 3 / 2O 2 → CO 2 + 2H 2 O (Formula 1)
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (Formula 2)
3 / 2O 2 + 6H + + 6e → 3H 2 O (Formula 3)
Therefore, when the DMFC current is changed to obtain the required output, the amount of methanol and water consumed in power generation and the amount of CO 2 produced are changed. Theoretically, the amount of methanol and water consumed by power generation is determined from the above reaction formula. Based on the relationship between the amount of methanol and water consumed and the methanol concentration in the mixing tank, methanol and water are supplied to the mixing tank. The amount of liquid and the methanol concentration can be maintained within a predetermined range.

しかしながら、実際には以下の要因により発電で消費されるメタノールと水の量を推測することは困難である。   However, in practice, it is difficult to estimate the amount of methanol and water consumed by power generation due to the following factors.

DMFCでは、アノードに存在するメタノールが電解質膜を透過し、カソードに移動し、カソード上で酸素とメタノールの直接的酸化反応が起こることが知られている。
これはいわゆるメタノール・クロスオーバーという現象である。これが起こると、カソードの電位が著しく低下し、電池全体では端子間電圧の低下、出力の低下が起こり、問題となっている。
In DMFC, it is known that methanol present in the anode permeates the electrolyte membrane, moves to the cathode, and a direct oxidation reaction of oxygen and methanol occurs on the cathode.
This is a so-called methanol crossover phenomenon. When this occurs, the potential of the cathode is remarkably lowered, and the voltage across terminals and the output are lowered in the whole battery, which is a problem.

この現象は、DMFCへ供給するメタノール濃度を下げると相対的にメタノール・クロスオーバー量が低減することができるが、高出力を要求されている条件では、燃料不足による出力低下が起こる。また、メタノール濃度が高いと、低出力条件で、メタノール・クロスオーバーによる出力低下が出力に対し大きな割合になってしまう。すなわち、燃料の利用効率の低いシステムになってしまう。   In this phenomenon, if the concentration of methanol supplied to the DMFC is lowered, the amount of methanol crossover can be relatively reduced. However, under the condition where high output is required, the output decreases due to fuel shortage. Further, when the methanol concentration is high, the output decrease due to methanol crossover becomes a large ratio to the output under low output conditions. That is, it becomes a system with low fuel utilization efficiency.

同様に、アノードに存在する水も電解質膜を透過し、その量は発電時の電流や温度に依存して変化する。温度は、電流値(または出力),外気温の変化、あるいはセル抵抗の経時変化の影響を受ける。特に、発電出力が変化した前後では、DMFC自身の温度が過渡的に変動するので、安定した温度に到達するまでのメタノール・クロスオーバー量や水透過量も変動しやすい。   Similarly, the water present in the anode also permeates the electrolyte membrane, and the amount varies depending on the current and temperature during power generation. The temperature is affected by changes in current value (or output), outside air temperature, or cell resistance over time. In particular, since the temperature of the DMFC changes transiently before and after the power generation output changes, the amount of methanol crossover and the amount of water permeation until reaching a stable temperature are likely to change.

このように、出力変化や温度等の発電時の運転状態によってメタノール・クロスオーバー量や水透過量は変動し、混合タンク内のメタノール水溶液のメタノール濃度、液量は理論値よりも大幅に変動することになる。そのため、例えば、推定値をもとに液量を管理した場合には、液量の変動にともないメタノール濃度を所望の濃度に収束させるまでに時間を要したり、所望の濃度に収束させるためにメタノールや水が供給され続けることで混合タンク内の液量が大幅に上昇し、システムとして成立しなくなる場合が生じる。これにより、燃料電池の発電効率も低下してしまう。   In this way, the amount of methanol crossover and the amount of water permeation vary depending on the operating conditions during power generation, such as changes in output and temperature, and the concentration and amount of methanol in the methanol aqueous solution in the mixing tank vary significantly from theoretical values. It will be. Therefore, for example, when the liquid volume is managed based on the estimated value, it takes time to converge the methanol concentration to the desired concentration with the fluctuation of the liquid volume, or to converge to the desired concentration If methanol or water continues to be supplied, the amount of liquid in the mixing tank increases significantly, and the system may not be established. This also reduces the power generation efficiency of the fuel cell.

特に、DMFCの出力領域が100W以上と大きくなるとメタノールや水の消費量も増加するため、メタノール濃度が低い混合タンク内の燃料は、液位や濃度の変動が大きくなる問題が生じてしまう。この問題は混合タンクの容積を増やし、供給する燃料の体積を増やすことで対処が可能であるが、据え置き型ではなく可搬型のDMFCシステムにおいては、システムの大型化は好ましくない。   In particular, when the output area of the DMFC is increased to 100 W or more, the consumption of methanol and water also increases. Therefore, the fuel in the mixing tank having a low methanol concentration causes a problem that the fluctuation of the liquid level and concentration becomes large. This problem can be dealt with by increasing the volume of the mixing tank and increasing the volume of fuel to be supplied. However, in a DMFC system that is portable rather than stationary, it is not preferable to increase the size of the system.

特許文献1等の従来のシステムでは、混合タンク内のメタノール濃度、液量の管理におけるメタノール・クロスオーバー量や水透過量の変動による影響については十分な検討がなされていなかった。   In conventional systems such as Patent Document 1, sufficient studies have not been made on the influence of fluctuations in methanol crossover amount and water permeation amount in the control of the methanol concentration and the liquid amount in the mixing tank.

本発明の目的は、DMFCを要求された所望の出力で安定発電を継続させるために混合タンク内の燃料濃度および液位を管理するシステムを提供することにある。   An object of the present invention is to provide a system for managing the fuel concentration and the liquid level in the mixing tank so that the DMFC can continue the stable power generation at the desired output required.

そこで発明者らは、DMFCが所望の出力で安定に発電できる混合タンク内のメタノール濃度および液位の管理方法について鋭意検討し、新規な制御システムを備えた燃料電池システムを確立した。   Accordingly, the inventors have intensively studied a method for managing the methanol concentration and the liquid level in the mixing tank that enables the DMFC to stably generate power at a desired output, and established a fuel cell system equipped with a novel control system.

本発明によれば、液体有機化合物を燃料とする固体高分子形燃料電池と、前記燃料電池へ供給する燃料を収納する混合タンクと、前記燃料電池に供給する前記燃料よりも有機化合物の主成分の濃度が高い高濃度燃料を前記混合タンクに供給する高濃度燃料供給手段と、前記混合タンクに水を供給する水供給手段と、前記混合タンクから前記燃料電池へ供給する前記燃料の濃度を検知する濃度検知手段と、前記混合タンクの液面の位置を検知する液面検知手段と、前記濃度検知手段及び液面検知手段から入力される情報に基づいて、前記高濃度燃料供給手段および前記水供給手段に供給指令信号を出力する制御手段と、を備えた燃料電池システムであって、前記制御手段は、前記液面検知手段で検知した液面の位置が所定の液面の位置を上回った場合、前記濃度検知手段で検知した濃度に基づいて前記高濃度燃料供給手段のみに供給指令信号を出力し、前記液面検知手段で検知した液面の位置が所定の液面の位置を下回った場合、前記濃度検知手段で検知した濃度に基づいて前記高濃度燃料供給手段または前記水供給手段のいずれか一方のみに供給指令信号を出力することを特徴とする燃料電池システムが提供される。   According to the present invention, a polymer electrolyte fuel cell using a liquid organic compound as a fuel, a mixing tank for storing fuel to be supplied to the fuel cell, and a main component of the organic compound than the fuel to be supplied to the fuel cell A high-concentration fuel supply means for supplying a high-concentration fuel having a high concentration to the mixing tank; a water supply means for supplying water to the mixing tank; and a concentration of the fuel supplied from the mixing tank to the fuel cell. Concentration detecting means, liquid level detecting means for detecting the position of the liquid level in the mixing tank, and the high concentration fuel supply means and the water based on information input from the concentration detecting means and the liquid level detecting means. And a control means for outputting a supply command signal to the supply means, wherein the control means has a position of the liquid level detected by the liquid level detection means exceeding a predetermined position of the liquid level. In this case, a supply command signal is output only to the high-concentration fuel supply means based on the concentration detected by the concentration detection means, and the position of the liquid level detected by the liquid level detection means falls below a predetermined liquid level position. In this case, a fuel cell system is provided in which a supply command signal is output to only one of the high-concentration fuel supply unit and the water supply unit based on the concentration detected by the concentration detection unit.

本発明によれば、燃料電池を所望の出力にて安定して運転を継続できる制御方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control method which can continue a driving | operation of a fuel cell stably with a desired output can be provided.

本発明の燃料電池システムの構成を示す。The structure of the fuel cell system of this invention is shown. 本発明の第1の実施形態におけるフローチャートを示す。The flowchart in the 1st Embodiment of this invention is shown. 本発明の第1の実施形態による運転方法の一例を示す。An example of the driving | running method by the 1st Embodiment of this invention is shown. 本発明の第1の実施形態による運転方法の一例を示す。An example of the driving | running method by the 1st Embodiment of this invention is shown. 本発明の第2の実施形態におけるフローチャートを示す。The flowchart in the 2nd Embodiment of this invention is shown. 本発明の第2の実施形態による運転方法の一例を示す。An example of the driving | running method by the 2nd Embodiment of this invention is shown.

以下に本発明に係る実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Embodiments according to the present invention will be described below, but the present invention is not limited to the following embodiments.

図1には、DMFCシステム101の構成を示す。システム101のほぼ中央にDMFC本体102がある。DMFC本体102のアノードには、混合タンク108に貯蔵されたメタノール水溶液の一部が燃料循環ポンプ109によって燃料循環ライン105を経由して供給される。アノードでは、メタノールが酸化され(式2)、その後、未反応のメタノール水溶液が再び混合タンク108に戻される。また、DMFC本体102のカソードには、ファンやその他の空気供給手段111から空気が供給され、水を生成する(式3)。水素イオンは、アノードでメタノールが酸化された際に生成した水素イオンが、電解質膜を透過してきたものである(式2)。このように、アノードにメタノール水溶液、カソードに空気がそれぞれ供給されることにより、DMFC本体102で発電が行われる。   FIG. 1 shows the configuration of the DMFC system 101. There is a DMFC main body 102 at the center of the system 101. A part of the methanol aqueous solution stored in the mixing tank 108 is supplied to the anode of the DMFC main body 102 via the fuel circulation line 105 by the fuel circulation pump 109. At the anode, methanol is oxidized (formula 2), and then the unreacted aqueous methanol solution is returned to the mixing tank 108 again. Air is supplied to the cathode of the DMFC main body 102 from a fan or other air supply means 111 to generate water (Formula 3). The hydrogen ions are the hydrogen ions generated when methanol is oxidized at the anode and have passed through the electrolyte membrane (Formula 2). In this manner, the DMFC main body 102 generates power by supplying the methanol aqueous solution to the anode and the air to the cathode.

また、混合タンク108に貯蔵されているメタノール水溶液は、発電とともに貯蔵量および濃度が減少していくため、混合タンク108にメタノールと水を補充するためのメタノール容器103,水容器107を備える。メタノール容器103に貯蔵されているメタノールは100%のメタノールでも良いが、一般的には水で希釈されたDMFC本体102の発電に使われる燃料よりも高濃度メタノール水溶液が用いられる。その濃度は概ね40%以上である。この中から必要量のメタノールが、バルブやポンプからなる燃料供給手段104によって混合タンク108に導入される。また、水容器106に貯蔵されている水は、バルブやポンプからなる水供給手段107によって混合タンク108に導入される。   In addition, the methanol aqueous solution stored in the mixing tank 108 decreases in storage amount and concentration with power generation. Therefore, the mixing tank 108 includes a methanol container 103 and a water container 107 for supplementing methanol and water. The methanol stored in the methanol container 103 may be 100% methanol, but generally a higher concentration aqueous methanol solution is used than the fuel used for power generation of the DMFC main body 102 diluted with water. Its concentration is approximately 40% or more. A required amount of methanol is introduced into the mixing tank 108 by the fuel supply means 104 including a valve and a pump. Further, the water stored in the water container 106 is introduced into the mixing tank 108 by the water supply means 107 including a valve and a pump.

混合タンク108では、DMFC102本体に供給するメタノール水溶液のメタノール濃度を適正な範囲に保つことと、混合タンク108内の液量を適正に保つことが重要となる。メタノール濃度および液量を制御するために、メタノール濃度を検知するための濃度検知手段112と液面検知手段113が設けられている。メタノール濃度を検知するための濃度検知手段としては、光学式,超音波式,弾性表面波式など種々の濃度検出素子や、DMFC本体の温度,電圧,電流等を計測し、その計測値から濃度を予測する方法が挙げられ、所望のものを選択することができる。また、液面検知手段113は、混合タンク108内の燃料の液位が所定の位置以上あるいは未満であるかを判別する機能を有する。例えば、所定の位置以上であれば「HIGH」、所定の位置未満であれば「LOW」というような信号を自動制御機構120へ出力することで液の位置を判別する。   In the mixing tank 108, it is important to maintain the methanol concentration of the aqueous methanol solution supplied to the main body of the DMFC 102 within an appropriate range and to maintain the liquid amount in the mixing tank 108 at an appropriate level. In order to control the methanol concentration and the liquid amount, a concentration detecting means 112 and a liquid level detecting means 113 for detecting the methanol concentration are provided. Concentration detection means for detecting the concentration of methanol is to measure the concentration, temperature, voltage, current, etc. of various concentration detection elements such as optical, ultrasonic, and surface acoustic wave types, DMFC itself, and use the measured values to determine the concentration. And a desired one can be selected. Further, the liquid level detection means 113 has a function of determining whether the fuel level in the mixing tank 108 is greater than or less than a predetermined position. For example, the position of the liquid is determined by outputting to the automatic control mechanism 120 a signal such as “HIGH” if it is greater than or equal to a predetermined position and “LOW” if it is less than the predetermined position.

燃料供給手段104及び水供給手段107は、濃度検知手段112で検知されたメタノール濃度と液面検知手段113で検知された液位に応じて動作する。この燃料供給手段104及び水供給手段107の制御は、燃料供給手段104及び水供給手段107から入力される情報に基づいて、マイコン等の自動制御機構120によって行われる。例えば、燃料供給手段の動作方法としては、濃度検知手段112として濃度検出素子を用いた場合を例とすると、濃度検出素子112で検出したメタノール濃度が所定濃度以下になった時に動作させる方法や、濃度検出素子112で検出したメタノール濃度と所定濃度との差分に応じて供給量を決定する方法がある。混合タンク108のメタノール濃度,液位の制御方法の詳細は後述する。   The fuel supply unit 104 and the water supply unit 107 operate according to the methanol concentration detected by the concentration detection unit 112 and the liquid level detected by the liquid level detection unit 113. The fuel supply unit 104 and the water supply unit 107 are controlled by an automatic control mechanism 120 such as a microcomputer based on information input from the fuel supply unit 104 and the water supply unit 107. For example, as an operation method of the fuel supply means, taking a case where a concentration detection element is used as the concentration detection means 112 as an example, a method of operating when the methanol concentration detected by the concentration detection element 112 becomes a predetermined concentration or less, There is a method of determining the supply amount according to the difference between the methanol concentration detected by the concentration detection element 112 and a predetermined concentration. Details of the method for controlling the methanol concentration and the liquid level in the mixing tank 108 will be described later.

メタノールの酸化反応(式2)によって発生した二酸化炭素は、DMFC本体102では、溶存あるいは微小な気泡として存在する。その二酸化炭素は燃料循環ライン105を経由して混合タンク108に移り、その気相に大半の二酸化炭素が放出される。さらに、その気相の圧力が増加すると、混合タンク108の上部に設置した気液分離膜110を通してシステム101の外部に放出される。この気液分離膜110には、触媒処理反応器を設け、微量の有機物を除去する機構を付与しても良い。   Carbon dioxide generated by the oxidation reaction of methanol (formula 2) exists in the DMFC main body 102 as dissolved or fine bubbles. The carbon dioxide moves to the mixing tank 108 via the fuel circulation line 105, and most of the carbon dioxide is released into the gas phase. Further, when the pressure of the gas phase increases, the gas is released to the outside of the system 101 through the gas-liquid separation membrane 110 installed at the upper part of the mixing tank 108. The gas-liquid separation membrane 110 may be provided with a mechanism for removing a trace amount of organic substances by providing a catalyst treatment reactor.

発電後の排ガスは、システム101の外部に放出される。空気排ガス出口に気液分離膜と冷却器を設置し、水を回収し、冷却水タンク106に戻す方法も採ることができる。   The exhaust gas after power generation is released to the outside of the system 101. A method of installing a gas-liquid separation membrane and a cooler at the air exhaust gas outlet, collecting water, and returning it to the cooling water tank 106 can also be adopted.

本発明で用いる濃度検知手段112の設置場所は、メタノール水溶液が循環するライン上であれば特に制限はないが、ここでは混合タンク108内に設置する。メタノール濃度をより迅速に計測するためには、混合タンク108あるいは混合タンク108に近い場所に濃度検知手段112を設置することが望ましい。混合タンクあるいはその近傍に設けることで、計測の時間遅れを回避し、濃度制御を迅速に行うことができる。このような構成によって、メタノール濃度を調整した燃料を、混合タンク108からDMFCシステム102に供給することができる。   The installation location of the concentration detection means 112 used in the present invention is not particularly limited as long as it is on the line through which the aqueous methanol solution circulates. In order to measure the methanol concentration more quickly, it is desirable to install the concentration detection means 112 in the mixing tank 108 or a place close to the mixing tank 108. By providing in the mixing tank or in the vicinity thereof, the measurement time delay can be avoided and the concentration control can be performed quickly. With such a configuration, the fuel whose methanol concentration is adjusted can be supplied from the mixing tank 108 to the DMFC system 102.

本発明の第1の実施形態による混合タンク内の燃料の制御方法の一例について、図2を用いて説明する。   An example of a method for controlling the fuel in the mixing tank according to the first embodiment of the present invention will be described with reference to FIG.

システム101が起動し、DMFC本体102の電圧が所定の値に達すると、自動制御機構120には、液位検知手段で検知した液位信号と濃度検知手段112で検知した濃度信号が入力され(S1,S2)、所定の液位よりも上か否かを判断する(S3)。   When the system 101 is activated and the voltage of the DMFC main body 102 reaches a predetermined value, the liquid level signal detected by the liquid level detection means and the concentration signal detected by the concentration detection means 112 are input to the automatic control mechanism 120 ( S1, S2), it is determined whether or not it is above a predetermined liquid level (S3).

所定の液位が上回っていると判断された場合、濃度が所定値よりも上か否かを判断する(S4)。   When it is determined that the predetermined liquid level is exceeded, it is determined whether or not the concentration is higher than a predetermined value (S4).

濃度が所定値を上回っていると判断されたときには何もせず、濃度が所定値を下回っている場合は燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力,動作させ(S5)、一定時間混合タンク108へ高濃度メタノール水溶液を供給した後、燃料供給手段104を停止させる(S6)。   When it is determined that the concentration is higher than the predetermined value, nothing is performed. When the concentration is lower than the predetermined value, a supply command signal for the high-concentration methanol aqueous solution is output from the fuel control line 122 to the fuel supply means 104 and operated. (S5) After supplying the high concentration methanol aqueous solution to the mixing tank 108 for a certain time, the fuel supply means 104 is stopped (S6).

S3において、混合タンク108内の燃料の液位が所定の液位を下回っていると判断された場合も、濃度が所定値よりも上か否かを判断する(S7)。   If it is determined in S3 that the liquid level of the fuel in the mixing tank 108 is lower than the predetermined liquid level, it is determined whether or not the concentration is higher than the predetermined value (S7).

この場合では、濃度が所定値を上回っていると判断された場合は水制御ライン123から水供給手段107に水の供給指令信号を出力し、水供給手段107を動作させ(S8)、一定時間混合タンク108へ水を供給した後、水供給手段107を停止させる(S9)。   In this case, when it is determined that the concentration exceeds a predetermined value, a water supply command signal is output from the water control line 123 to the water supply means 107, the water supply means 107 is operated (S8), and a predetermined time period is reached. After supplying water to the mixing tank 108, the water supply means 107 is stopped (S9).

濃度が所定値を下回っていると判断された場合は、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104を動作させ(S10)、一定時間混合タンク108へ高濃度メタノール水溶液を供給した後、燃料供給手段104を停止させる(S11)。   If it is determined that the concentration is lower than the predetermined value, the fuel control line 122 outputs a supply command signal for the high-concentration methanol aqueous solution to the fuel supply unit 104 to operate the fuel supply unit 104 (S10), and for a certain period of time. After the high-concentration methanol aqueous solution is supplied to the mixing tank 108, the fuel supply means 104 is stopped (S11).

上述した方法でシステムを動作した例を図3から図4に例示する。   An example in which the system is operated by the above-described method is illustrated in FIGS.

(実施例1)
メタノール容器103には50%メタノール水溶液を投入し、システムの出力は100W一定で動作したところ、混合タンク内108内の濃度および液位の時間変化は図3のような挙動を示した。すなわち、燃料濃度が所定の濃度に達すると高濃度メタノール水溶液が供給されることで混合タンク108内の濃度が上昇し、その後DMFC本体102の発電に伴う燃料消費により濃度が減少する。そして再び燃料濃度が所定の濃度になると高濃度メタノールを供給するという周期的な挙動を示した。
Example 1
When 50% aqueous methanol solution was charged into the methanol container 103 and the output of the system was operated at a constant 100 W, the change in concentration and liquid level in the mixing tank 108 showed the behavior as shown in FIG. That is, when the fuel concentration reaches a predetermined concentration, the concentration in the mixing tank 108 is increased by supplying the high-concentration methanol aqueous solution, and then the concentration is decreased due to fuel consumption accompanying the power generation of the DMFC main body 102. When the fuel concentration reached a predetermined concentration again, a periodic behavior of supplying high concentration methanol was shown.

また、混合タンク108内の液位は、燃料濃度が所定の濃度よりも高い時には比較的短い周期で水供給手段104が動作し、所定の液位を保つような挙動を示した。また、高濃度燃料が供給された時には液位が比較的大きく上昇した。DMFC本体102の発電に伴う燃料量の減少により、液位は徐々に低下していき、所定の液位になると燃料濃度が所定の値に達するため比較的短い周期で変動するような挙動を示した。   Further, the liquid level in the mixing tank 108 behaved such that when the fuel concentration is higher than the predetermined concentration, the water supply means 104 operates at a relatively short period and maintains the predetermined liquid level. In addition, when the high concentration fuel was supplied, the liquid level rose relatively large. The liquid level gradually decreases due to a decrease in the amount of fuel accompanying the power generation of the DMFC main body 102, and when the liquid level reaches a predetermined level, the fuel concentration reaches a predetermined value and thus shows a behavior that fluctuates in a relatively short cycle. It was.

(実施例2)
メタノール容器103に50%メタノール水溶液を投入し、システムの出力を途中で変えて動作したところ、混合タンク108内の濃度および液位の時間変化は図4のような挙動を示した。燃料濃度が所定の濃度に達すると、高濃度メタノール水溶液を供給する点は実施例1と同様である。出力を100Wから150Wに変化すると、DMFC本体102が発電により生成する炭酸ガス量が増加することによる液位の上昇がみられた。そして燃料を供給する時間間隔が短くなり、その濃度の振幅も小さくなった。これは出力が増えたことにより、メタノールおよび水の消費量も増えたためである。
(Example 2)
When 50% aqueous methanol solution was charged into the methanol container 103 and the output of the system was changed halfway, the concentration and the liquid level in the mixing tank 108 changed with time as shown in FIG. The point that the high concentration methanol aqueous solution is supplied when the fuel concentration reaches a predetermined concentration is the same as that of the first embodiment. When the output was changed from 100 W to 150 W, an increase in liquid level was observed due to an increase in the amount of carbon dioxide generated by the DMFC main body 102 by power generation. The time interval for supplying the fuel was shortened, and the amplitude of the concentration was also reduced. This is because the consumption of methanol and water has increased due to the increase in output.

本実施例では、本発明の第1の実施形態により出力が変化しても濃度および液位の制御が可能であることを例示した。   In this example, it was exemplified that the concentration and the liquid level can be controlled even if the output is changed according to the first embodiment of the present invention.

次に本発明の第2の実施形態による混合タンク内の燃料の制御方法の一例について、図5を用いて説明する。   Next, an example of a method for controlling the fuel in the mixing tank according to the second embodiment of the present invention will be described with reference to FIG.

システム101が起動し、DMFC本体102の電圧が所定の値に達すると、自動制御機構120には、液位検知手段で検知した液位信号と濃度検知手段で検知した濃度信号が入力され(SS1,SS2)、所定の液位よりも上か否かを判断する(SS3)。本実施形態では、検知した濃度の値を濃度Aする。   When the system 101 is activated and the voltage of the DMFC main body 102 reaches a predetermined value, the liquid level signal detected by the liquid level detection means and the concentration signal detected by the concentration detection means are input to the automatic control mechanism 120 (SS1). SS2), it is determined whether or not the liquid level is higher than a predetermined liquid level (SS3). In this embodiment, the detected density value is density A.

所定の液位が上回っていると判断された場合、濃度Aが所定値よりも上か否かを判断する(SS4)。ここでは、所定の濃度をCとする。   When it is determined that the predetermined liquid level is higher, it is determined whether or not the concentration A is higher than a predetermined value (SS4). Here, the predetermined density is C.

濃度Aが所定値を上回っていると判断されたときには何もせず、濃度Aが所定値を上回っていないと判断された場合は、濃度Aが濃度C1を上回っているか否かを判断する(SS5)。ここでC1は、C1<Cの関係であることとする。濃度AがC1を上回っていると判断されたとき、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt1秒間動作させる(SS6)。   When it is determined that the density A exceeds the predetermined value, nothing is done, and when it is determined that the density A does not exceed the predetermined value, it is determined whether the density A exceeds the density C1 (SS5). ). Here, C1 has a relationship of C1 <C. When it is determined that the concentration A is higher than C1, a supply command signal for the high-concentration methanol aqueous solution is output from the fuel control line 122 to the fuel supply means 104, and the fuel supply means 104 is operated for t1 seconds (SS6).

濃度AがC1を上回っていないと判断された場合、濃度Aが濃度C2を上回っているか否かを判断する(SS7)。ここでC2は、C2<C1の関係であることとする。濃度AがC2を上回っていると判断されたとき、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt2秒間動作させる(SS8)。ここで、時間t2はt1≦t2の関係であることとする。   When it is determined that the density A does not exceed C1, it is determined whether the density A exceeds the density C2 (SS7). Here, C2 has a relationship of C2 <C1. When it is determined that the concentration A is higher than C2, a supply command signal for the high-concentration aqueous methanol solution is output from the fuel control line 122 to the fuel supply means 104, and the fuel supply means 104 is operated for t2 seconds (SS8). Here, the time t2 has a relationship of t1 ≦ t2.

濃度AがC2を上回っていないと判断された場合、濃度Aが濃度C3を上回っているか否かを判断する(SS9)。ここでC3は、C3<C2の関係であることとする。濃度AがC3を上回っていると判断されたとき、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt3秒間動作させる(SS10)。ここで、時間t3はt2≦t3の関係であることとする。濃度AがC3を上回っていないと判断された場合、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt4秒間動作させる(SS11)。ここで、時間t4はt3≦t4の関係であることとする。   If it is determined that the concentration A does not exceed C2, it is determined whether the concentration A exceeds the concentration C3 (SS9). Here, C3 has a relationship of C3 <C2. When it is determined that the concentration A exceeds C3, a supply command signal for the high-concentration aqueous methanol solution is output from the fuel control line 122 to the fuel supply unit 104, and the fuel supply unit 104 is operated for t3 seconds (SS10). Here, the time t3 has a relationship of t2 ≦ t3. When it is determined that the concentration A does not exceed C3, a supply command signal for the high-concentration aqueous methanol solution is output from the fuel control line 122 to the fuel supply unit 104, and the fuel supply unit 104 is operated for t4 seconds (SS11). Here, the time t4 has a relationship of t3 ≦ t4.

SS3で液位が所定値を上回っていないと判断された場合も、濃度Aが所定値Cよりも上か否かを判断する(SS12)。   If it is determined in SS3 that the liquid level does not exceed the predetermined value, it is determined whether the concentration A is higher than the predetermined value C (SS12).

濃度AがCを上回っていると判断された場合、濃度Aが濃度C4を下回っているか否かを判断する(SS13)。濃度Aが所定値を下回っていると判断された場合は、水制御ライン123から水供給手段107に水の供給指令信号を出力し、水供給手段107を一定時間動作させ(SS14)、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt秒間動作させる(SS15)。ここで、時間tはt≦t1の関係であることとする。   If it is determined that the density A is higher than C, it is determined whether the density A is lower than the density C4 (SS13). When it is determined that the concentration A is lower than the predetermined value, a water supply command signal is output from the water control line 123 to the water supply means 107, the water supply means 107 is operated for a certain time (SS14), and fuel control is performed. A supply command signal for the high-concentration aqueous methanol solution is output from the line 122 to the fuel supply means 104, and the fuel supply means 104 is operated for t seconds (SS15). Here, the time t has a relationship of t ≦ t1.

濃度Aが所定値を上回っていないと判断された場合、水制御ライン123から水供給手段107に水の供給指令信号を出力し、水供給手段107を一定時間動作させる(SS16)。   When it is determined that the concentration A does not exceed the predetermined value, a water supply command signal is output from the water control line 123 to the water supply unit 107, and the water supply unit 107 is operated for a predetermined time (SS16).

濃度AがCを上回っていないと判断された場合、水制御ライン123から水供給手段107に水の供給指令信号を出力し、水供給手段107を一定時間動作させ(SS17)、濃度Aが濃度C1を上回っているか否かを判断する(SS5)。   When it is determined that the concentration A does not exceed C, a water supply command signal is output from the water control line 123 to the water supply means 107, the water supply means 107 is operated for a certain time (SS17), and the concentration A is the concentration. It is determined whether or not it exceeds C1 (SS5).

濃度AがC1を上回っていると判断されたとき、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt1秒間動作させる(SS6)。   When it is determined that the concentration A is higher than C1, a supply command signal for the high-concentration methanol aqueous solution is output from the fuel control line 122 to the fuel supply means 104, and the fuel supply means 104 is operated for t1 seconds (SS6).

濃度AがC1を上回っていないと判断された場合、濃度Aが濃度C2を上回っているか否かを判断する(SS7)。ここでC2は、C2<C1の関係であることとする。濃度AがC2を上回っていると判断されたとき、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt2秒間動作させる(SS8)。   When it is determined that the density A does not exceed C1, it is determined whether the density A exceeds the density C2 (SS7). Here, C2 has a relationship of C2 <C1. When it is determined that the concentration A is higher than C2, a supply command signal for the high-concentration aqueous methanol solution is output from the fuel control line 122 to the fuel supply means 104, and the fuel supply means 104 is operated for t2 seconds (SS8).

濃度AがC2を上回っていないと判断された場合、濃度Aが濃度C3を上回っているか否かを判断する(SS9)。ここでC3は、C3<C2の関係であることとする。濃度AがC3を上回っていると判断されたとき、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt3秒間動作させる(SS10)。濃度AがC3を上回っていないと判断された場合、燃料制御ライン122から燃料供給手段104に高濃度メタノール水溶液の供給指令信号を出力し、燃料供給手段104をt4秒間動作させる(SS11)。   If it is determined that the concentration A does not exceed C2, it is determined whether the concentration A exceeds the concentration C3 (SS9). Here, C3 has a relationship of C3 <C2. When it is determined that the concentration A exceeds C3, a supply command signal for the high-concentration aqueous methanol solution is output from the fuel control line 122 to the fuel supply unit 104, and the fuel supply unit 104 is operated for t3 seconds (SS10). When it is determined that the concentration A does not exceed C3, a supply command signal for the high-concentration aqueous methanol solution is output from the fuel control line 122 to the fuel supply unit 104, and the fuel supply unit 104 is operated for t4 seconds (SS11).

ここで示した実施形態では、図2あるいは図5のようなフローチャートにしたがって濃度を判断する方法を示したが、例えば検知した濃度と所定の濃度との差分に応じたアクション、この場合燃料あるいは水を混合タンク108へ供給する条件をあらかじめテーブル化しておき、そのテーブルに応じた処理を行うように制御すれば、本実施形態よりも詳細な制御方法を実現することができる。   In the embodiment shown here, the method for determining the concentration according to the flowchart as shown in FIG. 2 or FIG. 5 is shown. However, for example, an action according to the difference between the detected concentration and the predetermined concentration, in this case, fuel or water If the conditions for supplying the mixture to the mixing tank 108 are tabulated in advance and control is performed so as to perform processing according to the table, a more detailed control method than that of the present embodiment can be realized.

(実施例3)
図5のフローチャートに従う制御方法において、パラメータをC=3.0%,C1=2.9%,C2=2.8%,C3=2.7%,C4=3.2%,t=1s,t1=4s,t2=7s,t3=10s,t4=14sと設定し、フローの周期を30sとして自動制御機構120に組み込んだ。メタノール容器103には60%メタノール水溶液を投入し、システムの出力は100Wで動作し、途中で150Wに増加させて動作したところ、混合タンク内108内の濃度および液位の時間変化は図6のような挙動を示した。すなわち、燃料濃度は所定の濃度(本実施例では3%)近傍で変動し、その振幅は実施例1や実施例2と比較して小さくなった。
(Example 3)
In the control method according to the flowchart of FIG. 5, the parameters are C = 3.0%, C1 = 2.9%, C2 = 2.8%, C3 = 2.7%, C4 = 3.2%, t = 1s, The t1 = 4 s, t2 = 7 s, t3 = 10 s, and t4 = 14 s were set, and the flow cycle was set to 30 s and incorporated in the automatic control mechanism 120. The methanol container 103 was charged with a 60% aqueous methanol solution, the system output was operated at 100 W, and was increased to 150 W in the middle. The change in concentration and liquid level in the mixing tank 108 over time is shown in FIG. It showed the following behavior. That is, the fuel concentration fluctuated in the vicinity of a predetermined concentration (3% in this embodiment), and the amplitude thereof was smaller than those in the first and second embodiments.

また、混合タンク108内の液位の変動幅が実施例1や実施例2と比較して小さくなり、所定の液位を保つような挙動を示した。   In addition, the fluctuation level of the liquid level in the mixing tank 108 was smaller than that in Example 1 or Example 2, and the behavior was such that a predetermined liquid level was maintained.

これらの挙動は、出力が変化しても大きな変化は認められず、出力に依らずに燃料の濃度および液位を制御できることがわかった。   These behaviors showed no significant change even when the output changed, and it was found that the fuel concentration and liquid level could be controlled without depending on the output.

本実施例では、本発明の第2の実施形態により出力が変化しても濃度および液位の制御が可能であることを例示した。   In this example, it was exemplified that the concentration and the liquid level can be controlled even if the output changes according to the second embodiment of the present invention.

101 燃料電池システム
102 燃料電池
103 メタノール容器
104 燃料供給手段
105 燃料循環ライン
106 冷却水タンク
107 水供給手段
108 混合タンク
109 燃料循環ポンプ
110 気液分離膜
111 空気供給手段
112 濃度検出素子
113 液面検知手段
120 制御回路
121 濃度信号ライン
122 燃料制御ライン
123 水制御ライン
DESCRIPTION OF SYMBOLS 101 Fuel cell system 102 Fuel cell 103 Methanol container 104 Fuel supply means 105 Fuel circulation line 106 Cooling water tank 107 Water supply means 108 Mixing tank 109 Fuel circulation pump 110 Gas-liquid separation film 111 Air supply means 112 Concentration detection element 113 Liquid level detection Means 120 Control circuit 121 Concentration signal line 122 Fuel control line 123 Water control line

Claims (8)

液体有機化合物を燃料とする固体高分子形燃料電池と、
前記燃料電池へ供給する燃料を収納する混合タンクと、
前記燃料電池に供給する前記燃料よりも有機化合物の主成分の濃度が高い高濃度燃料を前記混合タンクに供給する高濃度燃料供給手段と、
前記混合タンクに水を供給する水供給手段と、
前記混合タンクから前記燃料電池へ供給する前記燃料の濃度を検知する濃度検知手段と、
前記混合タンクの液面の位置を検知する液面検知手段と、
前記濃度検知手段及び液面検知手段から入力される情報に基づいて、前記高濃度燃料供給手段および前記水供給手段に供給指令信号を出力する制御手段と、を備えた燃料電池システムであって、
前記制御手段は、前記液面検知手段で検知した液面の位置が所定の液面の位置を上回った場合、前記濃度検知手段で検知した濃度に基づいて前記高濃度燃料供給手段のみに供給指令信号を出力し、
前記液面検知手段で検知した液面の位置が所定の液面の位置を下回った場合、前記濃度検知手段で検知した濃度に基づいて前記高濃度燃料供給手段または前記水供給手段のいずれか一方のみに供給指令信号を出力することを特徴とする燃料電池システム。
A polymer electrolyte fuel cell using a liquid organic compound as a fuel;
A mixing tank for storing fuel to be supplied to the fuel cell;
High-concentration fuel supply means for supplying high-concentration fuel having a higher concentration of the main component of the organic compound than the fuel supplied to the fuel cell to the mixing tank;
Water supply means for supplying water to the mixing tank;
Concentration detecting means for detecting the concentration of the fuel supplied from the mixing tank to the fuel cell;
Liquid level detection means for detecting the position of the liquid level of the mixing tank;
A fuel cell system comprising: control means for outputting a supply command signal to the high concentration fuel supply means and the water supply means based on information input from the concentration detection means and the liquid level detection means;
The control means supplies a supply command only to the high concentration fuel supply means based on the concentration detected by the concentration detection means when the position of the liquid level detected by the liquid level detection means exceeds a predetermined liquid level position. Output signal,
When the liquid level detected by the liquid level detection means falls below a predetermined liquid level, either the high-concentration fuel supply means or the water supply means based on the concentration detected by the concentration detection means A fuel cell system that outputs a supply command signal only to a fuel cell system.
請求項1において、前記制御手段は、前記液面検知手段で検知した液面の位置が所定の液面の位置を上回った場合、前記濃度検知手段で検知した濃度が所定値よりも高い場合には前記燃料供給手段に供給指令信号を出力し、前記濃度検知手段で検知した濃度が所定値よりも低い場合には前記燃料供給手段に供給指令信号を出力しないことを特徴とする燃料電池システム。   2. The control unit according to claim 1, wherein the liquid level detected by the liquid level detection unit exceeds a predetermined liquid level, or the concentration detected by the concentration detection unit is higher than a predetermined value. Outputs a supply command signal to the fuel supply means, and does not output a supply command signal to the fuel supply means when the concentration detected by the concentration detection means is lower than a predetermined value. 請求項2において、前記制御手段は前記濃度検知手段で検知した濃度に基づいて、前記高濃度燃料供給手段から前記混合タンクに供給される高濃度燃料の供給量を制御することを特徴とする燃料電池システム。   3. The fuel according to claim 2, wherein the control unit controls the supply amount of the high concentration fuel supplied from the high concentration fuel supply unit to the mixing tank based on the concentration detected by the concentration detection unit. Battery system. 請求項3において、前記制御手段は、前記高濃度燃料供給手段から高濃度燃料を前記混合タンクに供給する時間を変化させて供給量を制御することを特徴とする燃料電池システム。   4. The fuel cell system according to claim 3, wherein the control unit controls a supply amount by changing a time during which the high concentration fuel is supplied from the high concentration fuel supply unit to the mixing tank. 請求項1において、前記制御手段は、前記液面検知手段で検知した液面の位置が所定の液面の位置を下回った場合、前記濃度検知手段で検知した濃度が所定値よりも高い場合には前記水供給手段に供給指令信号を出力し、前記濃度検知手段で検知した濃度が所定値よりも低い場合には前記高濃度燃料供給手段に供給指令信号を出力することを特徴とする燃料電池システム。   The control unit according to claim 1, wherein the liquid level detected by the liquid level detection unit falls below a predetermined liquid level, or the concentration detected by the concentration detection unit is higher than a predetermined value. Outputs a supply command signal to the water supply means, and outputs a supply command signal to the high-concentration fuel supply means when the concentration detected by the concentration detection means is lower than a predetermined value. system. 請求項5において、前記制御手段は前記濃度検知手段で検知した濃度に基づいて、前記高濃度燃料供給手段または前記水供給手段から前記混合タンクに供給される高濃度燃料または水の供給量を制御することを特徴とする燃料電池システム。   6. The control unit according to claim 5, wherein the control unit controls a supply amount of the high concentration fuel or water supplied from the high concentration fuel supply unit or the water supply unit to the mixing tank based on the concentration detected by the concentration detection unit. A fuel cell system. 請求項6において、前記制御手段は、前記高濃度燃料供給手段または前記水供給手段から高濃度燃料または水を前記混合タンクに供給する時間を変化させて供給量を制御することを特徴とする燃料電池システム。   7. The fuel according to claim 6, wherein the control means controls a supply amount by changing a time for supplying the high concentration fuel or water from the high concentration fuel supply means or the water supply means to the mixing tank. Battery system. 請求項1において、前記燃料はメタノールを主成分とした水溶液であることを特徴とする燃料電池システム。   2. The fuel cell system according to claim 1, wherein the fuel is an aqueous solution mainly composed of methanol.
JP2011121221A 2011-05-31 2011-05-31 Fuel cell system Pending JP2012248493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121221A JP2012248493A (en) 2011-05-31 2011-05-31 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121221A JP2012248493A (en) 2011-05-31 2011-05-31 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2012248493A true JP2012248493A (en) 2012-12-13

Family

ID=47468739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121221A Pending JP2012248493A (en) 2011-05-31 2011-05-31 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2012248493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120434A (en) * 2012-12-19 2014-06-30 Daihatsu Motor Co Ltd Circulating fluid volume calculation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318715A (en) * 2005-05-11 2006-11-24 Nec Corp Polymer electrolyte fuel cell and operation method of polymer electrolyte fuel cell
JP2007087915A (en) * 2005-09-21 2007-04-05 Syspotek Corp Fuel cartridge monitoring controller of fuel cell
JP2008066081A (en) * 2006-09-06 2008-03-21 Fujitsu Ltd Fuel cell device, control device, and program
JP2009093949A (en) * 2007-10-10 2009-04-30 Ricoh Co Ltd Fuel cell system and electronic device
JP2011076818A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Fuel battery power generation system and method for operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318715A (en) * 2005-05-11 2006-11-24 Nec Corp Polymer electrolyte fuel cell and operation method of polymer electrolyte fuel cell
JP2007087915A (en) * 2005-09-21 2007-04-05 Syspotek Corp Fuel cartridge monitoring controller of fuel cell
JP2008066081A (en) * 2006-09-06 2008-03-21 Fujitsu Ltd Fuel cell device, control device, and program
JP2009093949A (en) * 2007-10-10 2009-04-30 Ricoh Co Ltd Fuel cell system and electronic device
JP2011076818A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Fuel battery power generation system and method for operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120434A (en) * 2012-12-19 2014-06-30 Daihatsu Motor Co Ltd Circulating fluid volume calculation device

Similar Documents

Publication Publication Date Title
US8241799B2 (en) Methods of operating fuel cell power generators, and fuel cell power generators
JP2009087741A (en) Degradation detection device of fuel cell and fuel cell system
JP5439584B2 (en) Fuel cell system and control method thereof
KR100844785B1 (en) Pump driving module and fuel cell system equipped it
US20060222928A1 (en) Fuel cell system
US20140234741A1 (en) Fuel cell apparatus
JP2006012811A (en) Fuel cell system
JP2005235519A (en) Fuel cell, fuel cell system, and device
KR101252839B1 (en) fuel cell with recycle apparatus
JP2005149902A (en) Fuel cell power generating device and fuel cell power generating method
JP4919634B2 (en) Fuel cell system
US8637199B2 (en) Fuel cell using organic fuel
US20080268310A1 (en) Hydrogen generating apparatus and fuel cell system using the same
US20080026272A1 (en) Fuel supply system for fuel cell and fuel cell system using the same
JP2005100886A (en) Fuel cell system and fuel supply method to fuel cell
KR100830299B1 (en) Fuel Cell System Computing Fuel Residue
JP2012248493A (en) Fuel cell system
US20080113249A1 (en) Fuel cell system
JP5344218B2 (en) Fuel cell system and electronic device
JP2005317436A (en) Fuel cell system and equipment
JP2005310589A (en) Fuel cell system and apparatus
JP2005317437A (en) Fuel cell system and device thereof
KR100673748B1 (en) Fuel Composition for Fuel Cells and Fuel Cell Using the Same
JP2009170405A (en) Energy management module and driving apparatus
JP4204526B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708