JP2012248470A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2012248470A
JP2012248470A JP2011120502A JP2011120502A JP2012248470A JP 2012248470 A JP2012248470 A JP 2012248470A JP 2011120502 A JP2011120502 A JP 2011120502A JP 2011120502 A JP2011120502 A JP 2011120502A JP 2012248470 A JP2012248470 A JP 2012248470A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011120502A
Other languages
Japanese (ja)
Inventor
Minoru Natsume
穣 夏目
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Toyohashi University of Technology NUC
Original Assignee
Asahi Kasei Corp
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Toyohashi University of Technology NUC filed Critical Asahi Kasei Corp
Priority to JP2011120502A priority Critical patent/JP2012248470A/en
Publication of JP2012248470A publication Critical patent/JP2012248470A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having a high capacity for desorption and absorption of calcium ions associated with an electrochemical reaction.SOLUTION: The secondary battery comprises a positive electrode containing a positive electrode active material represented by the formula (1): CaCoO, where 0≤x<2; and a negative electrode containing a negative electrode active material represented by the formula (2): CaVO, where 0≤y<2. The positive electrode active material has a mother skeleton of CoOhaving a CoOtype column structure, and the positive electrode active material having the column structure shows diffraction peaks in the ranges of 2θ=15.0-25.0° and 2θ=30.0-35.0° in a diffraction pattern obtained by X-ray diffraction with Cu-Kα rays.

Description

本発明は、二次電池として優れた性能を有し、二価のイオンを可逆的に脱離及び挿入できるカルシウムイオン電池を提供する。   The present invention provides a calcium ion battery having excellent performance as a secondary battery and capable of reversibly desorbing and inserting divalent ions.

リチウム(Li)イオン二次電池は、4Vを超える比較的高い容量を備え、携帯電話やノート型パソコンなど様々な携帯電子機器に応用されている。これら携帯電子機器は情報処理量や表示画面の面積が増大する傾向にあり、電源としてのLiイオン二次電池に対して、より高いエネルギー密度が求められている。
また、近年、環境持続社会の実現に向けた、環境への負荷が少なくて輸送エネルギー効率の高いプラグインハイブリッド自動車や電気自動車の開発が活発になっており、そのため、二次電池は、将来的には電気自動車などの充電ステーションとして、発電及び蓄電機能を配備した住宅用途への展開も期待されるので、二次電池市場の急拡大とともに、二次電池に要求されるエネルギー密度も増大すると考えられる。その一方で、電池性能の向上のために、高容量化のみを追求すると、安全性に問題が生じる。
Lithium (Li) ion secondary batteries have a relatively high capacity exceeding 4 V, and are applied to various portable electronic devices such as mobile phones and notebook computers. These portable electronic devices tend to increase the amount of information processing and the area of the display screen, and higher energy density is required for Li-ion secondary batteries as power sources.
In recent years, the development of plug-in hybrid vehicles and electric vehicles with low environmental impact and high transport energy efficiency has been actively promoted to realize an environmentally sustainable society. Is expected to be used as a charging station for electric vehicles, etc., for residential use with power generation and storage functions, so the energy density required for secondary batteries will increase with the rapid expansion of the secondary battery market. It is done. On the other hand, if only high capacity is pursued for improving battery performance, a problem arises in safety.

この様な高容量化実現への指針として、イオン1個が運ぶ電荷が1価であるLiに対して、2価のマグネシウムやカルシウム(Mg、Ca)などのアルカリ土類金属を用いた二次電池の開発が期待される。また、Liは非常に反応性が高く、過充電や内部短絡が発生すると、発煙・発火などを引き起こし電池の安全性に問題があるが、CaやMgはLiと比べ融点も高く、Liよりも安全性は高いと考えられる。   As a guideline for realizing such high capacity, secondary using alkaline earth metals such as divalent magnesium and calcium (Mg, Ca) with respect to Li in which the charge carried by one ion is monovalent. Battery development is expected. In addition, Li is very reactive, and if overcharge or internal short circuit occurs, it causes smoke and fire, and there is a problem in battery safety. However, Ca and Mg have a higher melting point than Li and are higher than Li. Safety is considered high.

更に、Liは希少金属の一つである上に、その主要な産出国は南米や中国など偏在しており、高コストになりやすく、資源調達が困難になる可能性も高い。一方で、CaやMgは資源量が非常に豊富であり、コスト面でも資源確保の点でもLiより優位である。将来的に、電気自動車用途あるいは住宅用蓄電池への市場が拡大すれば、正極用活物質や電解質などに用いられるLi量は飛躍的に増大すると予測され、Liイオン電池を消費し続ける限り、いずれは資源問題に発展する危険性がある。
しかしながら、上記の通り、資源的に豊富でかつ安価なMgやCaイオンを用いた二次電池が実現すれば、将来的な供給不足や高生産コスト等の心配をする必要はなく、更にはより安全な二次電池が提供できる。
Furthermore, Li is one of the rare metals, and its main producing countries are unevenly distributed in South America, China, etc., which is likely to be expensive and difficult to procure resources. On the other hand, Ca and Mg have abundant resources and are superior to Li in terms of cost and securing resources. If the market for electric vehicle applications or residential storage batteries expands in the future, the amount of Li used in positive electrode active materials and electrolytes is expected to increase dramatically. There is a risk of developing into a resource problem.
However, as described above, if secondary batteries using Mg and Ca ions that are abundant and inexpensive in terms of resources are realized, there is no need to worry about future supply shortages and high production costs. A safe secondary battery can be provided.

このような理由等から、多価イオンを用いた二次電池において、電位や容量などの電池性能に求められる水準に関して、少なくとも従来のLiイオン二次電池と同等以上の性能が得られることが求められている。   For these reasons, secondary batteries using multivalent ions are required to have at least the same or higher performance as conventional Li ion secondary batteries with respect to the level required for battery performance such as potential and capacity. It has been.

特許文献1によると、Caイオンを用いた二次電池を作製している。しかし、従来得られているLiイオン二次電池よりも大きな放電容量を示しているものの、作動電圧は約1Vと極めて低い。   According to Patent Document 1, a secondary battery using Ca ions is manufactured. However, although the discharge capacity is larger than that of a conventionally obtained Li ion secondary battery, the operating voltage is as low as about 1V.

一方、特許文献2によると、Mgイオンを用いた二次電池を作製しているが、Liイオン二次電池以下の放電容量に加えて、約1Vと極めて低い電圧しか示していない。   On the other hand, according to Patent Document 2, a secondary battery using Mg ions is manufactured, but only a very low voltage of about 1 V is shown in addition to a discharge capacity equal to or lower than that of a Li ion secondary battery.

非特許文献1によると、バナジウム酸化物(V)に対して、電気化学的にCaイオンを可逆的に挿入及び脱離しており、約400mAh/gの容量が得られている。しかしながら、VのCaに対するポテンシャルが低いため、Vを正極用活物質として利用するのは適当ではない。 According to Non-Patent Document 1, Ca ions are electrochemically reversibly inserted and desorbed from vanadium oxide (V 2 O 5 ), and a capacity of about 400 mAh / g is obtained. However, since V 2 O 5 has a low potential with respect to Ca, it is not appropriate to use V 2 O 5 as a positive electrode active material.

上記文献に記載されている従来のCaイオン二次電池はいずれも、電位が低いことが課題である。これは、正極に用いられる活物質のCaに対するポテンシャルが負極活物質のポテンシャルに比べて余り高くないことに起因している。   A problem with any of the conventional Ca ion secondary batteries described in the above documents is that the potential is low. This is because the potential of the active material used for the positive electrode with respect to Ca is not so high as compared with the potential of the negative electrode active material.

従来のLiイオン二次電池に用いられる正極用活物質には、コバルト酸リチウム(LiCoO:150mAh/g)等に代表される層状岩塩型構造を有する正極材料が用いられており、負極電極にグラファイトを用いた場合約4Vの起電力が得られている。しかしながら、この場合、充電時に約50%以上のLiイオンを放出すると母骨格の積層構造に不可逆なずれが生じて充放電特性が変化し、結果的に容量が低下することが問題となっていた。
一方、非特許文献2によると、構成元素として、従来のコバルト酸リチウムのLiをCaに代替した化合物であるコバルト酸カルシウム(CaCo)の合成が報告されている。しかしながら、結晶構造や用途目的等がコバルト酸リチウムとは全く異なっているため、これを正極用活物質に用いて電気化学反応によるCaイオンの脱離や挿入を実施した例は今までになかった。
A positive electrode material having a layered rock salt structure typified by lithium cobaltate (LiCoO 2 : 150 mAh / g) is used as an active material for a positive electrode used in a conventional Li ion secondary battery. When graphite is used, an electromotive force of about 4 V is obtained. However, in this case, when about 50% or more of Li ions are released at the time of charging, an irreversible shift occurs in the laminated structure of the mother skeleton, and the charge / discharge characteristics change, resulting in a decrease in capacity. .
On the other hand, according to Non-Patent Document 2, synthesis of calcium cobaltate (Ca 3 Co 2 O 6 ), which is a compound obtained by substituting Ca for conventional lithium cobaltate Li for Ca, is reported. However, since the crystal structure and purpose of use are completely different from lithium cobaltate, there has never been an example in which Ca ions are desorbed or inserted by an electrochemical reaction using this as a positive electrode active material. .

特許第3587791号Japanese Patent No. 35877791 特開2005−228589号JP 2005-228589 A

Hayashiら、Journal of Power Sources、vol. 119-121、pp. 617-620(2003)Hayashi et al., Journal of Power Sources, vol. 119-121, pp. 617-620 (2003) Fjellvagら、Journal of Solid State Chemistry、vol. 124、pp. 190-194(1996)Fjellvag et al., Journal of Solid State Chemistry, vol. 124, pp. 190-194 (1996)

本発明は、Caイオンを脱離及び挿入することが可能な、正極用活物質と負極用活物質とを用いて、高容量の二次電池を提供する。   The present invention provides a high-capacity secondary battery using a positive electrode active material and a negative electrode active material capable of desorbing and inserting Ca ions.

前記の課題を解決するため、本発明者らは、鋭意検討した結果、二次電池の正極電極に下式(1)で表される活物質を、負極電極に下式(2)で表される活物質を用いた。
Ca3−xCo (1) (式中、0≦x<2)
Ca (2) (式中、0≦y<2)
ここで、該正極用活物質の母骨格であるCoは、CoO型のカラム状構造を有し、該カラム状構造を有する該正極用活物質のCu−Kα線を用いたX線回折の回折パターンが2θ=15.0〜25.0°且つ30.0〜35.0°の範囲に回折ピークを有することを特徴とする。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, the active material represented by the following formula (1) is represented on the positive electrode of the secondary battery, and the following formula (2) is represented on the negative electrode. Active material was used.
Ca 3-x Co 2 O 6 (1) (where 0 ≦ x <2)
Ca y V 2 O 5 (2) (where 0 ≦ y <2)
Here, Co 2 O 6 which is a mother skeleton of the positive electrode active material has a CoO 3 type columnar structure, and X using the Cu—Kα ray of the positive electrode active material having the columnar structure is used. The diffraction pattern of line diffraction has a diffraction peak in the range of 2θ = 15.0 to 25.0 ° and 30.0 to 35.0 °.

前記CoO型のカラム状構造として、コバルト酸カルシウムの結晶構造を図1に示す。この結晶構造では、単位セル内にCoOの組成からなる一次元的なカラム状構造を備えており、その周囲にCaイオンが配置されていることを特徴とする。 FIG. 1 shows a crystal structure of calcium cobaltate as the CoO 3 type columnar structure. This crystal structure is characterized in that a unit cell is provided with a one-dimensional columnar structure having a composition of CoO 3 , and Ca ions are arranged around it.

このようにCoO型カラム状構造の周囲に多数のCaイオンが配置されているため、従来の層状或いは格子状構造を有する正極用活物質と比較して本質的に高容量を示す。また、該カラム状構造は、Caイオンの電気化学的反応に伴う脱離及び挿入に対して安定である。そして、本発明者らは、該活物質を正極電極として用いることが可能であることを見出し、本発明を完成するに至った。
また、該正極電極を備えてなる二次電池として、好適な電池性能を発現させるためには、電気化学反応に対して安定にCaイオンを収容し得る負極電極との組合せや、更には、Caイオンを対極に輸送する性能を持つ電解質との好適な組合せによってのみ実現可能であることを見出し、最終的に本発明を完成させた。
Since a large number of Ca ions are arranged around the CoO 3 type columnar structure in this way, the capacity is essentially higher than that of a positive electrode active material having a conventional layered or latticed structure. In addition, the columnar structure is stable against desorption and insertion associated with the electrochemical reaction of Ca ions. The present inventors have found that the active material can be used as a positive electrode, and have completed the present invention.
Moreover, in order to develop suitable battery performance as a secondary battery comprising the positive electrode, a combination with a negative electrode that can stably contain Ca ions with respect to an electrochemical reaction, and further, a Ca The present invention was finally completed by finding that it can be realized only by a suitable combination with an electrolyte capable of transporting ions to the counter electrode.

即ち、本発明は、以下に示す二次電池を提供するものである。   That is, the present invention provides the following secondary battery.

1. 前記の式(1)で表される正極用活物質を用いた正極電極と、前記の式(2)で表される負極用活物質を用いた負極電極とを含むことを特徴とする二次電池であって、該正極用活物質の母骨格であるCoがCoO型のカラム状構造を有し、該カラム状構造を有する該活物質のCu−Kα線を用いたX線回折の回折パターンが2θ=15.0〜25.0°且つ30.0〜35.0°の範囲に回折ピークを有することを特徴とする二次電池。
2. Ca[N(SOCFを溶質とする電解質を含むことを特徴とする上記1に記載の二次電池。
3. エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒、或いはジメチルスルホキシド(DMSO)を非水電解液溶媒とする電解質を含むことを特徴とする上記2に記載の二次電池。
1. A secondary electrode comprising: a positive electrode using the positive electrode active material represented by the formula (1); and a negative electrode using the negative electrode active material represented by the formula (2). X-ray using a Cu—Kα ray of the active material having a columnar structure in which Co 2 O 6 that is a mother skeleton of the positive electrode active material has a CoO 3 type columnar structure. A secondary battery, wherein a diffraction pattern of diffraction has a diffraction peak in a range of 2θ = 15.0 to 25.0 ° and 30.0 to 35.0 °.
2. 2. The secondary battery as described in 1 above, comprising an electrolyte having Ca [N (SO 2 CF 3 ) 2 ] 2 as a solute.
3. 3. The secondary battery as described in 2 above, comprising an electrolyte using a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) or dimethyl sulfoxide (DMSO) as a non-aqueous electrolyte solvent.

本発明では、Ca3−xCo(0≦x<2)を正極用活物質とする正極電極を用いており、従来用いられていた正極用活物質の結晶構造とは全く異なる。前記CoO型カラム状構造を有する結晶構造を実現し、それによりCaイオンの内蔵量を著しく増大させることを達成せしめた。
また、本発明者らは該活物質の結晶構造を丹念に調べた結果、ブラッグ−ブレンターノ光学系におけるCu−Kα線を用いたX線回折による回折パターンが、2θ=15.0〜25.0°かつ30.0〜35.0°の範囲に回折ピークを有していることを見出した。 本発明によればCaイオンの脱離及び挿入反応による充放電において、結晶構造の変化が可逆的で小さく、前記CoO型カラム状構造の安定性が高いために、内蔵する多くのCaイオンを脱離及び挿入することができる。
更に、本発明によれば、母骨格が前記CoO型カラム状構造を取っているため、それらの周囲により多くのCaイオンが配置されることになり、本質的にCaイオンの内蔵量が多いという特徴を併せ持つ。
また、本発明による正極電極を用いれば、電気化学的反応によるCaイオンの脱離及び挿入に伴うCoの酸化還元反応を利用することができるため、従来よりも高電圧な二次電池を提供することが可能になる。その一方で、充電時に正極電極から脱離したCaイオンを安定に収容する能力を有する負極電極と組み合わせなければ、充放電サイクルを達成することができない。
そのため、本発明では、Ca(式中、0≦y<2)を負極用活物質とする負極電極を組み合わせることにより、より多くのCaイオンを脱離及び挿入することを可能にしている。その結果、本発明によれば、該正極用活物質の正極電極と該負極用活物質の負極電極を併せて用いることにより、高容量な二次電池が実現可能となる。
In the present invention, a positive electrode using Ca 3−x Co 2 O 6 (0 ≦ x <2) as the positive electrode active material is used, which is completely different from the crystal structure of the positive electrode active material conventionally used. A crystal structure having the CoO 3 type columnar structure was realized, and thereby the amount of Ca ions incorporated was significantly increased.
In addition, as a result of careful examination of the crystal structure of the active material, the present inventors have found that a diffraction pattern by X-ray diffraction using Cu-Kα rays in a Bragg-Brentano optical system is 2θ = 15.0 to 25.0. It has been found that it has a diffraction peak in the range of 30.0 to 35.0 °. According to the present invention, the change in crystal structure is reversible and small in charge / discharge due to Ca ion desorption and insertion reactions, and the stability of the CoO 3 type columnar structure is high. Detach and insert.
Furthermore, according to the present invention, since the mother skeleton has the CoO 3 type columnar structure, more Ca ions are arranged around them, and the amount of Ca ions incorporated is essentially large. It also has the characteristics of
In addition, if the positive electrode according to the present invention is used, the redox reaction of Co 2 O 6 accompanying the desorption and insertion of Ca ions by an electrochemical reaction can be used. It becomes possible to provide. On the other hand, a charge / discharge cycle cannot be achieved unless combined with a negative electrode having the ability to stably accommodate Ca ions desorbed from the positive electrode during charging.
Therefore, in the present invention, it is possible to desorb and insert more Ca ions by combining the negative electrode with Ca y V 2 O 5 (where 0 ≦ y <2) as the negative electrode active material. I have to. As a result, according to the present invention, a high-capacity secondary battery can be realized by using the positive electrode of the positive electrode active material and the negative electrode of the negative electrode active material together.

CaCoの結晶構造を示す図である。It is a diagram showing the crystal structure of Ca 3 Co 2 O 6. 実施例1で得られたCaCoのX線回折パターンを示す図である。 2 is a diagram showing an X-ray diffraction pattern of Ca 3 Co 2 O 6 obtained in Example 1. FIG. 本発明の実施例で用いた三電極セルの概念図を示す図である。It is a figure which shows the conceptual diagram of the three-electrode cell used in the Example of this invention.

本発明の一実施態様においては、下式(1)で表される正極用活物質であって
Ca3−xCo (1) (式中、0≦x<2)
該活物質の母骨格であるCoがCoO型のカラム状構造を有し、該カラム状構造を有する該活物質のCu−Kα線を用いたX線回折の回折パターンが、2θ=15.0〜25.0°かつ30.0〜35.0°の範囲に回折ピークを有する活物質を正極電極として備えた二次電池であることが好ましい。より好ましくは、2θ=17.0〜22.0°と30.0〜35.0°の両範囲に回折ピークを有することが好ましい。尚、本発明におけるCoO型カラム状構造は、Caイオンの出入りによって、2θ=15.0〜25.0°の範囲にある回折強度の高い1本の回折ピークと2θ=30.0〜35.0°の範囲にある2本の回折ピークの相対強度比が変化することを特徴とする。
In one embodiment of the present invention, an active material for a positive electrode represented by the following formula (1): Ca 3-x Co 2 O 6 (1) (where 0 ≦ x <2)
Co 2 O 6 that is the mother skeleton of the active material has a CoO 3 type columnar structure, and the diffraction pattern of X-ray diffraction using Cu—Kα rays of the active material having the columnar structure is 2θ. = A secondary battery provided with an active material having a diffraction peak in the range of 15.0 to 25.0 ° and 30.0 to 35.0 ° as a positive electrode. More preferably, it has a diffraction peak in both ranges of 2θ = 17.0-22.0 ° and 30.0-35.0 °. The CoO 3 type columnar structure according to the present invention has one diffraction peak having a high diffraction intensity in the range of 2θ = 15.0 to 25.0 ° and 2θ = 30.0 to 35 due to the entry and exit of Ca ions. The relative intensity ratio of the two diffraction peaks in the range of .0 ° changes.

該正極用活物質を構成する遷移金属であるCoは、結晶構造中のCoサイトに他の金属を固溶させることが可能であり、該金属としてはMn、Fe、Ni、Cu、Zn、Al、Zr、Nb、Mo等が好ましい。該固溶金属を該活物質に固溶させることにより、電圧や結晶相安定性、充放電容量などの二次電池電極性能を向上させることができる。前記固溶金属としては、Mn、Fe、Ni、Alがより好ましい。   Co, which is a transition metal constituting the positive electrode active material, can dissolve other metals at the Co site in the crystal structure. Examples of the metal include Mn, Fe, Ni, Cu, Zn, and Al. Zr, Nb, Mo and the like are preferable. By dissolving the solid solution metal in the active material, secondary battery electrode performance such as voltage, crystal phase stability, charge / discharge capacity, and the like can be improved. As the solid solution metal, Mn, Fe, Ni, and Al are more preferable.

本発明を構成する正極用活物質は、目的とする元素成分比率と同様の比率となるように原料を混合し、焼成することによって得ることができる。原料物質としては、焼成により酸化物を形成するものであれば特に限定はされない。元素単体或いは酸化物、その他の化合物であっても構わない。例示すれば、カルシウム源としては、Ca単体、CaCO、CaO等を用いることが可能であり、コバルト源としては金属Co、CoO、Co、Co等が挙げられる。前記遷移金属を該活物質に固溶させる場合についても同様に単体か酸化物を用いることができ、所望の比率で原材料を混合して焼成すればよい。また、生成した酸化物の組成比を確認するためには、蛍光X線分光法や誘導結合プラズマ質量分析法(ICP−MS)、誘導結合プラズマ発光分光法(ICP−AES)等の分析手法を用いればよい。 The positive electrode active material constituting the present invention can be obtained by mixing and firing the raw materials so as to have the same ratio as the target element component ratio. The raw material is not particularly limited as long as it forms an oxide by firing. It may be an elemental element, an oxide, or another compound. For example, as the calcium source, Ca alone, CaCO 3 , CaO or the like can be used, and as the cobalt source, metal Co, CoO, Co 2 O 3 , Co 3 O 4 or the like can be mentioned. Similarly, when the transition metal is dissolved in the active material, a simple substance or an oxide can be used, and the raw materials may be mixed and fired at a desired ratio. In addition, in order to confirm the composition ratio of the generated oxide, analytical methods such as X-ray fluorescence spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectroscopy (ICP-AES) are used. Use it.

焼成温度および焼成時間については、950〜1200℃程度の温度で10〜50時間ほど焼成すればよい。原材料を混合した粉末を加圧形成して、第一段階として950℃程度の温度で約12時間焼成し、さらに第二段階として、目的物質によっては多少の調整が必要であるが、1000〜1200℃程度の温度で約48時間焼成して、前述したCoO型のカラム状構造を有する結晶相を形成することが可能になる。 About a baking temperature and baking time, what is necessary is just to bake for about 10 to 50 hours at the temperature of about 950-1200 degreeC. The powder mixed with the raw materials is pressure-formed and fired at a temperature of about 950 ° C. for about 12 hours as the first stage. Further, as the second stage, some adjustment is required depending on the target substance. It is possible to form the crystal phase having the above-described CoO 3 type columnar structure by baking for about 48 hours at a temperature of about 0 ° C.

また、本発明の一実施態様においては、前記正極電極を備え、かつ、下式(2)で表される負極用活物質を負極電極として有することを特徴とする二次電池であることが好ましい。
Ca (2) (式中、0≦y<2)
In one embodiment of the present invention, a secondary battery comprising the positive electrode and having a negative electrode active material represented by the following formula (2) as a negative electrode is preferable. .
Ca y V 2 O 5 (2) (where 0 ≦ y <2)

なお、本発明における効果を奏するために、負極電極としては、前記正極電極に対してより低い(卑な)電位でCaイオンを脱離及び挿入できるものを使用する必要がある。そのようなものであれば、上記負極電極以外にも、公知の負極電極(例えば、Ca金属、Caとシリコンとからなる合金、炭素(グラファイト)等)を用いることも可能である。つまり、負極電極としては、前記正極電極よりも卑な電位で充放電反応が進行するものであれば、これらの材料に特に限られない。
また、生成した負極用活物質についても、酸化物の組成比を確認するためには、前記蛍光X線分光法やICP−MS法、ICP−AES法等の分析手法を用いればよい。
In order to achieve the effects of the present invention, it is necessary to use a negative electrode that can desorb and insert Ca ions at a lower (base) potential than the positive electrode. If it is such, it is also possible to use well-known negative electrode (For example, Ca metal, the alloy which consists of Ca and silicon, carbon (graphite) etc.) other than the said negative electrode. That is, the negative electrode is not particularly limited to these materials as long as the charge / discharge reaction proceeds at a lower potential than the positive electrode.
Moreover, in order to confirm the composition ratio of the oxide also about the produced | generated negative electrode active material, what is necessary is just to use analytical methods, such as the said fluorescent X ray spectroscopy, ICP-MS method, and ICP-AES method.

更に、本発明の一実施態様において、前記正極電極並びに前記負極電極に用いられる両活物質は粒状に粉砕されたものであることが好ましい。前記正極用活物質並びに前記負極用活物質の粒径は50μm以下であることが好ましく、前記活物質の粒径が小さいほど、電極材料としては電気化学反応に関わる表面積が大きくなるために好ましい。
しかしながら、粒径が小さすぎると活物質表面の欠陥密度が増大するため、表面における電気化学反応が活発になり、活物質が劣化し易くなる。
従って、前記正極用活物質並びに前記負極用活物質の粒径はより好ましくは500nm以上50μm以下である。更により好ましくは、500nm以上20μm以下である。
Furthermore, in one embodiment of the present invention, it is preferable that both the active materials used for the positive electrode and the negative electrode are pulverized into particles. The positive electrode active material and the negative electrode active material preferably have a particle size of 50 μm or less, and the smaller the particle size of the active material, the greater the surface area involved in the electrochemical reaction as the electrode material.
However, if the particle size is too small, the defect density on the surface of the active material increases, so that the electrochemical reaction on the surface becomes active and the active material is likely to deteriorate.
Therefore, the particle diameters of the positive electrode active material and the negative electrode active material are more preferably 500 nm or more and 50 μm or less. Even more preferably, it is 500 nm or more and 20 μm or less.

前記実施態様の正極電極並びに負極電極は、粒状に粉砕された前記活物質に、アセチレンブラック、カーボンブラック、黒鉛などの導電性材料と、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどの結着剤と混合されていることが好ましい。これらの高分子材料は前記活物質と導電材料を結着させ、本発明の効果を奏する限りにおいて制限されるものではない。   The positive electrode and negative electrode of the above embodiment are prepared by mixing the active material pulverized into a granular material with a conductive material such as acetylene black, carbon black, and graphite, and a binder such as polyvinylidene fluoride and polytetrafluoroethylene. It is preferable that These polymer materials are not limited as long as they bind the active material and the conductive material and exhibit the effects of the present invention.

また、本発明の一実施態様において、前記正極電極と前記負極電極を備えた電池に用いられる電解質のうち、Ca[N(SOCFを溶質として有することを特徴とする電池であることが好ましい。本発明における二次電池に使用される電解質は溶質と溶媒とから成り、上記溶質以外に用いることのできる溶質について具体的に例示すれば、Ca(BF、Ca(ClO、Ca(SOCF、Ca(PF、Ca(AsF、Ca(SbF等の材料が挙げられる。 In one embodiment of the present invention, a battery having Ca [N (SO 2 CF 3 ) 2 ] 2 as a solute among electrolytes used in a battery including the positive electrode and the negative electrode. It is preferable that The electrolyte used for the secondary battery in the present invention is composed of a solute and a solvent, and specific examples of solutes that can be used in addition to the solute are Ca (BF 4 ) 2 , Ca (ClO 4 ) 2 , Examples of the material include Ca (SO 3 CF 3 ) 2 , Ca (PF 6 ) 2 , Ca (AsF 6 ) 2 , and Ca (SbF 6 ) 2 .

また、本発明の一実施態様において、前記正極電極と前記負極電極を備え、前記溶質を備えた電解質を構成する非水電解液溶媒が、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒、或いはジメチルスルホキシド(DMSO)を含むこと特徴とする二次電池であることが好ましい。電解質としては、Caイオン伝導をし得る前記溶質を含む非水電解液溶媒を有していればよく、上記溶媒以外に具体的に例示すれば、プロピレンカーボネート、ビニレンカーボネート、アセトニトリル、テトラヒドロフラン等を用いることができる。   In one embodiment of the present invention, the non-aqueous electrolyte solvent comprising the positive electrode and the negative electrode and constituting the electrolyte having the solute is a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC). Or a secondary battery characterized by containing dimethyl sulfoxide (DMSO). As the electrolyte, it is only necessary to have a non-aqueous electrolyte solvent containing the solute capable of conducting Ca ions, and specific examples other than the above solvents include propylene carbonate, vinylene carbonate, acetonitrile, tetrahydrofuran, and the like. be able to.

以下、実施例によって本発明をさらに具体的に説明するが、これらにより記載された本発明の請求項の範囲を制限するものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the scope of the claims of the present invention described thereby is not limited.

[実施例1]
カルシウム源としてCaCO、コバルト源としてCoを用い、元素比がCa:Co=3:2となるように原料を十分混合した後、該混合物を加圧形成して、坩堝に入れて電気炉で、970℃で12時間焼成した。ここで得られた一次焼成物を粉砕し、再度加圧形成した。該焼成物を970℃、48時間焼成してCaCoの組成からなる母骨格がCoO型のカラム状構造を有する正極用活物質を得た。得られた該活物質のX線回折パターンを図2に示した。該XRDパターンはCaCo結晶構造データと一致しており、また、XRF元素分析およびICP−AES元素分析によって、Ca/Coの組成比を確認したところ、Ca:Co=3:2を得た。
[実施例2]
実施例1で得られた本発明の正極用活物質CaCoを正極電極として用い、負極電極にVを負極用活物質として用いた。正極電極並びに負極電極の両電極作製には、活物質:アセチレンブラック:ポリテトラフルオロエチレン=70:25:5の重量比で混合したペレットを用いた。正極電極と負極電極の活物質の混合量は、両活物質のCaイオンの可逆的な脱離及び挿入量を考慮して、負極用活物質を正極用活物質の2倍量とした。電解質には、溶質に1MのCa[N(SOCFをEC/DMC混合溶媒に混合させた電解質を用いた。また、参照極に、非水溶媒系用の銀(Ag/Ag)電極を用いて充放電特性を評価した。本発明における実施例に用いた上記三電極セルの概念図を図3に示した。このようにして作製した電池を、電流密度50μA/cmで充放電試験を実施したところ、約3.2Vの電圧で作動し、その充電容量は正極活物質当たり約180mAh/gであった。
[実施例3]
実施例2と同様の正極電極及び負極電極を用いて、実施例2で用いた溶質を溶媒としてDMSOに混合させた電解質を用いて三電極セルを作製し、実施例1と同様、銀参照極を用いて充放電特性を評価した。上記のようにして作製した電池を、電流密度50μA/cmで充放電試験を実施したところ、約2.7Vの電圧で作動し、その充電容量は正極活物質当たり約180mAh/gであることを確認した。
[実施例4]
実施例2および3で充放電反応を行った正極電極について、XRF法およびICP−AES法による元素組成分析を行った。充電後の正極用活物質は、100%放電状態の正極用活物質がCaCoであるのに対して、過渡的な充電ステージにおいて、Ca3−xCo(0<x<2)の組成比で表されることを確認し、Caイオンが該活物質の母骨格であるCoO型のカラム状構造の中に、充放電反応に伴って脱離及び挿入をしていることを確認した。
[実施例5]
実施例2および3で充放電反応を行った負極電極について、実施例4と同様に、XRF法およびICP−AES法による元素組成分析を行った。充電後の負極用活物質は、100%放電状態の負極用活物質がVであるのに対して、過渡的な充電ステージにおいて、Ca(0<y<2)の組成比で表されることを確認し、Caイオンが充放電反応に伴って該活物質の母骨格であるV中に挿入及び脱離反応をしていることを確認した。
[Example 1]
After using CaCO 3 as the calcium source and Co 3 O 4 as the cobalt source and sufficiently mixing the raw materials so that the element ratio is Ca: Co = 3: 2, the mixture is formed under pressure and placed in a crucible. Baking at 970 ° C. for 12 hours in an electric furnace. The primary fired product obtained here was pulverized and formed again under pressure. The fired product was fired at 970 ° C. for 48 hours to obtain a positive electrode active material in which the mother skeleton composed of the composition of Ca 3 Co 2 O 6 had a CoO 3 type columnar structure. The X-ray diffraction pattern of the obtained active material is shown in FIG. The XRD pattern is consistent with the Ca 3 Co 2 O 6 crystal structure data, and the composition ratio of Ca / Co was confirmed by XRF elemental analysis and ICP-AES elemental analysis. Ca: Co = 3: 2 Got.
[Example 2]
The positive electrode active material Ca 3 Co 2 O 6 of the present invention obtained in Example 1 was used as the positive electrode, and V 2 O 5 was used as the negative electrode for the negative electrode. For preparation of both the positive electrode and the negative electrode, pellets mixed at a weight ratio of active material: acetylene black: polytetrafluoroethylene = 70: 25: 5 were used. The amount of the active material for the positive electrode and the negative electrode mixed with the active material for negative electrode was twice that of the active material for positive electrode in consideration of the reversible desorption and insertion of Ca ions in both active materials. As the electrolyte, an electrolyte in which 1 M Ca [N (SO 2 CF 3 ) 2 ] 2 was mixed in an EC / DMC mixed solvent as a solute was used. Moreover, the charge / discharge characteristic was evaluated using the silver (Ag / Ag + ) electrode for nonaqueous solvent systems for a reference electrode. A conceptual diagram of the three-electrode cell used in the example of the present invention is shown in FIG. When the battery thus fabricated was subjected to a charge / discharge test at a current density of 50 μA / cm 2, it was operated at a voltage of about 3.2 V and its charge capacity was about 180 mAh / g per positive electrode active material.
[Example 3]
Using the same positive electrode and negative electrode as in Example 2, a three-electrode cell was prepared using an electrolyte in which DMSO was mixed with the solute used in Example 2 as a solvent. Was used to evaluate the charge / discharge characteristics. When the battery produced as described above was subjected to a charge / discharge test at a current density of 50 μA / cm 2, it was operated at a voltage of about 2.7 V and its charge capacity was about 180 mAh / g per positive electrode active material. It was confirmed.
[Example 4]
About the positive electrode which performed the charging / discharging reaction in Example 2 and 3, the elemental composition analysis by XRF method and ICP-AES method was performed. In the positive electrode active material after charging, the positive electrode active material in a 100% discharged state is Ca 3 Co 2 O 6 , whereas in the transient charging stage, Ca 3−x Co 2 O 6 (0 < x <2) is confirmed, and Ca ions are desorbed and inserted into the CoO 3 type columnar structure, which is the mother skeleton of the active material, along with the charge / discharge reaction. Confirmed that.
[Example 5]
About the negative electrode which performed charge / discharge reaction in Example 2 and 3, the elemental composition analysis by XRF method and ICP-AES method was performed like Example 4. FIG. In the negative electrode active material after charging, the negative electrode active material in a 100% discharged state is V 2 O 5 , whereas in the transient charging stage, Ca y V 2 O 5 (0 <y <2) It was confirmed that the Ca ions were inserted and desorbed in V 2 O 5 which is the mother skeleton of the active material along with the charge / discharge reaction.

[比較例1]
正極用活物質としてLiCoOを用いて、実施例2と同様の方法で正極電極を作製した。負極電極は、金属リチウム箔を使用し、電解質については、溶質を1MのLiClOをEC/DMC混合溶媒に混合させた電解質を用いた。上記の電極と電解質を用いて、実施例2および3と同様の三電極セルを作製し、電流密度500μA/cmで充放電試験を実施したところ、約3.8Vの電圧で作動し、充電容量が正極活物質当たり約140mAh/gであった。
[Comparative Example 1]
A positive electrode was produced in the same manner as in Example 2 using LiCoO 2 as the positive electrode active material. A metal lithium foil was used for the negative electrode, and an electrolyte in which 1 M LiClO 4 was mixed in an EC / DMC mixed solvent was used as the electrolyte. Using the above electrode and electrolyte, a three-electrode cell similar to that in Examples 2 and 3 was prepared, and a charge / discharge test was performed at a current density of 500 μA / cm 2. The capacity was about 140 mAh / g per positive electrode active material.

本発明を構成する正極電極及び負極電極を用いて、良好な充放電反応を実現するためには、電極に用いられた活物質と電解質との好適な組合せが必要であり、それによって良好な充放電反応が達成されることを確認した。上記の実施例により得られた電池の性能を比較した結果を表1にまとめた。その結果、本発明によるCa二次電池の作動電圧は、従来のLiCoOを正極電極に用いた電池と比較すると、低電圧ではあるものの、容量は従来のLiCoOを正極電極に用いた電池と同等以上の大きな値を示すことが分かった。 In order to achieve a good charge / discharge reaction using the positive electrode and the negative electrode constituting the present invention, a suitable combination of the active material and the electrolyte used for the electrode is necessary, thereby achieving a good charge / discharge reaction. It was confirmed that the discharge reaction was achieved. The results of comparing the performance of the batteries obtained by the above examples are summarized in Table 1. As a result, the operating voltage of Ca secondary battery according to the present invention, when compared to the cell using the conventional LiCoO 2 in the positive electrode, albeit at a low voltage, capacity and battery using the conventional LiCoO 2 in the positive electrode It was found to show a large value equivalent or better.

本発明によれば、安定性が高く、高容量を有する二次電池を利用することが可能となる。スマートフォンやノート型パソコン等の電子機器、プラグインハイブリッド車や電気自動車等の輸送機器、蓄電装置等の電力貯蔵機器等の様々な分野での利用が可能となる。   According to the present invention, a secondary battery having high stability and high capacity can be used. It can be used in various fields such as electronic devices such as smartphones and notebook computers, transport devices such as plug-in hybrid vehicles and electric vehicles, and power storage devices such as power storage devices.

Claims (3)

正極電極に下式(1)で表される正極用活物質と、負極電極に下式(2)で表される負極用活物質とを含むことを特徴とする二次電池であって、
Ca3−xCo (1) (式中、0≦x<2)
Ca (2) (式中、0≦y<2)
該正極用活物質の母骨格であるCoがCoO型のカラム状構造を有し、該カラム状構造を有する該正極用活物質のCu−Kα線を用いたX線回折の回折パターンが、2θ=15.0〜25.0°且つ30.0〜35.0°の範囲に回折ピークを有することを特徴とする二次電池。
A positive battery comprising a positive electrode active material represented by the following formula (1) and a negative electrode comprising a negative electrode active material represented by the following formula (2):
Ca 3-x Co 2 O 6 (1) (where 0 ≦ x <2)
Ca y V 2 O 5 (2) (where 0 ≦ y <2)
Co 2 O 6 which is the mother skeleton of the positive electrode active material has a CoO 3 type columnar structure, and diffraction of X-ray diffraction using Cu—Kα rays of the positive electrode active material having the columnar structure A secondary battery, wherein the pattern has a diffraction peak in the range of 2θ = 15.0 to 25.0 ° and 30.0 to 35.0 °.
Ca[N(SOCF)を溶質とする電解質を含むことを特徴とする請求項1に記載の二次電池。 The secondary battery according to claim 1, comprising an electrolyte having Ca [N (SO 2 CF 3 ) 2 ] 2 as a solute. エチレンカーボネートとジメチルカーボネートの混合溶媒、或いはジメチルスルホキシドを非水電解液溶媒とする電解質を含むことを特徴とする請求項2に記載の二次電池。   The secondary battery according to claim 2, comprising an electrolyte containing a mixed solvent of ethylene carbonate and dimethyl carbonate, or dimethyl sulfoxide as a non-aqueous electrolyte solvent.
JP2011120502A 2011-05-30 2011-05-30 Secondary battery Pending JP2012248470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120502A JP2012248470A (en) 2011-05-30 2011-05-30 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120502A JP2012248470A (en) 2011-05-30 2011-05-30 Secondary battery

Publications (1)

Publication Number Publication Date
JP2012248470A true JP2012248470A (en) 2012-12-13

Family

ID=47468721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120502A Pending JP2012248470A (en) 2011-05-30 2011-05-30 Secondary battery

Country Status (1)

Country Link
JP (1) JP2012248470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050329A1 (en) * 2014-10-02 2016-04-07 Toyota Motor Europe Nv/Sa Electrolytes for calcium-based secondary cell and calcium-based secondary cell comprising the same
WO2017097437A1 (en) 2015-12-10 2017-06-15 Toyota Motor Europe Molybdenum-based electrode materials for rechargeable calcium batteries
CN107112503A (en) * 2014-10-02 2017-08-29 丰田自动车欧洲公开有限公司 Calcium base secondary cell and the battery for including the calcium base secondary cell
WO2019096446A1 (en) 2017-11-16 2019-05-23 Toyota Motor Europe One-dimensional structure pre-calciated materials as positive electrode for rechargeable calcium batteries and cell comprising the same
CN113690405A (en) * 2020-11-02 2021-11-23 四川大学 Electrode piece of perovskite vanadate blending active material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery
JPH09213371A (en) * 1996-02-01 1997-08-15 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2000149988A (en) * 1998-09-10 2000-05-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2003229126A (en) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk Electrode active material for non-aqueous electrolyte secondary battery
JP2004200015A (en) * 2002-12-19 2004-07-15 Sanyo Electric Co Ltd Electrolyte for nonaqueous battery, its manufacturing method, and nonaqueous battery electrolytic solution
JP2004356476A (en) * 2003-05-30 2004-12-16 Japan Science & Technology Agency Composite oxide with outstanding thermoelectric transformation performance
JP2010232574A (en) * 2009-03-30 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
JP2011108540A (en) * 2009-11-19 2011-06-02 Asahi Kasei Corp Active material for positive electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery
JPH09213371A (en) * 1996-02-01 1997-08-15 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2000149988A (en) * 1998-09-10 2000-05-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2003229126A (en) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk Electrode active material for non-aqueous electrolyte secondary battery
JP2004200015A (en) * 2002-12-19 2004-07-15 Sanyo Electric Co Ltd Electrolyte for nonaqueous battery, its manufacturing method, and nonaqueous battery electrolytic solution
JP2004356476A (en) * 2003-05-30 2004-12-16 Japan Science & Technology Agency Composite oxide with outstanding thermoelectric transformation performance
JP2010232574A (en) * 2009-03-30 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
JP2011108540A (en) * 2009-11-19 2011-06-02 Asahi Kasei Corp Active material for positive electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.HAYASHI,外3名: "Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as c", JOURNAL OF POWER SOURCES, vol. vol.119-121, JPN6014051144, 2003, pages 617 - 620, ISSN: 0002957588 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112503A (en) * 2014-10-02 2017-08-29 丰田自动车欧洲公开有限公司 Calcium base secondary cell and the battery for including the calcium base secondary cell
JP2017534140A (en) * 2014-10-02 2017-11-16 トヨタ モーター ヨーロッパ Calcium-based secondary battery and battery including the same
JP2017536650A (en) * 2014-10-02 2017-12-07 トヨタ モーター ヨーロッパ Electrolyte for calcium-based secondary battery and calcium-based secondary battery including the same
US10276891B2 (en) 2014-10-02 2019-04-30 Toyota Motor Europe Electrolytes for calcium-based secondary cell and calcium-based secondary cell comprising the same
WO2016050329A1 (en) * 2014-10-02 2016-04-07 Toyota Motor Europe Nv/Sa Electrolytes for calcium-based secondary cell and calcium-based secondary cell comprising the same
US10461362B2 (en) 2014-10-02 2019-10-29 Toyota Motor Europe Calcium-based secondary cell and battery comprising the same
US10608245B2 (en) 2015-12-10 2020-03-31 Toyota Motor Europe Molybdenum-based electrode materials for rechargeable calcium batteries
WO2017097437A1 (en) 2015-12-10 2017-06-15 Toyota Motor Europe Molybdenum-based electrode materials for rechargeable calcium batteries
WO2019096446A1 (en) 2017-11-16 2019-05-23 Toyota Motor Europe One-dimensional structure pre-calciated materials as positive electrode for rechargeable calcium batteries and cell comprising the same
CN111670513A (en) * 2017-11-16 2020-09-15 丰田自动车欧洲公司 One-dimensional structure pre-calcined material as positive electrode for rechargeable calcium batteries and battery comprising same
JP2021503690A (en) * 2017-11-16 2021-02-12 トヨタ・モーター・ヨーロッパToyota Motor Europe One-dimensional pre-calcinated material as positive electrode for rechargeable calcium battery and cell containing it
US11489157B2 (en) 2017-11-16 2022-11-01 Toyota Motor Europe One-dimensional structure pre-calciated materials as positive electrode for rechargeable calcium batteries and cell comprising the same
CN113690405A (en) * 2020-11-02 2021-11-23 四川大学 Electrode piece of perovskite vanadate blending active material

Similar Documents

Publication Publication Date Title
US9583761B2 (en) Methods for making anodes for germanium-containing lithium-ion devices
Barghamadi et al. A review on Li-S batteries as a high efficiency rechargeable lithium battery
JP6288716B2 (en) Method for producing sulfide solid electrolyte material
KR101687486B1 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP5013217B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
JPH1083817A (en) Anode material and non-aqueous electrolytic secondary battery using the material
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO1997001193A1 (en) Nonaqueous electrolyte secondary battery
JP2015220015A (en) Sulfide solid electrolyte material, battery and method for producing sulfide solid electrolyte material
JP2006155941A (en) Method of manufacture for electrode active material
JP2002134112A (en) Nonaqueous electrolyte secondary battery
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
JP2012248470A (en) Secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
Liu et al. Glyoxal-based electrolytes for potassium-ion batteries
JP2008258030A (en) Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and manufacturing method of nonaqueous electrolyte secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP2004014472A (en) Nonaqueous secondary battery
JP2011103260A (en) Positive electrode active material for nonaqueous secondary battery
JP5670905B2 (en) Lithium / nickel / cobalt oxide and lithium / nickel / manganese / cobalt oxide cathodes
JP2014143183A (en) Positive electrode active material for magnesium ion secondary battery, method for producing the same, positive electrode for magnesium ion secondary battery, and magnesium ion secondary battery
JP2020047608A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JP5534578B2 (en) Active material for positive electrode
JP2010287450A (en) Cathode active material for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150326