JP2012248280A - Iron disulfide and lithium primary battery - Google Patents

Iron disulfide and lithium primary battery Download PDF

Info

Publication number
JP2012248280A
JP2012248280A JP2009223814A JP2009223814A JP2012248280A JP 2012248280 A JP2012248280 A JP 2012248280A JP 2009223814 A JP2009223814 A JP 2009223814A JP 2009223814 A JP2009223814 A JP 2009223814A JP 2012248280 A JP2012248280 A JP 2012248280A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
iron disulfide
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009223814A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文生 加藤
Kenichi Morigaki
健一 森垣
Yoshiki Fukuhara
佳樹 福原
Toshiyuki Shimizu
敏之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009223814A priority Critical patent/JP2012248280A/en
Priority to PCT/JP2010/004884 priority patent/WO2011039924A1/en
Publication of JP2012248280A publication Critical patent/JP2012248280A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron disulfide and lithium primary battery which has high capacity and an excellent high load discharge property at the same time.SOLUTION: An iron disulfide and lithium primary battery includes a positive electrode plate formed by filling and holding a positive electrode mixture obtained by dispersing iron disulfide, a carbon conductive material, and a binder in expanded metal within the range of porosity of 25 to 35%, and a negative electrode plate constituted by lithium alloyed by one kind of an element or more among Sn, Mg, Zn, Bi, and Al. The theoretical capacity of the positive electrode plate per unit area is 35 to 70 mAh/cm, and the total mass of elements alloyed with the negative electrode plate is desirably 0.1 to 3% to the total mass of the negative electrode plate.

Description

本発明は、二硫化鉄を主活物質とする正極と、リチウムを主活物質とする負極とを有し、有機溶媒を電解液とした非水電解液電池、すなわち、二硫化鉄・リチウム一次電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery having a positive electrode containing iron disulfide as a main active material and a negative electrode containing lithium as a main active material and using an organic solvent as an electrolyte, that is, iron disulfide / lithium primary It relates to batteries.

二硫化鉄・リチウム一次電池は、正極活物質の二硫化鉄が約894mAh/g、負極活物質のリチウムが約3863mAh/gと、非常に高い理論容量を有する正・負極材から構成され、高容量かつ軽量で、低温特性、長期信頼性といった他の特性面からも、非常に優れた電池である。   The iron disulfide / lithium primary battery is composed of positive and negative electrode materials having a very high theoretical capacity of about 894 mAh / g for the positive electrode active material iron disulfide and about 3863 mAh / g for the negative electrode active material. It is a battery that is extremely excellent in terms of other characteristics such as low capacity and long-term reliability because of its capacity and light weight.

加えて、二硫化鉄・リチウム一次電池は、初期の開回路電圧が1.7〜1.8V、平均放電電圧が1.5V付近であり、他の1.5V級一次電池、例えば水溶液を電解液に用いるマンガン電池、アルカリマンガン電池、酸化銀電池、空気電池等と互換性を有する点からも、その実用価値は高い。   In addition, the iron disulfide / lithium primary battery has an initial open circuit voltage of 1.7 to 1.8 V and an average discharge voltage of around 1.5 V, and electrolyzes other 1.5 V class primary batteries such as aqueous solutions. The practical value is also high from the viewpoint of compatibility with manganese batteries, alkaline manganese batteries, silver oxide batteries, air batteries and the like used for the liquid.

実用化されている円筒型の二硫化鉄・リチウム一次電池は、中空円柱状の電池ケースの内部に、帯状の正極板と負極板とが、セパレータを介して多数回捲回された電極群の形で収納されている。特許文献1の実施例記載に見られるように、一般に、この電池の正極板は、二硫化鉄とカーボン導電材・結着剤とを溶剤に加えて混合した合剤スラリ(塗料)を、アルミニウム平面箔上に両面塗工・圧延して作製される。負極板は、リチウムまたは、アルミニウム合金化したリチウム板(フォイル)が使用され、セパレータには、ポリエチレンの微多孔膜が用いられる。電極群と、電池ケースまたは封口板との間の集電は、正・負極板から取り出したリード線を電池ケース・封口板に溶接するか、または、正・負極板と電池ケース・封口板との間を接触方式にする形で確保している。   A cylindrical iron disulfide / lithium primary battery in practical use is an electrode group in which a strip-like positive electrode plate and a negative electrode plate are wound many times through a separator inside a hollow cylindrical battery case. It is stored in shape. As can be seen from the description of Examples in Patent Document 1, in general, a positive electrode plate of this battery is made of an aluminum mixture mixed slurry (paint) obtained by mixing iron disulfide and a carbon conductive material / binder in a solvent. It is produced by coating and rolling on both sides of a flat foil. The negative electrode plate is lithium or an aluminum alloyed lithium plate (foil), and the separator is a polyethylene microporous film. The current collection between the electrode group and the battery case or sealing plate is performed by welding the lead wire taken out from the positive / negative electrode plate to the battery case / sealing plate, or by connecting the positive / negative electrode plate to the battery case / sealing plate. It is secured in the form of a contact system between.

特表2005−529467号公報JP 2005-529467 A 特開2006−216352号公報JP 2006-216352 A

上述のように二硫化鉄・リチウム一次電池は実用価値が高いが、正極活物質の二硫化鉄が放電をするに従って体積膨張するので、電池容量を大きくするために単純に正極活物質を高充填すると、放電が進むに従って正極中の電解液が減ってしまって正極活物質を十分に使いきれないという現象が生じてしまった。   As mentioned above, iron disulfide / lithium primary batteries have high practical value, but the positive electrode active material, iron disulfide, expands in volume as it discharges, so the positive electrode active material is simply highly charged to increase battery capacity. Then, as the discharge progressed, the electrolyte solution in the positive electrode decreased, resulting in a phenomenon that the positive electrode active material could not be fully used.

以上の課題を鑑み、本発明の二硫化鉄・リチウム一次電池は、二硫化鉄を正極活物質とする正極板と、金属リチウムを負極活物質とする負極板と、セパレータとを備え、前記正極板と前記負極板との間に前記セパレータが挟まれてこれらが捲回されており、前記正極板は、二硫化鉄、カーボン導電材及び結着剤を混合させた正極合剤と、エキスパンドメタルとを備え、該エキスパンドメタルの開口に前記正極合剤を充填し該エキスパンドメタルに該正極合剤を保持させており、前記正極板の空隙率は25%以上35%以下であり、前記負極板はSn、Mg、Zn、BiおよびAlから選ばれた一種以上の元素によって合金化されたリチウムである構成とした。   In view of the above problems, the iron disulfide / lithium primary battery of the present invention includes a positive electrode plate using iron disulfide as a positive electrode active material, a negative electrode plate using metal lithium as a negative electrode active material, and a separator, and the positive electrode The separator is sandwiched between a plate and the negative electrode plate, and these are wound. The positive electrode plate includes a positive electrode mixture in which iron disulfide, a carbon conductive material, and a binder are mixed, and an expanded metal. The positive electrode mixture is filled in the opening of the expanded metal, and the positive metal mixture is held in the expanded metal, and the porosity of the positive electrode plate is 25% or more and 35% or less, and the negative electrode plate Is a lithium alloyed with one or more elements selected from Sn, Mg, Zn, Bi and Al.

本発明によると、高容量で、高負荷放電特性にも優れた二硫化鉄・リチウム一次電池を提供することができる。   According to the present invention, it is possible to provide an iron disulfide / lithium primary battery having high capacity and excellent high-load discharge characteristics.

菱形のエキスパンドメタルの骨格形状を表した説明図である。It is explanatory drawing showing the frame | skeleton shape of the expanded metal of a rhombus. 本発明の実施形態に係る二硫化鉄・リチウム一次電池の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the iron disulfide and lithium primary battery which concerns on embodiment of this invention.

本願発明者らは、二硫化鉄・リチウム一次電池の検討を行う際に他の種類の電池の技術も調査した。例えば、正極活物質に焼成二酸化マンガン等を用いた、3V級の二酸化マンガン・リチウム一次電池も広く普及しているので、この電池について調べてみると、この電池においても、電池ケース内部に、正極板・負極板・セパレータの捲回電極群を収納した構成を有するが、ここでの正極板は、二酸化マンガンとカーボン導電材・結着剤からなる合剤(水分率の少ない造粒粉末)をエキスパンドメタルに充填・圧延して作る方式が主流である。(例えば、特許文献2等を参照)
上記のようなエキスパンドメタルへの充填方式の正極板は、平面箔上にスラリを両面塗工する方式に比べて生産性が高いという利点を有する。また、エキスパンドメタルへの充填は正極板の厚型化・短尺化が容易なため、余剰なセパレータを減らす(短くする)等して、電池内の活物質の高充填化・電池の高容量化を行うのに適すると考えられる。
The inventors of the present application also investigated other types of battery technologies when studying iron disulfide / lithium primary batteries. For example, a 3V-class manganese dioxide / lithium primary battery using baked manganese dioxide or the like as a positive electrode active material is also widely used. When this battery is examined, the positive electrode is also formed inside the battery case. It has a configuration that houses a wound electrode group of a plate, a negative electrode plate, and a separator, but the positive electrode plate here is a mixture (granulated powder with low moisture content) consisting of manganese dioxide and a carbon conductive material / binder. The mainstream method is to fill and roll into expanded metal. (For example, see Patent Document 2 etc.)
The positive electrode plate of the expanded metal filling method as described above has an advantage that the productivity is higher than the method of applying slurry on both sides of the flat foil. In addition, filling the expanded metal makes it easy to make the positive electrode plate thicker and shorter, so reducing the excess separator (shortening), etc., increasing the active material in the battery and increasing the capacity of the battery It is thought that it is suitable for doing.

上述したような背景から、特に、円筒型の二硫化鉄・リチウム一次電池の高容量化を志向する場合、二硫化鉄正極をエキスパンドメタルへの充填方式として、正極板の厚型化・短尺化を行うことが有利と考えられる。しかしながら、単純に正極板の厚型化・短尺化を行うと、短尺化によって正・負極板の対向する面積が少なくなり、放電時の単位面積あたりの電流密度[mA/cm]が過大で厳しい条件となるため、高負荷放電特性を十分に確保できないという問題が生じる。 From the above-mentioned background, especially when aiming to increase the capacity of cylindrical iron disulfide / lithium primary batteries, the positive electrode plate is made thicker and shorter as the method of filling the iron disulfide positive electrode into expanded metal. It is considered advantageous to perform. However, when the positive electrode plate is simply made thicker and shorter, the area where the positive and negative electrode plates face each other is reduced, and the current density per unit area [mA / cm 2 ] during discharge is excessive. Since the conditions are severe, there arises a problem that sufficient high-load discharge characteristics cannot be secured.

また、正極活物質の二硫化鉄は放電に伴い体積膨張するため、放電末期における正極中への電解液含浸性・浸透性の確保や、放電末期の正極活物質粒子の脱落抑止観点から、正極活物質の充填のやり方を考える必要があると本願発明者らは考えた。しかし、公知のエキスパンドメタル充填方式の正極板は、体積膨張の比較的少ない二酸化マンガン等を扱っていたため、上記のような体積膨張にどのように対応したらよいのか、これまで検討が行われていなかった。   In addition, since the iron disulfide of the positive electrode active material expands in volume with discharge, the positive electrode active material particles can be impregnated and penetrated into the positive electrode at the end of discharge and the positive electrode active material particles at the end of discharge can be prevented from falling off. The present inventors thought that it was necessary to consider how to fill the active material. However, since the known expanded metal filling type positive electrode plate handled manganese dioxide or the like having a relatively small volume expansion, it has not been studied how to cope with the volume expansion as described above. It was.

本願発明者ら上述の検討を土台にして種々の実験を重ねさらなる検討を行った結果、正極板における空隙率が鍵を握っていることを見出して本願発明を想到するに至った。   The inventors of the present application have conducted various experiments based on the above-described examination, and as a result, have found that the porosity of the positive electrode plate is the key, and have come up with the present invention.

(定義)
二硫化鉄を正極活物質とする正極板とは、正極活物質は二硫化鉄が90%以上である正極板である。また、金属リチウムを負極活物質とする負極板とは、負極活物質は金属リチウムが90%以上である負極板である。エキスパンドメタルとは、金属板に多数の切れ目を入れて引き延ばし、多数の開口を形成して網目状態にしたものである。エキスパンドメタルのメッシュとは網目のことである。
(Definition)
The positive electrode plate using iron disulfide as a positive electrode active material is a positive electrode plate in which the positive electrode active material is 90% or more of iron disulfide. Moreover, the negative electrode plate which uses metallic lithium as a negative electrode active material is a negative electrode plate whose negative electrode active material is 90% or more of metallic lithium. Expanded metal is a metal plate that is stretched by making a number of cuts and forming a large number of openings. The expanded metal mesh is a mesh.

正極板の空隙率は、未放電、あるいは電池作製直後の予備放電だけを行った初期状態の正極板に関して、正極板全体(エキスパンドメタルを含む)の体積に占める正極内の空隙体積の比率(%)として定義される。   The porosity of the positive electrode plate is the ratio of the void volume in the positive electrode to the total positive electrode plate (including the expanded metal) volume (%) with respect to the positive electrode plate in the initial state in which only the preliminary discharge immediately after battery preparation was performed. ).

負極板においてリチウムに合金化させる元素の総質量を規定する際の負極板の全体質量は、負極板に付属させる負極リードの質量を含まない。正極合剤中の二硫化鉄とカーボン導電材との質量混合比率が97/3から93/7までとは、二硫化鉄97質量部に対しカーボン導電材3質量部の混合比率から二硫化鉄93質量部に対しカーボン導電材7質量部の混合比率までの混合比率範囲を意味し、範囲の両端を含む。   The total mass of the negative electrode plate when the total mass of elements alloyed with lithium in the negative electrode plate does not include the mass of the negative electrode lead attached to the negative electrode plate. The mass mixing ratio of iron disulfide and carbon conductive material in the positive electrode mixture is from 97/3 to 93/7. From the mixing ratio of 3 parts by mass of carbon conductive material to 97 parts by mass of iron disulfide, iron disulfide is mixed. This means a mixing ratio range up to 93 parts by mass with respect to a mixing ratio of 7 parts by mass of the carbon conductive material, and includes both ends of the range.

正極板の理論容量は、正極板に保持させた二硫化鉄材の質量[g]に基づいて、同材が理論上最大の4電子反応(894mAh/g)すると仮定して算出される放電容量[mAh]であり、単位面積あたりの理論容量は、この値を正極板の面積[cm]で割ったものである。 The theoretical capacity of the positive electrode plate is calculated based on the mass [g] of the iron disulfide material held on the positive electrode plate, assuming that the material is theoretically the maximum four-electron reaction (894 mAh / g) [ mAh], and the theoretical capacity per unit area is obtained by dividing this value by the area [cm 2 ] of the positive electrode plate.

(概要)
本発明の例示的な二硫化鉄・リチウム一次電池は、正極板にエキスパンドメタル充填方式を採用し、二硫化鉄材の膨張を考慮して、空隙率が25%以上35%以下という範囲に設定する。これにより、電池放電末期における正極中への電解液含浸性・浸透性の確保、ならびに、放電末期の正極活物質粒子の脱落抑止が図られる。本発明者等が鋭意検討した結果、正極板の空隙率を25%未満にすると、放電末期における正極中への電解液含浸性・浸透性が低下し、逆に空隙率を35%よりも大きくすると、放電末期の正極活物質粒子が正極板から脱落することが顕在化する点が明らかとなった。この観点から、正極の空隙率は25%以上35%以下の範囲が好ましい。このように例示的な二硫化鉄・リチウム一次電池では、高負荷放電末期の電圧低下現象等を抑制することができる。
(Overview)
The exemplary iron disulfide / lithium primary battery of the present invention employs an expanded metal filling method for the positive electrode plate, and the porosity is set in the range of 25% to 35% in consideration of the expansion of the iron disulfide material. . As a result, it is possible to ensure the electrolyte impregnation and permeability into the positive electrode at the end of battery discharge and to prevent the positive electrode active material particles from falling off at the end of discharge. As a result of intensive studies by the present inventors, when the porosity of the positive electrode plate is less than 25%, the electrolyte impregnation / penetration into the positive electrode at the end of discharge is reduced, and conversely, the porosity is greater than 35%. As a result, it became clear that the positive electrode active material particles at the end of the discharge became apparent from the positive electrode plate. In this respect, the porosity of the positive electrode is preferably in the range of 25% to 35%. As described above, the exemplary iron disulfide / lithium primary battery can suppress the voltage drop phenomenon at the end of the high-load discharge.

また、負極板に用いるリチウムは、Sn、Mg、Zn、Bi、Alの一種以上の元素で合金化されている。これにより、電池内で負極表面に形成される皮膜が少なくなり、放電時の負極側の分極が大幅に低減される。具体的には、リチウムがSn、Mg、Zn、Bi、Alの一種以上の元素で合金化されていると、放電時の負極側の分極が大幅に低減される。同時に、以下のような効果も併せ持つ。すなわち、正極に二硫化鉄を用いた系では、二硫化鉄材に存在する硫酸イオン等の不純物が電解液中に溶出し、負極リチウム上に、放電阻害効果の大きい強固な皮膜を形成する傾向がある。リチウムがSn、Mg、Zn、Bi、Alの一種以上の元素で合金化されていると、このような、二硫化鉄を用いた系に特有の、強固な皮膜形成の抑止が可能になる。なお、上記のような、異元素で合金化されたリチウムは、例えば、金属リチウムのインゴッドを溶解・押出して板状のフォイルとする公知の製造フローにおいて、溶解工程で、所定量の異元素を添加する方法等で作製することが可能である。このような負極板を、エキスパンドメタル方式で厚型化・短尺化した正極板と組み合わせて、単位面積あたりの電流密度[mA/cm]が厳しい条件下で放電させた場合にも、電池トータルとしての放電電圧を高位に維持することができる。 Further, lithium used for the negative electrode plate is alloyed with one or more elements of Sn, Mg, Zn, Bi, and Al. Thereby, the film | membrane formed in the negative electrode surface within a battery decreases, and the polarization by the side of the negative electrode at the time of discharge is reduced significantly. Specifically, when lithium is alloyed with one or more elements of Sn, Mg, Zn, Bi, and Al, the polarization on the negative electrode side during discharge is greatly reduced. At the same time, it also has the following effects. That is, in a system using iron disulfide for the positive electrode, impurities such as sulfate ions present in the iron disulfide material are eluted in the electrolyte solution, and there is a tendency to form a strong film having a large discharge inhibiting effect on the negative electrode lithium. is there. When lithium is alloyed with one or more elements of Sn, Mg, Zn, Bi, and Al, it is possible to suppress the formation of a strong film peculiar to the system using iron disulfide. The lithium alloyed with a different element as described above is, for example, a known manufacturing flow in which a metallic lithium ingot is melted and extruded to form a plate-like foil. It can be produced by a method such as adding. Even when such a negative electrode plate is combined with a positive electrode plate that has been made thicker and shorter by an expanded metal method, and the current density per unit area [mA / cm 2 ] is discharged under severe conditions, the battery total The discharge voltage can be maintained at a high level.

したがって、以上のような構成によると、エキスパンドメタル方式正極を用いた場合の高容量化に適するという利点を活かしながら、同電池の高負荷放電特性をも十分に確保することが可能になる。   Therefore, according to the configuration as described above, it is possible to sufficiently ensure the high load discharge characteristics of the battery while taking advantage of the high capacity when the expanded metal type positive electrode is used.

例示的な二硫化鉄・リチウム一次電池では、正極板の単位面積あたりの理論容量を35mAh/cm以上70mAh/cm以下に設定することができる。単位面積あたりの理論容量が35mAh/cm未満だと、電池容量を確保するためには正極面積を大きくする(正極板を長尺化する)必要があり、電池ケース内に余剰なエキスパンドメタルやセパレータを収容することになって、高容量化・高出力化に不利となりやすい。一方、単位面積あたりの理論容量が70mAh/cmよりも大きいと、正極板の短尺化ができて高容量化には有利だが、正極厚みが過大で、正・負極間の対向面積も不足となりやすく、高負荷放電特性の確保が難しくなる。 In an exemplary iron disulfide / lithium primary battery, the theoretical capacity per unit area of the positive electrode plate can be set to 35 mAh / cm 2 or more and 70 mAh / cm 2 or less. If the theoretical capacity per unit area is less than 35 mAh / cm 2, it is necessary to increase the positive electrode area (lengthening the positive electrode plate) in order to ensure battery capacity, and excess expanded metal or Since the separator is accommodated, it tends to be disadvantageous for high capacity and high output. On the other hand, if the theoretical capacity per unit area is larger than 70 mAh / cm 2 , the positive electrode plate can be shortened and it is advantageous for high capacity, but the positive electrode thickness is excessive and the facing area between the positive and negative electrodes becomes insufficient. It is easy to ensure high load discharge characteristics.

負極板のリチウムに合金化させる元素の総質量は、負極板の全体質量(集電のためのリード等を除いた質量)に対して0.1%以上3%以下とすることができる。これは、合金化元素の総質量が0.1%未満であると負極表面の皮膜を低減化させる効果を得難く、また逆に、合金化元素の総質量が3%よりも大きくなると、負極活物質であるリチウムの比率が相対的に低くなって、電池の高容量化を図る上で不利になりやすいためである。   The total mass of elements to be alloyed with lithium in the negative electrode plate can be 0.1% or more and 3% or less with respect to the total mass of the negative electrode plate (the mass excluding leads for current collection). This is because if the total mass of the alloying elements is less than 0.1%, it is difficult to obtain the effect of reducing the coating on the negative electrode surface. Conversely, if the total mass of the alloying elements is greater than 3%, This is because the ratio of lithium as an active material is relatively low, which tends to be disadvantageous in increasing the capacity of the battery.

正極のカーボン導電材はBET比表面積300m/g以上のカーボン粉を含むこととすることができる。比表面積の大きいカーボン導電材を含むことで、厚膜化・短尺化を図った正極内への電解液の含浸性を高めることができ、高負荷放電特性の確保が容易となる。 The carbon conductive material of the positive electrode can contain carbon powder having a BET specific surface area of 300 m 2 / g or more. By including a carbon conductive material having a large specific surface area, it is possible to improve the impregnation property of the electrolytic solution into the positive electrode that is made thicker and shorter, and it is easy to ensure high load discharge characteristics.

また、二硫化鉄とカーボン導電材の正極合剤中の質量混合比率は97/3〜93/7の範囲に設定することができる。カーボン導電材の混合比率が上記範囲よりも少ないと、十分な高率放電特性を確保するのが困難になる。カーボン導電材の混合比率が上記範囲よりも多い、すなわち、活物質である二硫化鉄の混合比率が上記範囲よりも少ないと、電池の絶対的な容量を確保するのが困難になる。   Moreover, the mass mixing ratio in the positive electrode mixture of iron disulfide and carbon conductive material can be set in the range of 97/3 to 93/7. If the mixing ratio of the carbon conductive material is less than the above range, it is difficult to ensure sufficient high rate discharge characteristics. When the mixing ratio of the carbon conductive material is larger than the above range, that is, when the mixing ratio of the iron disulfide as the active material is smaller than the above range, it is difficult to ensure the absolute capacity of the battery.

正極のエキスパンドメタルは、電解液への化学的安定性、及び、低価格といった点から、アルミニウム製またはステンレス鋼製のものとすることができる。また、正極板内におけるエキスパンドメタルの芯材体積比率を極力減らすため、その骨格形状は菱形(ダイヤ形)であることが好ましい。   The expanded metal of the positive electrode can be made of aluminum or stainless steel from the viewpoints of chemical stability to the electrolyte and low cost. In order to reduce the volume ratio of the expanded metal core material in the positive electrode plate as much as possible, the skeleton shape is preferably a rhombus (diamond shape).

図1に、メッシュ(網目)が菱形(ダイヤ形)のエキスパンドメタルの骨格図面を示す。板厚Tは、加工前の金属板の板厚がそのまま反映される。充填・圧縮や電極群構成に際しての正極板の切れを抑制しつつ、正極板に適度な柔軟性を付与できる望ましい板厚Tは、0.1mm以上0.15mm以下である。刻み幅Wは、板厚Tと共に、骨格の太さを決定するパラメータであるが、上述のような正極板の切れの抑制、ならびに芯材体積比率の低減という観点から、Wは0.2mm以上0.3mm以下の範囲が好適である。また、メッシュの長目方向の中心間距離LW、および短目方向の中心間距離SWは、エキスパンドメタルに形成される孔の大きさを規定するパラメータである。骨格から離れた位置にある活物質粒子からの集電を十分に保つともに、芯材としての引っ張り強度を確保し、一方で、芯材体積比率をできるだけ低減するという観点からLW、SWの好適な範囲が決定する。上記の観点で本発明者等が検討を行った結果、長目方向の中心間距離LWの好適な範囲は2mm以上3mm以下、短目方向の中心間距離SWの好適な範囲は0.8mm以上1.8mm以下である。   FIG. 1 shows a skeleton drawing of an expanded metal having a rhombus (diamond) mesh (mesh). The plate thickness T directly reflects the plate thickness of the metal plate before processing. A desirable plate thickness T that can impart appropriate flexibility to the positive electrode plate while suppressing breakage of the positive electrode plate during filling / compression and electrode group configuration is 0.1 mm or more and 0.15 mm or less. The step width W is a parameter that determines the thickness of the skeleton together with the plate thickness T. From the viewpoint of suppressing the breakage of the positive electrode plate as described above and reducing the volume ratio of the core material, W is 0.2 mm or more. A range of 0.3 mm or less is preferred. Further, the center-to-center distance LW in the long direction and the center-to-center distance SW in the short direction of the mesh are parameters that define the size of the hole formed in the expanded metal. Suitable for LW and SW from the viewpoint of sufficiently maintaining the current collection from the active material particles at a position away from the skeleton and ensuring the tensile strength as the core material while reducing the volume ratio of the core material as much as possible. The range is determined. As a result of the study by the present inventors from the above viewpoint, a preferable range of the center-to-center distance LW in the long direction is 2 mm or more and 3 mm or less, and a preferable range of the center-to-center distance SW in the short direction is 0.8 mm or more. It is 1.8 mm or less.

(実施形態1)
<二硫化鉄・リチウム一次電池の説明>
図2は、本発明の実施形態に係る二硫化鉄・リチウム一次電池の概略断面図である。
(Embodiment 1)
<Description of iron disulfide / lithium primary batteries>
FIG. 2 is a schematic cross-sectional view of an iron disulfide / lithium primary battery according to an embodiment of the present invention.

この二硫化鉄・リチウム一次電池は二硫化鉄を活物質とした正極板1と、リチウムを活物質とした負極板2とを有する。正極板1と、負極板2と、これらの間に介在されたセパレータ3とを渦巻状に捲回することで電極群を構成している。この電極群は、非水電解液(図示せず)とともに有底円筒形のケース9に収納されている。ケース9の開口部には封口板8が装着されている。封口板8には、正極板1の芯材に接続されたリード4が連結されている。負極板2に接続されたリード5は、ケース9に連結されている。また、電極群の上部と下部とには、内部短絡防止のためにそれぞれ上部絶縁板6、下部絶縁板7が配備されている。   This iron disulfide / lithium primary battery has a positive electrode plate 1 using iron disulfide as an active material and a negative electrode plate 2 using lithium as an active material. The electrode group is configured by winding the positive electrode plate 1, the negative electrode plate 2, and the separator 3 interposed therebetween in a spiral shape. This electrode group is housed in a bottomed cylindrical case 9 together with a non-aqueous electrolyte (not shown). A sealing plate 8 is attached to the opening of the case 9. A lead 4 connected to the core material of the positive electrode plate 1 is connected to the sealing plate 8. The lead 5 connected to the negative electrode plate 2 is coupled to the case 9. In addition, an upper insulating plate 6 and a lower insulating plate 7 are respectively provided at the upper and lower portions of the electrode group to prevent internal short circuits.

正極板1は次のようにして作製される。二硫化鉄と導電剤とを混合した後、結着剤と水とを添加して混練することにより正極合剤を調製する。次に、この正極合剤を、エキスパンドメタルに所定量載せてそのメッシュに充填し、乾燥させて圧縮する。その後、定寸に裁断し、正極合剤の一部分を剥離しその部分のエキスパンドメタルにリード4を溶接することで帯状の正極板1を作製する。   The positive electrode plate 1 is produced as follows. After mixing iron disulfide and a conductive agent, a binder and water are added and kneaded to prepare a positive electrode mixture. Next, a predetermined amount of this positive electrode mixture is placed on the expanded metal, filled in the mesh, dried and compressed. Then, it cuts into a fixed size, peels a part of positive electrode mixture, welds the lead | read | reed 4 to the expanded metal of the part, and produces the strip | belt-shaped positive electrode plate 1. FIG.

帯状の負極板2は、Sn、Mg、Zn、Bi、Alの一種以上の元素で合金化されたリチウム(フォイル)で構成される。セパレータ3にはポリオレフィン微多孔膜などを用いる。   The strip-shaped negative electrode plate 2 is made of lithium (foil) alloyed with one or more elements of Sn, Mg, Zn, Bi, and Al. As the separator 3, a polyolefin microporous film or the like is used.

非水電解液に用いる溶媒としては、公知のリチウム一次電池の非水電解液に用いられる有機溶媒であれば特に限定されるものではない。γ−ブチルラクトン、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンなどを単独または混合して使用することができる。   The solvent used for the nonaqueous electrolytic solution is not particularly limited as long as it is an organic solvent used for a known nonaqueous electrolytic solution of a lithium primary battery. γ-Butyllactone, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane and the like can be used alone or in combination.

非水電解液を構成する支持電解質には、過塩素酸リチウム、ホウフッ化リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸リチウム、ヨウ化リチウム、および分子構造内にイミド結合を有するLiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)などを用いることができる。 The supporting electrolyte constituting the non-aqueous electrolyte includes lithium perchlorate, lithium borofluoride, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium iodide, and LiN (CF that has an imide bond in the molecular structure. 3 SO 2) 2, LiN ( C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2) , or the like can be used.

以下、実施例について詳細に説明する。本発明の内容は、これらの実施例に限定されるものではない。   Hereinafter, examples will be described in detail. The content of the present invention is not limited to these examples.

(実施例1)
<電池の作製>
平均粒径(体積分率50%時の粒径:D50)が25μmの二硫化鉄の95質量部と、ケッチェンブラック(ライオン(株)製のEC300J、BET比表面積:800m/g)の5質量部とを乾式混合した後、結着剤であるPTFEディスバージョン(ダイキン工業(株)製のポリフロン(登録商標)D−1E)とに適量の水を添加・混練して、ファニキュラ状態の正極合剤を作製した。PTFEの固形分比率が、乾燥後の正極合剤の総質量(水分を除いた総質量)に対して5質量%となるように調整した。
Example 1
<Production of battery>
95 parts by mass of iron disulfide having an average particle size (particle size at a volume fraction of 50%: D 50 ) of 25 μm and Ketjen Black (EC300J manufactured by Lion Corporation, BET specific surface area: 800 m 2 / g) After 5 parts by mass of the mixture is dry-mixed, an appropriate amount of water is added to and kneaded with PTFE disversion (Polyflon (registered trademark) D-1E manufactured by Daikin Industries, Ltd.), which is a binder. A positive electrode mixture was prepared. The solid content ratio of PTFE was adjusted to 5% by mass with respect to the total mass (total mass excluding moisture) of the positive electrode mixture after drying.

この正極合剤を、エキスパンドメタルに載せてそのメッシュに押し込んで充填し、乾燥・圧縮した。圧縮に際しては、正極板の空隙率(エキスパンドメタルを含めた正極体積に占める、正極内の空隙体積の比率)が30%になるように調整した。その後、定寸(長さ200mm、幅44mm、正極の単位面積あたりの理論容量:50mAh/cm)に裁断し、正極合剤の一部分を剥離しその部分のエキスパンドメタルにリードを溶接して正極板を得た。ここで、エキスパンドメタルは、アルミニウム製で、図1のような菱形のメッシュ構造・骨格形状を有するものを用いた。このエキスパンドメタルの寸法のパラメータは、板厚T:0.13mm、刻み幅W:0.25mm、長目方向の中心間距離LW:2.5mm、短目方向の中心間距離SW:1.2mmとした。 This positive electrode mixture was placed on an expanded metal, pushed into the mesh, filled, dried and compressed. During compression, the porosity of the positive electrode plate (the ratio of the void volume in the positive electrode to the positive electrode volume including the expanded metal) was adjusted to 30%. After that, it is cut to a fixed size (length 200 mm, width 44 mm, theoretical capacity per unit area of positive electrode: 50 mAh / cm 2 ), a part of the positive electrode mixture is peeled off, and a lead is welded to the expanded metal of the part. I got a plate. Here, the expanded metal is made of aluminum and has a diamond-shaped mesh structure / skeleton shape as shown in FIG. The dimensions of the expanded metal are as follows: plate thickness T: 0.13 mm, step width W: 0.25 mm, center-to-center distance LW: 2.5 mm, center-to-center distance SW: 1.2 mm in the short direction. It was.

負極板2は、表1に示す5種類の合金化元素を含有する帯状のリチウム合金、および帯状の金属リチウムとした。   The negative electrode plate 2 was a strip-shaped lithium alloy containing five types of alloying elements shown in Table 1 and a strip-shaped metallic lithium.

さらに、図1の構成(単3サイズ)において、セパレータ3にはポリオレフィン微多孔膜(セルガード(株)製#2400)、電解液には1、3−ジオキソラン(DOL)と1、2−ジメトキシエタン(DME)が体積比で2:1の混合溶媒に、ヨウ化リチウム(LiI)を1mol/lとなるように添加して作製した溶液を用いて、それぞれのリチウム合金(あるいは金属リチウム)に対応する二流鉄・リチウム一次電池a1〜a6を作製した。電池a6は比較対象の電池である。   Further, in the configuration of FIG. 1 (AA size), the separator 3 is a polyolefin microporous membrane (Celgard # 2400), and the electrolyte is 1,3-dioxolane (DOL) and 1,2-dimethoxyethane. Using a solution prepared by adding lithium iodide (LiI) to a mixed solvent of 2: 1 by volume (DME) to 1 mol / l, corresponding to each lithium alloy (or metallic lithium) Secondary-flow iron / lithium primary batteries a1 to a6 were produced. The battery a6 is a comparison target battery.

Figure 2012248280
Figure 2012248280

各電池は、組み立て後に45℃の雰囲気下で3日間のエージングを行い、その後、正極理論容量(二硫化鉄の放電容量を894mAh/gと仮定して算出される容量)の5%に相当する予備放電を行った。予備放電後に以下の評価を行った。   Each battery is aged for 3 days in an atmosphere at 45 ° C. after assembly, and then corresponds to 5% of the positive electrode theoretical capacity (capacity calculated on the assumption that the discharge capacity of iron disulfide is 894 mAh / g). A preliminary discharge was performed. The following evaluation was performed after preliminary discharge.

<電池の評価>
上記で作製した電池に対して、以下の(1)、(2)の評価を行った。各試験は、電池数n=5として、平均値を求める形で実施した。
<Battery evaluation>
The following (1) and (2) were evaluated for the battery produced above. Each test was carried out in the form of obtaining an average value with the number of batteries n = 5.

(1)100mA連続放電
作製した電池のそれぞれを、21℃の恒温雰囲気下において100mAの定電流で放電させて、閉路電圧が0.9Vに達するまでの時間を測定した。この試験はローレート放電試験に該当し、電池の絶対的な電気容量を測定する試験パターンである。
(1) 100 mA continuous discharge Each of the produced batteries was discharged at a constant current of 100 mA in a constant temperature atmosphere of 21 ° C., and the time until the closed circuit voltage reached 0.9 V was measured. This test corresponds to a low rate discharge test and is a test pattern for measuring the absolute electric capacity of a battery.

(2)DSCパルス放電
作製した電池のそれぞれを、21℃の恒温雰囲気下において、1.5Wで2秒間放電し、その後0.65Wで28秒放電する工程(パルス放電)を1サイクルとし、1時間当たり10サイクルのペースでパルス放電を行った。パルス放電を行いながら、閉路電圧が1.05Vに達するまでの時間を測定した。なお、この評価は、ANSI C18.1Mに定められた放電試験の方法を準用しており、デジタルスチルカメラ(DSC)での使い方を想定した、高負荷放電の試験パターンである。
(2) DSC pulse discharge Each of the produced batteries was discharged at 1.5 W for 2 seconds in a constant temperature atmosphere at 21 ° C. and then discharged at 0.65 W for 28 seconds (pulse discharge) as one cycle. Pulse discharge was performed at a pace of 10 cycles per hour. While performing pulse discharge, the time until the closed circuit voltage reached 1.05 V was measured. This evaluation is a test pattern for high-load discharge that applies the method of the discharge test defined in ANSI C18.1M and assumes use in a digital still camera (DSC).

結果を表2にまとめる。いずれの結果についても、電池a6の性能値を100(基準)として指数化している。   The results are summarized in Table 2. All results are indexed with the performance value of the battery a6 as 100 (reference).

Figure 2012248280
Figure 2012248280

これより、負極板にSn、Mg、Zn、Bi、Alの合金化リチウムを用いた電池a1〜a5は、優れたDSCパルス放電特性を有していることがわかる。これらの電池を分解・解析して調べたところ、電池a1〜a5では負極板表面に形成される皮膜が電池a6に比べて少なく、放電時の負極側の分極が低減されたと推察された。   This shows that the batteries a1 to a5 using Sn, Mg, Zn, Bi, and Al alloyed lithium for the negative electrode plate have excellent DSC pulse discharge characteristics. As a result of disassembling and analyzing these batteries, it was speculated that the batteries a1 to a5 had fewer films formed on the surface of the negative electrode plate than the battery a6, and the polarization on the negative electrode side during discharge was reduced.

上記で作製した電池は、正極板の長さが200mmと、一般的な二硫化鉄・リチウム一次電池の正極板の70%の極板長さしか有していない。このような、エキスパンドメタル方式で厚型化・短尺化した正極板と組み合わせた場合においても、電池a1〜a5では、負極側の分極が大幅に低減されることで、電池トータルとしての放電性能が高く保たれたと推察される。   The battery produced as described above has a positive electrode plate length of 200 mm, which is only 70% of the positive electrode plate length of a general iron disulfide / lithium primary battery. Even when combined with a positive electrode plate that is thickened and shortened by such an expanded metal method, in the batteries a1 to a5, the polarization on the negative electrode side is greatly reduced, so that the discharge performance as a total battery is improved. It is inferred that it was kept high.

(実施例2)
実施例2では、正極板の空隙率に関する知見を得るため、実施例1の場合と同様の正極板作製において、圧縮の条件だけを変化させ、表3中に示すような空隙率の異なるb1〜b5の正極板を用意した。そして、以降の電池構成条件は、すべて実施例1の電池a1の場合と同様(負極にSnの合金化リチウムを使用)として、それぞれの正極空隙率を有する電池b1〜b5を作製した。
(Example 2)
In Example 2, in order to obtain knowledge about the porosity of the positive electrode plate, in the same positive electrode plate production as in Example 1, only the compression conditions were changed, and b1 to b1 having different porosity as shown in Table 3 were obtained. A positive electrode plate of b5 was prepared. Then, the battery constitution conditions thereafter were all the same as in the case of the battery a1 of Example 1 (using Sn alloyed lithium for the negative electrode), and batteries b1 to b5 having respective positive electrode void ratios were produced.

これらの電池について、上述同様の条件でエージング・予備放電を行い、その後、上記(1)、(2)の性能評価を行った結果を表3にまとめる。ここで各試験は、電池数n=5として、平均値を求める形で実施した。いずれの結果についても、実施例1中の比較電池a6の性能値を100(基準)として指数化している。   Table 3 summarizes the results of performing aging / preliminary discharge on these batteries under the same conditions as described above, and then performing the performance evaluations (1) and (2) above. Here, each test was carried out in the form of obtaining an average value with the number of batteries n = 5. All the results are indexed with the performance value of the comparative battery a6 in Example 1 as 100 (reference).

Figure 2012248280
Figure 2012248280

表3から、正極板の空隙率を25〜35%の範囲に設定しなければ、優れたDSCパルス放電特性が得難い点がわかる。二硫化鉄粒子は放電に伴って体積膨張するため、空隙率を25%未満とした電池b1では、空隙率が不足して、放電末期における正極中への電解液含浸性・浸透性が低下し、DSCパルス放電特性が低調になると考えられる。また、空隙率を35%よりも大きくした電池b5では、エキスパンドメタルと活物質粒子との間の集電がとりにくく、100mA連続放電、DSCパルス放電ともに、低い特性に留まっていると考えられる。   From Table 3, it can be seen that excellent DSC pulse discharge characteristics are difficult to obtain unless the porosity of the positive electrode plate is set in the range of 25 to 35%. Since the iron disulfide particles expand in volume along with the discharge, the battery b1 having a porosity of less than 25% lacks the porosity and decreases the electrolyte impregnation and permeability into the positive electrode at the end of discharge. It is considered that the DSC pulse discharge characteristics become low. In addition, in the battery b5 in which the porosity is larger than 35%, it is difficult to collect current between the expanded metal and the active material particles, and it is considered that both 100 mA continuous discharge and DSC pulse discharge remain in low characteristics.

(実施例3)
実施例3では、正極板の単位面積あたりの理論容量に関する知見を得る実験を行った。正極合剤の質量・空隙率を実施例1の場合と同じとしながら、正極板の長さと厚みの双方を変化させて単位面積あたりの理論容量を変えてゆき、表4中に示すような単位面積あたりの理論容量を有する正極板を作製した。一方で、負極板についても、Sn:1.5質量%を入れた合金化リチウムを用い、その全体の質量は実施例1の電池a1と同一で一定としながら、正極板の長さに対応するように長さ・厚みに調整を行った。その上で、以下の手順については、実施例1の場合と同様として、それぞれの正極に対応する電池c1〜c6を作製した。
(Example 3)
In Example 3, an experiment was conducted to obtain knowledge about the theoretical capacity per unit area of the positive electrode plate. Units as shown in Table 4 were obtained by changing the theoretical capacity per unit area by changing both the length and thickness of the positive electrode plate while keeping the mass and porosity of the positive electrode mixture the same as in Example 1. A positive electrode plate having a theoretical capacity per area was produced. On the other hand, the alloyed lithium containing Sn: 1.5% by mass was also used for the negative electrode plate, and the entire mass was the same as that of the battery a1 of Example 1, while corresponding to the length of the positive electrode plate. Thus, the length and thickness were adjusted. In addition, as to the following procedure, as in the case of Example 1, batteries c1 to c6 corresponding to the respective positive electrodes were produced.

これらの電池について、上述同様の条件でエージング・予備放電を行い、その後、上記(1)、(2)の性能評価を行った結果を表4にまとめる。ここで各試験は、電池数n=5として、平均値を求める形で実施した。いずれの結果についても、実施例1中の比較電池a6の性能値を100(基準)として指数化している。   Table 4 summarizes the results of performing aging and preliminary discharge on these batteries under the same conditions as described above, and then performing the performance evaluations (1) and (2) above. Here, each test was carried out in the form of obtaining an average value with the number of batteries n = 5. All the results are indexed with the performance value of the comparative battery a6 in Example 1 as 100 (reference).

Figure 2012248280
Figure 2012248280

表4から、正極板の単位面積あたりの理論容量は35〜70mAh/cmとするのが望ましい点がわかる。単位面積あたりの理論容量を30mAh/cmとした電池c1では、正・負極板の長尺化によって、電池ケース内に余剰なエキスパンドメタルやセパレータを収容することになり、電解液の注液量を十分確保できなかった。この結果、DSCパルス放電特性が低調となっている。一方、単位面積あたりの理論容量を75mAh/cmと大きくした電池c6では、正極厚みが過大で、正・負極間の対向面積も不足気味となったため、やはりDSCパルス放電特性が低調となっている。 Table 4 shows that the theoretical capacity per unit area of the positive electrode plate is preferably 35 to 70 mAh / cm 2 . In the battery c1 having a theoretical capacity per unit area of 30 mAh / cm 2 , excess positive metal and separator are accommodated in the battery case due to the lengthening of the positive and negative electrode plates, and the amount of electrolyte solution injected We could not secure enough. As a result, the DSC pulse discharge characteristic is low. On the other hand, in the battery c6 in which the theoretical capacity per unit area was increased to 75 mAh / cm 2 , the thickness of the positive electrode was excessive, and the facing area between the positive and negative electrodes was insufficient. Yes.

(実施例4)
実施例4では、負極板のリチウムに合金化させる元素の質量比率に関する検討を行った。合金化元素としてSn、Mg、Zn、BiおよびAlを用い、表5中に示したように、リチウム合金全体の質量に対する各元素の添加比率を変化させた負極板を準備した。そして、以降の電池構成条件は、すべて実施例1の場合と同様として、それぞれの負極板に対応する電池d1〜d25を作製した。
Example 4
In Example 4, the mass ratio of elements to be alloyed with lithium of the negative electrode plate was examined. As shown in Table 5, Sn, Mg, Zn, Bi, and Al were used as alloying elements, and a negative electrode plate was prepared in which the addition ratio of each element with respect to the mass of the entire lithium alloy was changed. Then, the subsequent battery constituent conditions were the same as in Example 1, and batteries d1 to d25 corresponding to the respective negative electrode plates were produced.

これらの電池について、上述同様の条件でエージング・予備放電を行い、その後、上記(1)、(2)の性能評価を行った結果を表5にまとめる。ここで各試験は、電池数n=5として、平均値を求める形で実施した。いずれの結果についても、実施例1中の比較電池a6の性能値を100(基準)として指数化している。   Table 5 summarizes the results of performing aging and preliminary discharge on these batteries under the same conditions as described above, and then performing the performance evaluations (1) and (2) above. Here, each test was carried out in the form of obtaining an average value with the number of batteries n = 5. All the results are indexed with the performance value of the comparative battery a6 in Example 1 as 100 (reference).

Figure 2012248280
Figure 2012248280

表5から、負極板のリチウムに合金化させる元素の質量比率は、負極板の全体質量(集電のためのリード等を除いた質量)に対して0.1〜3%であることがわかる。合金化元素の質量が0.05%と少ない電池d1、d6、d11、d16、d21では、負極表面の皮膜を低減化させる効果が得難く、DSCパルス放電特性が低調である。また逆に、合金化元素の質量が3.5%と大きい電池d5、d10、d15、d20、d25も、負極活物質であるリチウムの比率が相対的に低くなるため、100mA連続放電特性(電池としての絶対的な容量)がやや低調な結果となっている。   From Table 5, it can be seen that the mass ratio of elements to be alloyed with lithium in the negative electrode plate is 0.1 to 3% with respect to the total mass of the negative electrode plate (mass excluding leads for collecting current). . In batteries d1, d6, d11, d16, and d21 having a mass of alloying elements as small as 0.05%, it is difficult to obtain the effect of reducing the coating on the negative electrode surface, and the DSC pulse discharge characteristics are poor. Conversely, batteries d5, d10, d15, d20, and d25, which have a large alloying element mass of 3.5%, also have a relatively low ratio of lithium as the negative electrode active material. As an absolute capacity).

(実施例5)
実施例5では、カーボン導電材の種類に関する知見を得るため、表6中に示したカーボン導電材を用い、他の条件は、すべて実施例1の電池a1の場合と同様(負極にSnの合金化リチウムを使用)として、それぞれのカーボン導電材に対応する電池e1〜e6を作製した。
(Example 5)
In Example 5, in order to obtain knowledge about the type of carbon conductive material, the carbon conductive material shown in Table 6 was used, and the other conditions were all the same as in the case of the battery a1 of Example 1 (Sn alloy for the negative electrode). Batteries e1 to e6 corresponding to the respective carbon conductive materials were prepared.

これらの電池について、上述同様の条件でエージング・予備放電を行い、その後、上記(1)、(2)の性能評価を行った結果を表3にまとめる。ここで各試験は、電池数n=5として、平均値を求める形で実施した。いずれの結果についても、実施例1中の比較電池a6の性能値を100(基準)として指数化している。   Table 3 summarizes the results of performing aging / preliminary discharge on these batteries under the same conditions as described above, and then performing the performance evaluations (1) and (2) above. Here, each test was carried out in the form of obtaining an average value with the number of batteries n = 5. All the results are indexed with the performance value of the comparative battery a6 in Example 1 as 100 (reference).

Figure 2012248280
Figure 2012248280

表6から、カーボン導電材としては、BET比表面積が300m/g以上のものを用いるのが望ましい点が明らかである。BET比表面積が300m/gに満たないカーボン導電材を用いた電池e1、e2、e3では、正極への電解液の含浸が困難となり、DSCパルス放電を中心に特性が低調となっている。 From Table 6, it is clear that it is desirable to use a carbon conductive material having a BET specific surface area of 300 m 2 / g or more. In the batteries e1, e2, and e3 using carbon conductive materials having a BET specific surface area of less than 300 m 2 / g, it is difficult to impregnate the positive electrode with an electrolytic solution, and the characteristics are low, mainly in DSC pulse discharge.

(実施例6)
実施例6では、正極合剤中の二硫化鉄とカーボン導電材との質量混合比率に関する知見を得るため、表7中に示した質量混合比率の正極合剤を用い、他の条件は、すべて実施例1の電池a1の場合と同様(負極にSnの合金化リチウムを使用)として、それぞれの質量混合比率に対応する電池f1〜f5を作製した。
(Example 6)
In Example 6, in order to obtain knowledge about the mass mixing ratio of iron disulfide and the carbon conductive material in the positive electrode mixture, the positive electrode mixture having the mass mixing ratio shown in Table 7 was used. As in the case of the battery a1 of Example 1 (using Sn alloyed lithium as the negative electrode), batteries f1 to f5 corresponding to the respective mass mixing ratios were produced.

これらの電池について、上述同様の条件でエージング・予備放電を行い、その後、上記(1)、(2)の性能評価を行った結果を表7にまとめる。ここで各試験は、電池数n=5として、平均値を求める形で実施した。いずれの結果についても、実施例1中の比較電池a6の性能値を100(基準)として指数化している。   Table 7 summarizes the results of performing aging / preliminary discharge on these batteries under the same conditions as described above, and then performing the performance evaluations (1) and (2) above. Here, each test was carried out in the form of obtaining an average value with the number of batteries n = 5. All the results are indexed with the performance value of the comparative battery a6 in Example 1 as 100 (reference).

Figure 2012248280
Figure 2012248280

表7から、正極合剤中の二硫化鉄とカーボン導電材との質量混合比率については97/3〜93/7の範囲が適正なことが明らかである。質量混合比率が98/2とカーボン導電材の比率が少ない電池f1では、DSCパルス放電特性を確保するのが困難である。また、質量混合比率が92/8と二硫化鉄の比率が少ない電池f5では、100mA連続放電特性(絶対的な電池容量)を確保するのが困難になる。   From Table 7, it is clear that the range of 97/3 to 93/7 is appropriate for the mass mixing ratio of the iron disulfide and the carbon conductive material in the positive electrode mixture. In the battery f1 having a mass mixing ratio of 98/2 and a small ratio of the carbon conductive material, it is difficult to ensure the DSC pulse discharge characteristics. Further, in the battery f5 having a mass mixing ratio of 92/8 and a small ratio of iron disulfide, it is difficult to ensure 100 mA continuous discharge characteristics (absolute battery capacity).

(実施例7)
ここでは、菱形(ダイヤ形)のエキスパンドメタルの骨格形状に関する検討を行った。アルミニウム製で表8中に示した形状パラメータを有するエキスパンドメタルを用意し、他の条件は、すべて実施例1の電池a1の場合と同様(負極にSnの合金化リチウムを使用)として、それぞれのエキスパンドメタルに対応する電池の構成を行った。この際、正極合剤の充填量を十分に確保するのが困難なもの(g4、g8、g9、g13)、及び、電極群の捲回構成時に正極板が切れたもの(g1、g5)が存在した。これらの結果を表8にまとめる。
(Example 7)
Here, the skeleton shape of the diamond (diamond) expanded metal was examined. An expanded metal made of aluminum and having the shape parameters shown in Table 8 was prepared, and all other conditions were the same as in the case of the battery a1 of Example 1 (using Sn alloyed lithium for the negative electrode). A battery corresponding to expanded metal was constructed. At this time, it is difficult to secure a sufficient amount of the positive electrode mixture (g4, g8, g9, g13), and the positive electrode plate is cut when the electrode group is wound (g1, g5). Were present. These results are summarized in Table 8.

Figure 2012248280
Figure 2012248280

狙い通りの電池構成が可能であったものに関して、上述同様の条件でエージング・予備放電を行い、その後、上記(1)、(2)の性能評価を行った結果を表9にまとめる。ここで各試験は、電池数n=5として、平均値を求める形で実施した。いずれの結果についても、実施例1中の比較電池a6の性能値を100(基準)として指数化している。   Table 9 summarizes the results of performing the aging / preliminary discharge under the same conditions as described above, and then performing the performance evaluations (1) and (2) above on the batteries that could be configured as intended. Here, each test was carried out in the form of obtaining an average value with the number of batteries n = 5. All the results are indexed with the performance value of the comparative battery a6 in Example 1 as 100 (reference).

Figure 2012248280
Figure 2012248280

表9から、板厚Tは0.1〜0.15mm、刻み幅Wは0.2〜0.3mm、長目方向の中心間距離LWは2〜3mm、短目方向の中心間距離SWは0.8〜1.8mmの範囲が望ましいことがわかる。長目方向の中心間距離LWが3.5mmとしたg12や、短目方向の中心間距離SWが2mmとしたg16では、エキスパンドメタルの孔径が大きいために、骨格から離れた位置にある活物質粒子からの集電を保つのが困難になって放電特性が高くなっていないものと推察される。   From Table 9, the thickness T is 0.1 to 0.15 mm, the step width W is 0.2 to 0.3 mm, the center distance LW in the long direction is 2 to 3 mm, and the center distance SW in the short direction is It can be seen that a range of 0.8 to 1.8 mm is desirable. In g12 in which the center distance LW in the long direction is 3.5 mm and in g16 in which the center distance SW in the short direction is 2 mm, the active metal is located away from the skeleton because the expanded metal has a large pore diameter. It is assumed that it is difficult to maintain current collection from the particles and the discharge characteristics are not improved.

以上に詳細に実施例を示したように、本発明によれば、高容量であると同時に、高負荷放電特性にも優れた二硫化鉄・リチウム一次電池を提供することが可能である。   As described in detail above, according to the present invention, it is possible to provide an iron disulfide / lithium primary battery having a high capacity and an excellent high-load discharge characteristic.

(その他の実施形態)
以上説明した実施形態、実施例は本発明の例示であり、本発明はこれらの例に限定されない。例えば、上記の実施例ではエキスパンドメタルの材質としてアルミニウム製のものを用いたが、ステンレス製のものを用いても同様の放電特性が得られる。特に、実施例7中に記したような、電極群の捲回構成時における正極板の切れに対しては、アルミニウムよりも強度の強いステンレス製のエキスパンドメタルを採用することで、回避可能と推察される。
(Other embodiments)
The embodiments and examples described above are examples of the present invention, and the present invention is not limited to these examples. For example, in the above embodiment, the expanded metal is made of aluminum, but the same discharge characteristics can be obtained by using stainless steel. In particular, as described in Example 7, it is inferred that it is possible to avoid the breakage of the positive electrode plate during the winding configuration of the electrode group by using an expanded metal made of stainless steel stronger than aluminum. Is done.

また、実施例5では、BET比表面積が300m/g以上のカーボン粉として、ケッチェンブラックや特定のカーボンブラックを用いたが、比表面積のカーボンナノチューブ、カーボンナノファイバー等でも同様の効果が得られる。また、BET比表面積が300m/g以上のカーボン粉を主体(50%以上)としながら、他のカーボン粉と混ぜ合わせた形の導電材を用いても、類似の効果が得られると考えられる。 In Example 5, ketjen black or specific carbon black was used as the carbon powder having a BET specific surface area of 300 m 2 / g or more. However, the same effect can be obtained with carbon nanotubes, carbon nanofibers and the like having a specific surface area. It is done. Further, it is considered that a similar effect can be obtained even if a conductive material in a form mixed with other carbon powder is used mainly with carbon powder having a BET specific surface area of 300 m 2 / g or more (50% or more). .

また、負極のリチウムと合金化させる元素は1種類に限定されず、2種類以上のリチウムに加えて合金化させてもよい。   Further, the element to be alloyed with lithium of the negative electrode is not limited to one kind, and may be alloyed in addition to two or more kinds of lithium.

さらに、上記の実施例では、単3サイズの円筒形電池としたが、本発明自体はこれに限定されるものではなく、他のサイズの円筒形電池や角型電池等にも、適宜活用することが可能である。   Furthermore, in the above embodiment, the AA size cylindrical battery is used, but the present invention itself is not limited to this, and is appropriately used for other sizes of cylindrical batteries, prismatic batteries, and the like. It is possible.

以上説明したように、本発明に係る二硫化鉄・リチウム一次電池は、高容量であると同時に、高負荷放電特性にも優れており、デジタルスチルカメラを初めとして、電子ゲーム・玩具等に用いる1.5V級の一次電池等として最適である。   As described above, the iron disulfide / lithium primary battery according to the present invention has a high capacity and an excellent high-load discharge characteristic, and is used for electronic games, toys and the like including digital still cameras. It is optimal as a 1.5V class primary battery.

1 正極板
2 負極板
3 セパレータ
4 正極リード
5 負極リード
6 上部絶縁板
7 下部絶縁板
8 封口板
9 ケース
1 Positive Plate 2 Negative Plate 3 Separator
4 Positive lead
5 Negative lead
6 Upper insulation plate
7 Lower insulation plate
8 Sealing plate
9 cases

Claims (5)

二硫化鉄を正極活物質とする正極板と、金属リチウムを負極活物質とする負極板と、セパレータとを備え、前記正極板と前記負極板との間に前記セパレータが挟まれてこれらが捲回されている二硫化鉄・リチウム一次電池であって、
前記正極板は、二硫化鉄、カーボン導電材及び結着剤を混合させた正極合剤と、エキスパンドメタルとを備え、該エキスパンドメタルの開口に前記正極合剤を充填し該エキスパンドメタルに該正極合剤を保持させており、
前記正極板の空隙率は25%以上35%以下であり、
前記負極板はSn、Mg、Zn、BiおよびAlから選ばれた一種以上の元素によって合金化されたリチウムであることを特徴とする、二硫化鉄・リチウム一次電池。
A positive electrode plate using iron disulfide as a positive electrode active material, a negative electrode plate using metal lithium as a negative electrode active material, and a separator, and the separator is sandwiched between the positive electrode plate and the negative electrode plate. A rotating iron disulfide / lithium primary battery,
The positive electrode plate includes a positive electrode mixture in which iron disulfide, a carbon conductive material, and a binder are mixed, and an expanded metal. The positive metal mixture is filled in an opening of the expanded metal, and the expanded metal Holding the mixture,
The porosity of the positive electrode plate is 25% or more and 35% or less,
The iron disulfide / lithium primary battery, wherein the negative electrode plate is lithium alloyed with one or more elements selected from Sn, Mg, Zn, Bi and Al.
前記正極板の単位面積あたりの理論容量が35mAh/cm以上70mAh/cm以下である、請求項1に記載されている二硫化鉄・リチウム一次電池。 The iron disulfide / lithium primary battery according to claim 1, wherein a theoretical capacity per unit area of the positive electrode plate is 35 mAh / cm 2 or more and 70 mAh / cm 2 or less. 前記負極板においてリチウムと合金化させる元素の総質量は、負極板の全体質量に対して0.1%以上3%以下である、請求項1に記載されている二硫化鉄・リチウム一次電池。   2. The iron disulfide / lithium primary battery according to claim 1, wherein a total mass of elements alloyed with lithium in the negative electrode plate is 0.1% or more and 3% or less with respect to a total mass of the negative electrode plate. 前記カーボン導電材がBET比表面積300m/g以上のカーボン粉を含み、前記正極合剤中の二硫化鉄とカーボン導電材の質量混合比率が97/3から93/7までである、請求項1記載の二硫化鉄・リチウム一次電池。 The carbon conductive material includes carbon powder having a BET specific surface area of 300 m 2 / g or more, and a mass mixing ratio of iron disulfide and the carbon conductive material in the positive electrode mixture is from 97/3 to 93/7. The iron disulfide / lithium primary battery according to 1. 前記エキスパンドメタルは、アルミニウムまたはステンレス鋼からなり、メッシュの形状が菱形であり、板厚Tが0.1mm以上0.15mm以下、刻み幅Wが0.2mm以上0.3mm以下、メッシュの長目方向の中心間距離LWが2mm以上3mm以下、メッシュの短目方向の中心間距離SWが0.8mm以上1.8mm以下である、請求項1記載の二硫化鉄・リチウム一次電池。   The expanded metal is made of aluminum or stainless steel, the mesh shape is rhombus, the plate thickness T is 0.1 mm to 0.15 mm, the step width W is 0.2 mm to 0.3 mm, and the mesh length is long. The iron disulfide / lithium primary battery according to claim 1, wherein the center-to-center distance LW is 2 mm to 3 mm, and the center-to-center distance SW in the short direction of the mesh is 0.8 mm to 1.8 mm.
JP2009223814A 2009-09-29 2009-09-29 Iron disulfide and lithium primary battery Pending JP2012248280A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009223814A JP2012248280A (en) 2009-09-29 2009-09-29 Iron disulfide and lithium primary battery
PCT/JP2010/004884 WO2011039924A1 (en) 2009-09-29 2010-08-03 Iron disulfide-lithium primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223814A JP2012248280A (en) 2009-09-29 2009-09-29 Iron disulfide and lithium primary battery

Publications (1)

Publication Number Publication Date
JP2012248280A true JP2012248280A (en) 2012-12-13

Family

ID=43825779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223814A Pending JP2012248280A (en) 2009-09-29 2009-09-29 Iron disulfide and lithium primary battery

Country Status (2)

Country Link
JP (1) JP2012248280A (en)
WO (1) WO2011039924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241195A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte cell
JP2022115019A (en) * 2021-01-27 2022-08-08 プライムプラネットエナジー&ソリューションズ株式会社 Electrode material made of wet powder, electrode and method of manufacturing the same, and secondary battery with the electrode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210535B (en) 2010-11-15 2016-03-16 松下知识产权经营株式会社 Lithium primary battery
CN116830321A (en) * 2021-02-12 2023-09-29 松下知识产权经营株式会社 Nonaqueous electrolyte battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631646Y2 (en) * 1987-04-20 1994-08-22 三洋電機株式会社 Flat type battery
JPS6445057A (en) * 1987-08-14 1989-02-17 Toshiba Battery Nonaqueous solvent battery
JP3717085B2 (en) * 1994-10-21 2005-11-16 キヤノン株式会社 Negative electrode for secondary battery, secondary battery having the negative electrode, and method for producing electrode
JP4800626B2 (en) * 2005-01-04 2011-10-26 Jx日鉱日石金属株式会社 A current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials, a manufacturing method thereof, and a lithium secondary battery using the current collector.
US20080026288A1 (en) * 2006-07-26 2008-01-31 Eveready Battery Company, Inc. Electrochemical cell with positive container
US20080220316A1 (en) * 2007-03-06 2008-09-11 Berkowitz Fred J End cap seal assembly for a lithium cell
US20080318123A1 (en) * 2007-06-22 2008-12-25 Zhiping Jiang Lithium cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241195A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte cell
JP7411942B2 (en) 2020-05-29 2024-01-12 パナソニックIpマネジメント株式会社 nonaqueous electrolyte battery
JP2022115019A (en) * 2021-01-27 2022-08-08 プライムプラネットエナジー&ソリューションズ株式会社 Electrode material made of wet powder, electrode and method of manufacturing the same, and secondary battery with the electrode
JP7385611B2 (en) 2021-01-27 2023-11-22 プライムプラネットエナジー&ソリューションズ株式会社 Electrode material and electrode made of wet powder, method for manufacturing the same, and secondary battery equipped with the electrode

Also Published As

Publication number Publication date
WO2011039924A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP4366101B2 (en) Lithium secondary battery
RU2361326C2 (en) Accumulator battery with improved mobility of lithium ions and improved capacitance of cells
US6815121B2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
JP5221892B2 (en) Nonaqueous electrolyte secondary battery
US10505215B2 (en) Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7160731B2 (en) secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2013243090A (en) Nonaqueous electrolyte secondary battery
KR20230093402A (en) Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
JP2006294482A (en) Lithium ion secondary battery
JP2013246900A (en) Secondary battery
WO2011039924A1 (en) Iron disulfide-lithium primary battery
JP2007265666A (en) Nonaqueous electrolyte secondary battery
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
CN109923700A (en) Electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6254016B2 (en) Non-aqueous electrolyte primary battery
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP7065420B2 (en) Lithium primary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2015050035A (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014165050A (en) Nonaqueous electrolyte secondary battery
JP6811175B2 (en) Lithium ion secondary battery
KR102054266B1 (en) Active material separated type lithium-sulfur battery
JP2017016944A (en) Lithium ion secondary battery