JP2012243839A - Electric power storage device cell and electric power storage device cell module - Google Patents
Electric power storage device cell and electric power storage device cell module Download PDFInfo
- Publication number
- JP2012243839A JP2012243839A JP2011110175A JP2011110175A JP2012243839A JP 2012243839 A JP2012243839 A JP 2012243839A JP 2011110175 A JP2011110175 A JP 2011110175A JP 2011110175 A JP2011110175 A JP 2011110175A JP 2012243839 A JP2012243839 A JP 2012243839A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- storage device
- power storage
- flat
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
本発明は、電気二重層キャパシタ、リチウムイオン電池、リチウムイオンキャパシタなどの扁平巻回形の電力貯蔵デバイスセル、またはその複数のセルを直列に接続したモジュールに関するものである。 The present invention relates to a flat wound power storage device cell such as an electric double layer capacitor, a lithium ion battery, or a lithium ion capacitor, or a module in which a plurality of cells are connected in series.
扁平巻回形で容器に収納された電力貯蔵デバイスセルとしては、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタなどがある。リチウムイオン電池は、正極にコバルト、ニッケル、マンガンなどの酸化物を、負極にカーボン材料を用いたものであり、リチウムイオンをカーボン負極に挿入・脱離させることによって充放電を行う。電気二重層キャパシタは、セパレータを挟んで互いに対向する分極性電極(正極および負極)を設け、電解液中において分極性電極の表面に形成される電気二重層の静電容量を利用したものである。さらに、新しい電気二重層キャパシタとして、電気二重層キャパシタの負極にリチウムイオンをドープしたリチウムイオンキャパシタが開発されている。 Examples of the power storage device cell accommodated in the container in a flat wound shape include a lithium ion battery, an electric double layer capacitor, and a lithium ion capacitor. A lithium ion battery uses an oxide such as cobalt, nickel, and manganese for a positive electrode and a carbon material for a negative electrode, and performs charge and discharge by inserting and removing lithium ions from and into the carbon negative electrode. The electric double layer capacitor is provided with polarizable electrodes (positive electrode and negative electrode) facing each other with a separator interposed therebetween, and utilizes the capacitance of the electric double layer formed on the surface of the polarizable electrode in the electrolytic solution. . Further, as a new electric double layer capacitor, a lithium ion capacitor in which the negative electrode of the electric double layer capacitor is doped with lithium ions has been developed.
これらの電力貯蔵デバイスセルは安価でコンパクトに構成できるが、出力電圧が2〜4V程度と、アルミ電解コンデンサの出力電圧の400Vに比べて低いので、一般に直列に接続して出力電圧を上げたモジュールとして使用される。 These power storage device cells are inexpensive and can be configured compactly, but the output voltage is about 2 to 4V, which is lower than the output voltage of the aluminum electrolytic capacitor, 400V. Used as.
扁平巻回形の電力貯蔵デバイスセルに用いられる電極は、厚さが10〜50μm程度の帯状の正極集電箔および負極集電箔の両面に正極電極層および負極電極層を塗布してセルロースやオレフィン系の樹脂繊維などでできた多孔質な帯状のセパレータを介して、扁平形状の巻回軸芯を中心として数m〜数十m巻回されたものである。このように構成された扁平巻回形の電力貯蔵デバイスセルは、短冊状の電極を数十枚積み重ねられた積層形の電力貯蔵デバイスセルに比べて、短時間で製造することができるので量産性や、コストの点で有利である。 The electrode used in the flat wound power storage device cell is formed by applying a positive electrode layer and a negative electrode layer on both sides of a belt-like positive electrode collector foil and a negative electrode collector foil having a thickness of about 10 to 50 μm. It is wound several m to several tens of meters around a flat winding shaft core through a porous strip-shaped separator made of an olefin resin fiber or the like. The flat wound power storage device cell configured in this way can be manufactured in a shorter time than a stacked power storage device cell in which dozens of strip-shaped electrodes are stacked. It is also advantageous in terms of cost.
このような扁平巻回形の電気二重層キャパシタやリチウムイオンキャパシタは、省エネルギーの観点からモータの回生エネルギーを貯蔵する応用が期待されており、100Aを超える大電流充放電の繰り返し特性が求められている。大電流が流れると電流の二乗と内部抵抗に比例して電力損失が発生し、充放電効率が悪化する。また、この電力損失がそのまま発熱となるため、品質を維持するためには熱伝導体である集電箔から速やかに放熱する必要がある。そのため、集電抵抗を小さくするとともに、集電箔の熱を外部に効率よく放熱するため正極および負極に、巻回軸方向に沿って互いに反対方向にセパレータから突出した電極層が塗布されていない辺縁部を設け、この辺縁部でそれぞれ正極端子および負極端子を重ねて溶接した扁平巻回形電池の構成が開示されている(例えば特許文献1参照)。 Such flat-winding electric double layer capacitors and lithium ion capacitors are expected to be used for storing motor regenerative energy from the viewpoint of energy saving, and are required to have high current charge / discharge repetition characteristics exceeding 100A. Yes. When a large current flows, power loss is generated in proportion to the square of the current and the internal resistance, and charge / discharge efficiency deteriorates. Further, since this power loss directly generates heat, it is necessary to quickly dissipate heat from the current collector foil that is a heat conductor in order to maintain the quality. Therefore, in order to reduce the current collecting resistance and efficiently dissipate the heat of the current collecting foil to the outside, the positive electrode and the negative electrode are not coated with the electrode layer protruding from the separator in the opposite direction along the winding axis direction. The structure of the flat wound battery which provided the edge part and overlapped and welded the positive electrode terminal and the negative electrode terminal in this edge part is disclosed (for example, refer patent document 1).
扁平巻回電極の外装には金属容器またはプラスチックフィルムに金属を貼り合わせたラミネートフィルムが使用される。ラミネートフィルムは金属容器と比較して薄く軽量であるため、電力貯蔵デバイスセルの重量当たりの容量が向上する利点がある。 For the exterior of the flat wound electrode, a laminated film in which a metal is bonded to a metal container or a plastic film is used. Since the laminate film is thinner and lighter than the metal container, there is an advantage that the capacity per weight of the power storage device cell is improved.
ただし、ラミネートフィルムは剛性が低く外部からの衝撃に弱くなるため、外装材に巻回素子を収容し封入する前に電池素子内に樹脂層を形成、または樹脂を充填することで衝撃から保護する扁平巻回型の電力貯蔵デバイスセル構成が開示されている(例えば特許文献2参照)。また、正極または負極となる集電箔とセパレータが交互に積層された電池要素の少なくとも一方の面に弾性体が配置された構造が開示されている(例えば特許文献3参照)。 However, since the laminate film has low rigidity and is weak against external impact, it is protected from impact by forming a resin layer in the battery element or filling the resin before the wound element is housed and sealed in the exterior material. A flat wound type power storage device cell configuration is disclosed (for example, see Patent Document 2). In addition, a structure is disclosed in which an elastic body is disposed on at least one surface of a battery element in which current collector foils and separators serving as positive electrodes or negative electrodes are alternately laminated (see, for example, Patent Document 3).
扁平巻回形の電気二重層キャパシタやリチウムイオンキャパシタセルおよびモジュールは、扁平巻回電極の扁平面に対し垂直な方向に面圧を一定以上加えることで接触抵抗を低減し性能の安定化を図ることができる。 Flat wound electric double layer capacitors and lithium ion capacitor cells and modules reduce contact resistance and stabilize performance by applying a certain surface pressure in a direction perpendicular to the flat surface of the flat wound electrode. be able to.
しかし、扁平巻回電極の巻回時のズレや緩みといった状況や、巻回形状を保持するテープ、または電極端子の溶接部位により扁平巻回電極の扁平面に生じる凹凸によって扁平面にかかる面圧が均一にならずに局所的に面圧が過剰に印加される問題点があり、その結果、過剰に面圧を受けた部位では電極層の剥離やセパレータの破損が生じるおそれがある。また、それらの凹凸を有するセルを使用したモジュールにおいて、セルの扁平面どうしが重なるよう積層した構造の場合には、各セルにかかる面圧がより不均一となるおそれがある。 However, the surface pressure applied to the flat surface by the unevenness that occurs in the flat surface of the flat wound electrode due to the situation such as deviation or looseness when winding the flat wound electrode, the tape that holds the wound shape, or the welding part of the electrode terminal There is a problem in that the surface pressure is excessively applied locally without being uniform, and as a result, the electrode layer may be peeled off or the separator may be damaged at a portion where the surface pressure is excessively applied. Moreover, in the module using the cell which has those unevenness | corrugations, when the structure laminated | stacked so that the flat surfaces of a cell may overlap, there exists a possibility that the surface pressure concerning each cell may become more non-uniform | heterogenous.
さらに、巻回芯材を有さない扁平巻回形電極は面圧を受けた際に屈曲部分が変形し、電極層およびセパレータが伸びや折れを受けて破損するおそれがある。 Furthermore, when a flat wound electrode without a wound core material is subjected to surface pressure, the bent portion is deformed, and the electrode layer and the separator may be stretched or broken to be damaged.
セパレータが破損した場合や、電極より剥離した電極片がセパレータを貫通した場合には短絡を引き起こし発熱やセル性能の急激な低下が起きる。 When the separator is damaged or when an electrode piece peeled off from the electrode penetrates the separator, a short circuit is caused, and heat generation or a rapid decrease in cell performance occurs.
特許文献1のように電極層が塗布されていない電極周縁部に端子を重ねて溶接する構成では、扁平巻回形電極と集電端子の溶接によって生じる凹凸が外装材に破損を与えるおそれがあり、外装材が破損した場合には封入した電解液が漏れ出したり、セル内に不純物が混入したりする。特に、アルミラミネートフィルムによる外装を用いた場合には外装が破損する可能性が大きい。特許文献3の構成は巻回形ではなく積層形のため一様に比較はできないが、弾性体は電極の平坦部を保護するが、端子溶接部位を保護しておらず外装を傷つけるおそれがあった。また、特許文献2の構成では外部からの衝撃に対し扁平巻回電極は保護されるが、面圧を印加した際に内部の凹凸を緩和出来ず内部で短絡が生じるおそれがあった。
In the configuration in which the terminal is overlapped and welded to the peripheral edge of the electrode to which the electrode layer is not applied as in
本発明は、上記に鑑みてなされたものであり、扁平面に面圧を印加した場合に扁平巻回電極の変形および破損が生じ難く、長期にわたり高い電池性能および安定性を維持する電力貯蔵デバイスセルおよびモジュールを提供することを目的とする。 The present invention has been made in view of the above, and a power storage device that maintains high battery performance and stability over a long period of time when deformation and breakage of a flat wound electrode are difficult to occur when surface pressure is applied to a flat surface. An object is to provide cells and modules.
上述した目的を達成するため、本発明の電力貯蔵デバイスセルは、扁平巻回電極と、正極端子及び負極端子と、外装容器とを備え、前記扁平巻回電極は、集電箔両面に電極活物質が塗布された帯状の正極および負極と、これらの間に挟まれた電気絶縁性を有する帯状のセパレータとを重ねて扁平な形状に巻回されたものであり、前記正極および負極にはそれぞれ、電極活物質が形成されていない辺縁部が設けられ、それら辺縁部は、前記セパレータから巻回軸方向に相互に反対方向に突出しており、巻回された前記扁平巻回電極において、扁平部の両側に位置して、正極周縁部及び負極周縁部を形成しており、前記正極周縁部及び負極周縁部はそれぞれ、対応する各辺縁部間が積層方向に電気的に接続されているとともに、前記正極端子及び負極端子が接続されており、前記外装容器は、その内部に、電解液と共に、前記扁平巻回電極と、正極端子−正極周縁部間の接続部と、負極端子−負極周縁部間の接続部とを収納し、前記外装容器と、前記扁平巻回電極及び一対の前記接続部との間には、緩衝材が設けられており、前記緩衝材は、前記接続部を覆う部分のほうが、前記扁平部を覆う部分よりも厚くなっている。 In order to achieve the above-described object, the power storage device cell of the present invention includes a flat wound electrode, a positive electrode terminal and a negative electrode terminal, and an outer container, and the flat wound electrode has electrode active surfaces on both sides of the current collector foil. A belt-like positive electrode and negative electrode coated with a substance, and a belt-like separator having electrical insulation sandwiched between them are overlapped and wound into a flat shape. In addition, edge portions where no electrode active material is formed are provided, and these edge portions protrude from the separator in directions opposite to each other in the winding axis direction. Positioned on both sides of the flat portion, a positive electrode peripheral edge and a negative electrode peripheral edge are formed, and the positive electrode peripheral edge and the negative electrode peripheral edge are respectively electrically connected in the stacking direction between the corresponding peripheral edges. The positive terminal and The electrode terminal is connected, and the exterior container is provided with the electrolyte solution, the flat wound electrode, the connection part between the positive electrode terminal and the positive electrode peripheral part, and the connection part between the negative electrode terminal and the negative electrode peripheral part. And a cushioning material is provided between the outer casing, the flat wound electrode and the pair of connection portions, and the cushioning material has a portion covering the connection portion, It is thicker than the part covering the flat part.
本発明によれば、上記構成の電力貯蔵デバイスセル、または電力貯蔵デバイスセルモジュールにおいて、接触抵抗を低減しセル性能の安定化を図るためにセルの扁平面に面圧を印加した際に扁平巻回電極の変形および破損が生じ難く、長期にわたり高い電池性能および安定性を維持することができる。 According to the present invention, in the power storage device cell or the power storage device cell module configured as described above, when surface pressure is applied to the flat surface of the cell in order to reduce the contact resistance and stabilize the cell performance, It is difficult for deformation and breakage of the rotating electrode, and high battery performance and stability can be maintained over a long period of time.
以下、本発明に係る実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。なお、図面は説明の理解のしやすさを優先し、簡略化して記載されており、寸法及び形状は必ずしも正確ではない。 Embodiments according to the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts. Note that the drawings are described in a simplified manner in order to facilitate the understanding of the description, and the dimensions and shapes are not necessarily accurate.
図1は、本発明を電気二重層キャパシタに適用した一例としての実施の形態に係る電力貯蔵デバイスセルの平面模式図である。なお、本発明は、電気二重層キャパシタに限るものではなく、リチウムイオン電池やリチウムイオンキャパシタなどであっても同様に実施することができる。 FIG. 1 is a schematic plan view of a power storage device cell according to an embodiment in which the present invention is applied to an electric double layer capacitor. In addition, this invention is not restricted to an electric double layer capacitor, Even if it is a lithium ion battery, a lithium ion capacitor, etc., it can implement similarly.
本実施の形態の電力貯蔵デバイスセル1には扁平巻回電極4および電解液が外装容器6に封入されている。セルの体積当たりの容量を高め、また内部の水分を除去するため、外装容器内を脱気した後に電解液を封入しても良い。本実施の形態では、外装容器6にはガス放出弁7が取り付けられており、これらの部品は必ずしも必要ではないが、運転時に発生するガスによるセル内圧の上昇が抑制される効果が得られる。
In the power
電力貯蔵デバイスセル内に封入される電解質については、電気二重層キャパシタ、リチウムイオン電池およびリチウムイオンキャパシタによって異なるが、一般的に用いられている材料をそのまま用いることができ、電気二重層キャパシタの場合には、例えばカチオンとアニオンの組み合わせで、カチオンが4級アンモニウム、1,3−ジアルキルイミダゾリウム、または1,2,3−トリアルキルイミダゾリウムで、アニオンがBF4−、PF6−、ClO4−、またはCF3SO3−の塩や、1−エチル−3−メチルイミダゾリウム(EMI)、1,2−ジメチル−3−プロピルイミダゾリウム(DMPI)のAlCl4−やBF4−などの塩などが用いられており、溶媒として炭酸プロピレン、炭酸エチレン、炭酸ジメチル、スルフォラン、炭酸ジエチル、ジメトキシメタン、ジエトキシエタン、γ−ブチルラクトン、アセトニトリル、プロピオニトリルから選ばれる一種またはこれらの二種以上の混合溶媒などが用いられている。なお、本実施の形態において電解液とは、これらを含んだ液状の電解質溶液のことを意味する。 The electrolyte enclosed in the power storage device cell differs depending on the electric double layer capacitor, lithium ion battery and lithium ion capacitor, but commonly used materials can be used as they are. For example, a combination of a cation and an anion, where the cation is quaternary ammonium, 1,3-dialkylimidazolium, or 1,2,3-trialkylimidazolium, and the anion is BF4-, PF6-, ClO4-, or A salt of CF3SO3-, a salt of 1-ethyl-3-methylimidazolium (EMI), 1,2-dimethyl-3-propylimidazolium (DMPI) such as AlCl4- or BF4- is used, and the solvent As propylene carbonate, ethylene carbonate, dimethyl carbonate, sulfo Emissions, diethyl carbonate, dimethoxymethane, diethoxyethane, .gamma.-butyrolactone, acetonitrile, etc. One or these two or more mixed solvents selected from propionitrile is used. In the present embodiment, the electrolytic solution means a liquid electrolyte solution containing these.
図2に示すように正極集電箔の周縁部(後述する辺縁部の巻回状態の部分)14と負極集電箔の周縁部(後述する辺縁部の巻回状態の部分)15は溶接部12および13にてそれぞれ積層方向に超音波溶接で接続されており、さらには正極集電箔の周縁部14は正極端子2と、負極集電箔の周縁部15は負極端子3とそれぞれ超音波溶接で接続されている。積層された集電箔と電極端子とが電気的に接続された構造であるため、集電抵抗が低下するとともに、内部の集電箔で発生した熱が速やかに電極端子を経由して電力貯蔵デバイスセルの外部へ伝達することができるので、セルの放熱特性を向上させることができる。
As shown in FIG. 2, the peripheral portion of the positive electrode current collector foil (a portion in the winding state of the edge portion described later) 14 and the peripheral edge portion of the negative electrode current collector foil (a portion in the wound state of the edge portion described later) 15 The
正極集電箔には厚さ20〜30μm程度のアルミ箔が、負極集電箔には厚さ20μm程度のアルミ箔もしくは厚さ10〜20μm程度の銅箔などが用いられる。正極端子2としては、厚さ0.3〜1mm程度のアルミやステンレスが、負極端子3としては、厚さ0.3〜1mm程度のアルミやニッケルメッキした銅が用いられる。これらの金属箔や電流端子の厚さは取り出す電流の大きさによって選択され、電流が大きくなるほど抵抗を低減する必要があるため厚い素材が用いられる。
An aluminum foil having a thickness of about 20 to 30 μm is used for the positive electrode current collector foil, and an aluminum foil having a thickness of about 20 μm or a copper foil having a thickness of about 10 to 20 μm is used for the negative electrode current collector foil. As the
本実施の形態においては、図6(a)のように正極端子2又は負極端子3等の集電端子17は1枚のアルミ板を折り曲げて正極側集電箔の周縁部14や負極側集電箔の周縁部15等の集電箔周縁部18を挟持した構造をとるが、図6(b)のように複数枚の集電端子17により集電箔周縁部18を挟持しても良く、また図6(c)のように挟持することなく集電端子17を集電箔周縁部18と接合しても良い。さらに集電箔は積層された全てが接合されている必要はないが、速やかに熱伝導を行うためには複数枚の集電箔が集電端子17と接合されていると良い。集電端子17の溶接は超音波溶接またはスポット溶接にて行うため、正極端子−正極周縁部間の溶接部12や、負極端子−負極周縁部間の溶接部13には、溶接痕が残ることとなる。
In the present embodiment, as shown in FIG. 6A, the current collecting
電力貯蔵デバイスセル1のA−A’断面を図4に示す。扁平巻回電極4および外装材料6との間には緩衝材5が設けられている。緩衝材5は扁平巻回電極4の扁平面と正極集電箔周縁部14及び負極集電箔周縁部15とを被覆しており、これらが外装容器6と直接接触しない構造をとる。緩衝材5は、正極端子−正極周縁部間の溶接部12、および負極端子−負極周縁部間の溶接部13と接する部位では扁平巻回電極の扁平面に接する部位よりも厚い構造をとる。
FIG. 4 shows an A-A ′ cross section of the power
集電端子―集電箔間の溶接部では集電端子と集電箔の材料を重ね合わせることにより生じる段差に加え、溶接時に生じる溶接痕の鋭利な凹凸により外装容器を傷付ける可能性があり、それらを被覆することで外装容器は保護される。特に、ラミネートフィルムを使用した場合には緩衝材を有さない構造では外装容器の破損が生じやすく、またセルを減圧した状態で封止した場合、外装容器が扁平巻回電極と密着するためより顕著に破損が起きる。 In the weld between the current collector terminal and current collector foil, the outer container may be damaged by sharp irregularities in the weld marks that occur during welding, in addition to the step created by overlapping the material of the current collector terminal and current collector foil. The outer container is protected by covering them. In particular, when a laminate film is used, the outer container is likely to be damaged in a structure that does not have a buffer material, and when the cell is sealed in a decompressed state, the outer container is in close contact with the flat wound electrode. Significant damage occurs.
緩衝材の材質は軟質で電解液を吸着しないクローズドポアを有する合成樹脂多孔材料、または細孔を有さない合成樹脂材料としても良い。例えばクロロプレンゴム、シリコーンゴム、天然ゴム、スチレンブタジエンゴム、ニトリルゴム、エチレン−プロピレンゴム、フッ素ゴム、ブチルゴム、ウレタンゴムなどを使用できる。 The material of the buffer material may be a synthetic resin porous material having a closed pore that is soft and does not adsorb an electrolyte solution, or a synthetic resin material having no pores. For example, chloroprene rubber, silicone rubber, natural rubber, styrene butadiene rubber, nitrile rubber, ethylene-propylene rubber, fluorine rubber, butyl rubber, urethane rubber and the like can be used.
緩衝材は厚みが増加するほどセルが有する凹凸を良好に平坦化出来るが、一方で緩衝材を厚くすることでセル体積が増加し、体積当たりの容量が低下する。そのため緩衝材は扁平巻回電極の扁平面と接する領域では50μm〜5mmの厚みであることが好ましい。 As the thickness of the buffer material increases, the unevenness of the cell can be flattened better. On the other hand, by increasing the thickness of the buffer material, the cell volume increases and the capacity per volume decreases. Therefore, the buffer material preferably has a thickness of 50 μm to 5 mm in a region in contact with the flat surface of the flat wound electrode.
扁平巻回電極の製造工程における電極積層構造を図3に示すが、正極8と負極9の間には絶縁性のセパレータ11が設置される。正極集電箔および負極集電箔は電極活物質が両面に塗工されており、電極活物質が形成されていない辺縁部を巻回軸方向に対して互いに反対方向に前記セパレータより突出させる。
FIG. 3 shows an electrode laminated structure in a flat wound electrode manufacturing process. An insulating
電力貯蔵デバイスセル1のB−B’断面を図5に示すが、巻回芯材16を中心に扁平巻回電極4は構成されている。巻回芯材は、扁平巻回するときにのみ用いて、完成セルの時点で抜かれてしまう場合が多いが、それを残しても良いし、巻回時に使用した巻回芯材を抜き取った後、新たに別の芯材を挿入しても良い。
A B-B ′ cross section of the power
セパレータ11は天然パルプ、天然セルロース、溶剤紡糸セルロース、バクテリアセルロースなどのセルロース系や、ガラス繊維、非フィブリル化有機繊維を含有する不織布のほか、芳香族ポリアミド、全芳香族ポリアミド、芳香族ポリエステル、全芳香族ポリエステル、全芳香族ポリエステルアミド、全芳香族ポリエーテル、全芳香族ポリアゾ化合物、ポリフェニレンスルフィド(PPS)、ポリ−p−フェニレンベンゾビスチアゾール(PBZT)、ポリ−p−フェニレンベンゾビスオキサゾール(PBO)、ポリベンゾイミダゾール(PBI)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリイミド、ポリテトラフルオロエチレン(PTFE)などが用いられる。厚さは、15μmから50μm程度、気孔率(空隙率)は50体積%から80体積%程度で、平均気孔径が数μmから数十μmのものが用いられている。平均気孔径については様々なものがあり、同じ材料でも目付け密度で簡単に変化させることができる。
The
巻回芯材16は扁平面にかかる面圧に対し変形量が少ない、剛性の高い扁平な樹脂板または金属板からなる材料を用いることが出来る。但し、金属板を使用する場合は正負極間で短絡が生じないよう、金属板表面に導電性を有さない材料で被覆するか、正負の両極と接触しない大きさとする必要がある。用いられる金属板にはアルミニウムや銅、ステンレス等がある。樹脂板を使用する場合はポリエチレン、ポリプロピレン、エポキシ樹脂、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド等が使用できる。
The
正極電極層および負極電極層の材料については、電気二重層キャパシタ、リチウムイオン電池およびリチウムイオンキャパシタによって異なるが、一般的に用いられている材料をそのまま用いることができ、電気二重層キャパシタの場合には、活性炭微粒子に導電材としてカーボンブラックを添加し、増粘剤とバインダーを添加してペースト化して塗布し乾燥したものを用いることができる。その厚さは、用途によって異なるが、10〜100μm程度が好ましい。 The materials for the positive electrode layer and the negative electrode layer differ depending on the electric double layer capacitor, the lithium ion battery and the lithium ion capacitor, but generally used materials can be used as they are. Can be obtained by adding carbon black as a conductive material to activated carbon fine particles, adding a thickener and a binder, forming a paste, applying and drying. Although the thickness changes with uses, about 10-100 micrometers is preferable.
図7に、電力貯蔵デバイスセルモジュールの構造例を示す。電力貯蔵デバイスセルモジュール19は、複数の上述した電力貯蔵デバイスセル1を、出力電圧を大きくするために直列接続したものであり、電力貯蔵デバイスセル1の扁平面同士が接触する形で積層されている。但し、電力貯蔵デバイスセルモジュールの構造はセルを積層させた構造に限定されず、例えば平面状に配置して接続しても良い。平面状に配置した場合、モジュール面積が大きくなるため面圧の印加が困難になるが、放熱は有利になる。
FIG. 7 shows a structural example of the power storage device cell module. The power storage
以上説明したように、本実施の形態によれば、扁平巻回電極の巻回時のズレや緩みといった状況や巻回形状を保持するテープにより生じる凹凸や、電極端子の溶接部位により生じる凹凸を緩衝材によって被覆することで、セルの扁平面にかかる面圧を均一にし、面圧の不均一さに由来した電極層の剥離やセパレータの破損を防止することができる。加えて、扁平巻回電極の端子溶接箇所と接する部位の緩衝材を扁平巻回電極の扁平部と接する部位の緩衝材よりも厚く構成することで、端子溶接によって生じる金属の鋭利な凹凸が緩衝材で被覆されて外装を傷つけることが抑制されるので、セルの破損に伴う電解液の漏出や不純物の混入による性能の低下も防止することができる。そして、これらの好適な作用は、扁平巻回電極の扁平面に対し垂直な方向に面圧を一定以上加えても、各部の損傷を防止できることを意味し、すなわち、扁平面への面圧付与による接触抵抗の低減を確実に確保することができる。このように、本実施の形態では、接触抵抗を低減しセル性能の安定化を図るためにセルの扁平面に面圧を印加した際に扁平巻回電極の変形および破損が生じ難く、長期にわたり高い電池性能および安定性を維持することができる。 As described above, according to the present embodiment, the situation such as deviation or looseness when winding the flat wound electrode, the unevenness caused by the tape that holds the wound shape, and the unevenness caused by the welded portion of the electrode terminal. By covering with the buffer material, the surface pressure applied to the flat surface of the cell can be made uniform, and the peeling of the electrode layer and the breakage of the separator caused by the uneven surface pressure can be prevented. In addition, the buffer material at the part in contact with the terminal welded part of the flat wound electrode is made thicker than the buffer material at the part in contact with the flat part of the flat wound electrode, so that sharp metal irregularities caused by terminal welding are buffered. Since it is suppressed that the exterior is damaged by being covered with the material, it is possible to prevent the deterioration of the performance due to leakage of the electrolyte solution due to the breakage of the cell or mixing of impurities. These preferable actions mean that even if a surface pressure is applied in a direction perpendicular to the flat surface of the flat wound electrode, damage to each part can be prevented, that is, surface pressure is applied to the flat surface. It is possible to ensure the reduction of contact resistance due to. As described above, in this embodiment, when a surface pressure is applied to the flat surface of the cell in order to reduce the contact resistance and stabilize the cell performance, it is difficult for the flat wound electrode to be deformed and damaged, and for a long time. High battery performance and stability can be maintained.
また、緩衝材は、クローズドポアを有する合成樹脂多孔材料、または、細孔を有しない合成樹脂材料で構成することで、緩衝材が電解液を吸着することを回避し、セル内に封入した電解液を扁平巻回電極に保持し、余剰な電解液の添加を不要とすることができる。 In addition, the buffer material is composed of a synthetic resin porous material having closed pores or a synthetic resin material having no pores, so that the buffer material avoids adsorbing the electrolytic solution, and the electrolytic material sealed in the cell is used. The liquid can be held on the flat wound electrode, and the addition of excess electrolyte can be made unnecessary.
また、剛性のある巻回芯材を設けることで扁平巻回電極の厚み方向の変形が低減されるため、扁平巻回電極は屈曲部分で電極層およびセパレータが伸びや折れを受けて破損することを防止することもできる。 In addition, since the thickness of the flat wound electrode is reduced by providing a rigid wound core material, the flat wound electrode may be damaged when the electrode layer and separator are stretched or bent at the bent portion. Can also be prevented.
さらに、それぞれ電力貯蔵デバイスセルの正極端子と、隣接する他の電力貯蔵デバイスセルの負極端子とが隣接するように複数配列され、それら正極端子と負極端子とが接続された構成では、セルの扁平面どうしが重なるよう積層したモジュール構造としても、緩衝材によりデバイスセルの扁平面は平坦であり、いずれのセルにも面圧は均一に印加されるため、セルの破損を低減することができる。 Further, in the configuration in which a plurality of positive electrode terminals of each power storage device cell and negative electrode terminals of other adjacent power storage device cells are adjacent to each other, and the positive electrode terminal and the negative electrode terminal are connected, the flatness of the cell Even in a module structure in which the surfaces overlap each other, the flat surface of the device cell is flat due to the buffer material, and the surface pressure is uniformly applied to all the cells, so that damage to the cell can be reduced.
以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.
1 電力貯蔵デバイスセル、2 正極端子、3 負極端子、4 扁平巻回電極、5 緩衝材、6 外装容器、7 ガス放出弁、8 正極電極、9 負極電極、11 セパレータ、12 正極端子−正極周縁部間の溶接部(接続部)、13 負極端子−負極周縁部間の溶接部(接続部)、14 正極周縁部、15 負極周縁部、16 巻回芯材、17 集電端子、18 電極周縁部、19 電力貯蔵デバイスセルモジュール。
DESCRIPTION OF
Claims (5)
前記扁平巻回電極は、集電箔両面に電極活物質が塗布された帯状の正極および負極と、これらの間に挟まれた電気絶縁性を有する帯状のセパレータとを重ねて扁平な形状に巻回されたものであり、
前記正極および負極にはそれぞれ、電極活物質が形成されていない辺縁部が設けられ、それら辺縁部は、前記セパレータから巻回軸方向に相互に反対方向に突出しており、巻回された前記扁平巻回電極において、扁平部の両側に位置して、正極周縁部及び負極周縁部を形成しており、
前記正極周縁部及び負極周縁部はそれぞれ、対応する各辺縁部間が積層方向に電気的に接続されているとともに、前記正極端子及び負極端子が接続されており、
前記外装容器は、その内部に、電解液と共に、前記扁平巻回電極と、正極端子−正極周縁部間の接続部と、負極端子−負極周縁部間の接続部とを収納し、
前記外装容器と、前記扁平巻回電極及び一対の前記接続部との間には、緩衝材が設けられており、
前記緩衝材は、前記接続部を覆う部分のほうが、前記扁平部を覆う部分よりも厚くなっている
電力貯蔵デバイスセル。 A flat wound electrode, a positive electrode terminal and a negative electrode terminal, and an outer container,
The flat wound electrode has a flat shape in which a strip-like positive electrode and negative electrode each coated with an electrode active material on both sides of a current collector foil and a strip-like separator having electrical insulation sandwiched therebetween are overlapped. That was turned,
Each of the positive electrode and the negative electrode is provided with an edge portion where no electrode active material is formed, and the edge portions protrude in the opposite directions from the separator in the winding axis direction and are wound. In the flat wound electrode, located on both sides of the flat portion, forming a positive electrode peripheral edge and a negative electrode peripheral edge,
Each of the positive electrode peripheral edge and the negative electrode peripheral edge is electrically connected in the stacking direction between the corresponding peripheral edges, and the positive electrode terminal and the negative electrode terminal are connected,
The outer container accommodates the flat wound electrode, a connection portion between the positive electrode terminal and the positive electrode peripheral portion, and a connection portion between the negative electrode terminal and the negative electrode peripheral portion, together with the electrolyte,
A buffer material is provided between the outer container, the flat wound electrode and the pair of connection portions,
The buffer material is a power storage device cell in which a portion covering the connection portion is thicker than a portion covering the flat portion.
前記電力貯蔵デバイスセルは上記請求項1乃至4の何れか一項の電力貯蔵デバイスセルであり、
前記複数の電力貯蔵デバイスセルは、一の電力貯蔵デバイスセルの正極端子と、隣接する他の電力貯蔵デバイスセルの負極端子とを接続するようにして設けられている
電力貯蔵デバイスセルモジュール。 Comprising a plurality of power storage device cells,
The power storage device cell is the power storage device cell according to any one of claims 1 to 4,
The plurality of power storage device cells are power storage device cell modules provided so as to connect a positive terminal of one power storage device cell and a negative terminal of another adjacent power storage device cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011110175A JP2012243839A (en) | 2011-05-17 | 2011-05-17 | Electric power storage device cell and electric power storage device cell module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011110175A JP2012243839A (en) | 2011-05-17 | 2011-05-17 | Electric power storage device cell and electric power storage device cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012243839A true JP2012243839A (en) | 2012-12-10 |
Family
ID=47465244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011110175A Withdrawn JP2012243839A (en) | 2011-05-17 | 2011-05-17 | Electric power storage device cell and electric power storage device cell module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012243839A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101642A (en) * | 2013-03-28 | 2018-06-28 | 株式会社半導体エネルギー研究所 | Method of manufacturing electrode for accumulator battery |
JP2020170639A (en) * | 2019-04-03 | 2020-10-15 | 積水化学工業株式会社 | Laminated battery |
-
2011
- 2011-05-17 JP JP2011110175A patent/JP2012243839A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101642A (en) * | 2013-03-28 | 2018-06-28 | 株式会社半導体エネルギー研究所 | Method of manufacturing electrode for accumulator battery |
US10347905B2 (en) | 2013-03-28 | 2019-07-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing electrode for storage battery |
JP2020170639A (en) * | 2019-04-03 | 2020-10-15 | 積水化学工業株式会社 | Laminated battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4941245B2 (en) | Power storage device cell and power storage device module | |
JP5258970B2 (en) | Flat wound power storage device cell and flat wound power storage device module | |
JP5634372B2 (en) | Power storage device cell | |
US7636232B2 (en) | Electric double layer capacitor | |
JP5667537B2 (en) | Power storage device | |
JP6432952B1 (en) | Electrochemical cell | |
JP6531486B2 (en) | battery | |
JP2008097991A (en) | Electric storage device | |
US8587926B2 (en) | Lithium ion storage device | |
KR20120019849A (en) | Method of manufacturing lithium ion capacitor | |
JP2013546136A (en) | Pouch and pouch-type secondary battery | |
JP4994603B2 (en) | Electric double layer capacitor | |
JP4593491B2 (en) | Electric double layer capacitor | |
JP2014199780A (en) | Electricity storage element | |
JP5924689B2 (en) | Manufacturing method of electric double layer capacitor module | |
JP2012028365A (en) | Power storage device | |
JP2012243839A (en) | Electric power storage device cell and electric power storage device cell module | |
JP2014203885A (en) | Sealing structure of power storage device and electric double layer capacitor | |
JP4978729B2 (en) | Electric double layer capacitor | |
JP2007019211A (en) | Electric double layer capacitor and its manufacturing method | |
JP2010040765A (en) | Electric double-layer capacitor and method of producing same | |
JP5216292B2 (en) | Electricity storage element | |
JP5014401B2 (en) | Flat wound power storage device module | |
JP2013123006A (en) | Lithium ion capacitor | |
WO2017094545A1 (en) | Electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140805 |