JP2012243567A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2012243567A
JP2012243567A JP2011112438A JP2011112438A JP2012243567A JP 2012243567 A JP2012243567 A JP 2012243567A JP 2011112438 A JP2011112438 A JP 2011112438A JP 2011112438 A JP2011112438 A JP 2011112438A JP 2012243567 A JP2012243567 A JP 2012243567A
Authority
JP
Japan
Prior art keywords
winding
negative electrode
positive electrode
uneven
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011112438A
Other languages
Japanese (ja)
Other versions
JP5758697B2 (en
Inventor
Chieko Araki
千恵子 荒木
Toshio Abe
登志雄 阿部
Keisuke Fujito
啓輔 藤戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011112438A priority Critical patent/JP5758697B2/en
Publication of JP2012243567A publication Critical patent/JP2012243567A/en
Application granted granted Critical
Publication of JP5758697B2 publication Critical patent/JP5758697B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a lithium ion battery suppressing occurrence of cracks due to wound stress, thereby capable of reducing internal resistance of a battery.SOLUTION: In a lithium ion battery, a positive electrode 30 and a negative electrode 20 have recessed and projecting surfaces 23, 24, 33, 34 meshing each other with a separator 40 sandwiched therebetween. Each of the recessed and projecting surfaces 23, 24, 33, 34 has a shape such that gaps formed between the recessed and projecting surfaces 24, 34 on an inside of winding and the recessed and projecting surfaces 23, 33 on an outside of winding, which are deformed by winding to face with each other, are constant in the winding direction.

Description

本発明は、リチウムイオン電池に関し、例えば、正極と負極との間にセパレータを挟んで捲回された捲回電極群を有するリチウムイオン電池に関する。   The present invention relates to a lithium ion battery, for example, a lithium ion battery having a wound electrode group wound with a separator interposed between a positive electrode and a negative electrode.

リチウムイオン電池は、動作電圧が高く、高い出力を得やすい高エネルギ密度の二次電池であることから、今後、ハイブリッド自動車や電気自動車の車載電源として益々重要性が増している。   Lithium ion batteries are high energy density secondary batteries that have a high operating voltage and are easy to obtain high output, and thus are increasingly important as in-vehicle power sources for hybrid vehicles and electric vehicles.

リチウムイオン電池の出力効率を向上させる1つの手段は、電池の内部抵抗の低減である。その解決手段の1つが正極と負極とがセパレータを介して対向する面積を増大させることである。このことに着目したリチウムイオン電池として、正極と負極の対向面に凹凸を付け、正極と負極の凹凸が所定の電極ギャップ(電解液相ギャップ)をおいて互いに噛み合う配置にすることにより、正極と負極との対向面積を増大させたリチウムイオン電池がある(例えば、特許文献1)。   One means for improving the output efficiency of a lithium ion battery is to reduce the internal resistance of the battery. One solution is to increase the area in which the positive electrode and the negative electrode face each other via a separator. As a lithium ion battery that focuses on this, the opposing surfaces of the positive electrode and the negative electrode are made uneven, and the positive electrode and the negative electrode are arranged so that the unevenness of the positive electrode and the negative electrode mesh with each other with a predetermined electrode gap (electrolyte phase gap). There is a lithium ion battery in which the area facing the negative electrode is increased (for example, Patent Document 1).

特開平11−162519号公報JP-A-11-162519

特許文献1に示されるコイン型電池では、正極と負極とがフラットな形状のまま曲げられることなく使用されるが、例えば円筒形のリチウムイオン電池のように、正極と負極との間にセパレータを挟んで捲回された捲回電極群を有する捲回型電池では、捲回のために正極と負極とが曲げられて使用されるので、正極と負極とに曲げモーメントが作用し、電極の捲回内側には圧縮応力が、捲回外側には引張応力がかかり、電極表裏の凹凸が捲回によって互いに異なる形状に変形する。   In the coin-type battery disclosed in Patent Document 1, the positive electrode and the negative electrode are used without being bent in a flat shape. For example, a separator is provided between the positive electrode and the negative electrode, such as a cylindrical lithium ion battery. In a wound battery having a wound electrode group that is wound between, the positive electrode and the negative electrode are bent and used for winding, so that a bending moment acts on the positive electrode and the negative electrode, and the winding of the electrode A compressive stress is applied to the inner side of the winding, and a tensile stress is applied to the outer side of the winding.

したがって、正極と負極の凹凸間の電極ギャップが、一定でなく、適正な電極ギャップでない部位が増加し、内部抵抗が増大し、電池特性が低下する。   Therefore, the electrode gap between the irregularities of the positive electrode and the negative electrode is not constant, the number of portions that are not proper electrode gaps increases, the internal resistance increases, and the battery characteristics deteriorate.

また、捲回内側の凹凸は圧縮変形によって角部が尖り、当該部分が応力集中とセパレータとの接触によってクラックが入り易くなるおそれがある。凹凸にクラックが入ると、内部抵抗の増加、容量低下が起こり、電池特性が低下する。   Further, the irregularities on the inner side of the winding have sharp corners due to compression deformation, and there is a risk that cracks are likely to occur in the portions due to stress concentration and contact with the separator. When cracks are formed in the unevenness, the internal resistance increases and the capacity decreases, and the battery characteristics deteriorate.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、捲回により生じる凹凸の変形によって正極と負極の凹凸間の電極ギャップが不規則なものになることを回避するとともに、捲回応力によるクラック発生を抑制し、内部抵抗が小さい電池を提供することにある。   The present invention has been made in view of such problems, and its object is to avoid irregularities in the electrode gap between the positive and negative electrodes due to the deformation of the unevenness caused by winding. In addition, an object of the present invention is to provide a battery having a small internal resistance by suppressing the occurrence of cracks due to winding stress.

前記目的を達成すべく、本発明に係るリチウムイオン電池は、正極と負極との間にセパレータを挟んで捲回された捲回電極群を有するリチウムイオン電池であって、正極と負極は、セパレータを間に挟んで互いに噛み合う凹凸面を有し、各凹凸面は、捲回により変形して互いに対向する捲回内側の凹凸面と捲回外側の凹凸面との間に形成されるギャップが捲回方向に一定となる形状を有する。   In order to achieve the above object, a lithium ion battery according to the present invention is a lithium ion battery having a wound electrode group wound with a separator interposed between a positive electrode and a negative electrode, wherein the positive electrode and the negative electrode are separators. Each of the uneven surfaces has a gap formed between the uneven surface on the inner side of the winding and the uneven surface on the outer side of the winding that is deformed by winding. It has a shape that is constant in the direction of rotation.

本発明によれば、捲回状態で、セパレータを挟んで隣接する正極の凹凸面と負極の凹凸面とが一定のギャップを有して噛み合うになる。これにより、捲回応力によるクラック発生が抑制され、内部抵抗が小さい電池を提供することができる。   According to the present invention, in the wound state, the uneven surface of the positive electrode and the uneven surface of the negative electrode adjacent to each other with the separator interposed therebetween mesh with each other with a certain gap. Thereby, generation | occurrence | production of the crack by winding stress can be suppressed and a battery with small internal resistance can be provided.

本発明による捲回型のリチウムイオン電池の一つの実施形態を示す半断面図。1 is a half sectional view showing one embodiment of a wound lithium ion battery according to the present invention. 本実施形態によるリチウムイオン電池の捲回前の電極構造を示す斜視図。The perspective view which shows the electrode structure before winding of the lithium ion battery by this embodiment. 本実施形態によるリチウムイオン電池の捲回前の電極構造を示す断面図。Sectional drawing which shows the electrode structure before winding of the lithium ion battery by this embodiment. 本実施形態によるリチウムイオン電池の捲回前の電極構造の一部を拡大して示す断面図であって組み合わせる前の状態を示す図。FIG. 3 is an enlarged cross-sectional view of a part of the electrode structure before winding of the lithium ion battery according to the present embodiment, showing a state before being combined. 本実施形態によるリチウムイオン電池の捲回前の電極構造の一部を拡大して示す断面図であって組み合わせた状態を示す図。FIG. 3 is an enlarged cross-sectional view showing a part of the electrode structure before winding of the lithium ion battery according to the present embodiment, and showing a combined state. 捲回により湾曲された状態の電極構造の一部を拡大して示す図。The figure which expands and shows a part of electrode structure in the state curved by winding. 電極の曲げモーメント作用状態を示す説明図。Explanatory drawing which shows the bending moment action state of an electrode. 図8は、凹凸パターンの一例を示す平面図であり、負極の捲回外側の負極合剤層を示す図。FIG. 8 is a plan view illustrating an example of a concavo-convex pattern, and is a diagram illustrating a negative electrode mixture layer on the outer side of a negative electrode. 凹凸パターンの一例を示す平面図であり、図9(A)は負極の捲回外側の負極合剤層を示す図、図9(B)は正極の捲回内側の正極合剤層を示す図。It is a top view which shows an example of an uneven | corrugated pattern, FIG. 9 (A) is a figure which shows the negative mix layer outside the winding of a negative electrode, FIG.9 (B) is a figure which shows the positive mix layer inside the winding of a positive electrode . 比較例3の捲回型電池に用いられる正極及び負極の構造を説明する断面図。Sectional drawing explaining the structure of the positive electrode used for the winding type battery of the comparative example 3, and a negative electrode.

まず、図1を参照して円筒型のリチウムイオン電池の全体構造について説明する。
リチウムイオン電池は、有底円筒状の金属製の電池缶10内に、薄膜状の負極20と正極30との間にフィルム状のセパレータ40を挟んで渦巻き状に捲回されてなる電極構造体(捲回電極群)が装填されている。
First, the overall structure of a cylindrical lithium ion battery will be described with reference to FIG.
The lithium ion battery is an electrode structure in which a film separator 40 is sandwiched between a thin-film negative electrode 20 and a positive electrode 30 and wound in a spiral shape in a bottomed cylindrical metal battery can 10. (Winding electrode group) is loaded.

電池缶10内の底部には負極絶縁シート11が敷設されている。電池缶10の開口端側には当該開口を閉じるように絶縁ガスケット12を介して金属製の電池蓋13がかしめ加工によって取り付けられている。電池缶10内の開口端近傍には正極絶縁シート14が取り付けられている。絶縁ガスケット12と電池蓋13とによって密閉された電池缶10内には、電解液が充填されている。   A negative electrode insulating sheet 11 is laid on the bottom of the battery can 10. A metal battery lid 13 is attached to the opening end side of the battery can 10 by caulking through an insulating gasket 12 so as to close the opening. A positive electrode insulating sheet 14 is attached in the vicinity of the opening end in the battery can 10. The battery can 10 sealed by the insulating gasket 12 and the battery lid 13 is filled with an electrolytic solution.

負極20は、帯状の負極集電体21と、負極集電体21の表裏に塗布等によって成層された負極合剤層22とにより構成されている。   The negative electrode 20 includes a strip-shaped negative electrode current collector 21 and a negative electrode mixture layer 22 formed on the front and back surfaces of the negative electrode current collector 21 by coating or the like.

負極集電体21としては、ステンレス鋼、銅、ニッケル、チタン等の金属箔あるいは金属メッシュ等を用いることができ、特に、銅が好ましく、耐熱性の高いジルコニアや亜鉛含有銅も好ましい。負極集電体21は負極絶縁シート11を貫通して延在するニッケル製の負極リードメンバ16によって電池缶10に導通接続されている。   As the negative electrode current collector 21, a metal foil or metal mesh of stainless steel, copper, nickel, titanium, or the like can be used. In particular, copper is preferable, and zirconia and zinc-containing copper having high heat resistance are also preferable. The negative electrode current collector 21 is conductively connected to the battery can 10 by a nickel negative electrode lead member 16 extending through the negative electrode insulating sheet 11.

負極合剤層22は、負極活物質と結着剤(バインダ樹脂)とにより構成されている。 負極活物質としては、天然黒鉛,天然黒鉛に乾式のCVD(Chemical Vapor Dposition)法や、湿式のスプレイ法で形成される被膜を形成した複合炭素質材料,エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛,非晶質炭素材料などの炭素質材料、又は、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属、リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素、ゲルマニウム、錫など第四族元素の酸化物若しくは窒化物を用いることができる。なお、これらを一般的に負極活物質と称する場合がある。   The negative electrode mixture layer 22 is composed of a negative electrode active material and a binder (binder resin). Examples of the negative electrode active material include natural graphite, a composite carbonaceous material in which a film formed by a dry CVD (Chemical Vapor Deposition) method or a wet spray method is formed on natural graphite, a resin raw material such as epoxy or phenol, petroleum, Carbonaceous materials such as artificial graphite and amorphous carbon materials made by firing pitch-based materials obtained from coal as raw materials, or lithium metals that can occlude and release lithium by forming lithium and compounds, lithium and compounds And oxides or nitrides of Group 4 elements such as silicon, germanium, and tin that can occlude and release lithium by being inserted into the crystal gap. In some cases, these are generally referred to as negative electrode active materials.

特に、炭素質材料は、導電性が高く、低温特性、サイクル安定性の面から優れた材料である。炭素質材料の中では、炭素網面層間(d002)の広い材料が急速充放電や低温特性に優れ、好適である。しかし、炭素網面層間(d002)が広い材料は、充電の初期での容量低下や充放電効率が低いことがあるので、炭素網面層間(d002)は0.39nm以下が好ましく、このような炭素質材料を、擬似異方性炭素と称する場合がある。更に、電極を構成するには黒鉛質、非晶質、活性炭などの導電性の高い炭素質材料を混合してもよい。または、黒鉛質材料として、以下(1)〜(3)に示す特徴を有する材料を用いてもよい。 In particular, the carbonaceous material is a material having high conductivity, and excellent in terms of low temperature characteristics and cycle stability. Among the carbonaceous materials, a material having a wide carbon network surface layer (d 002 ) is excellent in rapid charge / discharge and low-temperature characteristics, and is preferable. However, since a material having a wide carbon network surface layer (d 002 ) may have a reduced capacity and low charge / discharge efficiency at the initial stage of charging, the carbon network surface layer (d 002 ) is preferably 0.39 nm or less. Such a carbonaceous material may be referred to as pseudo-anisotropic carbon. Further, a carbonaceous material having high conductivity such as graphite, amorphous, activated carbon, etc., may be mixed to constitute the electrode. Alternatively, a material having the characteristics shown in (1) to (3) below may be used as the graphite material.

(1)ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(I)とラマン分光スペクトルで測定される1580〜1620cm−1の範囲にあるピーク強度(I)との強度比であるR値(I/I)が、0.2以上0.4以下。
(2)ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピークの半値幅Δ値が、40cm−1以上100cm−1以下。
(3)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/I(004))が0.1以上0.45以下。
(1) peak in the range of 1300~1400Cm -1 measured by Raman spectrum intensity (I D) and the peak intensity in the range of 1580~1620Cm -1 as measured by Raman spectroscopy spectra (I G) and the R value (I D / I G ), which is an intensity ratio, is 0.2 or more and 0.4 or less.
(2) half-value width Δ value of the peak in the range of 1300~1400Cm -1 as measured by Raman spectroscopy spectra, 40 cm -1 or more 100 cm -1 or less.
(3) peak intensity of the X-ray diffraction (110) plane (I (110)) and (004) plane peak intensity (I (004)) the intensity ratio X value of (I (110) / I (004) ) Is 0.1 or more and 0.45 or less.

なお、負極合剤層22において、電子抵抗の低減のために、更に導電剤が加えられてもよい。負極合剤層22に添加する導電剤としては、例えば、カーボンブラック、グラファイト、カーボンファイバ及び金属炭化物などのカーボン材料があり、それぞれ単独でも混合して用いてもよい。   Note that a conductive agent may be further added to the negative electrode mixture layer 22 in order to reduce electronic resistance. Examples of the conductive agent added to the negative electrode mixture layer 22 include carbon materials such as carbon black, graphite, carbon fiber, and metal carbide, which may be used alone or in combination.

負極合剤層22の結着剤としては、負極合剤層22を構成する材料と負極集電体21に密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体、スチレン−ブタジエンゴムなどを挙げることができる。バインダ樹脂溶液を構成する溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルフォキシド、ヘキサメチルフォスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルフォスフェイト、トリメチルフォスフェイト等を用いることが出来る。特に、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの含窒素系有機溶媒はバインダ樹脂の溶解性が高く好ましい。また、これら溶媒は単独でも混合して用いてもよい。   The binder of the negative electrode mixture layer 22 may be any material as long as it is in close contact with the material constituting the negative electrode mixture layer 22 and the negative electrode current collector 21. For example, vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide Homopolymers or copolymers such as styrene-butadiene rubber. As a solvent constituting the binder resin solution, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea , Triethyl phosphate, trimethyl phosphate, and the like can be used. In particular, nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide are preferable because of high solubility of the binder resin. These solvents may be used alone or in combination.

正極30は、アルミニウム箔による帯状の正極集電体31と、正極集電体31の表裏に塗布等によって成層された正極合剤層32とにより構成されている。正極集電体31は正極絶縁シート14を貫通して延在するアルミニウム製の正極リードメンバ15によって電池蓋13に導通接続されている。   The positive electrode 30 includes a strip-shaped positive electrode current collector 31 made of an aluminum foil, and a positive electrode mixture layer 32 formed by coating or the like on the front and back surfaces of the positive electrode current collector 31. The positive electrode current collector 31 is conductively connected to the battery lid 13 by an aluminum positive electrode lead member 15 extending through the positive electrode insulating sheet 14.

正極合剤層32は、正極活物質と、結着剤とから構成されている。また、電子抵抗の低減のため、更に正極合剤層32に導電剤を加えられてもよい。   The positive electrode mixture layer 32 is composed of a positive electrode active material and a binder. Further, a conductive agent may be further added to the positive electrode mixture layer 32 in order to reduce the electronic resistance.

正極活物質は、組成式LiαMnxM1yM2z2(式中、M1は、Co,Niから選ばれる少なくとも1種、M2は、Co,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種であり、x+y+z=1,0<α<1.2,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物が好ましい。また、その中でも、M1がNi又はCoであって、M2がCo又はNiであることがより好ましい。LiMn1/3Ni1/3Co1/32であればさらに好ましい。組成中、Niを多くすると容量が大きく取れ、Coを多くすると低温での出力が向上でき、Mnを多くすると材料コストを抑制できる。 The positive electrode active material has a composition formula Li α Mn x M 1 y M 2 z O 2 (wherein M 1 is at least one selected from Co and Ni, and M 2 is Co, Ni, Al, B, Fe, Mg, Cr) X + y + z = 1, 0 <α <1.2, 0.2 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.05 ≦ z ≦ 0.4. ) Is preferable. Among these, it is more preferable that M1 is Ni or Co and M2 is Co or Ni. LiMn 1/3 Ni 1/3 Co 1/3 O 2 is more preferable. In the composition, if Ni is increased, the capacity can be increased, if Co is increased, the output at a low temperature can be improved, and if Mn is increased, the material cost can be suppressed.

また、添加元素は、サイクル特性を安定させるのに効果がある。他に、一般式LiMxPO4(M:Fe又はMn、0.01≦X≦0.4)やLiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物でもよい。特に、LiMn1/3Ni1/3Co1/32は、低温特性とサイクル安定性とが高く、ハイブリット自動車(HEV)用リチウム電池材料として好適である。 In addition, the additive element is effective in stabilizing the cycle characteristics. In addition, the general formula LiM x PO 4 (M: Fe or Mn, 0.01 ≦ X ≦ 0.4) and LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0.01 ≦ An orthorhombic phosphate compound having symmetry of the space group Pmnb where X ≦ 0.4) may be used. In particular, LiMn 1/3 Ni 1/3 Co 1/3 O 2 has high low-temperature characteristics and high cycle stability, and is suitable as a lithium battery material for hybrid vehicles (HEV).

正極合剤層32の結着剤(バインダ樹脂)は、正極合剤層32を構成する材料と正極集電体31を密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体,スチレン−ブタジエンゴムなどを挙げることができる。   The binder (binder resin) of the positive electrode mixture layer 32 may be any material as long as the material constituting the positive electrode mixture layer 32 and the positive electrode current collector 31 are brought into close contact with each other. For example, vinylidene fluoride, tetrafluoroethylene, Examples thereof include homopolymers or copolymers such as acrylonitrile and ethylene oxide, and styrene-butadiene rubber.

正極合剤層32の導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバ及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。   The conductive agent of the positive electrode mixture layer 32 is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.

セパレータ40としては、公知のリチウムイオン電池に使用されているセパレータを用いることができる。例えば、セパレータ40としては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。電池の高容量化の観点からは、セパレータ40の厚みは、20μm以下とすることが好ましく、18μm以下とすることがより好ましい。このような厚みのセパレータ40を用いることで、電池の体積あたりの容量を大きくすることができる。しかし、セパレータ40を薄くしすぎると、取り扱い性が損なわれたり、正負極間の隔離が不十分となって短絡が生じ易くなったりするため、厚みの下限は10μmであることが好ましい。   As the separator 40, the separator currently used for the well-known lithium ion battery can be used. For example, examples of the separator 40 include microporous films made of polyolefin such as polyethylene and polypropylene, and nonwoven fabrics. From the viewpoint of increasing the capacity of the battery, the thickness of the separator 40 is preferably 20 μm or less, and more preferably 18 μm or less. By using the separator 40 having such a thickness, the capacity per volume of the battery can be increased. However, if the separator 40 is made too thin, the handleability is impaired, or the separation between the positive and negative electrodes is insufficient, and a short circuit is likely to occur. Therefore, the lower limit of the thickness is preferably 10 μm.

電池缶10内に充填される電解液に用いる溶媒としては、低温特性、負極上の被膜形成の観点から、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)を含むものがよい。電解液に用いるリチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF,LiBF,LiClO,LiI,LiCl,LiBr等、また、有機リチウム塩では、LiB[OCOCF3]4,LiB[OCOCFCF],LiPF(CF),LiN(SOCF),LiN(SOCFCF3)2等を用いることができる。特に、民生用電池で多く用いられているLiPFは、品質の安定性から好適な材料である。また、LiB[OCOCF]は、解離性,溶解性が良好で、低い濃度で高い導電率を示すので有効な材料である。 Solvents used for the electrolyte filled in the battery can 10 include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and vinylene carbonate (from the viewpoint of low temperature characteristics and film formation on the negative electrode. VC) is preferable. The lithium salt used for the electrolytic solution is not particularly limited, but for inorganic lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc., and for organic lithium salts, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3] 4 , LiPF 4 (CF 3) 2, LiN (SO 2 CF 3) 2, LiN (SO 2 CF 2 CF 3) may be used 2 or the like. In particular, LiPF 6 that is frequently used in consumer batteries is a suitable material because of its quality stability. LiB [OCOCF 3 ] 4 is an effective material because it has good dissociation and solubility and exhibits high conductivity at a low concentration.

本実施形態によるリチウムイオン電池は、図2、図3に示すように、負極20と正極30の間にセパレータ40を介在させて互いに重ね合わせた場合に、互いに対向する負極20の表面と正極30の表面とが噛み合う凹凸形状を有している。   As shown in FIGS. 2 and 3, the lithium ion battery according to the present embodiment has the surface of the negative electrode 20 and the positive electrode 30 facing each other when the separator 40 is interposed between the negative electrode 20 and the positive electrode 30 and overlapped with each other. It has a concavo-convex shape that meshes with the surface.

負極20は、捲回状態で負極集電体21の捲回外側と捲回内側の両方に配置される各負極合剤層22がそれぞれ凹凸面23、24を有している。凹凸面23、24は、一定の厚みで平面状に広がるベース部23B、24Bの表面に、負極集電体21の長手方向である捲回方向(図にて左右方向)に所定間隔を有して突出する凸部23A、24Aが形成された面形状を有している。凸部23A、24Aは、断面が略四角形の歯形形状を有しており、捲回方向に直交する方向に延在する一対の側面と、これら一対の側面の間に亘る頂面とを有する。   In the negative electrode 20, the negative electrode mixture layers 22 disposed on both the outer side and the inner side of the negative electrode current collector 21 in a wound state have uneven surfaces 23 and 24, respectively. The uneven surfaces 23 and 24 have a predetermined interval in the winding direction (the left-right direction in the drawing) which is the longitudinal direction of the negative electrode current collector 21 on the surface of the base portions 23B and 24B spreading in a plane with a constant thickness. It has a surface shape on which convex portions 23A and 24A projecting. The convex portions 23A, 24A have a substantially quadrangular tooth profile, and have a pair of side surfaces extending in a direction orthogonal to the winding direction and a top surface extending between the pair of side surfaces.

正極30は、捲回状態で正極集電体31の捲回外側と捲回内側の両方に配置される各正極合剤層32がそれぞれ凹凸面33、34を有している。凹凸面33、34は、一定の厚みで層状に広がるベース部33B、34Bの表面に、正極集電体31の長手方向である捲回方向(図にて左右方向)に所定間隔を有して突出する凸部33A、34Aが形成された面形状を有している。凸部33A、34Aは、断面が略四角形の歯形形状を有しており、捲回方向に直交する方向に延在する一対の側面と、これら一対の側面の間に亘る頂面とを有する。   In the positive electrode 30, each positive electrode mixture layer 32 arranged on both the outer side and the inner side of the positive electrode current collector 31 in a wound state has uneven surfaces 33 and 34, respectively. The uneven surfaces 33 and 34 have a predetermined interval in the winding direction (left and right direction in the drawing) which is the longitudinal direction of the positive electrode current collector 31 on the surface of the base portions 33B and 34B spreading in layers with a constant thickness. It has a surface shape on which projecting convex portions 33A and 34A are formed. The convex portions 33A and 34A have a tooth shape having a substantially square cross section, and have a pair of side surfaces extending in a direction orthogonal to the winding direction and a top surface extending between the pair of side surfaces.

図4は、本実施の形態におけるリチウムイオン電池の捲回前の電極構造の一部を拡大して示す断面図であり、正極集電体とその捲回内側に配置される正極合剤層と、負極集電体とその捲回外側に配置される負極合剤層を示している。図5は、図4に示す正極と負極を互いに重ね合わせたフラットな状態を説明する図、図6は、捲回により湾曲された状態を説明する図である。なお、図4から図6では、セパレータは省略している。   FIG. 4 is an enlarged cross-sectional view showing a part of the electrode structure before winding of the lithium ion battery in the present embodiment, and a positive electrode current collector and a positive electrode mixture layer disposed inside the winding, 1 shows a negative electrode current collector and a negative electrode mixture layer disposed on the outer side of the negative electrode current collector. FIG. 5 is a diagram illustrating a flat state in which the positive electrode and the negative electrode illustrated in FIG. 4 are overlapped with each other, and FIG. 6 is a diagram illustrating a state in which the positive electrode and the negative electrode are bent by winding. In FIGS. 4 to 6, the separator is omitted.

負極20の凹凸面23と24の凹凸形状、及び、正極30の凹凸面33と34の凹凸形状は、図4、図5に示されているように、捲回前のフラットな状態では互いに異なっている。   The uneven shape of the uneven surfaces 23 and 24 of the negative electrode 20 and the uneven shape of the uneven surfaces 33 and 34 of the positive electrode 30 are different from each other in the flat state before winding, as shown in FIGS. ing.

捲回前のフラットな状態において、凹凸面23と33は、凸部23Aの断面形状が矩形形状を有しているのに対して、凹凸面24と34は、断面形状が台形形状を有している。   In the flat state before winding, the concavo-convex surfaces 23 and 33 have a rectangular cross-sectional shape of the convex portion 23A, whereas the concavo-convex surfaces 24 and 34 have a trapezoidal cross-sectional shape. ing.

より具体的には、正極集電体31の捲回内側に配置される凹凸面34(24)の凸部34A(24A)、は、フラットな状態では、基端側から先端側に移行するにしたがって一対の側面が漸次接近する形状を有している。そして、負極集電体21の捲回外側に配置される凹凸面23(33)の凸部23A(33A)は、フラットな状態では、各側面がベース部23B(33B)に対して垂直、もしくは、基端側から先端側に移行するにしたがって一対の側面が漸次離反する形状を有している。   More specifically, the convex portion 34A (24A) of the concave and convex surface 34 (24) disposed on the winding inner side of the positive electrode current collector 31 shifts from the proximal end side to the distal end side in a flat state. Therefore, the pair of side surfaces have a shape that gradually approaches. And the convex part 23A (33A) of the concavo-convex surface 23 (33) disposed on the winding outer side of the negative electrode current collector 21 has each side surface perpendicular to the base part 23B (33B) in a flat state, or The pair of side surfaces have a shape in which the pair of side surfaces gradually separate as they move from the proximal end side to the distal end side.

本実施の形態では、凸部23A、33Aの側面とベース部23B、33Bとの間に形成される角度である底角θaは、90度以下に設定され、例えば、88〜87度に設定されている。そして、凸部24A、34Aの側面とベース部24B、34Bとの間に形成される角度である底角θbは、90度よりも大きな角度に設定され、例えば、91〜93度に設定されている。なお、図4及び図5では、理解容易のために、上記した設定角度よりも大きな角度で極端に示している。   In the present embodiment, the base angle θa that is an angle formed between the side surfaces of the convex portions 23A and 33A and the base portions 23B and 33B is set to 90 degrees or less, for example, set to 88 to 87 degrees. ing. And base angle (theta) b which is an angle formed between the side surface of convex part 24A, 34A and base part 24B, 34B is set to an angle larger than 90 degree | times, for example, set to 91-93 degree | times. Yes. In FIGS. 4 and 5, for easy understanding, the angle is extremely shown at an angle larger than the set angle.

負極20と正極30は、捲回により湾曲され、負極20と正極30の各々に曲げモーメントが作用する。例えば、負極20の場合、図7に示されているように、負極集電体21を中立面と考えて、負極集電体21よりも捲回外側の負極合剤層22には引張応力σaが作用し、負極集電体21よりも捲回内側の負極合剤層22には圧縮応力σbが作用する。そして、それら応力σa、σbは、負極集電体21から離れるほど大きくなる。   The negative electrode 20 and the positive electrode 30 are curved by winding, and a bending moment acts on each of the negative electrode 20 and the positive electrode 30. For example, in the case of the negative electrode 20, as shown in FIG. 7, the negative electrode current collector 21 is considered to be a neutral surface, and the negative electrode mixture layer 22 wound outside the negative electrode current collector 21 has a tensile stress. σa acts, and compressive stress σb acts on the negative electrode mixture layer 22 on the inner side of the negative electrode current collector 21. The stresses σa and σb increase as the distance from the negative electrode current collector 21 increases.

また、正極30の場合も同様に、正極集電体31よりも捲回外側の正極合剤層32には引張応力σaが作用し、正極集電体31よりも捲回内側の正極合剤層32には圧縮応力σbが作用する。そして、それら応力σa、σbは、正極集電体31から離れるほど大きくなる。   Similarly, in the case of the positive electrode 30, the tensile stress σa acts on the positive electrode mixture layer 32 outside the winding of the positive electrode current collector 31, and the positive electrode mixture layer on the inner side of the winding of the positive electrode current collector 31. Compressive stress σb acts on 32. The stresses σa and σb increase as the distance from the positive electrode current collector 31 increases.

したがって、仮に捲回前の凹凸面23、24、33、34のすべての底角θa、θbが90度の負極20と正極30を捲回した場合には、応力の影響により集電体21、31よりも捲回外側の合剤層22、32は引っ張られるので、その凹凸面23、33の底角θaは90度よりも大きな角度に変化する。そして、集電体21、31よりも捲回内側の合剤層22、32は圧縮されるために、その凹凸面23、33の底角θbは90度よりも小さな角度に変化する。   Therefore, if the negative electrode 20 and the positive electrode 30 with the base angles θa, θb of 90 degrees of the irregular surfaces 23, 24, 33, 34 before winding are wound, the current collector 21, Since the mixture layers 22 and 32 outside the winding 31 are pulled, the base angle θa of the uneven surfaces 23 and 33 changes to an angle larger than 90 degrees. Since the mixture layers 22 and 32 on the inner side of the current collectors 21 and 31 are compressed, the base angle θb of the uneven surfaces 23 and 33 changes to an angle smaller than 90 degrees.

本実施の形態では、図5に示すように、フラットな状態において、凹凸面23、33の各底角θaを90度もしくは90度よりも小さい角度とすると共に、凹凸面24、34の各底角θbを90度よりも大きな角度としている。したがって、捲回により湾曲された状態において、合剤層22、32に作用する応力を低減し、クラックの発生を防止できる。   In the present embodiment, as shown in FIG. 5, in the flat state, the base angles θa of the concave and convex surfaces 23 and 33 are set to 90 degrees or an angle smaller than 90 degrees, and the bottoms of the concave and convex surfaces 24 and 34 are set. The angle θb is set to an angle larger than 90 degrees. Therefore, in the state curved by winding, the stress which acts on the mixture layers 22 and 32 can be reduced and generation | occurrence | production of a crack can be prevented.

捲回型電池の場合、捲回のために正極と負極とが曲げられて使用される。このため、正極と負極には曲げモーメントが作用し、電極の捲回内側には圧縮応力がかかり、捲回外側には引っ張り応力がかかりやすい。そして、凹凸面を有する電極を捲回電池に用いると、図6に示すように、捲回内側の凸部34A、34Aの間に、捲回外側の凸部23Aが組み込まれる。ここで、捲回内側の凹凸面24、34の各底角θbを90度とすると、捲回内側の電極で発生する圧縮応力によって、凸部34A、34Aが捲回外側の電極の凸部23A(33A)を両側から圧縮してしまう力が働き、この力によって、捲回外側の電極の凸部23A(33A)でクラックが発生するおそれがある。これに対して、本実施の形態では、捲回内側の凹凸面24、34の各底角θbを90度よりも大きな角度とし、捲回外側の凹凸面23、33の底角θaを90度以下にすることで、捲回外側の電極の凸部23A(33A)にかかる力を抑制でき、クラックの発生を防止できる。   In the case of a wound battery, a positive electrode and a negative electrode are bent for use in winding. For this reason, a bending moment acts on the positive electrode and the negative electrode, compressive stress is applied to the inner side of the winding of the electrode, and tensile stress is easily applied to the outer side of the winding. Then, when an electrode having an uneven surface is used for a wound battery, as shown in FIG. 6, a convex portion 23A on the outer side of the winding is incorporated between the convex portions 34A and 34A on the inner side of the winding. Here, assuming that the respective base angles θb of the irregular surfaces 24 and 34 on the winding inner side are 90 degrees, the convex portions 34A and 34A are caused to protrude by the compressive stress generated on the winding inner electrode. The force which compresses (33A) from both sides works, and there is a possibility that a crack may occur in the convex portion 23A (33A) of the electrode on the outer side of the winding due to this force. On the other hand, in the present embodiment, the base angles θb of the irregular surfaces 24 and 34 on the winding inner side are larger than 90 degrees, and the base angle θa of the irregular surfaces 23 and 33 on the winding outer side is 90 degrees. By making it below, it is possible to suppress the force applied to the convex portion 23A (33A) of the outer electrode of the winding, and to prevent the occurrence of cracks.

そして、図6に示すように変形して、捲回内側になる凹凸面34(24)の互いに隣り合う凸部34A(24A)の側面同士がほぼ平行になると共に、捲回外側になる凹凸面23(31)の凸部23A(33A)の一対の側面は、凸部23Aの基端側の方が先端側よりも捲回方向に広がって底角θaが増加し、ほぼ平行になる。   Then, as shown in FIG. 6, the side surfaces of the convex portions 34 </ b> A (24 </ b> A) that are adjacent to each other on the concave / convex surface 34 (24) that becomes the winding inner side are substantially parallel and the concave / convex surface that becomes the winding outer side. The pair of side surfaces of the projection 23A (33A) of the projection 23 (31) are substantially parallel, with the base end side of the projection 23A spreading more in the winding direction than the tip side, increasing the base angle θa.

したがって、捲回により湾曲された状態では、セパレータ40を挟んで隣接する負極20の凹凸面23、24と正極30の凹凸面33、34とが一定のギャップを有して噛み合うことになる。したがって、広域に亘って適正な電極ギャップが保たれ、内部抵抗の低下のもとに電池特性が向上する。   Therefore, in the curved state by winding, the uneven surfaces 23 and 24 of the negative electrode 20 and the uneven surfaces 33 and 34 of the positive electrode 30 adjacent to each other with the separator 40 interposed therebetween mesh with each other with a certain gap. Therefore, an appropriate electrode gap is maintained over a wide area, and the battery characteristics are improved under a decrease in internal resistance.

また、捲回内側の凹凸面24(34)の角部c(図6参照)が90度以下の鋭角に尖ることが回避され、当該部分の応力集中が緩和される。また、角部cが尖っていないので、セパレータ40との接触によって当該部分にクラックが入り易くなることがなくなる。これにより、凹凸面24、34にクラックが入ったことによる内部抵抗の増加、容量低下が回避され、電池特性が向上する。   Moreover, it is avoided that the corner | angular part c (refer FIG. 6) of the uneven | corrugated surface 24 (34) inside winding is sharpened at an acute angle of 90 degrees or less, and the stress concentration of the said part is relieve | moderated. In addition, since the corner portion c is not sharp, the contact with the separator 40 does not easily cause a crack in the portion. As a result, an increase in internal resistance and a decrease in capacity due to cracks in the uneven surfaces 24 and 34 are avoided, and battery characteristics are improved.

凹凸面23、24を有する負極合剤層22は、例えば、以下の方法により形成することで作製することができる。   The negative electrode mixture layer 22 having the concavo-convex surfaces 23 and 24 can be produced by, for example, the following method.

まず、負極集電体21の少なくとも一方の面上に、負極合剤含有組成物を塗布し、例えば60〜120℃で2〜4時間乾燥させる。その後、プレスすることで厚みと密度を調整して、負極合剤層22を形成する。凹凸パターンのある金型もしくはロールを用いて負極合剤層22をプレスすることで、凹凸面23、24を形成することができる。上記方法で平坦部を塗布し、乾燥、プレスした後、インクジェットなどを用いて、凹凸部分のみ形成し、乾燥させて、凹凸面23、24を形成することもできる。 また、平坦電極は集電体に塗布をし、凸部部分のみセパレータに電極を形成してもよい。   First, the negative electrode mixture-containing composition is applied on at least one surface of the negative electrode current collector 21 and dried at 60 to 120 ° C. for 2 to 4 hours, for example. Then, the negative electrode mixture layer 22 is formed by adjusting the thickness and density by pressing. The uneven surfaces 23 and 24 can be formed by pressing the negative electrode mixture layer 22 using a mold or a roll having an uneven pattern. After applying a flat part by the said method, drying and pressing, only an uneven | corrugated | grooved part can be formed and dried by using an inkjet etc., and the uneven | corrugated surfaces 23 and 24 can also be formed. Further, the flat electrode may be applied to the current collector, and the electrode may be formed on the separator only at the convex portion.

正極30の凹凸面33、34は、正極合剤層形成用の正極合剤含有組成物を用いて、上述の負極形成の方法と同じ方法で形成することができる。   The concavo-convex surfaces 33 and 34 of the positive electrode 30 can be formed by using the positive electrode mixture-containing composition for forming the positive electrode mixture layer by the same method as the above-described negative electrode formation method.

なお、凹凸面23、24、33、34の高さは50μm以上が望ましく、凹凸面23、24、33、34の高さが50〜100μmである場合には、低抵抗かつ高容量な電池が実現できるため、より望ましい。電極幅は100μm以上であるのが望ましい。電極幅500〜1000μmである場合には、低抵抗かつ高容量な電池が実現できるため、より望ましい。   The height of the uneven surfaces 23, 24, 33, and 34 is desirably 50 μm or more. When the height of the uneven surfaces 23, 24, 33, and 34 is 50 to 100 μm, a battery having a low resistance and a high capacity can be obtained. It is more desirable because it can be realized. The electrode width is desirably 100 μm or more. An electrode width of 500 to 1000 μm is more desirable because a battery with low resistance and high capacity can be realized.

本発明のリチウムイオン電池は、上述の負極20、正極30を備えていればよく、その他の構成要素や構造については特に制限はなく、従来公知のリチウムイオン電池で適用さている各種構成要素、構造を採用することができる。   The lithium ion battery of the present invention only needs to include the negative electrode 20 and the positive electrode 30 described above, and there are no particular limitations on other components and structures, and various components and structures that are applied to conventionally known lithium ion batteries. Can be adopted.

(実施例1)
正極活物質としてLiMn1/3Ni1/3Co1/32を用い、電子導電性材料としてカーボンブラック(CB1)と黒鉛(GF2)を用い、バインダとしてポリフッ化ビニリデン(PVDF)を用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/32:CB1:GF2:PVDF=86:9:2:3の比となるように、溶剤としてNMP(N−メチルピロリドン)を用いて正極材ペーストを調製した。
Example 1
LiMn 1/3 Ni 1/3 Co 1/3 O 2 is used as the positive electrode active material, carbon black (CB1) and graphite (GF2) are used as the electronic conductive material, and polyvinylidene fluoride (PVDF) is used as the binder. The solid weight at the time of drying was set to NMP (N-- as a solvent so that the ratio of LiMn 1/3 Ni 1/3 Co 1/3 O 2 : CB1: GF2: PVDF = 86: 9: 2: 3 A positive electrode material paste was prepared using methylpyrrolidone).

この正極材ペーストを、正極集電体31となるアルミ箔に塗布し、80℃で乾燥し、パターンのついた加圧ローラでプレスし、図8に示すようなボーダ模様の凹凸パターンをつける。その後、120℃で乾燥して正極合剤層32、32を正極集電体31の両面に形成した。図8は、凹凸パターンの一例を示す平面図であり、負極の捲回外側の負極合剤層を示す図である。   This positive electrode material paste is applied to an aluminum foil to be the positive electrode current collector 31, dried at 80 ° C., and pressed with a pressure roller with a pattern to form a border pattern as shown in FIG. Then, it dried at 120 degreeC and formed the positive mix layer 32, 32 on both surfaces of the positive electrode current collector 31. FIG. 8 is a plan view showing an example of a concavo-convex pattern, and is a diagram showing a negative electrode mixture layer on the outer side of the negative electrode.

次に、負極活物質として非晶質炭素である擬似異方性炭素を用い、導電材としてカーボンブラック(CB2)を用い、バインダとしてPVDFを用いて、乾燥時の固形分重量を、擬似異方性炭素:CB2:PVDF=90:5:5の比となるように、溶剤としてNMPを用いて、負極合剤層のスラリーを調製した。   Next, pseudo-anisotropic carbon, which is amorphous carbon, is used as the negative electrode active material, carbon black (CB2) is used as the conductive material, and PVDF is used as the binder. A slurry of the negative electrode mixture layer was prepared using NMP as a solvent so as to have a ratio of carbon: CB2: PVDF = 90: 5: 5.

この負極材スラリーを、負極集電体21となる銅箔に塗布した。その後、80℃にて乾燥し、パターンのついた加圧ローラでプレスし、図8に示すような凹凸パターンをつける。凹凸高さは100μm、凹凸幅500μm、凹凸間隔は500μmとした。その後、120℃で乾燥して負極合剤層22、22を負極集電体21の両面に形成した。   This negative electrode material slurry was applied to a copper foil to be the negative electrode current collector 21. Then, it is dried at 80 ° C. and pressed with a pressure roller with a pattern to give a concavo-convex pattern as shown in FIG. The uneven height was 100 μm, the uneven width was 500 μm, and the uneven space was 500 μm. Then, it dried at 120 degreeC and the negative mix layer 22 and 22 was formed in both surfaces of the negative electrode collector 21. As shown in FIG.

電解液として、溶媒を容積組成比EC:VC:DMC:EMC=19.8:0.2:40:40で混合したものを用い、リチウム塩としてLiPFを1M溶解して電解液を作製した。 As the electrolytic solution, a solvent was mixed at a volume composition ratio EC: VC: DMC: EMC = 19.8: 0.2: 40: 40, and 1M LiPF 6 was dissolved as a lithium salt to prepare an electrolytic solution. .

作製した負極20、正極30間にセパレータ40を挟み込み、捲回群を形成し、電池缶10に挿入した。そして、負極20の集電をとるためにニッケル製の負極リードの一端を負極集電体21に溶接し、他端を電池缶10に溶接した。また、正極30の集電をとるためにアルミニウム製の正極リードの一端を正極集電体31に溶接し、他端を電池蓋13と電気的に接続した。さらに電解液を注液し、かしめることで、図1に示されているような、実施例1の捲回型電池を作製した。   A separator 40 was sandwiched between the produced negative electrode 20 and positive electrode 30 to form a wound group and inserted into the battery can 10. In order to collect current from the negative electrode 20, one end of a nickel negative electrode lead was welded to the negative electrode current collector 21, and the other end was welded to the battery can 10. In addition, one end of an aluminum positive electrode lead was welded to the positive electrode current collector 31 and the other end was electrically connected to the battery lid 13 in order to collect the positive electrode 30. Further, a wound battery of Example 1 as shown in FIG. 1 was produced by injecting and caulking the electrolytic solution.

(電池特性評価)
<電池容量評価方法>
電池を定電流0.6Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになる
まで充電し、30分の運転休止の後、0.6Aで2.7Vまで放電した。この操作を3回繰
返した。次に、電池を4.1Vまで定電流0.6Aで充電し、30分放置し、電圧を測定した。測定結果を表1に示す。
(Battery characteristics evaluation)
<Battery capacity evaluation method>
The battery was charged at a constant current of 0.6 A to 4.1 V, charged at a constant voltage of 4.1 V until the current value reached 20 mA, and after 30 minutes of operation stop, discharged to 2.6 V at 0.6 A. This operation was repeated three times. Next, the battery was charged at a constant current of 0.6 A up to 4.1 V, left for 30 minutes, and the voltage was measured. The measurement results are shown in Table 1.

<直流抵抗(DCR:Direct Current Resistance)評価方法>
放電DCR評価は、電池を3.8Vまで定電流0.6Aで充電し、0.6Aで10s放電し、再度3.8Vまで定電流で充電し、1.8Aで10s放電し、再度3.8Vまで充電し、06Aで10s放電した。この際のI−V特性から、電池のDCRを評価した。測定結果を表1に示す。
<Direct Current Resistance (DCR) Evaluation Method>
In the discharge DCR evaluation, the battery was charged at a constant current of 0.6 A up to 3.8 V, discharged at 0.6 A for 10 s, charged again at a constant current of 3.8 V, discharged at 1.8 A for 10 s, and again 3. The battery was charged to 8 V and discharged at 06 A for 10 s. The DCR of the battery was evaluated from the IV characteristics at this time. The measurement results are shown in Table 1.

(実施例2)
以下に示す方法で、実施例2の捲回型電池を作製した。
負極合剤層22の負極活物質として黒鉛を用いた。 これ以外は実施例1と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。
(Example 2)
A wound battery of Example 2 was produced by the method described below.
Graphite was used as the negative electrode active material of the negative electrode mixture layer 22. A battery was fabricated and evaluated in the same manner as in Example 1 except for the above. The evaluation results are shown in Table 1.

(実施例3)
以下に示す方法で、実施例3の捲回型電池を作製した。
正極30および負極20の組成は実施例1と同様である。凹凸高さは100μmとした。また、電池中心から集電体までの距離をdμmとし、凹凸幅および凹凸間隔をdμmとすると、凹凸幅および凹凸間隔dは60×dμmとした。これ以外は実施例1と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。なお、凹凸高さは、凸部23A、24A、33A、34Aの高さ、凹凸幅は凸部の幅、凹凸間隔は、互いに隣り合う凸部と凸部の間隔をいう。
(Example 3)
A wound battery of Example 3 was produced by the method described below.
The compositions of the positive electrode 30 and the negative electrode 20 are the same as in Example 1. The uneven height was 100 μm. Further, when the distance from the battery center to the current collector was d 1 μm and the uneven width and uneven distance were d 2 μm, the uneven width and uneven distance d 2 were 60 × d 1 μm. A battery was fabricated and evaluated in the same manner as in Example 1 except for the above. The evaluation results are shown in Table 1. Note that the uneven height refers to the height of the protrusions 23A, 24A, 33A, and 34A, the uneven width refers to the width of the protrusions, and the uneven space refers to the distance between the adjacent protrusions and protrusions.

(実施例4)
以下に示す方法で、実施例4の捲回型電池を作製した。
負極合剤層22の負極活物質として黒鉛を用いた。 このこと以外は実施例3と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。
Example 4
A wound battery of Example 4 was produced by the following method.
Graphite was used as the negative electrode active material of the negative electrode mixture layer 22. Except for this, the battery was fabricated and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 1.

(実施例5)
以下に示す方法で、実施例5の捲回型電池を作製した。
正極30および負極20の組成は、実施例1と同様である。凹凸面23、24、33、34は、実施例1〜4と異なり、図9に示されているように、長手方向(捲回方向)だけでなく短手方向(横幅方向)にも凹凸パターンを付け、マトリックス模様にした。凹凸高さは100μmとした。長手方向および短手方向の電極幅は500μm、長手方向および短手方向の凹凸幅は500μmとした。このこと以外は、実施例1と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。図9は、凹凸パターンの一例を示す平面図であり、図9(A)は負極の捲回外側の負極合剤層を示す図、図9(B)は正極の捲回内側の正極合剤層を示す図である。
(Example 5)
A wound battery of Example 5 was produced by the method described below.
The compositions of the positive electrode 30 and the negative electrode 20 are the same as in Example 1. The uneven surfaces 23, 24, 33, and 34 are different from the first to fourth embodiments, as shown in FIG. 9, in the uneven pattern not only in the longitudinal direction (winding direction) but also in the lateral direction (lateral width direction). To make a matrix pattern. The uneven height was 100 μm. The electrode width in the longitudinal direction and the short direction was 500 μm, and the uneven width in the longitudinal direction and the short direction was 500 μm. Except for this, the battery was fabricated and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. FIG. 9 is a plan view showing an example of a concavo-convex pattern, FIG. 9A is a diagram showing a negative electrode mixture layer on the outer side of the negative electrode, and FIG. 9B is a positive electrode mixture on the inner side of the positive electrode. It is a figure which shows a layer.

(実施例6)
以下に示す方法で、本実施例の捲回型電池を作製した。
負極合剤層の負極活物質として黒鉛を用いた。 このこと以外は、実施例5と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。
(Example 6)
The wound type battery of this example was manufactured by the method described below.
Graphite was used as the negative electrode active material of the negative electrode mixture layer. Except for this, the battery was fabricated and evaluated in the same manner as in Example 5. The evaluation results are shown in Table 1.

(比較例1)
以下に示す方法で、比較例1の捲回型電池を作製した。
まず、正極活物質としてLiMn1/3Ni1/3Co1/32を用い、電子導電性材料としてカーボンブラック(CB1)と黒鉛(GF2)を用い、バインダとしてポリフッ化ビニリデン(PVDF)を用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/32:CB1:GF2:PVDF=86:9:2:3の比となるように、溶剤としてNMP(N−メチルピロリドン)を用いて正極材ペーストを調製した。
(Comparative Example 1)
A wound battery of Comparative Example 1 was produced by the method shown below.
First, LiMn 1/3 Ni 1/3 Co 1/3 O 2 is used as the positive electrode active material, carbon black (CB1) and graphite (GF2) are used as the electronic conductive material, and polyvinylidene fluoride (PVDF) is used as the binder. And the solid content weight at the time of drying is NMP (as a solvent so that the ratio of LiMn 1/3 Ni 1/3 Co 1/3 O 2 : CB1: GF2: PVDF = 86: 9: 2: 3 A positive electrode material paste was prepared using (N-methylpyrrolidone).

この正極材ペーストを、正極集電体となるアルミ箔に塗布し、80℃で乾燥し、加圧ローラでプレスした。その後、120℃で乾燥して正極合剤層を正極集電体に形成した。正極合剤層は凹凸パターンのないものである。   This positive electrode material paste was applied to an aluminum foil serving as a positive electrode current collector, dried at 80 ° C., and pressed with a pressure roller. Then, it dried at 120 degreeC and formed the positive mix layer in the positive electrode electrical power collector. The positive electrode mixture layer has no uneven pattern.

次に、負極活物質として非晶質炭素である擬似異方性炭素を用い、導電材としてカーボンブラック(CB2)を用い、バインダとしてPVDFを用いて、乾燥時の固形分重量を、擬似異方性炭素:CB2:PVDF=90:5:5の比となるように、溶剤としてNMPを用いて、負極合剤層のスラリーを調製した。   Next, pseudo-anisotropic carbon, which is amorphous carbon, is used as the negative electrode active material, carbon black (CB2) is used as the conductive material, and PVDF is used as the binder. A slurry of the negative electrode mixture layer was prepared using NMP as a solvent so as to have a ratio of carbon: CB2: PVDF = 90: 5: 5.

この負極材スラリーを、負極集電体となる銅箔に塗布した。その後、80℃にて乾燥、凹凸パターンのない加圧ローラでプレスした。その後、120℃で乾燥して負極合剤層を負極集電体に形成した。負極合剤層も凹凸パターンのないものである。それら以外は、実施例1と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。   This negative electrode material slurry was applied to a copper foil serving as a negative electrode current collector. Then, it dried at 80 degreeC and pressed with the pressure roller without an uneven | corrugated pattern. Then, it dried at 120 degreeC and formed the negative mix layer in the negative electrode collector. The negative electrode mixture layer also has no uneven pattern. Except for these, the battery was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例2)
以下に示す方法で、比較例2の捲回型電池を作製した。
正極および負極の組成は実施例1と同様である。凹凸は図8に示すような凹凸パターンにした。凹凸高さは30μm、凹凸幅500μmとした。それら以外は、実施例1と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。
(Comparative Example 2)
A wound battery of Comparative Example 2 was produced by the method shown below.
The composition of the positive electrode and the negative electrode is the same as in Example 1. The concavo-convex pattern was a concavo-convex pattern as shown in FIG. The uneven height was 30 μm and the uneven width was 500 μm. Except for these, the battery was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例3)
以下に示す方法で、比較例3の捲回型電池を作製した。
正極および負極の組成は実施例1と同様である。凹凸面は、図10に示すように、断面が略三角形の凸部124A、133Aを有する形状にした。なお、図10は、凸部の形状以外は、図3に示す構造と同様であり、図3に示す符号を100番代に変更して示すことにより、詳細な説明は省略する。凹凸高さは100μm、凹凸幅500μmとした。それら以外は、実施例1と同様の方法で、電池作製、評価を行った。評価結果を表1に示す。
(Comparative Example 3)
A wound battery of Comparative Example 3 was produced by the method described below.
The composition of the positive electrode and the negative electrode is the same as in Example 1. As shown in FIG. 10, the uneven surface has a shape having convex portions 124A and 133A having a substantially triangular cross section. 10 is the same as the structure shown in FIG. 3 except for the shape of the convex portion, and the detailed description is omitted by changing the reference numeral shown in FIG. The uneven height was 100 μm and the uneven width was 500 μm. Except for these, the battery was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

Figure 2012243567
Figure 2012243567

比較例1を100%として直流抵抗比と容量比を評価した結果、実施例1から6では、容量比は変わらず、直流抵抗が小さくなった。実施例6の負極活物質に黒鉛を用いたものでは、直流抵抗比が比較例1の65%になった。   As a result of evaluating the direct current resistance ratio and the capacity ratio with Comparative Example 1 being 100%, in Examples 1 to 6, the capacity ratio was not changed and the direct current resistance was reduced. In the case where graphite was used for the negative electrode active material of Example 6, the DC resistance ratio was 65% of Comparative Example 1.

本発明によるリチウムイオン電池は、電池の内部抵抗を低減したリチウムイオン電池であるので、高出力が要求されるハイブリッド自動車の電源、自動車の電動制御系の電源やバックアップ電源として広く利用可能であり、鉄道、電動工具,フォークリフトなどの産業用機器の電源としても好適である。   Since the lithium ion battery according to the present invention is a lithium ion battery with reduced internal resistance of the battery, it can be widely used as a power source for a hybrid vehicle requiring high output, a power source for an electric control system of a vehicle, and a backup power source. It is also suitable as a power source for industrial equipment such as railways, power tools and forklifts.

10 電池缶
20 負極
21 負極集電体
22 負極合剤層
23、24 凹凸面
23A、24A、33A、34A 凸部
23B、24B、33B、34B ベース部
30 正極
31 正極集電体
32 正極合剤層
33、34 凹凸面
DESCRIPTION OF SYMBOLS 10 Battery can 20 Negative electrode 21 Negative electrode collector 22 Negative electrode mixture layer 23, 24 Uneven surface 23A, 24A, 33A, 34A Convex part 23B, 24B, 33B, 34B Base part 30 Positive electrode 31 Positive electrode collector 32 Positive electrode mixture layer 33, 34 Uneven surface

Claims (4)

正極と負極との間にセパレータを挟んで捲回された捲回電極群を有するリチウムイオン電池であって、
前記正極と前記負極は、前記セパレータを間に挟んで互いに噛み合う凹凸面を有し、
該各凹凸面は、捲回により変形して互いに対向する捲回内側の凹凸面と捲回外側の凹凸面との間に形成されるギャップが捲回方向に一定となる形状を有することを特徴とするリチウムイオン電池。
A lithium ion battery having a wound electrode group wound with a separator interposed between a positive electrode and a negative electrode,
The positive electrode and the negative electrode have uneven surfaces that mesh with each other with the separator interposed therebetween,
Each of the uneven surfaces has a shape in which a gap formed between the uneven surface on the inner side of the winding and the uneven surface on the outer side of the winding that is deformed by winding is constant in the winding direction. Lithium ion battery.
前記凹凸面は、一定の厚みで層状に広がるベース部と、該ベース部の表面に、捲回方向に所定間隔を有して突出する凸部とを有し、
前記凸部は、捲回方向に直交する方向に延在する一対の側面と、これら一対の側面の間に亘る頂面とを有する歯形形状を有し、
前記捲回内側の凹凸面の凸部は、フラットな状態では、基端側から先端側に移行するにしたがって一対の側面が漸次接近する形状を有し、
前記捲回外側の凹凸面の凸部は、フラットな状態では、各側面がベース部に対して垂直、もしくは、基端側から先端側に移行するにしたがって一対の側面が漸次離反する形状を有することを特徴とする請求項1に記載のリチウムイオン電池。
The concavo-convex surface has a base portion that spreads in layers with a constant thickness, and a convex portion that protrudes at a predetermined interval in the winding direction on the surface of the base portion,
The convex portion has a tooth profile having a pair of side surfaces extending in a direction orthogonal to the winding direction and a top surface extending between the pair of side surfaces,
The convex part of the irregular surface on the inner side of the winding has a shape in which the pair of side surfaces gradually approach as it moves from the proximal side to the distal side in a flat state,
In the flat state, the convex portions of the concavo-convex surface on the outer side of the winding have a shape in which each side surface is perpendicular to the base portion, or the pair of side surfaces gradually separate from each other as the base end side shifts to the distal end side. The lithium ion battery according to claim 1.
前記捲回外側の凹凸面の凸部は、フラットな状態では、前記側面と前記ベース部との間に形成される角度が、88〜87度に設定され、
前記捲回内側の凹凸面の凸部は、フラットな状態では、前記側面と前記ベース部との間に形成される角度が、91〜93度に設定されていることを特徴とする請求項2に記載のリチウムイオン電池。
As for the convex part of the uneven surface on the outer side of the winding, in a flat state, an angle formed between the side surface and the base part is set to 88 to 87 degrees,
The convex part of the uneven surface on the inner side of the winding has an angle formed between the side surface and the base part set to 91 to 93 degrees in a flat state. A lithium ion battery according to 1.
前記正極は、正極集電板の捲回内側と捲回外側に正極合剤層が形成され、
前記負極は、負極集電板の捲回内側と捲回外側に負極合剤層が形成され、
前記正極集電板の捲回外側の正極合剤層と、前記負極集電板の捲回外側の負極合剤層に前記捲回外側の凹凸面を有し、
前記正極集電板の捲回内側の正極合剤層と、前記負極集電板の捲回内側の負極合剤層に前記捲回内側の凹凸面を有することを特徴とする請求項1から請求項3のいずれか一項に記載のリチウムイオン電池。
In the positive electrode, a positive electrode mixture layer is formed on the inner side and outer side of the positive electrode current collector plate,
The negative electrode has a negative electrode mixture layer formed on the inner side and the outer side of the negative electrode current collector plate,
The positive electrode mixture layer on the outer side of the positive electrode current collector plate, and the negative electrode mixture layer on the outer side of the negative electrode current collector plate, having an irregular surface on the outer side of the winding,
The positive electrode mixture layer on the inner side of the winding of the positive electrode current collector plate and the negative electrode mixture layer on the inner side of the negative electrode current collector plate have uneven surfaces on the inner side of the winding. Item 4. The lithium ion battery according to any one of Items 3 to 3.
JP2011112438A 2011-05-19 2011-05-19 Lithium ion battery Expired - Fee Related JP5758697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011112438A JP5758697B2 (en) 2011-05-19 2011-05-19 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112438A JP5758697B2 (en) 2011-05-19 2011-05-19 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2012243567A true JP2012243567A (en) 2012-12-10
JP5758697B2 JP5758697B2 (en) 2015-08-05

Family

ID=47465056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112438A Expired - Fee Related JP5758697B2 (en) 2011-05-19 2011-05-19 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP5758697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556589A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN115000346A (en) * 2022-08-08 2022-09-02 江苏时代新能源科技有限公司 Electrode assembly, battery cell, battery and power consumption device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053125A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Fully solid electric storage element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053125A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Fully solid electric storage element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556589A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN115000346A (en) * 2022-08-08 2022-09-02 江苏时代新能源科技有限公司 Electrode assembly, battery cell, battery and power consumption device
CN115000346B (en) * 2022-08-08 2022-12-06 江苏时代新能源科技有限公司 Electrode assembly, battery cell, battery and power consumption device
WO2024031859A1 (en) * 2022-08-08 2024-02-15 江苏时代新能源科技有限公司 Electrode assembly, battery cell, battery and electric device

Also Published As

Publication number Publication date
JP5758697B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
KR101514586B1 (en) 2 negative electrode acte material for lithium ion secondary battery
KR102367610B1 (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
US9761876B2 (en) Energy storage device and energy storage unit
JP4557001B2 (en) Electrode for electrochemical device and electrochemical device
US20170104246A1 (en) Nonaqueous electrolyte secondary battery
KR101862433B1 (en) Lithium-ion capacitor
KR20150139780A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
KR101846767B1 (en) Nonaqueous electrolyte secondary battery
WO2016152860A1 (en) Lithium ion secondary battery and method for manufacturing same
JP7476936B2 (en) Film-covered battery, battery pack, and method for manufacturing said film-covered battery
JP5432746B2 (en) Lithium ion secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5758697B2 (en) Lithium ion battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR20180113640A (en) Flat-type secondary battery
US20220255061A1 (en) Nonaqueous electrolyte energy storage device, method for manufacturing the same, and energy storage apparatus
US20220190321A1 (en) Energy storage device
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP7103344B2 (en) Non-aqueous electrolyte power storage element
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP6589386B2 (en) Electricity storage element
US11978899B2 (en) Cathode for lithium secondary battery, lithium secondary battery including the same and method of fabricating lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

LAPS Cancellation because of no payment of annual fees