JP2012242506A - Electrifying member - Google Patents

Electrifying member Download PDF

Info

Publication number
JP2012242506A
JP2012242506A JP2011110771A JP2011110771A JP2012242506A JP 2012242506 A JP2012242506 A JP 2012242506A JP 2011110771 A JP2011110771 A JP 2011110771A JP 2011110771 A JP2011110771 A JP 2011110771A JP 2012242506 A JP2012242506 A JP 2012242506A
Authority
JP
Japan
Prior art keywords
crystal
particles
mol
elastic layer
iron phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011110771A
Other languages
Japanese (ja)
Other versions
JP5743707B2 (en
Inventor
Keiji Nose
啓二 野瀬
Masaaki Harada
昌明 原田
Hiroaki Watanabe
宏暁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011110771A priority Critical patent/JP5743707B2/en
Publication of JP2012242506A publication Critical patent/JP2012242506A/en
Application granted granted Critical
Publication of JP5743707B2 publication Critical patent/JP5743707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrifying member which has ease of controlling volume resistivity and small environmental dependence of conductivity, and reduces the occurrence of ghost due to an increase in the cumulated number of printings.SOLUTION: The electrifying member includes a conductive base and an elastic layer, and the elastic layer contains particles including at least one of (A) crystal of an iron lithium phosphate containing carbon and (B) crystal of an iron lithium phosphate containing at least one or more kinds of metal elements selected from a group consisting of Co, Mn, Mg, Mo, Nb, Zr, and Ti.

Description

本発明は、帯電部材に関する。   The present invention relates to a charging member.

近年、電子写真装置において、電子写真感光体の接触帯電に用いられる帯電部材は、導電性の基体と、該基体上に形成された導電性の弾性層とを有する構成が一般的である。そして、帯電部材における導電性の弾性層の体積抵抗率は、通常、1x10Ω・cm〜1x10Ω・cmの範囲内に調整されている。そして、弾性層の体積抵抗の調整には、イオン導電剤や電子導電性粒子が用いられている。 In recent years, in an electrophotographic apparatus, a charging member used for contact charging of an electrophotographic photosensitive member generally has a configuration including a conductive base and a conductive elastic layer formed on the base. The volume resistivity of the conductive elastic layer in the charging member is usually adjusted within the range of 1 × 10 2 Ω · cm to 1 × 10 9 Ω · cm. For adjusting the volume resistance of the elastic layer, an ion conductive agent or electronic conductive particles are used.

電子導電性粒子を用いて導電化されてなる弾性層は、体積抵抗率の環境依存性が小さいものの、弾性層中の含有量の変動に対する体積抵抗率の変化が大きい。逆に、イオン導電剤は、弾性層中の含有量が変動しても体積抵抗率が変化し難い。しかしながら、体積抵抗の環境依存性が大きいという課題を有している。   An elastic layer made conductive using electron conductive particles has a small change in volume resistivity with respect to a change in content in the elastic layer, although the volume resistivity is less dependent on the environment. On the contrary, the volume resistivity of the ionic conductive agent hardly changes even if the content in the elastic layer varies. However, there is a problem that the volume resistance is highly dependent on the environment.

そこで、特許文献1および2は、電子導電剤とイオン導電剤とを併用することで、体積抵抗率の環境依存性が小さく、かつ、含有量の変動に対する体積抵抗率の変化が小さい画像形成装置用導電性ローラを開示している。   Therefore, Patent Documents 1 and 2 disclose an image forming apparatus in which the volume resistivity is less dependent on the environment and the change in the volume resistivity with respect to the change in the content is small by using both the electronic conductive agent and the ionic conductive agent. An electrically conductive roller is disclosed.

特開平6−73286号公報JP-A-6-73286 特開2007−154123号公報JP 2007-154123 A

しかし、近年の電子写真装置におけるプロセススピードの向上と印刷可能ページ枚数の向上の流れの中で、従来の帯電部材を検討したところ、印刷枚数の増加に伴って、電子写真画像にゴーストが生じやすくなることを本発明者らは見出した。
そこで、本発明の目的は、安定した体積抵抗率を有し、かつ、多数枚の電子写真画像を形成した場合にも、電子写真画像にゴーストを生じさせにくい帯電部材を提供することである。
However, in the recent trend of improving the process speed and the number of printable pages in an electrophotographic apparatus, a conventional charging member has been examined. As the number of printed sheets increases, ghost images are likely to occur. The present inventors have found that
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a charging member that has a stable volume resistivity and hardly causes ghosts in an electrophotographic image even when a large number of electrophotographic images are formed.

本発明によれば、導電性基体および弾性層を有する帯電部材であって、
該弾性層は下記(A)および(B)からなる群から選ばれる少なくとも一方の結晶を含む粒子を含有する帯電部材が得られる:
(A)炭素を含有するリン酸鉄リチウムの結晶、
(B)Co、Mn、Mg、Mo、Nb、Zr、及びTiからなる群から選ばれる少なくとも1種以上の金属元素を含有するリン酸鉄リチウムの結晶。
According to the present invention, a charging member having a conductive substrate and an elastic layer,
The elastic layer provides a charging member containing particles containing at least one crystal selected from the group consisting of the following (A) and (B):
(A) a crystal of lithium iron phosphate containing carbon,
(B) A crystal of lithium iron phosphate containing at least one metal element selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr, and Ti.

本発明によれば、体積抵抗率の制御し易さと、小さい環境依存性を備え、かつ積算印刷枚数の増加に伴うゴーストが発生しにくい帯電部材を得る事ができる。   According to the present invention, it is possible to obtain a charging member that is easy to control the volume resistivity and has a small environmental dependency and is less likely to generate a ghost accompanying an increase in the cumulative number of printed sheets.

本発明の帯電部材の一例を示す断面図である。It is sectional drawing which shows an example of the charging member of this invention. 本発明の帯電部材を用いた電子写真装置の一例を示す模式図である。It is a schematic diagram showing an example of an electrophotographic apparatus using the charging member of the present invention. 本発明における帯電ローラの体積抵抗率測定を説明するための模式図である。It is a schematic diagram for demonstrating the volume resistivity measurement of the charging roller in this invention. 本発明におけるリン酸鉄リチウムの結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of lithium iron phosphate in this invention.

以下に、本発明について、詳細に説明する。ただし、本発明は、この実施の形態に限られるものではない。
本発明者らは、上記の目的を達成すべく、従来の帯電部材においては、経時的に電子写真画像にゴーストが発生しやすくなる原因を究明した。その結果、帯電部材からの電子写真感光体への繰り返しの放電によって、帯電部材の弾性層中のポリマーが劣化してイオン伝導性が低下し、帯電電荷供給量が減少していくためであることを突き止めた。
そこで、本発明者らは、イオン伝導をポリマー中ではなく、ポリマー中に分散させた粒子内で発現させ、かつ、その粒子内のイオン伝導メカニズムを壊れ難くすることで、安定した体積抵抗率を有し、かつ、多数枚の電子写真画像を形成した場合にも、電子写真画像にゴーストを生じさせにくい帯電部材を得られることを見出した。本発明はこのような新たな知見に基づくものである。
図2には、本発明を適用できる電子写真装置の概略構成を示しており、帯電部材を有する。被帯電体である電子写真感光体21は、アルミニウムなどの導電性を有する基体21bと、基体21b上に形成した感光層21aを基本構成層とするドラム形状の電子写真感光体である。支軸21cを中心に図上時計方向に所定の周速度をもって回転駆動される。
The present invention is described in detail below. However, the present invention is not limited to this embodiment.
In order to achieve the above-mentioned object, the present inventors have investigated the cause of the ghost that is likely to occur in the electrophotographic image over time in the conventional charging member. As a result, the repeated discharge from the charging member to the electrophotographic photosensitive member causes the polymer in the elastic layer of the charging member to deteriorate, resulting in a decrease in ionic conductivity and a decrease in the amount of charged charge supplied. I found out.
Therefore, the present inventors developed a stable volume resistivity by expressing ionic conduction in the particles dispersed in the polymer, not in the polymer, and making the ionic conduction mechanism in the particles difficult to break. It has been found that a charging member can be obtained which has a large number of electrophotographic images and hardly causes ghosts in the electrophotographic images. The present invention is based on such new findings.
FIG. 2 shows a schematic configuration of an electrophotographic apparatus to which the present invention can be applied, and has a charging member. The electrophotographic photosensitive member 21 as a member to be charged is a drum-shaped electrophotographic photosensitive member having a conductive base 21b such as aluminum and a photosensitive layer 21a formed on the base 21b as basic constituent layers. It is rotationally driven at a predetermined peripheral speed in the clockwise direction in the figure around the support shaft 21c.

ここでは、帯電部材の一つである帯電ローラについて説明する。帯電ローラ1は、電子写真感光体21に接触配置されて電子写真感光体を所定の極性・電位に帯電(一次帯電)する。帯電ローラ1は、導電性基体11と、導電性基体11上に形成した弾性層12とからなり、導電性基体11の両端部を不図示の押圧手段で電子写真感光体21の回転駆動に伴い従動回転する。   Here, a charging roller which is one of charging members will be described. The charging roller 1 is disposed in contact with the electrophotographic photosensitive member 21 to charge (primary charging) the electrophotographic photosensitive member to a predetermined polarity and potential. The charging roller 1 is composed of a conductive substrate 11 and an elastic layer 12 formed on the conductive substrate 11, and the both ends of the conductive substrate 11 are driven by rotation of the electrophotographic photosensitive member 21 by pressing means (not shown). Followed rotation.

電源22と摺擦電源23より、導電性基体11へ所定の直流(DC)バイアスが印加されることで電子写真感光体21が所定の極性・電位に接触帯電される。帯電ローラ1によって周面が帯電された電子写真感光体21は、次いで露光器24により目的画像情報の露光(レーザービーム走査露光、原稿画像のスリット露光など)を受けることで、その周面に目的の画像情報に対応した静電潜像が形成される。   When a predetermined direct current (DC) bias is applied to the conductive substrate 11 from the power source 22 and the rubbing power source 23, the electrophotographic photosensitive member 21 is contact-charged to a predetermined polarity and potential. The electrophotographic photosensitive member 21 whose peripheral surface is charged by the charging roller 1 is then subjected to exposure of target image information (laser beam scanning exposure, slit exposure of a document image, etc.) by an exposure device 24, so that the peripheral surface has a target. An electrostatic latent image corresponding to the image information is formed.

その静電潜像は、次いで、現像部材25により、トナー画像として順次に可視像化されていく。このトナー画像は、次いで、転写部材26により不図示の給紙手段部から電子写真感光体21の回転と同期取りされて適正なタイミングをもって電子写真感光体21と転写部材26との間の転写部へ搬送された転写材27に順次転写されていく。本例の転写部材26は転写ローラであり、転写材27の裏からトナーと逆極性の帯電を行うことで電子写真感光体21側のトナー画像が転写材27に転写されていく。   The electrostatic latent image is then successively visualized as a toner image by the developing member 25. This toner image is then synchronized with the rotation of the electrophotographic photosensitive member 21 from a paper feeding means (not shown) by the transfer member 26 and transferred at a proper timing between the electrophotographic photosensitive member 21 and the transfer member 26. Are sequentially transferred to the transfer material 27 conveyed to the substrate. The transfer member 26 in this example is a transfer roller, and the toner image on the electrophotographic photosensitive member 21 side is transferred to the transfer material 27 by charging with the reverse polarity to the toner from the back of the transfer material 27.

表面にトナー画像の転写を受けた転写材27は、電子写真感光体21から分離されて不図示の定着手段へ搬送されて像定着を受け、画像形成物として出力される。あるいは、裏面にも像形成するものでは、転写部への再搬送手段へ搬送される。
像転写後の電子写真感光体21の周面は、前露光器28による前露光を受けて電子写真感光体ドラム上の残留電荷が除去(除電)される。この前露光器28には公知の手段を利用することができ、例えばLEDチップアレイ、ヒューズランプ、ハロゲンランプおよび蛍光ランプなどを好適に例示することができる。
The transfer material 27 having received the transfer of the toner image on the surface is separated from the electrophotographic photosensitive member 21 and conveyed to a fixing means (not shown) to receive image fixing and output as an image formed product. Alternatively, in the case of forming an image on the back side, it is conveyed to a re-conveying means to the transfer unit.
The peripheral surface of the electrophotographic photosensitive member 21 after the image transfer is subjected to pre-exposure by the pre-exposure device 28, and residual charges on the electrophotographic photosensitive drum are removed (static elimination). Known means can be used for the pre-exposure device 28. For example, an LED chip array, a fuse lamp, a halogen lamp, and a fluorescent lamp can be preferably exemplified.

除電された電子写真感光体21の周面は、クリーニング部材29で転写残りトナーなどの付着汚染物の除去を受けて洗浄面化されて、繰り返して画像形成に供される。
帯電ローラ1は面移動駆動される電子写真感光体21に従動駆動させてもよいし、非回転にしてもよいし、電子写真感光体21の面移動方向に順方向または逆方向に所定の周速度をもって積極的に回転駆動させるようにしてもよい。
The peripheral surface of the electrophotographic photosensitive member 21 from which the charge has been removed is cleaned by the cleaning member 29 after removal of adhering contaminants such as toner remaining after transfer, and is repeatedly used for image formation.
The charging roller 1 may be driven and driven by the electrophotographic photosensitive member 21 driven to move the surface, may not be rotated, or has a predetermined circumference in the forward or reverse direction in the surface moving direction of the electrophotographic photosensitive member 21. You may make it actively rotate at a speed.

露光は、電子写真装置を複写機として使用する場合には、原稿からの反射光や透過光、また、原稿を読み取り信号化し、この信号に基づいてレーザービームを走査したり、LEDアレイを駆動したり、または液晶シャッターアレイを駆動してもよい。本発明の帯電部材を使用しうる電子写真装置としては、複写機、レーザービームプリンター、LEDプリンタ、あるいは、電子写真製版システムなどの電子写真応用装置などが挙げられる。   When the electrophotographic apparatus is used as a copying machine, the exposure is reflected light or transmitted light from the original, or the original is read as a signal, and a laser beam is scanned or the LED array is driven based on this signal. Alternatively, the liquid crystal shutter array may be driven. Examples of the electrophotographic apparatus that can use the charging member of the present invention include a copying machine, a laser beam printer, an LED printer, or an electrophotographic application apparatus such as an electrophotographic plate making system.

本発明に係る帯電部材は、導電性の基体と、弾性層とを有し、該弾性層中に下記(A)および(B)からなる群から選ばれる少なくとも一方のリン酸鉄リチウムの結晶を含む粒子を含有する。
(A)炭素を含有するリン酸鉄リチウムの結晶。
(B)Co、Mn、Mg、Mo、Nb、Zr及びTiからなる群から選ばれる少なくとも1種以上の金属元素を含有するリン酸鉄リチウムの結晶。
The charging member according to the present invention has a conductive base and an elastic layer, and at least one crystal of lithium iron phosphate selected from the group consisting of the following (A) and (B) is contained in the elastic layer. Containing particles.
(A) Crystal of lithium iron phosphate containing carbon.
(B) A crystal of lithium iron phosphate containing at least one metal element selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr and Ti.

リン酸鉄リチウムの結晶構造は、酸素は六方最密充填構造で、リチウムと鉄は六配位八面体、リンは四配位四面体を有するオリビン型構造(図4)であり、かつ、Fe−P−O結合が強いため、結晶構造が安定している。
ここで、リン酸鉄リチウムの結晶は、鉄原子が結晶中で孤立しており、また、強固な結晶構造を有するため、電子導電性とリチウムイオンの拡散係数が低く、導電性が低い。そこで、リン酸鉄リチウム結晶内に炭素や、Co、Nb等の異種金属元素を含有させ、複合化させることによって、電子導電性とリチウムイオン拡散速度を向上させることができた。
そして、本発明者らは、上記したような、炭素原子または特定の金属元素とともに複合化されてなるリン酸鉄リチウムの結晶を含む粒子を弾性層中に含有させることで、弾性層に安定した導電性を付与することができることを見出した。
The crystal structure of lithium iron phosphate is an olivine structure (FIG. 4) in which oxygen is a hexagonal close-packed structure, lithium and iron have a hexacoordinate octahedron, and phosphorus has a tetracoordinate tetrahedron. Since the —PO bond is strong, the crystal structure is stable.
Here, in the crystal of lithium iron phosphate, since iron atoms are isolated in the crystal and have a strong crystal structure, the electronic conductivity and the diffusion coefficient of lithium ions are low, and the conductivity is low. Therefore, it was possible to improve the electronic conductivity and the lithium ion diffusion rate by incorporating different metal elements such as carbon, Co, and Nb into the lithium iron phosphate crystal.
And, the present inventors made the elastic layer stable by including particles containing lithium iron phosphate crystals combined with carbon atoms or specific metal elements as described above in the elastic layer. It has been found that conductivity can be imparted.

すなわち、前述した通り、従来、帯電ローラの製造時に、所望の体積抵抗率に制御し易くする事や、帯電ローラ使用環境の変化に対する体積抵抗率の変動を小さくする手段として、イオン導電剤と、電子導電性粒子を併用する方法が知られている。従来では、イオン導電剤としては、過塩素酸リチウムなどのアルカリ塩などの電解質を用い、ポリマー中で、陽イオンと陰イオンに電離させ、イオンがポリマー中を移動する事により、イオン導電性を発現する。このような場合、ポリマー鎖の運動で、イオンが拡散移動するため、ポリマー構造により、イオン伝導度に影響を与える。帯電ローラは、帯電時の放電の影響で、ポリマーの劣化にし、イオン伝導性の低下が起こる。以上のことより、帯電電荷供給量が減少するため、ゴースト画像が発生する。   That is, as described above, conventionally, as a means for facilitating control to a desired volume resistivity at the time of manufacturing a charging roller, or as a means for reducing fluctuations in volume resistivity with respect to changes in the charging roller usage environment, an ionic conductive agent, A method of using electronically conductive particles in combination is known. Conventionally, as an ionic conductive agent, an electrolyte such as an alkaline salt such as lithium perchlorate is used, and in the polymer, the ion is ionized into a cation and an anion. To express. In such a case, ions are diffused and moved by the movement of the polymer chain, so that the ionic conductivity is affected by the polymer structure. In the charging roller, the polymer is deteriorated due to the influence of discharge during charging, and the ion conductivity is lowered. For the above reasons, a ghost image is generated because the charged charge supply amount decreases.

一方、本発明にかかる粒子中のリン酸鉄リチウムの結晶は、電子導電性とイオン伝導性の両方の性質を併せ持っているため、所望の体積抵抗率に制御し易く、環境依存性が小さくなる。また、リン酸鉄リチウムの結晶内でリチウムイオンが拡散移動するため、ポリマーの劣化の影響を受け難い。
更に、リン酸鉄リチウムの結晶構造は安定性が高いため、帯電ローラ使用時の放電エネルギーが加わった場合でも結晶構造が壊れ難い。そのため、イオン伝導性が安定に保持され、長時間の使用に対して、帯電電荷の供給が低下し難い。
On the other hand, since the crystal of lithium iron phosphate in the particles according to the present invention has both electronic and ionic conductivity properties, it can be easily controlled to have a desired volume resistivity and is less dependent on the environment. . In addition, since lithium ions diffuse and move within the lithium iron phosphate crystal, it is less susceptible to polymer degradation.
Furthermore, since the crystal structure of lithium iron phosphate has high stability, the crystal structure is not easily broken even when discharge energy is applied when the charging roller is used. For this reason, the ion conductivity is stably maintained, and the supply of charged charges is unlikely to be lowered with respect to long-time use.

炭素を含有するリン酸鉄リチウムの結晶(A)には、以下のような作製方法がある。炭素含有化合物、リチウム含有化合物、鉄含有化合物及びリン含有化合物を含む混合溶液をミスト状態で加熱し、熱分解させ、炭素を含有するリン酸鉄リチウム前駆体からなる微粉体を生成後、焼成する方法がある。また、リン酸鉄リチウム合成後、炭素含有化合物とともに混合、微粉砕し、そのアルゴンガスや窒素ガスなどの不活性ガス雰囲気下で加熱し、炭素含有化合物を熱分解させ、コーティングする方法もある。リン酸鉄リチウムの結晶(A)中の炭素の含有量は、リン酸鉄リチウムに対して、1〜12質量%が好ましい。1質量%以上で、粒子の導電性が十分になり、帯電電荷供給量が不足しないため、ゴースト画像がより軽減する。12質量%以下で、粒子内のイオン伝導性が十分となり、帯電ローラにおいて体積抵抗率を制御し易くなる。   The crystal (A) of lithium iron phosphate containing carbon includes the following production method. A mixed solution containing a carbon-containing compound, a lithium-containing compound, an iron-containing compound, and a phosphorus-containing compound is heated in a mist state and thermally decomposed to produce a fine powder composed of a lithium iron phosphate precursor containing carbon, followed by firing. There is a way. There is also a method in which, after synthesis of lithium iron phosphate, mixed and pulverized with a carbon-containing compound, heated in an inert gas atmosphere such as argon gas or nitrogen gas, the carbon-containing compound is thermally decomposed and coated. As for content of carbon in the crystal | crystallization (A) of lithium iron phosphate, 1-12 mass% is preferable with respect to lithium iron phosphate. When the content is 1% by mass or more, the conductivity of the particles is sufficient, and the charged charge supply amount is not insufficient, so that the ghost image is further reduced. When the content is 12% by mass or less, ion conductivity in the particles becomes sufficient, and the volume resistivity can be easily controlled in the charging roller.

(B)Co、Mn、Mg、Mo、Nb、Zr、及びTiからなる群から選ばれる少なくとも1種以上の金属元素を含有するリン酸鉄リチウムの結晶には、以下のような作製方法がある。LiCO、NHPO4、Fe・2HOなどのリン酸鉄リチウム原料と、上記金属元素群Co、Mn、Mg、Mo、Nb、Zr、Tiを含有する化合物を、少量のアセトンを加え、ジルコニアボールミルにて粉砕混合する。その後、真空乾燥し、ロータリーチューブファーネースなどの回転式の炉にて、不活性ガス雰囲気下300〜400℃で加熱後、700〜800℃で焼成し、得る方法がある。Co、Mn、Mg、Mo、Nb、Zr、Tiを含有する化合物としては、硫酸コバルト七水和物、マンガンメトキシド、酢酸マンガン四水和物、硫酸マグネシウム、シュウ酸マグネシウム二水和物、塩化モリブデン、ニオビウムフェノキシド、ジルコニウムエトキシド、チタニウムメトキシド、硫酸チタンなどが挙げられる。Co、Mn、Mg、Mo、Nb、Zr及びTiからなる群から選ばれる少なくとも1種以上の金属元素の、リン酸鉄リチウムの結晶(B)中の、含有量は、Feと含有金属元素の合計モル量に対して、1〜10モル%が好ましい。1モル%以上で、粒子の導電性が十分となり、帯電電荷供給量が不足しないため、ゴースト画像が軽減する。10モル%以下の場合、リン酸鉄リチウム特有である結晶構造の安定性が保たれ、帯電ローラ使用時の放電エネルギーが加わった場合にも、イオン伝導性が低下せず、ゴースト画像が軽減する。 (B) A crystal of lithium iron phosphate containing at least one metal element selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr, and Ti has the following manufacturing method. . Contains lithium iron phosphate materials such as Li 2 CO 3 , NH 4 H 2 PO 4, Fe 2 C 2 O 4 .2H 2 O, and the metal element groups Co, Mn, Mg, Mo, Nb, Zr, and Ti A small amount of acetone is added to the compound to be pulverized and mixed with a zirconia ball mill. Then, there is a method of drying by vacuum drying, heating at 300 to 400 ° C. in an inert gas atmosphere in a rotary furnace such as a rotary tube furnace, and then firing at 700 to 800 ° C. Compounds containing Co, Mn, Mg, Mo, Nb, Zr, Ti include cobalt sulfate heptahydrate, manganese methoxide, manganese acetate tetrahydrate, magnesium sulfate, magnesium oxalate dihydrate, chloride Examples include molybdenum, niobium phenoxide, zirconium ethoxide, titanium methoxide, and titanium sulfate. The content of at least one metal element selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr, and Ti in the lithium iron phosphate crystal (B) includes Fe and the contained metal element. 1-10 mol% is preferable with respect to the total molar amount. If it is 1 mol% or more, the conductivity of the particles becomes sufficient, and the charged charge supply amount is not insufficient, so that the ghost image is reduced. When the amount is 10 mol% or less, the stability of the crystal structure peculiar to lithium iron phosphate is maintained, and even when the discharge energy is applied when using the charging roller, the ion conductivity is not lowered and the ghost image is reduced. .

(A)、および(B)からなる群から選ばれる少なくとも一方のリン酸鉄リチウムの結晶はベースポリマー100質量部に対して、1質量部以上60質量部以下配合されることが好ましい。1質量部以上で、帯電ローラにおける体積抵抗率の制御し易さと、導電性の小さい環境依存性を備え、かつ積算印刷枚数の増加に伴うゴーストの発生を軽減する。また60質量部以下で、未加硫ゴム組成物の粘度が上がりすぎることによる加工性の悪化を防ぐ事ができる。   It is preferable that at least one crystal of lithium iron phosphate selected from the group consisting of (A) and (B) is blended in an amount of 1 part by mass to 60 parts by mass with respect to 100 parts by mass of the base polymer. When the amount is 1 part by mass or more, it is easy to control the volume resistivity of the charging roller and has low environmental dependency, and the occurrence of ghosts associated with an increase in the number of accumulated prints is reduced. Moreover, at 60 mass parts or less, the deterioration of workability by the viscosity of an unvulcanized rubber composition rising too much can be prevented.

図1(a)と図1(b)に本発明の帯電部材の例として、帯電ローラ1の模式図を示す。図1(b)は芯金11とその外周に設けられた半導電性弾性層12と表面層13から構成される。図1(a)は、芯金11に半導電性弾性層12のみを搭載した単層構成となっている。工程数などの生産性の観点から、単層構成の方がより好ましい。
弾性層はベースポリマーと添加剤の混合物である。ベースポリマーは、帯電部材の実使用温度範囲でゴム弾性を示す材料であれば特に限定されるものではない。例としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン(SBR)、ブチルゴム(IIR)、エチレン−プロピレン−ジエン3元共重合体ゴム(EPDM)、エピクロルヒドリンホモポリマー(CHC)、エピクロルヒドリン−エチレンオキサイド共重合体(CHR)、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(CHR−AGE)、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエン共重合体の水添物(H−NBR)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)等が挙げられる。また、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー等の熱可塑性エラストマー等も挙げられる。また、これらのベースポリマーを2種以上ブレンドしても構わない。さらに、ベースポリマーには、必要に応じてゴムの配合剤として一般に用いられている充填剤、加工助剤、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤、分散剤等を添加することもある。
1A and 1B are schematic views of a charging roller 1 as an example of the charging member of the present invention. FIG. 1B includes a cored bar 11, a semiconductive elastic layer 12 provided on the outer periphery thereof, and a surface layer 13. FIG. 1A shows a single-layer configuration in which only the semiconductive elastic layer 12 is mounted on the core metal 11. From the viewpoint of productivity such as the number of steps, a single layer configuration is more preferable.
The elastic layer is a mixture of base polymer and additives. The base polymer is not particularly limited as long as it is a material exhibiting rubber elasticity in the actual use temperature range of the charging member. Examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene (SBR), butyl rubber (IIR), ethylene-propylene-diene terpolymer rubber (EPDM), epichlorohydrin. Homopolymer (CHC), epichlorohydrin-ethylene oxide copolymer (CHR), epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (CHR-AGE), acrylonitrile-butadiene copolymer (NBR), acrylonitrile-butadiene copolymer Examples thereof include a hydrogenated polymer (H-NBR), chloroprene rubber (CR), and acrylic rubber (ACM, ANM). Moreover, thermoplastic elastomers such as polyolefin-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers are also included. Two or more of these base polymers may be blended. In addition, fillers, processing aids, crosslinking aids, crosslinking accelerators, crosslinking accelerators, crosslinking retarders, dispersants, etc. that are commonly used as rubber compounding agents are added to the base polymer as necessary. Sometimes.

また、本発明では、カーボンブラック、グラファイト等の炭素材料;酸化チタン、酸化錫等の酸化物;Cu、Ag等の金属;酸化物や金属を粒子表面に被覆して導電化した導電粒子等の電子導電剤を併用しても良い。
これらの原料の混合方法としては、バンバリーミキサーや加圧式ニーダーといった密閉型混合機を使用した混合方法や、オープンロールのような開放型の混合機を使用した混合方法などを例示することができる。
Further, in the present invention, carbon materials such as carbon black and graphite; oxides such as titanium oxide and tin oxide; metals such as Cu and Ag; conductive particles obtained by coating the surface of the particles with oxides or metals and the like. An electronic conductive agent may be used in combination.
Examples of the mixing method of these raw materials include a mixing method using a closed mixer such as a Banbury mixer and a pressure kneader, and a mixing method using an open mixer such as an open roll.

弾性層の成形方法としては、未加硫の半導電性ゴム組成物を押出機によりチューブ状に押出成形し、これを加硫缶で加硫成形したものに導電性基体を圧入後、表面を研磨して所望の外径とする方法がある。また、未加硫の半導電性ゴム組成物を、クロスヘッドを装着した押出機により、導電性基体を中心に円筒形に共押出し、所望の外径の金型内部に固定、加硫後、成形体を得る方法等も挙げることができる。   As a method for forming the elastic layer, an unvulcanized semiconductive rubber composition is extruded into a tube shape by an extruder, vulcanized and molded with a vulcanizing can, and a conductive substrate is press-fitted. There is a method of polishing to a desired outer diameter. Further, an unvulcanized semiconductive rubber composition is coextruded into a cylindrical shape around a conductive substrate by an extruder equipped with a cross head, fixed inside a mold having a desired outer diameter, vulcanized, The method etc. which obtain a molded object can also be mentioned.

弾性層の表面はトナーや紙粉等の汚れが付着し難いように、紫外線照射、電子線照射等による表面改質を行っても良い。表面層を塗工しても良い。表面層の形成方法としては、上記の様な表層材料を溶剤に溶解または分散させた液を、ディッピング、リング塗工、ビーム塗工、ロールコーター、スプレー等の塗工法によって、弾性層表面にコーティングする方法等を挙げることができる。表面層としては、一般的には公知の被覆層が用いられ、例えばアクリル系ポリマー、ポリウレタン、ポリアミド、ポリエステル、ポリオレフィン、シリコーン等のバインダー高分子に、カーボンブラック、グラファイト、酸化チタン、酸化錫等の酸化物;Cu、Ag等の金属、酸化物や金属を粒子表面に被覆して導電化した導電粒子;LiClO、KSCN、NaSCN、LiCFSO等のイオン性電解質等を適宜量分散させることにより、所望の電気抵抗値としたものや、オキシアルキレン基を有するポリシロキサンからなるゾル−ゲル膜が用いられる。 The surface of the elastic layer may be subjected to surface modification by ultraviolet irradiation, electron beam irradiation, or the like so that dirt such as toner and paper powder does not easily adhere. A surface layer may be applied. As a method for forming the surface layer, the surface layer material as described above is dissolved or dispersed in a solvent, and the surface of the elastic layer is coated by a coating method such as dipping, ring coating, beam coating, roll coater or spraying. And the like. As the surface layer, a known coating layer is generally used. For example, a binder polymer such as acrylic polymer, polyurethane, polyamide, polyester, polyolefin, silicone, carbon black, graphite, titanium oxide, tin oxide, etc. Oxides: Metals such as Cu and Ag, conductive particles obtained by coating the surface of the particles with oxides and metals, and conductive particles; ionic electrolytes such as LiClO 4 , KSCN, NaSCN, and LiCF 3 SO 3 are dispersed in appropriate amounts. Therefore, a sol-gel film made of polysiloxane having a desired electric resistance value or an oxyalkylene group is used.

本発明では、表面層を有していない場合で、良好な画像が得られており、コスト面を考慮すると、単層の方が、より好ましい。
なお、本発明における帯電ローラには、必要に応じて、弾性層や表面被覆層以外に、接着層、拡散防止層、下地層、プライマー層等の機能層を設けることもできる。
In the present invention, a good image is obtained when the surface layer is not provided, and a single layer is more preferable in consideration of cost.
The charging roller according to the present invention may be provided with functional layers such as an adhesive layer, a diffusion prevention layer, a base layer, and a primer layer in addition to the elastic layer and the surface coating layer as necessary.

以下に実施例によって本発明を更に詳細に説明するが、これらは、本発明を何ら限定するものではない。なお、以下、特に明記しない限り、試薬等は特に指定のないものは市販の高純度品を用いた。
(リン酸鉄リチウム粒子の作製)
以下に、本発明で用いた、リン酸鉄リチウム粒子(A)又は、(B)の作製例を示す。
The present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention. Hereinafter, unless otherwise specified, commercially available high-purity products were used unless otherwise specified.
(Preparation of lithium iron phosphate particles)
The production examples of lithium iron phosphate particles (A) or (B) used in the present invention are shown below.

(作製例1)サンプル1:炭素内包リン酸鉄リチウム結晶を含む粒子の作製。
LiNO3と、Fe(NO)3と、(H3PO4)をLi:Fe:P =1:1:1のモル比で混合し、LiNO濃度が0.1mol/Lになるように水溶液を調整した。この水溶液に60質量%のスクロースを加え、この溶液に1.6MHzの超音波を加え、ミスト化し、1.5mの400℃に設定した横型反応管に、空気流量5L/minの状態で導入し、前駆体粒子を得た。この前駆体粒子を温度800℃で、2時間焼成し、炭素内包リン酸鉄リチウム結晶を含む粒子を得た。
(炭素含有量分析)
炭素含有量の測定は、微量炭素分析装置(堀場社製 EMIA−100型)を用いて行い、小数点2桁以下を切り捨てた値を炭素含有量とした。得られた炭素内包リン酸鉄リチウム粒子について測定したところ、炭素含有量は、12.0質量%であった。
(Production Example 1) Sample 1: Production of particles containing carbon-encapsulated lithium iron phosphate crystals.
LiNO 3 , Fe (NO) 3 , and (H 3 PO 4 ) are mixed at a molar ratio of Li: Fe: P = 1: 1: 1 so that the LiNO 3 concentration is 0.1 mol / L. Adjusted. 60% by mass of sucrose is added to this aqueous solution, and ultrasonic waves of 1.6 MHz are added to this solution to form a mist, which is then introduced into a horizontal reaction tube set to 1.5 m at 400 ° C. with an air flow rate of 5 L / min. The precursor particles were obtained. The precursor particles were calcined at a temperature of 800 ° C. for 2 hours to obtain particles containing carbon-encapsulated lithium iron phosphate crystals.
(Carbon content analysis)
The measurement of the carbon content was performed using a trace carbon analyzer (EMIA-100 type, manufactured by Horiba), and the value obtained by rounding off the two digits after the decimal point was defined as the carbon content. When the obtained carbon-encapsulated lithium iron phosphate particles were measured, the carbon content was 12.0% by mass.

(作製例2)サンプル2:LiFe0.97Ti0.02Co0.01PO結晶を含む粒子の作製。
60Lの反応容器にNaOHを23mol、NaCOを11molを含む水溶液40Lを仕込み、窒素ガスを通気して置換し、温度60℃に保持した。ここに、窒素通気、攪拌しながら、18molのFeSOと0.9molのFe(SOを含む水溶液20Lを添加して、水酸化鉄粒子を含有する懸濁液とし、温度60℃で60分間混合した。次に、温度60℃のまま、空気を10L/minで通気させ、2時間、酸化反応を行った。得られた懸濁液をろ過、洗浄、乾燥して、微粒子酸化鉄を得た。
(Production Example 2) Sample 2: Production of particles containing LiFe 0.97 Ti 0.02 Co 0.01 PO 4 crystal.
A 60 L reaction vessel was charged with 40 L of an aqueous solution containing 23 mol of NaOH and 11 mol of Na 2 CO 3 , and replaced with nitrogen gas, and maintained at a temperature of 60 ° C. To this, 20 L of an aqueous solution containing 18 mol of FeSO 4 and 0.9 mol of Fe 2 (SO 4 ) 3 was added with nitrogen aeration and stirring to obtain a suspension containing iron hydroxide particles at a temperature of 60 ° C. For 60 minutes. Next, with the temperature kept at 60 ° C., air was aerated at 10 L / min, and an oxidation reaction was performed for 2 hours. The obtained suspension was filtered, washed and dried to obtain fine-particle iron oxide.

得られた酸化後の懸濁液6L(Feとして、1.8mol)を15Lの反応容器に仕込み、NaCO濃度が0.54mol/Lの水溶液1Lを加え、混合した。室温で、混合しながら、0.036molのTi(SOおよび0.018molのCoSO・7HOを溶解した水溶液1Lを1時間かけて滴下した。得られた懸濁液をろ過、洗浄、乾燥して、Ti、Co処理微粒子酸化鉄の結晶を含む粒子を得た。 6 L of the suspension obtained after oxidation (1.8 mol as Fe) was charged into a 15 L reaction vessel, and 1 L of an aqueous solution having a Na 2 CO 3 concentration of 0.54 mol / L was added and mixed. While mixing at room temperature, 1 L of an aqueous solution in which 0.036 mol of Ti (SO 4 ) 2 and 0.018 mol of CoSO 4 .7H 2 O were dissolved was added dropwise over 1 hour. The obtained suspension was filtered, washed, and dried to obtain particles containing Ti and Co-treated fine iron oxide crystals.

Ti、Co処理微粒子酸化鉄0.05mol(金属分として0.15mol)、LiCOを0.079mol、(NHHPOを0.15molおよびグルコース6gを80mLジルコニアボールミルに入れた。更に純水20mLを添加して、250rpmで、24時間混合した。温度150℃で乾燥後、メノウ乳鉢で粉砕し、窒素雰囲気下、温度800℃で6時間焼成し、LiFe0.97Ti0.02Co0.01PO結晶含有粒子を得た。 Ti, Co-treated fine particle iron oxide 0.05 mol (0.15 mol as a metal content), Li 2 CO 3 0.079 mol, (NH 4 ) 2 HPO 4 0.15 mol and glucose 6 g were put in an 80 mL zirconia ball mill. Further, 20 mL of pure water was added and mixed at 250 rpm for 24 hours. After drying at a temperature of 150 ° C., the mixture was pulverized in an agate mortar and calcined in a nitrogen atmosphere at a temperature of 800 ° C. for 6 hours to obtain LiFe 0.97 Ti 0.02 Co 0.01 PO 4 crystal-containing particles.

(作製例3)サンプル3:LiFe0.96Ti0.02Mn0.02PO結晶を含む粒子の作製。
60Lの反応容器にNaOHを24mol、NaCOを12mol含む水溶液40Lを仕込み、窒素ガスを通気して置換し、温度60℃に保持した。ここに、窒素通気、攪拌しながら、FeSOを18mol、Fe(SOを0.9mol、Ti(SOを0.4molおよびMnSO4を0.4molを含む水溶液20Lを添加して、水酸化鉄粒子を含有する懸濁液とし、60℃で60分間混合した。次に、温度60℃のまま、空気を10L/minで通気させ、2時間、酸化反応を行った。得られた懸濁液をろ過、洗浄、乾燥して、微粒子酸化鉄を得た。
(Production Example 3) Sample 3: Production of particles containing LiFe 0.96 Ti 0.02 Mn 0.02 PO 4 crystal.
A 60 L reaction vessel was charged with 40 L of an aqueous solution containing 24 mol of NaOH and 12 mol of Na 2 CO 3 , nitrogen gas was passed through and replaced, and the temperature was maintained at 60 ° C. To this, 20 L of an aqueous solution containing 18 mol of FeSO 4 , 0.9 mol of Fe 2 (SO 4 ) 3 , 0.4 mol of Ti (SO 4 ) 2 and 0.4 mol of MnSO 4 was added while stirring with nitrogen. Then, a suspension containing iron hydroxide particles was prepared and mixed at 60 ° C. for 60 minutes. Next, with the temperature kept at 60 ° C., air was aerated at 10 L / min, and an oxidation reaction was performed for 2 hours. The obtained suspension was filtered, washed and dried to obtain fine-particle iron oxide.

上記で得られたTi、Mnドープ酸化鉄0.05mol(金属分として0.15mol)、LiCOを0.080mol、(NHHPOを0.15molおよびグルコース5gをジルコニアボールミルに入れた。更に純水20mLを添加して、250rpmで、24時間混合した。温度150℃で乾燥後、メノウ乳鉢で粉砕し、窒素雰囲気下、温度800℃で12時間焼成し、LiFe0.96Ti0.02Mn0.02PO結晶含有粒子を得た。 Ti, Mn-doped iron oxide 0.05 mol (0.15 mol as a metal content) obtained above, 0.080 mol of Li 2 CO 3 , 0.15 mol of (NH 4 ) 2 HPO 4 and 5 g of glucose in a zirconia ball mill I put it in. Further, 20 mL of pure water was added and mixed at 250 rpm for 24 hours. After drying at a temperature of 150 ° C., the mixture was pulverized in an agate mortar and calcined at a temperature of 800 ° C. for 12 hours in a nitrogen atmosphere to obtain LiFe 0.96 Ti 0.02 Mn 0.02 PO 4 crystal-containing particles.

(作製例4)サンプル4:LiFe0.98Mg0.02PO結晶含有粒子の作製。
LiCO、NHPO、FeC・2HO、MgC・2HOをLi:Fe:Mg:P=1:0.98:0.02:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.98Mg0.02PO結晶含有粒子を得た。
(Production Example 4) Sample 4: Production of LiFe 0.98 Mg 0.02 PO 4 crystal-containing particles.
Li 2 CO 3 , NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, MgC 2 O 4 .2H 2 O were changed to Li: Fe: Mg: P = 1: 0.98: 0.02: 1. The mixture was mixed at a molar ratio, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain a LiFe 0.98 Mg 0.02 PO 4 crystal containing particles.

(作製例5)サンプル5:LiFe0.99Mo0.01PO結晶含有粒子の作製。
LiOH・HO、NHPO、FeC・2HO、MoClをLi:Fe:Mo:P=1:0.99:0.01:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.99Mo0.01PO結晶含有粒子を得た。
(Production Example 5) Sample 5: Production of LiFe 0.99 Mo 0.01 PO 4 crystal-containing particles.
LiOH.H 2 O, NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, and MoCl 5 have a molar ratio of Li: Fe: Mo: P = 1: 0.99: 0.01: 1. A small amount of acetone was added, and pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain a LiFe 0.99 Mo 0.01 PO 4 crystal containing particles.

(作製例6)サンプル6:LiFe0.99Nb0.01PO結晶含有粒子の作製
LiCO、NHPO、FeC・2HO、Nb(CO)をLi:Fe:Nb:P=1:0.99:0.01:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.99Nb0.01PO結晶含有粒子を得た。
Preparation Example 6 Sample 6: Preparation of LiFe 0.99 Nb 0.01 PO 4 Crystal-Containing Particles Li 2 CO 3 , NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, Nb (C 6 H 5 O) 5 was mixed at a molar ratio of Li: Fe: Nb: P = 1: 0.99: 0.01: 1, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain a LiFe 0.99 Nb 0.01 PO 4 crystal containing particles.

(作製例7)サンプル7:LiFe0.99Zr0.01PO結晶含有粒子の作製
LiCO、NHPO、FeC・2HO、Zr(CO)をLi:Fe:Zr:P=1:0.99:0.01:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.99Zr0.01PO結晶含有粒子を得た。
Preparation Example 7 Sample 7: Preparation of LiFe 0.99 Zr 0.01 PO 4 Crystal-Containing Particles Li 2 CO 3 , NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, Zr (C 2 H 5 O) 4 was mixed at a molar ratio of Li: Fe: Zr: P = 1: 0.99: 0.01: 1, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain a LiFe 0.99 Zr 0.01 PO 4 crystal containing particles.

(作製例8)サンプル8:LiFe0.98Ti0.02PO結晶含有粒子の作製
60Lの反応容器にNaOHを55.2molを含む水溶液40Lを仕込み、窒素ガスを通気して置換し、温度80℃に保持した。ここに、窒素通気、攪拌しながら、6molのFeSOと6molのFe(SOおよび0.36molのTi(SOを含む水溶液20Lを添加して、温度80℃で3時間混合した。得られた懸濁液をろ過、洗浄、乾燥して、微粒子Tiドープ酸化鉄を得た。
上記でTiドープ酸化鉄0.05mol(金属分として0.15mol)、LiCOを0.079mol、(NHHPOを0.153molおよびグルコース4gを80mL遊星ボールミル容器に入れた。更に純水20mLを添加して、250rpmで、12時間混合した。温度120℃で乾燥後、メノウ乳鉢で粉砕し、N雰囲気下、温度800℃で6時間焼成し、LiFe0.98Ti0.02PO結晶含有粒子を得た。
Preparation Example 8 Sample 8: Preparation of LiFe 0.98 Ti 0.02 PO 4 Crystal-Containing Particles A 60 L reaction vessel was charged with 40 L of an aqueous solution containing 55.2 mol of NaOH and purged with nitrogen gas to replace the temperature. Maintained at 80 ° C. To this, 20 L of an aqueous solution containing 6 mol of FeSO 4 , 6 mol of Fe 2 (SO 4 ) 3 and 0.36 mol of Ti (SO 4 ) 2 was added with nitrogen aeration and stirring, and the temperature was 80 ° C. for 3 hours. Mixed. The obtained suspension was filtered, washed and dried to obtain fine particle Ti-doped iron oxide.
In the above, 0.05 mol of Ti-doped iron oxide (0.15 mol as a metal content), 0.079 mol of Li 2 CO 3 , 0.153 mol of (NH 4 ) 2 HPO 4 and 4 g of glucose were placed in an 80 mL planetary ball mill container. Furthermore, 20 mL of pure water was added and mixed at 250 rpm for 12 hours. After drying at a temperature of 120 ° C., the mixture was pulverized in an agate mortar and fired at 800 ° C. for 6 hours in an N 2 atmosphere to obtain LiFe 0.98 Ti 0.02 PO 4 crystal-containing particles.

(作製例9)サンプル9:炭素被覆LiFe0.99Mo0.01PO結晶含有粒子の作製
LiOH・HO、NHPO、FeC・2HO、MoClをLi:Fe:Mo:P=1:0.99:0.01:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、軟化温度250℃の精製石炭ピッチを加え、粉砕混合した後、温度800℃で10時間焼成し、炭素被覆LiFe0.99Mo0.01PO結晶含有粒子を得た。
(Production Example 9) Sample 9: Production of carbon-coated LiFe 0.99 Mo 0.01 PO 4 crystal-containing particles LiOH.H 2 O, NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, MoCl 5 The mixture was mixed so that the molar ratio of Li: Fe: Mo: P = 1: 0.99: 0.01: 1 was added, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Thereafter, refined coal pitch with a softening temperature of 250 ° C. was added, pulverized and mixed, and then fired at 800 ° C. for 10 hours to obtain carbon-coated LiFe 0.99 Mo 0.01 PO 4 crystal-containing particles.

(作製例10)サンプル10:炭素内包リン酸鉄リチウム結晶含有粒子の作製
LiNOと、Fe(NO)と、(HPO)をモル比でLi:Fe:P=1:1:1のモル比で混合し、LiNOの濃度が0.1mol/Lになるように水溶液を調整した。この水溶液に2質量%のスクロースを加え、この溶液に1.6MHzの超音波を加え、ミスト化し、1.5mの温度400℃に設定した横型反応管に、空気流量5L/minの状態で導入し、前駆体粒子を得た。この前駆体粒子を温度800℃で、2時間焼成し、炭素内包リン酸鉄リチウム結晶含有粒子を得た。
(Production Example 10) Sample 10: Production of carbon-containing lithium iron phosphate crystal-containing particles LiNO 3 , Fe (NO) 3 , and (H 3 PO 4 ) in a molar ratio of Li: Fe: P = 1: 1: The aqueous solution was adjusted so that the concentration of LiNO 3 was 0.1 mol / L. 2% by mass of sucrose is added to this aqueous solution, and 1.6 MHz ultrasonic waves are added to this solution to form a mist, which is introduced into a horizontal reaction tube set at a temperature of 1.5 m at a temperature of 400 ° C. with an air flow rate of 5 L / min. As a result, precursor particles were obtained. The precursor particles were calcined at a temperature of 800 ° C. for 2 hours to obtain carbon-containing lithium iron phosphate crystal-containing particles.

(作製例11)サンプル11:炭素内包リン酸鉄リチウム結晶含有粒子の作製。
LiNOと、Fe(NO)と、(HPO)をモル比でLi:Fe:P=1:1:1のモル比で混合し、LiNOの濃度が0.1mol/Lになるように水溶液を調整した。この水溶液に5質量%のスクロースを加え、この溶液に1.6MHzの超音波を加え、ミスト化し、1.5mの温度400℃に設定した横型反応管に、空気流量5L/minの状態で導入し、前駆体粒子を得た。この前駆体粒子を温度800℃で、2時間焼成し、炭素内包リン酸鉄リチウム結晶含有粒子を得た。
(Production Example 11) Sample 11: Production of carbon-containing lithium iron phosphate crystal-containing particles.
LiNO 3 , Fe (NO) 3 and (H 3 PO 4 ) are mixed at a molar ratio of Li: Fe: P = 1: 1: 1 so that the concentration of LiNO 3 is 0.1 mol / L. The aqueous solution was adjusted so that 5% by mass of sucrose is added to this aqueous solution, and 1.6MHz ultrasonic waves are added to this solution to form a mist, which is introduced into a horizontal reaction tube set at a temperature of 1.5 m at a temperature of 400 ° C. with an air flow rate of 5 L / min. As a result, precursor particles were obtained. The precursor particles were calcined at a temperature of 800 ° C. for 2 hours to obtain carbon-containing lithium iron phosphate crystal-containing particles.

(作製例12)サンプル12:炭素内包リン酸鉄リチウム結晶含有粒子の作製。
LiNOと、Fe(NO)と、(HPO)をモル比でLi:Fe:P=1:1:1のモル比で混合し、LiNOの濃度が0.1mol/Lになるように水溶液を調整した。この水溶液に70質量%のスクロースを加え、この溶液に1.6MHzの超音波を加え、ミスト化し、1.5mの温度400℃に設定した横型反応管に、空気流量5L/minの状態で導入し、前駆体粒子を得た。この前駆体粒子を温度800℃で、2時間焼成し、炭素内包リン酸鉄リチウム結晶含有粒子を得た。
(Production Example 12) Sample 12: Production of carbon-containing particles containing lithium iron phosphate crystals.
LiNO 3 , Fe (NO) 3 and (H 3 PO 4 ) are mixed at a molar ratio of Li: Fe: P = 1: 1: 1 so that the concentration of LiNO 3 is 0.1 mol / L. The aqueous solution was adjusted so that 70% by mass of sucrose is added to this aqueous solution, and 1.6 MHz ultrasonic waves are added to this solution to form a mist, which is introduced into a horizontal reaction tube set at a temperature of 1.5 m at a temperature of 400 ° C. with an air flow rate of 5 L / min. As a result, precursor particles were obtained. The precursor particles were calcined at a temperature of 800 ° C. for 2 hours to obtain carbon-containing lithium iron phosphate crystal-containing particles.

(作製例13)サンプル13:LiFe0.999Mg0.001PO結晶含有粒子の作製
LiCO、NHPO、FeC・2HO、MgC・2HOをLi:Fe:Mg:P=1:0.999:0.001:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.999Mg0.001PO結晶含有粒子を得た。
(Production Example 13) Sample 13: Production of LiFe 0.999 Mg 0.001 PO 4 Crystal-Containing Particles Li 2 CO 3 , NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, MgC 2 O 4 .2H 2 O was mixed at a molar ratio of Li: Fe: Mg: P = 1: 0.999: 0.001: 1, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain LiFe 0.999 Mg 0.001 PO 4 crystal containing particles.

(作製例14)サンプル14:LiFe0.9Mg0.1PO結晶含有粒子の作製。
LiCO、NHPO、FeC・2HO、MgC・2HOをLi:Fe:Mg:P=1:0.9:0.1:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.9Mg0.1PO結晶含有粒子を得た。
(Preparation Example 14) Sample 14: Preparation of LiFe 0.9 Mg 0.1 PO 4 crystal-containing particles.
Li 2 CO 3 , NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, MgC 2 O 4 .2H 2 O are mixed with Li: Fe: Mg: P = 1: 0.9: 0.1: 1. The mixture was mixed at a molar ratio, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain LiFe 0.9 Mg 0.1 PO 4 crystal containing particles.

(作製例15)サンプル15:LiFe0.85Mg0.15PO結晶含有粒子の作製。
LiCO、NHPO、FeC・2HO、MgC・2HOをLi:Fe:Mg:P=1:0.85:0.15:1のモル比になるように混合し、少量のアセトンを加え、ジルコニアボールミルにて24時間、粉砕混合した。その後、真空乾燥し、ロータリーチューブファーネースにて、アルゴン雰囲気下、温度350℃で、10時間加熱した。その後、温度800℃で10時間焼成し、LiFe0.85Mg0.15PO結晶含有粒子を得た。
以上のサンプル1〜15の作製例について、含有金属元素の種類、金属元素含有量、炭素含有量を表1にまとめた。
金属元素含有量とは、Co、Mn、Mg、Mo、Nb、Zr及びTiからなる群から選ばれる少なくとも1種以上の金属元素群とFeの合計モル量に対して、該金属元素群の含有モル%を合計した値を意味する。
(Production Example 15) Sample 15: Production of LiFe 0.85 Mg 0.15 PO 4 crystal-containing particles.
Li 2 CO 3 , NH 4 H 2 PO 4 , FeC 2 O 4 .2H 2 O, MgC 2 O 4 .2H 2 O are Li: Fe: Mg: P = 1: 0.85: 0.15: 1 The mixture was mixed at a molar ratio, a small amount of acetone was added, and the mixture was pulverized and mixed in a zirconia ball mill for 24 hours. Then, it vacuum-dried and it heated at the temperature of 350 degreeC by argon tube atmosphere in argon atmosphere for 10 hours. Then, they fired at a temperature 800 ° C. 10 hours to obtain a LiFe 0.85 Mg 0.15 PO 4 crystal containing particles.
Table 1 summarizes the types of metal elements contained, the metal element content, and the carbon content of the above-described Samples 1-15.
The metal element content is the content of the metal element group with respect to the total molar amount of Fe and at least one metal element group selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr and Ti. It means the sum of mol%.

〔実施例1〕
(ゴム材料の調製)
表2に示す材料を、6リットル加圧ニーダー(製品名:TD6−15MDX、トーシン社製)用いて、A練り混合した。A練り混合条件を充填率60vol%、ブレード回転数35rpmとし、16分混合してA練りゴム組成物が得られた。
[Example 1]
(Preparation of rubber material)
The materials shown in Table 2 were kneaded and mixed with A using a 6 liter pressure kneader (product name: TD6-15MDX, manufactured by Toshin). A kneading mixing conditions were set to a filling rate of 60 vol%, a blade rotation number of 35 rpm, and mixing for 16 minutes to obtain an A kneading rubber composition.

A練り混合条件を充填率60vol%、ブレード回転数35rpmとし、16分混合してA練りゴム組成物が得られた。
このA練りゴム混合物177質量部に対して、表3に示す材料を、ロール径12インチのオープンロールにて、混合した。混合条件は、前ロール回転数8rpm、後ロール回転数10rpm、ロール間隙2mmで20分混合し、弾性層用の未加硫ゴム組成物が得られた。
A kneading mixing conditions were set to a filling rate of 60 vol%, a blade rotation number of 35 rpm, and mixing for 16 minutes to obtain an A kneading rubber composition.
The materials shown in Table 3 were mixed with 177 parts by mass of this A-kneaded rubber mixture using an open roll having a roll diameter of 12 inches. The mixing conditions were a front roll rotational speed of 8 rpm, a rear roll rotational speed of 10 rpm, and a roll gap of 2 mm for 20 minutes to obtain an unvulcanized rubber composition for an elastic layer.

(弾性層の成形)
直径6mm、長さ252mmの円柱形の導電性基体(鋼製、表面はニッケルメッキ)の円柱面の軸方向中央部228mmに導電性加硫接着剤(メタロックU−20;東洋化学研究所製)を塗布し、温度80℃で30分間乾燥した。
次に、未加硫ゴム組成物を、クロスヘッドを用いた押出成形によって、導電性基体を中心として同軸状に円筒形に同時に押出し、導電性基体の外周に未加硫ゴム組成物がコーティングされた未加硫ゴムローラを作製した。押出機は、シリンダー径45mm(Φ45)、L/D=20の押出機を使用し、押出時の温度はヘッド100℃、シリンダー110℃、スクリュー110℃とした。
得られた未加硫ゴム組成物を、加熱炉にて空気中、大気圧下、温度160℃で30分加熱し、加硫を行った。この加硫後のローラのゴム両端部を突っ切り、ゴム部分の長さを232mmとした後、ゴム部分を研磨機(LEO−600−F4−BME 水口製作所製)で研磨し、端部直径8.4mm、中央部直径8.5mmのクラウン形状の弾性層を有するゴムローラを得た。
得られたゴムローラの表面に紫外線照射による表面改質処理を行った。照射条件は、低圧水銀ランプ(ハリソン東芝ライティング社製)を用いて、波長254nmの紫外線を積算光量が8500mJ/cmになるように照射した。上記のようにして帯電ローラ1を作成した。
(Molding of elastic layer)
Conductive vulcanizing adhesive (Metaloc U-20; manufactured by Toyo Chemical Laboratories Co., Ltd.) in the axial central portion 228 mm of the cylindrical surface of a cylindrical conductive substrate (steel, surface is nickel-plated) having a diameter of 6 mm and a length of 252 mm Was applied and dried at a temperature of 80 ° C. for 30 minutes.
Next, the unvulcanized rubber composition is simultaneously extruded into a cylindrical shape coaxially around the conductive substrate by extrusion molding using a cross head, and the outer periphery of the conductive substrate is coated with the unvulcanized rubber composition. An unvulcanized rubber roller was prepared. As the extruder, an extruder having a cylinder diameter of 45 mm (Φ45) and L / D = 20 was used, and the temperature during extrusion was a head of 100 ° C., a cylinder of 110 ° C., and a screw of 110 ° C.
The obtained unvulcanized rubber composition was vulcanized by heating in a heating furnace in air at atmospheric pressure at a temperature of 160 ° C. for 30 minutes. The rubber after the vulcanization was cut off at both ends of the rubber to make the length of the rubber part 232 mm, and then the rubber part was polished with a polishing machine (LEO-600-F4-BME made by Mizuguchi Seisakusho). A rubber roller having a crown-shaped elastic layer having a diameter of 4 mm and a central diameter of 8.5 mm was obtained.
The surface of the obtained rubber roller was subjected to surface modification treatment by ultraviolet irradiation. The irradiation conditions were such that a low-pressure mercury lamp (manufactured by Harrison Toshiba Lighting Co., Ltd.) was used to irradiate ultraviolet rays having a wavelength of 254 nm so that the integrated light amount was 8500 mJ / cm 2 . The charging roller 1 was produced as described above.

(耐久画像評価)
作製した帯電ローラを電子写真プロセスカートリッジに組み込み、このプロセスカートリッジをA4紙縦出力用の電子写真装置(商品名:LBP5050 キヤノン製)に組込み、画像評価を行った。
画像評価は、温度15℃、湿度10%RH環境下で行い、1%の印字濃度で6000枚プリント後(耐久後)において出力したハーフトーン画像(電子写真感光体の回転方向と垂直方向に幅1ドットの線を間隔2ドットで描く画像)によって評価した。
感光ドラムの1周目に15mm四方のベタ画像を形成し、直後にハーフトーン画像を出力し、ドラム2周目以降に、現れる残像による画像不良について、ゴースト画像ランクをつけた。評価基準は表4のとおりである。
(Durable image evaluation)
The produced charging roller was incorporated into an electrophotographic process cartridge, and this process cartridge was incorporated into an A4 paper longitudinal output electrophotographic apparatus (trade name: LBP5050 manufactured by Canon Inc.) for image evaluation.
The image evaluation was performed under an environment of a temperature of 15 ° C. and a humidity of 10% RH, and a halftone image (width in the direction perpendicular to the rotation direction of the electrophotographic photosensitive member) output after printing 6000 sheets at a printing density of 1% (after durability). Evaluation was performed based on an image in which a 1-dot line was drawn at intervals of 2 dots.
A solid image of 15 mm square was formed on the first round of the photosensitive drum, and a halftone image was output immediately thereafter. A ghost image rank was assigned to image defects due to an afterimage that appeared after the second round of the drum. Table 4 shows the evaluation criteria.

Cランク以上は実用レベルである。 Above C rank is a practical level.

(体積抵抗率測定)
図3に体積抵抗率測定装置の概略図を示した。帯電ローラ1の中央部分には1.5cm幅のアルミシート31が弾性層と隙間無く密着するように巻きつけられている。この状態で、帯電ローラ1の芯金部分11に電源32を用いて直流電圧を印加し、31のアルミシートに直列に接続した抵抗33にかる電圧から、弾性層の電気抵抗を測定した。
弾性層の電気抵抗は、温度15℃、湿度10%R.H.(L/Lとも記載する)環境下と、温度32.5℃、湿度80%R.H.(H/Hとも記載する)環境下で、それぞれ、図3の装置を使用し、芯金とアルミシートの間に直流200Vの電圧を印加して測定した。
そして、測定された電気抵抗の値(Ωd)から、ローラ外径8.5mm、アルミシート幅1.5cm、弾性層厚み1.5mmであるので、以下の式(1)から体積抵抗率(ρd)を求めた。
Ρd = (Ωd×0.85×π×1.5)/0.15 ・・・・(1)
帯電ローラ1を100本作製し、1本につき1回測定し、その平均値を体積抵抗率の値とした。
(Volume resistivity measurement)
FIG. 3 shows a schematic diagram of a volume resistivity measuring apparatus. An aluminum sheet 31 having a width of 1.5 cm is wound around the central portion of the charging roller 1 so as to be in close contact with the elastic layer without any gap. In this state, a DC voltage was applied to the cored bar portion 11 of the charging roller 1 using the power source 32, and the electric resistance of the elastic layer was measured from the voltage applied to the resistor 33 connected in series to the aluminum sheet 31.
The elastic layer has an electrical resistance of 15 ° C. and 10% R.H. H. (Also referred to as L / L) in the environment, temperature 32.5 ° C., humidity 80% H. Under the environment (also referred to as H / H), the apparatus of FIG. 3 was used, and measurement was performed by applying a DC voltage of 200 V between the metal core and the aluminum sheet.
From the measured electric resistance value (Ωd), the roller outer diameter is 8.5 mm, the aluminum sheet width is 1.5 cm, and the elastic layer thickness is 1.5 mm. Therefore, the volume resistivity (ρd )
Ρd = (Ωd × 0.85 × π × 1.5) /0.15 (1)
100 charging rollers 1 were produced and measured once for each, and the average value was taken as the value of volume resistivity.

(環境依存性)
H/HとL/L環境下で測定した体積抵抗率の比を環境依存性として評価し、2以下の値を示すものは、環境依存性が良(小さい)と判断した。
(Environment dependency)
The volume resistivity ratio measured under H / H and L / L environments was evaluated as environment dependency, and those showing values of 2 or less were judged to have good (small) environment dependency.

(抵抗の調整し易さ)
帯電ローラ1を100本作製し、その体積抵抗率(H/H環境下)の最大値と最低値の比を求めた。この値が小さいほど、帯電部材間での体積抵抗率を調整しやすい導電剤であることを意味する。
本実施例に係る帯電ローラの測定結果および評価結果を表11に示す。
(Easy adjustment of resistance)
100 charging rollers 1 were produced, and the ratio between the maximum value and the minimum value of the volume resistivity (under H / H environment) was determined. The smaller this value, the easier it is to adjust the volume resistivity between the charging members.
Table 11 shows the measurement results and evaluation results of the charging roller according to this example.

〔実施例2〕
サンプル1(作成例1参照)の配合部数を10質量部にした以外は、実施例1と同様の方法で帯電ローラ2を作製・評価した。
〔実施例3〕
表5に示す材料を、実施例1と同様の方法で混合し、未加硫ゴム組成物(A練りゴム組成物)を得た。
[Example 2]
A charging roller 2 was produced and evaluated in the same manner as in Example 1 except that the blending number of Sample 1 (see Production Example 1) was 10 parts by mass.
Example 3
The materials shown in Table 5 were mixed in the same manner as in Example 1 to obtain an unvulcanized rubber composition (A kneaded rubber composition).

表6に、A練りゴム組成物とオープンロールで混合する材料を示す。 Table 6 shows materials mixed with the A-kneaded rubber composition and the open roll.

以上に示した以外は、実施例1と同様の方法で、帯電ローラ3を作製・評価した。 Except for the above, the charging roller 3 was produced and evaluated in the same manner as in Example 1.

〔実施例4、21〕
弾性層形成用混合物の組成を、表11および表13に示すように変更した以外は実施例3と同様の方法で帯電ローラ4および21を作製・評価した。
〔実施例5、7〜13、25、28〜33〕
弾性層形成用混合物の組成を、表11〜14に示すように変更した以外は実施例1と同様の方法で帯電ローラ5、7〜13、25、28〜33を作製・評価した。
〔実施例6、23〕
弾性層形成用混合物の組成を、表11および表13に示すように変更した以外は、実施例5と同様の方法で帯電ローラ6および23を作製・評価した。
〔実施例14〜20〕
弾性層形成用混合物の組成を、表12に示すように変更した以外は、実施例2と同様の方法で帯電ローラ14〜20を作製・評価した。
〔実施例22〕
サンプル1をサンプル6に変更した以外は、実施例4と同様の方法で帯電ローラ22を作製・評価した。
〔実施例24〕
サンプル1をサンプル6に変更した以外は、実施例6と同様の方法で帯電ローラ24を作製・評価した。
[Examples 4 and 21]
The charging rollers 4 and 21 were prepared and evaluated in the same manner as in Example 3 except that the composition of the elastic layer forming mixture was changed as shown in Tables 11 and 13.
[Examples 5, 7 to 13, 25, 28 to 33]
The charging rollers 5, 7 to 13, 25, and 28 to 33 were produced and evaluated in the same manner as in Example 1 except that the composition of the elastic layer forming mixture was changed as shown in Tables 11 to 14.
[Examples 6 and 23]
The charging rollers 6 and 23 were prepared and evaluated in the same manner as in Example 5 except that the composition of the elastic layer forming mixture was changed as shown in Tables 11 and 13.
[Examples 14 to 20]
The charging rollers 14 to 20 were produced and evaluated in the same manner as in Example 2 except that the composition of the elastic layer forming mixture was changed as shown in Table 12.
[Example 22]
A charging roller 22 was produced and evaluated in the same manner as in Example 4 except that sample 1 was changed to sample 6.
Example 24
A charging roller 24 was produced and evaluated in the same manner as in Example 6 except that Sample 1 was changed to Sample 6.

〔実施例26〕
表7に示す材料を、実施例1と同様の方法で混合し、未加硫ゴム組成物(A練りゴム組成物)を得た。
Example 26
The materials shown in Table 7 were mixed in the same manner as in Example 1 to obtain an unvulcanized rubber composition (A kneaded rubber composition).

表8に、A練りゴム組成物とオープンロールで混合する材料を示す。 Table 8 shows materials mixed with the A-kneaded rubber composition and the open roll.

以上に示した以外は、実施例1と同様の方法で、帯電ローラ26を作製・評価した。 Except for the above, the charging roller 26 was produced and evaluated in the same manner as in Example 1.

〔実施例27〕
表9に示す材料を、実施例1と同様の方法で混合し、未加硫ゴム組成物(A練りゴム組成物)を得た。
Example 27
The materials shown in Table 9 were mixed in the same manner as in Example 1 to obtain an unvulcanized rubber composition (A kneaded rubber composition).

表10に、A練りゴム組成物とオープンロールで混合する材料を示す。 Table 10 shows the materials mixed with the A-kneaded rubber composition and the open roll.

以上に示した以外は、実施例1と同様の方法で、帯電ローラ27を作製・評価した。 Except for the above, the charging roller 27 was produced and evaluated in the same manner as in Example 1.

〔比較例1〜3〕
表14に示すように変更した以外は、実施例1と同様の方法で帯電ローラ34〜36を作製・評価した。
[Comparative Examples 1-3]
Except for the changes shown in Table 14, charging rollers 34 to 36 were produced and evaluated in the same manner as in Example 1.

以上の実施例と比較例を表11〜14にまとめた。表から明らかなように、(A)および(B)からなる群から選ばれる少なくとも一方のリン酸鉄リチウム粒子を用いた実施例では、従来のイオン導電剤である過塩素酸リチウムやリン酸ナトリウムを用いた比較例より、ゴースト画像が改善された。このとき、抵抗の調整し易さと、環境依存性についても、悪化しておらず、両立していることが確認できた。
実施例25においては、炭素を含有し、かつMo元素を含有するリン酸鉄リチウム粒子を用いており、ゴースト画像および環境依存性が比較例より良化している。
また、実施例26の場合は、金属元素を含有しないサンプル1と、所定の金属元素および炭素を含有するサンプル5とを併用しており、比較例より、ゴーストが良化し、かつ抵抗の調整し易さと、環境依存性を両立している。
実施例27の場合は、サンプル4とサンプル7を併用しており、比較例より、ゴーストが良化し、かつ抵抗の調整し易さと、環境依存性を両立している。サンプル4とサンプル7はいずれも、所定の金属元素および炭素を含有する。
実施例28の場合は、比較例よりは、ゴーストが良化しているものの、実施例29や実施例1ほどはゴーストは良化していない。これは、サンプル10が、Co、Mn、Mg、Mo、Nb、Zr、及びTiからなる群から選ばれる少なくとも1種以上の金属元素を含有せず、かつ、リン酸鉄リチウム粒子(A)中の炭素の含有量が1質量%未満であったため、粒子の導電性が不十分になり、帯電電荷供給量が不足したためである。
実施例30の場合は、比較例よりは、ゴーストが良化し、環境依存性も良いが、実施例29や実施例1ほどは抵抗の調整し易さは良化していない。これは、サンプル12の炭素の含有量が、13質量%超であったため、粒子中のリン酸鉄リチウム含有量が少なく、粒子内のイオン伝導性が不十分となり、体積抵抗率を制御し難くなっているためである。
実施例31、33の場合は、比較例よりは、ゴーストが良化しているが、実施例9ほどはゴーストが良化していない。これは、Mg元素の含有量が、Feと含有金属元素の合計モル量に対して、1〜10モル%の範囲外となっているためである。
比較例3は、導電剤として過塩素酸リチウムを添加した系で、イオン導電剤のみを配合したため、環境依存性が、実施例に比べ悪化している。
The above Examples and Comparative Examples are summarized in Tables 11-14. As is clear from the table, in the examples using at least one lithium iron phosphate particle selected from the group consisting of (A) and (B), lithium perchlorate and sodium phosphate, which are conventional ionic conductive agents, are used. The ghost image was improved as compared with the comparative example using. At this time, it was confirmed that the resistance was easily adjusted and the environmental dependency was not deteriorated and was compatible.
In Example 25, lithium iron phosphate particles containing carbon and containing Mo element are used, and the ghost image and environment dependency are improved compared to the comparative example.
In the case of Example 26, the sample 1 containing no metal element and the sample 5 containing a predetermined metal element and carbon are used in combination, and the ghost is improved and the resistance is adjusted as compared with the comparative example. It is both easy and environmentally dependent.
In the case of Example 27, Sample 4 and Sample 7 are used together, and the ghost is improved and the resistance is easily adjusted and the environment dependency is compatible with that of the comparative example. Both sample 4 and sample 7 contain a predetermined metal element and carbon.
In the case of Example 28, the ghost is improved as compared with the comparative example, but the ghost is not improved as much as in Example 29 and Example 1. This is because the sample 10 does not contain at least one metal element selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr, and Ti, and in the lithium iron phosphate particles (A) This is because the carbon content was less than 1% by mass, the conductivity of the particles was insufficient, and the amount of charged charge supplied was insufficient.
In the case of Example 30, the ghost is improved and the environment dependency is better than that of the comparative example, but the ease of adjusting the resistance is not improved as much as in Example 29 and Example 1. This is because the carbon content of sample 12 was more than 13% by mass, so the content of lithium iron phosphate in the particles was small, the ion conductivity in the particles was insufficient, and the volume resistivity was difficult to control. It is because it has become.
In Examples 31 and 33, the ghost is improved compared to the comparative example, but the ghost is not improved as much as in Example 9. This is because the content of Mg element is outside the range of 1 to 10 mol% with respect to the total molar amount of Fe and the contained metal element.
Since Comparative Example 3 is a system in which lithium perchlorate is added as a conductive agent and only an ionic conductive agent is blended, the environmental dependency is worse than that of the example.

1 帯電ローラ
11 芯金
12 弾性層
13 表面層

DESCRIPTION OF SYMBOLS 1 Charging roller 11 Core metal 12 Elastic layer 13 Surface layer

Claims (3)

導電性基体および弾性層を有する帯電部材であって、
該弾性層は下記(A)および(B)からなる群から選ばれる少なくとも一方の結晶を含む粒子を含有することを特徴とする帯電部材:
(A)炭素を含有するリン酸鉄リチウムの結晶、
(B)Co、Mn、Mg、Mo、Nb、Zr、及びTiからなる群から選ばれる少なくとも1種以上の金属元素を含有するリン酸鉄リチウムの結晶。
A charging member having a conductive substrate and an elastic layer,
The elastic layer contains particles containing at least one crystal selected from the group consisting of the following (A) and (B):
(A) a crystal of lithium iron phosphate containing carbon,
(B) A crystal of lithium iron phosphate containing at least one metal element selected from the group consisting of Co, Mn, Mg, Mo, Nb, Zr, and Ti.
前記粒子が、前記(A)の結晶を含み、該結晶中の炭素の含有量が1質量%以上12質量%以下である請求項1に記載の帯電部材。   The charging member according to claim 1, wherein the particles include the crystal of (A), and the content of carbon in the crystal is 1% by mass or more and 12% by mass or less. 前記粒子が、前記(B)の結晶を含み、該結晶中の前記金属元素の含有量が、当該金属元素とFeの合計モル量に対して1モル%以上10モル%以下である請求項1又は2に記載の帯電部材。



2. The particle includes the crystal of (B), and the content of the metal element in the crystal is 1 mol% or more and 10 mol% or less with respect to the total molar amount of the metal element and Fe. Or the charging member of 2.



JP2011110771A 2011-05-17 2011-05-17 Charging member Expired - Fee Related JP5743707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110771A JP5743707B2 (en) 2011-05-17 2011-05-17 Charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110771A JP5743707B2 (en) 2011-05-17 2011-05-17 Charging member

Publications (2)

Publication Number Publication Date
JP2012242506A true JP2012242506A (en) 2012-12-10
JP5743707B2 JP5743707B2 (en) 2015-07-01

Family

ID=47464300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110771A Expired - Fee Related JP5743707B2 (en) 2011-05-17 2011-05-17 Charging member

Country Status (1)

Country Link
JP (1) JP5743707B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673286A (en) * 1992-06-29 1994-03-15 Bridgestone Corp Conductive polyurethane foam
JP2007181953A (en) * 2006-01-05 2007-07-19 Canon Inc Conductive member
JP2011042553A (en) * 2009-03-13 2011-03-03 Jfe Chemical Corp Method for producing iron lithium phosphate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673286A (en) * 1992-06-29 1994-03-15 Bridgestone Corp Conductive polyurethane foam
JP2007181953A (en) * 2006-01-05 2007-07-19 Canon Inc Conductive member
JP2011042553A (en) * 2009-03-13 2011-03-03 Jfe Chemical Corp Method for producing iron lithium phosphate

Also Published As

Publication number Publication date
JP5743707B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
EP2629151B1 (en) Charging member
JP3639773B2 (en) Semiconductive rubber composition, charging member, electrophotographic apparatus, process cartridge
US8622881B1 (en) Conductive member, electrophotographic apparatus, and process cartridge
JP2012032804A (en) Conductive member, process cartridge and electrophotographic image forming apparatus
WO2009099115A1 (en) Developing member for electrophotography, process for producing the developing member, process cartridge for electrophotography, and image forming apparatus for electrophotography
JP4681039B2 (en) Conductive roll
US11619890B2 (en) Electro-conductive member, manufacturing method thereof, process cartridge, and electrophotographic image forming apparatus
US9075341B2 (en) Developing roller
EP2899594B1 (en) Conductive member, electrophotographic apparatus, and process cartridge
JP4981160B2 (en) Semi-conductive roller and toner transport roller
JP5178067B2 (en) Charging member and electrophotographic image forming apparatus
JP5743707B2 (en) Charging member
JP4804862B2 (en) Manufacturing method of rubber roller
JP2008299120A (en) Charging member
JP2007286498A (en) Conductive roller
JP7046598B2 (en) Manufacturing method of charged member
JP2010243642A (en) Charging member and charging roller
JP4244740B2 (en) Charging roll and image forming apparatus using the same
JP5230186B2 (en) Elastic member and manufacturing method thereof
JP2004245863A (en) Charging roller
JP2012063590A (en) Charging member
JP2006047560A (en) Electrophotographic conductive member and process cartridge as well as electrophotographic device provided with the same
JP2006030766A (en) Conductive roller
JP2008191382A (en) Conductive rubber roller, image forming apparatus and transfer roller
JP2009244626A (en) Charging member, electrophotographic image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R151 Written notification of patent or utility model registration

Ref document number: 5743707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees